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ABSTRACT

The Fundamental Risk Quadrangle (FRQ) is a unified framework linking risk
management, statistical estimation, and optimization. Distributionally robust op-
timization (DRO) based on ϕ-divergence minimizes the maximal expected loss,
where the maximum is over a ϕ-divergence ambiguity set. This paper introduces
the extended ϕ-divergence and the extended ϕ-divergence quadrangle, which in-
tegrates DRO into the FRQ framework. We derive the primal and dual representa-
tions of the quadrangle elements (risk, deviation, regret, error, and statistic). The
dual representation provides an interpretation of classification, portfolio optimiza-
tion, and regression as robust optimization based on the extended ϕ-divergence.
The primal representation offers tractable formulations of these robust optimiza-
tions as convex optimization. We provide illustrative examples showing that many
common problems, such as least-squares regression, quantile regression, support
vector machines, and CVaR optimization, fall within this framework. Addition-
ally, we conduct a case study to visualize the optimal solution of the inner maxi-
mization in robust optimization.

1 INTRODUCTION

Distributionally robust optimization with ϕ-divergence ambiguity set (Ben-Tal et al., 2013) mini-
mizes the worst-case expected loss over all probability measures within an ambiguity set defined by
ϕ-divergence. Ahmadi-Javid (2012) shows that the inner maximization of DRO is a coherent risk
measure (Artzner et al., 1999), which we refer to as the ϕ-divergence risk measure in this study.
This result establishes a direct connection between DRO and risk-averse optimization.

The Fundamental Risk Quadrangle (Rockafellar and Uryasev, 2013) combines regular risk mea-
sures with regular measures of deviation, error and regret in a framework that links optimization
with statistics. In particular, regression is shown to be equivalent to deviation minimization. De-
fined through axioms, FRQ clarifies the relationships between objective functions used in tasks such
as classification, portfolio optimization, and regression. Through the dual representation of the
quadrangle, these tasks can be interpreted as robust optimization.

It is natural to consider integrating DRO into FRQ by completing the quadrangle for ϕ-divergence
risk measure. The purpose of the integration is two-fold: FRQ provides insights into DRO by con-
necting objective functions in various tasks and interprets the tasks as DRO, while the ϕ-divergence
risk measure inspires the construction of new risk quadrangles. However, ϕ-divergence risk mea-
sure is coherent, which excludes risk measures widely used in machine learning and finance, such as
the mean-standard deviation risk measure . These excluded measures are accommodated within the
FRQ framework. By extending the divergence function to the entire real line, we introduce a family
of regular risk measures and associated quadrangles, which encompass many important examples.

Main Contributions. (i) Extension of ϕ-divergence: We define the extended ϕ-divergence and
its associated risk measure, allowing for negative values in the worst-case weight. The extension
recovers risk measures used as objective functions in various tasks. A notable example is the mean-
standard deviation risk measure associated with the extended χ2-divergence. (ii) Completion of
Quadrangle: For the extended ϕ-divergence risk measure, we complete the risk quadrangle and de-
rive primal and dual representations for risk, deviation, regret and error. The primal representation
facilitates convex optimization formulations. The dual representation provides a robust optimization
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(RO) interpretation of the measures associated with extended ϕ-divergence, and a DRO interpre-
tation of the measures associated with ϕ-divergence. Furthermore, the RO objective functions are
upper bounds for their DRO counterparts. A well-known example is that the mean-standard devia-
tion risk measure bounds the χ2-divergence risk measure. (iii) Examples and Interpretation: We
provide a range of examples to illustrate that the extended ϕ-divergence quadrangle recovers many
important quadrangles. The quadrangle elements are used as objective functions in various learn-
ing tasks, such as least-squares regression, quantile regression, support vector machines, and CVaR
optimization. Through the dual representation, these tasks has a novel RO/DRO interpretation.

Literature Review. The connection between DRO and coherent risk measure has been extensively
studied in Bayraksan and Love (2015); Dommel and Pichler (2020); Kuhn et al. (2024). Gotoh and
Uryasev (2017) studies classification as a risk minimization problem. The dual representation of
regular risk measure is studied in Rockafellar and Uryasev (2013). The dual representation of co-
herent regret is studied in Sun et al. (2020); Rockafellar (2020); Fröhlich and Williamson (2022a;b);
Rockafellar (2023). Our study is the first to define the extended ϕ-divergence, complete the corre-
sponding risk quadrangle, and unify these developments with robust optimization interpretations for
various learning tasks.

2 PRELIMINARIES

This section provides the necessary background on the ϕ-divergence risk measure and the FRQ. We
adopt the following standard notations throughout. Let (Ω,Σ, P0) be a probability space, where P0

is a reference measure. Let R = R ∪ {+∞} denote the extended set of real numbers. Let X ∈ L2

be a real-valued random variable. Expectation and standard deviation of a random variable X with
respect to the reference measure is denoted by E[X] and σ(X). The set of all probability measures
on (Ω,Σ) is denoted by P(Σ). ||X||p denotes the Lp-norm. const denotes a constant.

2.1 ϕ-DIVERGENCE AND ϕ-DIVERGENCE RISK MEASURE

Definition 2.1 (Divergence Function). A convex lower semi-continuous function ϕ : R → R is
a divergence function if (i)ϕ(1) = 0, (ii) dom(ϕ) = R, (iii)ϕ(x) = +∞ for x < 0, (iv)1 ∈
int({x : ϕ(x) < +∞}), (v)0 ∈ ∂ϕ(1), where the interior is denoted by int, the subgradient is
denoted by ∂.

Definition 2.2 (ϕ-Divergence (Csiszár, 1963; Morimoto, 1963)). Consider probability measures P
and P0, where P is dominated by P0. For a divergence function ϕ(x), the ϕ-divergence of P from
P0 is defined by Dϕ(P ||P0) :=

∫
Ω
ϕ (dP/dP0) dP0. Let Q be the Radon–Nikodym derivative

dP/dP0. We have Dϕ(P ||P0) = E[ϕ(Q)].

Definition 2.3 (ϕ-divergence risk measure (Ahmadi-Javid, 2012; Dommel and Pichler, 2020)).
Consider a divergence function ϕ(x). The ϕ-divergence risk measure is defined by Rϕ,β(X) =
supP∈Pϕ,β EP [X], where Pϕ,β = {P ∈ P(Σ) : Dϕ(P ||P0) ≤ β}.

For any divergence function of the form ϕ(x) + k(x− 1), where k ∈ R, the resulting ϕ-divergence
and ϕ-divergence risk measure remain unchanged. The condition (v) in Definition 2.1 ensures that
the other elements in ϕ-divergence quadrangle developed in subsequent sections satisfy the defining
axioms. The condition (iv) ensures thatRϕ,β(X) > E[X].

2.2 THE FUNDAMENTAL RISK QUADRANGLE FRAMEWORK

FRQ framework studies closed and convex functionals of random variables. A functional ρ : L2 →
R is called convex if ρ (µX + (1− µ)Y ) ≤ µρ(X) + (1− µ)ρ(Y ), ∀ X,Y ∈ L2, µ ∈ [0, 1], and
closed if

{
X ∈ L2|ρ(X) ≤ c

}
is a closed set ∀ c < ∞. A discussion on functional space can be

found in Appendix B.

A risk measure aggregates the overall uncertain cost in X into a number, so that the inequality
R(X) < C models that X is adequately smaller than C. For a bet that loses a constant amount, the
risk equals the constant. Since a risk measures the undesired outcome, it is more conservative than
the expectation. An example is the Markowitz risk E[X] + λσ(X), λ > 0.
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Definition 2.4 (Regular Risk Measure). A closed convex functional R : L2 → R is a regular
measure of risk if it satisfies: (1)R(C) = C, ∀ C = const, (2)R(X) > E[X], ∀ X 6= const.

A deviation measure quantifies nonconstancy as the uncertainty in X by measuring deviation from
the expectation. Intuitively, a bet that loses a fixed amount has risk but zero uncertainty. An example
is the (scaled) standard deviation λσ(X).

Definition 2.5 (Regular Deviation Measure). A closed convex functionalD : L2 → R+
is a regular

measure of deviation if it satisfies: (1) D(C) = 0, ∀ C = const, (2) D(X) > 0, ∀ X 6= const.

Regret quantifies the displeasure associated with the mixture of potential positive, zero and negative
outcomes of a random variable. An example is E[X] + λ||X||2.

Definition 2.6 (Regular Regret Measure). A closed convex functional V : L2 → R is a regular
measure of regret if it satisfies: (1) V(0) = 0, (2) V(X) > E[X], ∀ X 6= const.

An error quantifies nonzeroness. In regression, it measures how wrong an estimate is compared
to the true value. It is therefore nonnegative. When the estimate is precise, the error is zero. An
example is the scaled L2 norm λ||X||2 used in least squares regression.

Definition 2.7 (Regular Error Measure). A closed convex functional E : L2 → R+
is a regular

measure of error if it satisfies the following axioms: (1) E(0) = 0,, (2) E(X) > 0, ∀ X 6= const.

The measures defined above are intrinsically connected. There is a one-to-one correspondence be-
tween risk and deviation, and between regret and error. Risk and deviation can be derived from
one-dimensional minimization problems involving regret and error, respectively. When reviewing
the axioms, it is helpful to use the provided examples as a guide: risk E[X] + λσ(X), deviation
λσ(X), regret E[X] + λ||X||2, and error λ||X||2.
Definition 2.8 (Regular Risk Quadrangle). A quartet (R,D,V, E) of regular measures of risk, de-
viation, regret, and error satisfying the following relationships is called a regular risk quadrangle:

(Q1) error projection: D(X) = inf
C

{
E(X − C)

}
;

(Q2) certainty equivalence: R(X) = inf
C

{
C + V(X − C)

}
;

(Q3) centerness: R(X) = D(X) + E[X], V(X) = E(X) + E[X].

Moreover, the quartet (R,D,V, E) is bound by the statistic S(X) satisfying S(X) =
arg minC∈R

{
E(X − C)

}
= arg minC∈R

{
C + V(X − C)

}
.

A regression problem is defined by minimizing the error of the residual. Error minimization is
equivalent to deviation minimization, connecting regression problem to deviation and risk measures.
Definition 2.9 (Regression). Let Zf = Y − f(X)−C, Z̄f = Y − f(X), where C ∈ R, f belongs
to a class of functions F . A regression problem is defined as minf∈F,C E(Zf ).
Theorem 2.1 (Error Shaping Decomposition of Regression (Theorem 3.2, Rockafellar et al. (2008)).
The solution to regression in Definition 2.9 is characterized by the prescription that

f, C ∈ arg min
f,C

E(Zf ) if and only if f ∈ arg min
f

D(Z̄f ) and C ∈ S(Z̄f ).

Definition 2.10 (Conjugate Functional, Risk Envelope, Risk Identifier (Rockafellar and Uryasev,
2013)). Let ρ : L2 → R be a closed convex functional. Then a functional ρ∗ : L2 → R is said to
be conjugate to ρ if ρ(X) = supQ∈Q{E[XQ]− ρ∗(Q)},∀ X ∈ L2, where Q = dom(ρ∗) is called
the risk envelope associated with ρ, and Q furnishing the maximum in the conjugate ρ∗ is called a
risk identifier for X .

3 EXTENDED ϕ-DIVERGENCE QUADRANGLE

3.1 DUAL REPRESENTATION OF EXTENDED ϕ-DIVERGENCE QUADRANGLE

This section defines the extended divergence function and its associated risk measure, and completes
the risk quadrangle in dual representation for the risk measure. Throughout this paper, if extension is
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not explicitly mentioned for divergence function, divergence and risk quadrangle, then the referred
object is associated with the non-extended version.

We define the extended divergence function by removing the condition ϕ(x) = +∞ for x < 0 in
Definition 2.1. We frequently work with natural extensions of the divergence function in this study.
For example, the divergence function for the χ2-divergence is ϕ(x) = x2 for x > 0; we extend this
by using ϕ(x) = x2 for x ∈ R to define the extended χ2-divergence function.
Definition 3.1 (Extended Divergence Function). A convex lower semi-continuous function ϕ : R→
R is an extended divergence function if (i)ϕ(1) = 0, (ii) dom(ϕ) = R, (iii)1 ∈ int({x : ϕ(x) <
+∞}), (iv)0 ∈ ∂ϕ(1).

Next, we define the extended ϕ-divergence risk measure. We will see that the ϕ-divergence risk
measure (Definition 2.3) is a special case of the extended version.
Definition 3.2 (Extended ϕ-Divergence Risk Measure). The extended ϕ-divergence risk measure is
defined byRϕ,β(X) = supQ∈Q1

ϕ,β
E[XQ], where Q1

ϕ,β = {Q ∈ L2 : E[Q] = 1,E[ϕ(Q)] ≤ β}.

We complete the risk quadrangle in dual representation for the extended ϕ-divergence risk measure.
Definition 3.3 (Dual Representation of Extended ϕ-Divergence Quadrangle). For an extended
ϕ-divergence function and X ∈ L2, the dual extended ϕ-divergence quadrangle is defined by

Rϕ,β(X) = sup
Q∈Q1

ϕ,β

E[XQ], (3.1)

Vϕ,β(X) = sup
Q∈Qϕ,β

E[XQ], (3.2)

Dϕ,β(X) = sup
Q∈Q1

ϕ,β

E[X(Q− 1)], (3.3)

Eϕ,β(X) = sup
Q∈Qϕ,β

E[X(Q− 1)], (3.4)

Sϕ,β(X) = arg min
C∈R

sup
Q∈Qϕ,β

E[(X − C)(Q− 1)], (3.5)

where
Q1
ϕ,β = {Q ∈ L2 : E[Q] = 1,E[ϕ(Q)] ≤ β}, Qϕ,β = {Q ∈ L2 : E[ϕ(Q)] ≤ β} (3.6)

are the envelopes associated withRϕ,β(X) and Vϕ,β(X) respectively.

The next theorem proves that the dual representation above satisfies the axioms in Section 2.2.
Theorem 3.1 (Extended ϕ-Divergence Quadrangle). Let ϕ(x) be an extended ϕ-divergence func-
tion, X ∈ L2. The quartet (Rϕ,β ,Dϕ,β ,Vϕ,β , Eϕ,β) defined by 3.1–3.4 is a regular risk quadrangle
with the statistic 3.5.

The proof verifying the axioms, based on Ang et al. (2018); Sun et al. (2020), can be found in
Appendix C. After the discussion of the ϕ-divergence ambiguity set and the risk envelope Q in
Section 3.2, it will be clear that Theorem 3.1 integrates DRO into the FRQ framework. The coherent
risk measure in DRO is a special case of the extended ϕ-divergence risk measure. New quadrangles
can be constructed by plugging extended ϕ-divergences into Definition 3.3. The dual representation
provides a robust optimization interpretation for many well-known optimization problems (Section
5).

3.2 DISCUSSION ON RISK IDENTIFIER Q

Consider the (non-extended) ϕ-divergence quadrangle. Although there is no requirement in the
envelope 3.6 that Q ≥ 0, the conditions ϕ(x) = +∞ for x < 0 and E[ϕ(Q)] ≤ β imply that
Q ≥ 0 almost surely. Define indicator function IA(x) = 1 if x ∈ A and 0 otherwise. For every
Q ∈ Q1

ϕ,β , we can define a probability measure on (Ω,Σ) by PQ(A) = E[IA(ω)Q(ω)], A ∈ Σ.
Let Q0(ω) = 1 be the constant random variable. We have Q0 ∈ Q1

ϕ,β . Define P0 = PQ0
. By

definition, Q is the Radon–Nikodym derivative dPQ/dP0. Then the condition E[ϕ(Q)] ≤ β can be
equivalently expressed by Dϕ(P ||P0) ≤ β. The envelopeQ1

ϕ,β has a one-to-one correspondence to
a set of probability measures Pϕ,β = {P ∈ P(Σ) : Dϕ(P ||P0) ≤ β}. The dual representations 3.1
and 3.3 can be equivalently written as

Rϕ,β(X) = sup
P∈Pϕ,β

EP [X], Dϕ,β(X) = sup
P∈Pϕ,β

EP [X]− E[X].

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Next, consider the extended ϕ-divergence quadrangle. By extending the divergence function, Q can
take negative values. Note that the envelope with Q ≥ 0 is the necessary and sufficient condition
for monotonicity of the convex homogeneous functional associated with such envelope (Rockafellar
et al., 2006; Rockafellar and Uryasev, 2013). We therefore forgo the interpretation of Q as a Radon-
Nikodym derivative, and the monotonicity of the associated risk measure. Instead, Q can be viewed
as (potentially negative) weight on samples. In this case, the minimization of 3.1 can still be inter-
preted as a robust optimization, where the maximum is over a set of weights. Also, the covariance
between random variables X and Q is cov(X,Q) = E[(X − EX)(Q − EQ)]. Since EQ = 1 by
3.6, cov(X,Q) = E[X(Q − 1)]. The deviation 3.3 can be written as supQ∈Q1

ϕ,β
cov(X,Q). Thus

the worst-case Q∗ tracks X as closely as possible.

3.3 PRIMAL REPRESENTATION OF EXTENDED ϕ-DIVERGENCE QUADRANGLE

This section derives the primal representations of extended ϕ-divergence quadrangle in Definition
3.4 from the dual representations in Definition 3.3. The proof is in Appendix D.
Definition 3.4 (Primal Representation of Extended ϕ-Divergence Quadrangle). For an extended
divergence function ϕ(x) and X ∈ L2, the Primal Extended ϕ-Divergence quadrangle is defined by

Rϕ,β(X) = inf
C∈R,
t>0

t

{
C + β + E

[
ϕ∗
(X
t
− C

)]}
, (3.7)

Dϕ,β(X) = inf
C∈R,
t>0

t

{
C + β + E

[
ϕ∗
(X
t
− C

)
− X

t

]}
, (3.8)

Vϕ,β(X) = inf
t>0

t

{
β + E

[
ϕ∗
(X
t

)]}
, (3.9)

Eϕ,β(X) = inf
t>0

t

{
β + E

[
ϕ∗
(X
t

)
− X

t

]}
, (3.10)

Sϕ,β(X) = arg min
C∈R

inf
t>0

t

{
C

t
+ β + E

[
ϕ∗
(X − C

t

)]}
. (3.11)

Theorem 3.2 (Primal Extended ϕ-Divergence Quadrangle). Let ϕ(x) be an extended divergence
function, X ∈ L2. Elements of the dual extended ϕ-divergence quadrangle in Theorem 3.1 can be
presented as 3.7–3.11 in Definition 3.4. The optimal t and C in 3.7–3.11 are attainable.

The quadrangle elements in primal representation facilitates optimization, since the minimax prob-
lem of minimizing the worst-case expectation becomes a minimization with additional scalar vari-
able(s). Furthermore, substituting important extended ϕ-divergence functions into the definitions,
we recover many risk quadrangles with interpretable expressions (Section 4).

3.4 RELATION BETWEEN ϕ-DIVERGENCE RISK QUADRANGLE AND EXTENDED VERSION

The risk envelope 3.6 corresponding to a divergence function is a subset of the risk envelope corre-
sponding to its extended version with the same radius β. Thus, the risk, regret, deviation and error in
the ϕ-divergence quadrangle are bounded from above by those counterparts in the extended version.
Therefore, when the quadrangle elements are used as objective function, the RO is a more conser-
vative version of the corresponding DRO. Furthermore, the conditions E[ϕ(Q)] ≤ β and E[Q] = 1
imply that for sufficiently small β, the value of risk identifier Q cannot be negative. In such case,
the ϕ-divergence quadrangle becomes equivalent to the extended version.

A well-known special case of the bound of risk measure (Theorem 8.2 of Kuhn et al. (2024)) is that
the mean-standard deviation risk measure bounds the χ2-divergence risk measure

sup
P∈Pϕ,β

EP [X] ≤ E[X] +
√
βσ(X),

where ϕ(x) = (x−1)2 for x > 0 and +∞ if x ≤ 0. The right-hand side is the primal representation
of the extended χ2-divergence risk measure (Example 2 and 6).
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4 EXAMPLES OF EXTENDED ϕ-DIVERGENCE QUADRANGLE

This section presents important examples of extended ϕ-divergences and their corresponding ϕ-
divergence quadrangles. These quadrangles are derived by substituting the convex conjugates of
various extended ϕ-divergence functions into the primal representation in Definition 3.4. More
examples are listed in Appendix E. The derivations are in Appendix F.

4.1 EXTENDED ϕ-DIVERGENCE QUADRANGLES

We show that two important risk quadrangles are generated by the extended total variation distance
(TVD) and extended χ2-divergence. The new connection enables the interpretation of robust opti-
mization (Section 5).
Example 1 (Range-based Quadrangle Generated by Extended TVD). Consider the following ex-
tended divergence function and its convex conjugate

ϕ(x) = |x− 1|, x ∈ R, ϕ∗(z) =

{
z, z ∈ [−1, 1]

+∞, z ∈ (−∞,−1) ∪ (1,+∞) .

The complete quadrangle is as follows

Rϕ,β(X) =
β

2
(ess supX − ess inf X) + E[X] = range-buffered risk, scaled

Vϕ,β(X) = β ess sup |X|+ E[X] = L∞-regret, scaled

Dϕ,β(X) =
β

2
(ess supX − ess inf X) = radius of the range, scaled

Eϕ,β(X) = β ess sup |X| = L∞-error, scaled

Sϕ,β(X) =
1

2
(ess supX + ess inf X) = center of range, scaled

We recover the range-based quadrangle in Example 4 of Rockafellar and Uryasev (2013). The
divergence function is the extended version of TVD in Example 5.
Example 2 (Mean Quadrangle Generated by Extended Pearson χ2-Divergence). Consider the fol-
lowing extended divergence function and its convex conjugate

ϕ(x) = (x− 1)2, ϕ∗(z) =
z2

4
+ z .

The complete quadrangle is as follows

Rϕ,λ(X) = E[X] +
√
βσ(X), Vϕ,λ(X) = E[X] +

√
β ‖X‖2 ,

Dϕ,λ(X) =
√
βσ(X), Eϕ,λ(X) =

√
β ‖X‖2 ,

Sϕ,λ(X) = E[X].

We recover the mean quadrangle in Example 1 of Rockafellar and Uryasev (2013). The solution to
the regression (error minimization) is not dependent on β, since it only scales the error function.

The divergence function is the extended version of the χ2-divergence function in Example 6. The
connection between variance penalty and DRO is studied in Lam (2016); Duchi and Namkoong
(2019). Theorem 8.2 of Kuhn et al. (2024) shows that the mean-standard deviation risk measure is
an upper bound of maxP∈Pϕ,β EP [X]. This is a special case of the relation between ϕ-divergence
quadrangle and its extended version discussed in Section 3.4. Example 6 shows that the risk measure
being bounded is the second-order superquantile.

4.2 ϕ-DIVERGENCE QUADRANGLES

The ϕ-divergence risk measures presented in this Section are well-known. We complete the risk
quadrangle for these ϕ-divergence risk measures in the primal representation, which, apart from
Example 3, had not been established. Furthermore, for all examples, the quadrangle establishes a
novel connection between regression and DRO (Section 5).
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Example 3 (Quantile Quadrangle Generated by Indicator Divergence). Consider the divergence
function and its convex conjugate

ϕ(x) = 1[0,(1−α)−1](x), ϕ∗(z) = max{0, (1− α)−1z}.

We obtain the Quantile Quadrangle:

Rϕ,λ(X) = CVaRα(X), Vϕ,λ(X) =
1

1− α
E[X+],

Dϕ,λ(X) = CVaRα(X)− E[X], Eϕ,λ(X) = E
[ α

1− α
X+ +X−

]
,

Sϕ,λ(X) = VaRα(X).

The derivation of the risk measure is from Ahmadi-Javid (2012); Shapiro (2017). We recover the
quantile quadrangle in Example 2 of Rockafellar and Uryasev (2013). Note that the radius β of
the divergence ball does not appear in the formula in the primal representation. When α → 1, the
quadrangle becomes the worst-case-based quadrangle. When α → 0, the risk measure becomes
E[X], which is not risk averse. ϕ(x) in this case violates Definition 2.1.
Example 4 (EVaR Quadrangle Generated by Kullback-Leibler Divergence). The divergence func-
tion and its convex conjugate are

ϕ(x) = x ln(x)− x+ 1, ϕ∗(z) = exp(z)− 1.

The complete quadrangle is as follows:

Rϕ,α(X) = EVaRα(X) = inf
t>0

t

{
β + lnE

[
e
X
t

]}
, Dϕ,α(X) = inf

t>0
t

{
β + lnE

[
e
X−E[X]

t

]}
,

Vϕ,α(X) = inf
t>0

t

{
β + E

[
e
X
t − 1

]}
, Eϕ,α(X) = inf

t>0
t

{
β + E

[
e
X
t − X

t
− 1
]}
,

Sϕ,α(X) = t∗ lnE
[
e
X
t∗
]
,

where t∗ is a solution of the following equation t∗β + t∗ lnE
[
e
X
t∗
]
− E

[
Xe

X
t∗
]
/E
[
e
X
t∗
]
= 0. The

risk measure in this quadrangle is studied in Ahmadi-Javid (2012).
Example 5 (Robustified Supremum-Based Quadrangle Generated by Total Variation Distance).
Consider the following divergence function and its convex conjugate

ϕ(x) =

{
|x− 1|, x ≥ 0

+∞, x < 0
, ϕ∗(z) =

{
−1 + [z + 1]+, z ≤ 1

+∞, z > 1
.

The complete quadrangle is as follows:

Rϕ,β(X) =
β

2
ess sup(X) + (1− β

2
)CVaR β

2
(X), Vϕ,β(X) = inf

t>0
t≥ess supX

{
t(β − 1) + E

[
X + t

]
+

}
,

Dϕ,β(X) = Rϕ,β(X)− E[X], Eϕ,β(X) = inf
t>0

{
t(β − 1) + E

[[
X + t

]
+
−X

]}
,

Sϕ,β(X) = ess sup(X)− 2VaR1− β2
(X).

The derivation of the risk measure is studied in Example 3.10 of Shapiro (2017).
Example 6 (Second-order Quantile-based Quadrangle Generated by Pearson χ2-divergence). The
divergence function and its convex conjugate are

ϕ(x) =

{
(x− 1)2, x ≥ 0

+∞, x < 0
, ϕ∗(z) =

{
z2

4 + z, z ≥ −2

−1, z < −2
= −1 +

(z
2

+ 1
)2
Iz≥−2,

where I{·} = 1 if the argument in the bracket is true and 0 otherwise.
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The complete quadrangle is

Rϕ,β(X) =

√
(β + 1)E

[
(X − q(2)β (X))2I{X≥q(2)β (X)}

]
+ q

(2)
β (X) = second-order superquantile,

Dϕ,β(X) = Rϕ,β(X)− E[X] = second-order superquantile deviation,

Vϕ,β(X) = inf
t>0

tβ +
1

4t
E
[(

(X + 2t)2 − 4t2
)
I{X+2t>0}

]
,

Eϕ,β(X) = inf
t>0

tβ +
1

4t
E
[(

(X + 2t)2 − 4t2
)
I{X+2t>0}

]
− E[X],

Sϕ,β(X) = q(2)α (X) = second-order quantile,

where
√

1 + β = (1− α)−1, and the statistic q(2)α (X) is characterized by the equation

1− α = ||(X − q(2)α (X))+||1(||(X − q(2)α (X))+||2)−1.

The risk measure is a special case of the higher-moment coherent risk measure studied in Krokhmal
(2007). The risk, deviation and statistic are the same as those of second-order quantile-based quad-
rangle in Example 12 of Rockafellar and Uryasev (2013).

5 ROBUST OPTIMIZATION INTERPRETATION FOR VARIOUS
APPLICATIONS

The primal representation of the extended ϕ-divergence quadrangle recovers many important quad-
rangles, whose elements are used in various tasks such as classification, portfolio optimization and
regression. As is discussed in Section 3.1 and 3.2, the dual representation of ϕ-divergence quad-
rangle provides the interpretation as DRO. For the extended ϕ-divergence quadrangle, the dual rep-
resentation provides the interpretation as robust optimization which reweights the samples. We
formalize the statement and illustrate it with two important examples.

We consider classification 5.1, portfolio optimization 5.4, and regression 5.7. In portfolio opti-
mization, the portfolio loss is w>L, where w is the portfolio weight, L is the random loss vec-
tor. In classification, given attribute X , label Y and decision vector w, the margin is defined by
L(w, b) = Y (w>X − b). γ(w) is the regularization term. In regression, consider a dependent
variable (regressant) Y , a vector of independent variables (regressors) X = (X1, . . . , Xd), a class
of function F and intercept C ∈ R. The regression residual is defined by Zf = Y − f(X) − C,
and the residual without intercept C is defined by Z̄f = Y − f(X).

Each problem has a robust optimization interpretation (5.5, 5.2,5.8) through the dual representations.
The equivalence between 5.7 and 5.8 is a result of Theorem 2.1. When ϕ(x) is a divergence function
as defined in Definition 2.1, these problems also have a DRO interpretation (5.6, 5.3, 5.9).

Classification

min
w
Rϕ,β(−L(w, b))

+ γ(w) ,
(5.1)

Robust expected
margin maximization

min
w

max
Q∈Qϕ,β

E[−QL(w, b)]

+ γ(w) .
(5.2)

DR expected
margin minimization

min
w

max
P∈Pϕ,β

EP [−L(w, b)]

+ γ(w) .
(5.3)

Portfolio Optimization

min
1>w=1

Rϕ,β(w>L) , (5.4)

Robust loss minimization

min
1>w=1

max
Q∈Qϕ,β

E[Qw>L] .

(5.5)

DRO

min
1>w=1

max
P∈Pϕ,β

EP [w>L]

(5.6)
Regression

min
f∈F,C

Eϕ,β(Zf )), (5.7)

Deviation minimization

min
f

{
max

Q∈Qϕ,β
E[QZ̄f ]− E[Z̄f ]

}
calculate C = S(Z̄f )

(5.8)

Deviation minimization

min
f

{
max
P∈Pϕ,β

EP [Z̄f ]− E[Z̄f ]
}

calculate C = S(Z̄f )
(5.9)
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5.1 EXAMPLES OF ROBUST OPTIMIZATION INTERPRETATION

Example 7 (Mean Quadrangle). The risk and error measure in Mean Quadrangle are objective
functions for Large Margin Distribution Machine (Zhang and Zhou, 2014), Markowitz portfolio
optimization (Markowitz, 1952), and least squares regression. We have the following robust opti-
mization interpretation.

Large Margin Distribution Machine

min
w,b

E[−L(w, b)]+
√
βσ(−L(w, b))+γ(w),

Robust expected margin maximization

min
w,b

max
Q∈Q1

ϕ,β

E[−QL(w, b)]+γ(w).

Markowitz portfolio optimization

min
1>w=1

E[w>L] +
√
βσ(w>L),

Robust expected loss minimization

min
1>w=1

max
Q∈Q1

ϕ,β

E[Q(w>L)] .

Least squares regression

min
f∈F,C∈R

√
β||Zf ||2 ,

Deviation minimization

min
f∈F

max
Q∈Q1

ϕ,β

E[QZ̄f ]− E[Z̄f ]

calculate C = E[Z̄f ] .

Example 8 (Quantile Quadrangle). The risk and error measure in Quantile Quadrangle are objective
functions of ν-support vector machine (Schölkopf et al., 2000), CVaR optimization (Rockafellar
and Uryasev, 2000), and quantile regression (Koenker and Bassett Jr, 1978). Let ν = 1 − α. The
equivalence of ν-SVM and CVaR optimization is studied by Gotoh and Takeda (2004); Takeda and
Sugiyama (2008). We have the following DRO interpretation.

CVaR portfolio optimization

min
1>w=1

CVaRα(X(w)) , (5.10)

DR loss minimization

min
1>w=1

max
P∈Pϕ,β

EP [X(w)] , (5.11)

ν-SVM

min
w,b

CVaRα(−L(w, b)) + γ(w), (5.12)

DR expected margin maximization

min
w

max
P∈Pϕ,β

EP [−L(w, b)] + γ(w) . (5.13)

Quantile regression

min
f∈F,C∈R

Eα(Zf ) , (5.14)

Deviation minimization

min
f∈F

max
P∈Pϕ,β

EP [Z̄f ]− E[Z̄f ] (5.15)

calculate C ∈ VaRα[Z̄f ] , (5.16)

where X+ = max{0, X}, X− = max{0,−X}, E(X) =
[

α
1−αX+ + X−

]
is the normalized

Koenker-Bassett error, VaR is Value-at-Risk.

6 STATISTIC AND RISK IDENTIFIER

This section derives an expression for the risk identifier. Proposition 6.1 allows us to directly calcu-
late the risk identifier (worst-case weight) given the solution to the problem in primal representation.
It will be used for calculation in Section 8. The proofs are in Appendix H.
Proposition 6.1. Denote by C∗ and t∗ the optimal C and t in the primal representation 3.7 of
extended ϕ-divergence risk measure. The risk identifier of risk measure Rϕ,β(X) can be expressed
as Q∗(ω) ∈ ∂ϕ∗ (X(ω)/t∗ − C∗) . Denote by C∗ the optimal C in the primal representation 3.10
of extended ϕ-divergence error measure. The risk identifier of extended ϕ-divergence error measure
Eϕ,β(X) can be expressed as Q∗(ω) ∈ ∂ϕ∗ (X(ω)/t∗) .

7 RECOVERING ϕ-DIVERGENCE FROM QUADRANGLE ELEMENTS

This study starts with developing new risk measures given a ϕ-divergence function. There exists a
duality between divergence and risk that allows us to recover the ϕ-divergence from the elements of

9
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the corresponding ϕ-divergence quadrangle. The proof based on Föllmer and Knispel (2011) is in
Appendix I.
Proposition 7.1. Let ϕ(x) be a divergence function. ϕ-divergence can be recovered from the ele-
ments in ϕ-divergence quadrangle by

Dϕ(P ||P0) = sup
X∈L2

β>0

{E[XQ]−Rϕ,β (X)− β} = sup
X∈L2

β>0

{E[X(Q− 1)]−Dϕ,β (X)− β}

= sup
X∈L2

β>0,C

{E[XQ]− Vϕ,β (X − C) + C − β} = sup
X∈L2

β>0,C

{E[X(Q− 1)]− Eϕ,β (X − C)− β}.

8 CASE STUDY: RISK IDENTIFIER VISUALIZATION

This section contains three case studies visualizing the risk envelope (worst-case weight) in clas-
sification 5.2, portfolio optimization 5.5, and regression 5.8. We focus on the mean quadrangle
(Example 2) in this case study. The details of the experiments are specified in Appendix K.
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(a) Risk envelope in Large Margin
Distribution Machine.
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(b) Risk envelope in Markowitz
portfolio optimization.
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(c) Risk envelope in least squares
regression.

Figure 1: Darker points correspond to higher values of Q∗(w) in all figures. In (a), the circles
represent samples with label 1, while the diamonds represent samples with label −1. The optimal
decision line is y = −28.826x−0.486. In (b), optimal portfolio weights = (0.4999038, 0.5000962).
In (c), the straight line is the least squares regression line y = 0.495x− 0.0127.

From the minimax formulation in the dual representation 3.3, we observe that a larger incurred loss
corresponds to a larger weight being assigned to the data point. This observation is confirmed by the
figures. In classification 1a, misclassified points with a large margin are assigned larger weights. In
portfolio optimization 1b, points in the upper-right corner, corresponding to large portfolio losses,
are assigned larger weights. In regression 1c, points further above the regression line are assigned
larger weights.

9 CONCLUSION

We introduce the extended ϕ-divergence risk measure and complete its associated risk quadrangle.
The inner maximization problem of DRO is integrated as a special case of the risk measure. The
extended ϕ-divergence quadrangle encompasses many important quadrangles, whose elements are
used as objective functions in well-known learning tasks in classification, portfolio optimization,
and regression. The FRQ framework connects the elements axiomatically and provides a RO/DRO
interpretation to the tasks. A case study is conducted to visualize the worst-case weight.
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Fröhlich, C. and Williamson, R. C. (2022a). Risk measures and upper probabilities: Coherence and
stratification. arXiv preprint arXiv:2206.03183.
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A QUADRANGLE THEOREM

Rockafellar and Uryasev (2013) introduced measures of uncertainty that are built upon the concept
of regularity, which is closely linked to convexity and closedness.

Uncertainty can be modeled via random variables and by studying and estimating the statistical
properties of these random variables, we can estimate the risk in one form or the other. When the aim
is to estimate the risk, it is convenient to think of the the random variable as ‘loss’ or ‘cost’. There
are various ways in which risk can be quantified and expressed. One such framework developed by
Rockafellar and Uryasev (2013) is called the Risk Quadrangle, which is shown in Figure 2.

RiskR

Regret V

Deviation D

Error E

SOptimization Estimation

Figure 2: Risk Quadrangle Flowchart

The quadrangle begins from the upper left corner which depicts the measure of risk denoted by
R. It aggregates the uncertainty in losses into a numerical value R(X) by the inequality R(X) ≤
C where C is the tolerance level for the risk. The next term is in the upper-right corner called
the measure of deviation denoted by D and it quantifies the nonconstancy of the random variable.
The lower-left corner depicts measure of regret denoted by V . It stands for the net displeasure
perceived in the potential mix of outcomes of a random variable ”loss” which can be bad (> 0) or
acceptable/good (≥ 0). The last measure is the measure or error which sits as the right-bottom of
the quadrangle denoted by E . Error quantifies the non-zeroness in the random variable.
Theorem A.1 (Quadrangle Theorem, Rockafellar and Uryasev (2013)). The theorem states the fol-
lowing:

(a) The centerness relationsD(X) = R(X)−E[X] andR(X) = E[X]+D(X) give a one-to-
one correspondence between regular measures of riskR and regular measures of deviation
D. In this correspondence, R is positively homogeneous if and only if D is positively
homogeneous. On the other hand, R is monotonic if and only if D(X) ≤ supX − E[X]
for all X .

(b) The relations E(X) = V(X)− E[X] and V(X) = E[X] + E(X) give a one-to-one corre-
spondence between regular measures of regret V and regular measures of error E . In this
correspondence, V is positively homogeneous if and only if E is positively homogeneous.
On the other hand, V is monotonic if and only if E(X) ≤ |E[X]| for X ≤ 0.

(c) For any regular measure of regret V , a regular measure of risk E is obtained by:

R(X) = min
C∈R
{C + V(X − C)} .

If V is positively homogeneous, R is positively homogeneous. If V is monotonic, R is
monotonic.

(d) For any regular measure of error E , a regular measure of deviation D is obtained by

D(X) = min
C∈R
{E(X − C)} .

If E is positively homogeneous, D is positively homogeneous. If E satisfies the condition
E(X) ≤ |E[X]| for X ≤ 0, then D satisfies the condition D(X) ≤ supX − E[X] for all
X .

(e) In both (c) and (d), as long as the expression being minimized is finite for some C , the
set of C values for which the minimum is attained is a nonempty, closed, bounded interval.
Moreover when V and E are paired as in (b), the interval comes out the same and gives the
associated statistic:

arg min
C∈R

{C + V(X − C)} = S(X) = arg min
C∈R

{E(X − C)} .
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Remark A.1 (Error Projection and Certainty Equivalence). In order to establish the validity of a
given quartet (R,D,V, E) as a quadrangle, it is sufficient to demonstrate the satisfaction of either
conditions (Q1) and (Q3), or conditions (Q2) and (Q3), as conditions (Q1) and (Q2) are intrinsically
linked through the condition (Q3). Indeed, R(X) = inf

C

{
C + V(X − C)

}
= inf

C

{
E(X − C)

}
+

E[X] = D(X) + E[X].

B FUNCTIONAL SPACE SETTING

This subsection discusses the logic behind choosing L2 as a working space. The choice of Lp :=
Lp(Ω,Σ, P0), p ∈ [1,∞) seems to be reasonable, however, one still has to be careful since if
R : Lp → R is a proper convex risk measure, then either R(·) is finite valued and continuous on
Lp or R(X) = +∞ on a dense set of points X ∈ Lp (cf. (Shapiro et al., 2014, Proposition 6.8)).
Therefore, for some risk measures, it may be even impossible to find an appropriate space.

For ϕ-divergence risk measures, the natural choice of a functional space can be an Orlicz space
paired with a divergence function satisfying ϕ(0) < +∞, limx→+∞ ϕ(x)/x = +∞, suggested
by Dommel and Pichler (2020) and adopted by Fröhlich and Williamson (2022b).

However, this particular space excludes important divergence functions such as the total variation
distance (TVD). The TVD fits in the framework of Shapiro (2017), which uses Lp in general and
switches to L∞ for certain divergence functions. Of course, the simplest way would be to work with
finite Ω. Then every function X : Ω → R is measurable, and the space of all such functions can be
identified with the Euclidean space. Such an approach was taken by Bayraksan and Love (2015).

In light of everything mentioned above, we follow (Rockafellar and Uryasev, 2013) and take L2

as our working space assuming finiteness where needed. This choice also allows us to rely on the
extensive theory developed for the FRQ in this setting.

C PROOF OF THEOREM 3.1

Proof. First, we verify the conditions for regular risk measure in Definition 2.4.

Closedness and Convexity: Since the envelope Q is closed and convex ((Rockafellar et al., 2006;
Rockafellar and Uryasev, 2013)), then Rϕ,β(X) is closed (lower semicontinuous) and convex as a
maximum of continuous affine functions.

Constancy: Constancy is implied by the condition EQ = 1,

sup
Q∈Q1

ϕ,β

E[CQ] = sup
Q∈Q1

ϕ,β

C E[Q] = C .

Risk aversity: We can construct a Q0 such that the strict inequality holds for Rϕ,β(X) > E[X]. As
a function of r, P (X ≤ r) is a nondecreasing, right-continuous function with a range in [0, 1]. Thus
for a nonconstant X , there exists r ∈ R, p ∈ (0, 1) such that P (X ≤ r) = p, P (X > r) = 1 − p.
By convexity of ϕ(x) and 1 ⊂ int({x : ϕ(x) < +∞}), there exists δ > 0 such that ϕ(x) ≤ β for
x ∈ (1− δ, 1 + δ). Then, there exists δ1 ∈ (0, δ), δ2 ∈ (0, δ) such that δ1 = 1−p

p δ2. Define Q0 by

Q0(ω) =

{
1− δ1, ω : X(ω) ≤ r
1 + δ2, ω : X(ω) > r

. (C.1)

The feasibility can be checked by E[ϕ(Q0)] ≤ β, EQ0 = 1.

We have

E[XQ0] =E[XQ0|X ≤ r]P (X ≤ r) + E[XQ0|X > r]P (X > r) (C.2)
=p(1− δ1)E[X|X ≤ r] + (1− p)(1 + δ2)E[X|X > r] (C.3)
=pE[X|X ≤ r] + (1− p)E[X|X > r]− pδ1E[X|X ≤ r] + (1− p)δ2E[X|X > r]

(C.4)
=E[X] + pδ1(E[X|X > r]− E[X|X ≤ r]) (C.5)
>E[X] . (C.6)
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ThusRϕ,β(X) is a regular risk measure.

Next, we verify the conditions for regular regret measure.

Closedness and Convexity: Same with the proof above for regular risk measure.

Risk aversity: For X 6= const,

Vβ,ϕ(X) ≥ Rβ,ϕ(X) > EX. (C.7)

The first inequality is due to Q1
ϕ,β ⊂ Qϕ,β .

Zeroness:

sup
Q∈Qϕ,β

E[0 ·Q] = 0. (C.8)

The proof of Theorem 1 in Sun et al. (2020) (which works on coherent risk measure) can be applied
here to show that a regular regret measure can be obtained by removing condition EQ = 1 in 3.6.
Thus the risk 3.1 and regret 3.2 satisfies (Q2) in Definition 2.8.

Deviation 3.3 and error 3.4 measure are obtained by centerness formulae (Q3) (see Definition 2.8).
With Theorem A.1, we can show the regularity of deviation and error, and that the minimum in C
for a regular regret measure is attainable. The optimal C is Sϕ,β(X).

The proof of aversity of the risk measure constructs a feasible random variable inspired by Ang
et al. (2018). The proof of the relation between risk and regret follows Sun et al. (2020). Ang et al.
(2018); Sun et al. (2020) work with coherent risk measures. The proving techniques are of broader
interest. Ang et al. (2018) proves that 1 being a relative interior point of the envelopeQ is sufficient
for a coherent risk measure to be risk averse. Sun et al. (2020) proves that removing EQ = 1 in the
envelope of coherent risk measure generates a coherent regret measure.

Proposition 4.1 of Artzner et al. (1999) proves the coherency of risk measures that have represen-
tation supP∈P EP [X] for any set P . The setting in Artzner et al. (1999) is finite R(X) and finite
Ω.

An alternative proof of risk 3.1 and regret 3.2 satisfying (Q2) in Definition 2.8 can be obtained from
the primal representations in Section 3.3. The relation (Q2) can be directly observed from the primal
risk and regret.

D PROOF OF THEOREM 3.2

Proof. Consider the regret 3.2

Vϕ,β = sup
Q∈Qϕ,β

E[XQ] = − inf
Q∈Qϕ,β

E[−QX]. (D.1)

Consider the Lagrangian dual problem of infQ:Q∈Qϕ,β E[−QX]

sup
t≥0

inf
Q
{E[−XQ] + t (E[ϕ(Q)]− β)} . (D.2)

Denote the optimal t by t∗. If t∗ = 0, then

sup
t≥0

inf
Q
{E[−XQ] + t (E[ϕ(Q)]− β)} = inf

Q
E[−XQ] = −∞. (D.3)

Thus for all t ≥ 0,

inf
Q
{E[−XQ] + t (E[ϕ(Q)]− β)} = −∞ . (D.4)

Thus if t∗ = 0, the optimum is also attained at t > 0. If t∗ > 0, t > 0 and t ≥ 0 are the same for
the problem. Thus, we can substitute t ≥ 0 with t > 0 in the Lagrange dual problem.
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Then,

sup
t>0

inf
Q
{E[−XQ] + t (E[ϕ(Q)]− β)} (D.5)

= sup
t>0

inf
Q

(−t)
{
E
[
X

t
Q− ϕ(Q)

]
+ β

}
(D.6)

=− inf
t>0

sup
Q
t

{
E
[
X

t
Q− ϕ(Q)

]
+ β

}
. (D.7)

Next, we prove that

− inf
t>0

sup
Q
t

{
E
[
X

t
Q− ϕ(Q)

]
+ β

}
=− inf

t>0
t

{
β + Eϕ∗

(
X

t

)}
. (D.8)

We consider two cases where the following condition is satisfied and not satisfied

sup
Q

{
E
[
X

t
Q− ϕ(Q)

]}
< +∞ for some t . (D.9)

When D.9 is satisfied, since XQ/t − ϕ(Q) is a normal convex integrand (Shapiro, 2017), sup and
expectation in D.7 are exchangeable by Theorem 3A of Rockafellar (1976). Thus, D.8 holds.

When D.9 is not satisfied, supQ{E[XQ/t− ϕ(Q)]} = +∞ for all t. We have

− inf
t>0

sup
Q
t

{
E
[(

X

t

)
Q− ϕ(Q)

]
+ β

}
= −∞.

We also have that

t

(
Eϕ∗

(
X

t

)
+ β

)
=t

(
E
[
sup
Q

{(
X

t

)
Q− ϕ(Q)

}]
+ β

)
(D.10)

≥ sup
Q
t

{
E
[(

X

t

)
Q− ϕ(Q)

]
+ β

}
(D.11)

= +∞. (D.12)

Thus

− inf
t>0

t

(
Eϕ∗

(
X

t

)
+ β

)
= −∞. (D.13)

We see that D.8 holds with or without the condition D.9. With D.5–D.7, D.8, we obtain

sup
t>0

inf
Q
{E[−XQ] + t (E[ϕ(Q)]− β)} = − inf

t>0
t

{
β + Eϕ∗

(
X

t

)}
. (D.14)

Strong duality for the convex problem holds since the following Slater’s condition is valid forQ = 1

∃Q : Q ∈ Qϕ,β , E[ϕ(Q)] < β . (D.15)

Thus

Vϕ,β = − inf
Q∈Qϕ,β

E[−QX] = inf
t>0

t

{
β + Eϕ∗

(
X

t

)}
. (D.16)

By regularity, the statistic Sϕ,β(X) is attainable. Denote the optimal C and t by C∗ and t∗. If
t∗ > 0, Sϕ,β(X)

t∗ is attainable. We showed that if t∗ = 0, any t > 0 is also optimal. Sϕ,β(X)
t∗ is

attainable. By change of variable, C∗ in 3.7,3.8 equals Sϕ,β(X)
t∗ . Thus t∗ and C∗ in 3.7–3.11 are

attainable.

The primal representation of the other elements can be obtained similarly by Lagrange dual problem,
or by direct calculation using the quadrangle relations in Definition 2.8.

The primal representation of the risk measure 3.7 has been studied in the literature under differ-
ent technical conditions. Fröhlich and Williamson (2022b) starts with the primal representation of
coherent regret and obtains the coherent risk with (Q3) centerness relation in Definition 2.8.
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E MORE EXAMPLES

Example 9 (Expectile Quadrangle Generated by Generalized Pearson χ2-divergence). Let 0 < p <
1. Consider the following extended divergence function and its convex conjugate

ϕ(x) =

{
1
q (x− 1)2, x > 1
1

1−q (x− 1)2, x ≤ 1
and ϕ∗(z) =

{
qz2

4 + z, z > 0
(1−q)z2

4 + z, z ≤ 0
. (E.1)

The complete quadrangle is as follows
Rϕ,β(X) = qE[(((X − eq(X))+)2] + (1− q)E[(((X − eq(X))−)2] + E[X]

Vϕ,β(X) = E[X] +
√
βE
[
qX2
− + (1− q)X2

+

]
Dϕ,β(X) = qE[(((X − eq(X))+)2] + (1− q)E[(((X − eq(X))−)2]

Eϕ,β(X) =
√
βE
[
qX2
− + (1− q)X2

+

]
= asymmetric squared loss, scaled

Sϕ,β(X) = eq(X) = expectile
We recover one version of expectile quadrangle in Malandii et al. (2024). The divergence func-
tion ϕ(x) gives rise to a generalized Pearson χ2-divergence. Example 2 is a special case of this
quadrangle with q = 0.5.
Example 10 (Example Generated by finite-interval-indicator Divergence). Let 0 < a < 1 < b. The
divergence function and its convex conjugate are

ϕ(x) =


+∞, x ∈ [0, a)

0, x ∈ [a, b]

+∞, x ∈ (b,+∞)

, ϕ∗(z) =

{
az, z < 0

bz, z ≥ 0
. (E.2)

The error measure is
Eϕ,β(X) = E[(1− a)X− + (b− 1)X+] . (E.3)

The complete quadrangle is
Rϕ,β(X) = (1− a)CVaR b−1

b−a
(X) + aE[X], Vϕ,β(X) = E[(2− a)X− + bX+],

Dϕ,β(X) = (1− a)CVaR b−1
b−a

(X) + (a− 1)E[X], Eϕ,β(X) = E[(1− a)X− + (b− 1)X+],

Sϕ,β(X) = arg minC∈R E[(1− a)(X − C)− + (b− 1)(X − C)+] ,
The risk measure in this quadrangle is studied in Pflug and Ruszczynski (2004), Ben-Tal and
Teboulle (2007) (see Example 2.3), Love and Bayraksan (2015) (see Example 3). CVaR is a special
case of this risk measure for a = 0. When α/(1− α) = (b− 1)/(1− a), the quadrangle is a scaled
version of Example 3.

The risk measure provides another way to connect expectile eq(X) with distributionally robust op-
timization (see Proposition 9 in Bellini et al. (2014))

eq(X) = max
γ∈[ 1−qq ,1]

RI[γ,γ q
1−q ],β

(X) . (E.4)

F DERIVATION FOR EXAMPLES

This section contains derivations of the examples in Section 4.

F.1 EXAMPLE 1

The regret measure is given by
Vϕ,β(X) = inf

t>0
t≥−ess infX
t≥ess supX

{tβ + E[X]} (F.1)

= βmax{0,−ess inf X, ess supX}+ E[X] (F.2)
= β ess sup |X|+ E[X] . (F.3)
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The risk measure is given by

Rϕ,β(X) = inf
t>0, C∈R

t(C−1)≤ess infX
t(C+1)≥ess supX

{tβ + tC + E[X − tC]} (F.4)

=
β

2
(ess supX − ess inf X) + E[X] . (F.5)

From the constraints t(C − 1) ≤ ess inf X and t(C + 1) ≥ ess supX , we have

2t ≥ ess supX − ess inf X,

hence the optimal
t∗ = (ess supX − ess inf X)/2.

From the constraints, we have

2ess supX/(ess supX − ess inf X)− 1 ≤ C ≤ 2ess inf X/(ess supX − ess inf X) + 1.

Thus,

(ess supX+ess inf X)/(ess supX−ess inf X) ≥ C ≥ (ess supX+ess inf X)/(ess supX−ess inf X),

yelding
C∗ = (ess supX + ess inf X)/(ess supX − ess inf X).

Therefore, the statistic
Sϕ,β = C∗t∗ = (ess supX + ess inf X)/2.

F.2 EXAMPLE 4

The equation for the statistic can be obtained from the second equation in H.9 when ϕ∗(z) =
exp(z)− 1.

F.3 EXAMPLE 5

The risk measure is given by

Rϕ,β(X) = inf
t>0, C∈R

ess sup(X−C)≤t

{tβ + C − t+ E[X − C + t]+}

= inf
t>0, C∈R

ess sup(X−C−t)≤t

{tβ + C + E[X − C]+}

= inf
t>0, C∈R

ess sup(X)−2t≤C

{tβ + C + E[X − C]+} .

The function being minimized is convex in C. It attains minimum at C ∈ (−∞, ess inf X] if there
is no constraint on C. Thus the minimum in C is attained at C∗ = ess sup(X) − 2t. Suppose that
β ∈ (0, 2) (Note that TVD is no larger than 2). Then

Rϕ,β(X) = ess sup(X) + inf
t>0
{t(β − 2) + E[X − ess sup(X) + 2t]+}

= ess sup(X) + inf
t<0

{
t(1− β

2
) + E[X − ess sup(X)− t]+

}
= ess sup(X) + (1− β

2
) inf
t<0

{
t+ (1− β

2
)−1E[X − ess sup(X)− t]+

}
.

Note that since X − ess sup(X) ≤ 0, the minimum in the last equation is attained at some t ≤ 0,
and this minimum is equal to

CVaR β
2
(X − ess sup(X)) = CVaR β

2
(X)− ess sup(X).
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F.4 EXAMPLE 2

The extended Pearson χ2-divergence risk measure is given by

Rϕ,β(X) = inf
t>0,C∈R

t

{
C + β +

1

4t2
E[(X − C)2] + E[

X − C
t

]

}
= inf
t>0,C∈R

{
tβ +

1

4t
E[(X − C)2] + E[X]

}
= E[X] +

√
βV[X],

where V[X] = E[(X − E[X])2] is the variance of X and (t∗, C∗), which furnish the minimum are

t∗ =

√
V[X]

4β
, C∗ = E[X].

Evidently, the corresponding regret is given by

Vϕ,β(X) = E[X] +
√
βE[X2]

= E[X] +
√
β ‖X‖2 .

F.5 EXAMPLE 9

The error measure is given by

Eϕ,β(X) = inf
t>0

tβ + E
[
tϕ∗

(
X

t

)
−X

]
(F.6)

= inf
t>0

tβ +
1

4t
E
[
qX2
− + (1− q)X2

+

]
(F.7)

= tβ +
1

4t
E
[
qX2
− + (1− q)X2

+

] ∣∣∣
t=

√
E[qX2

−+(1−q)X2
+]

4β

(F.8)

=
√
βE
[
qX2
− + (1− q)X2

+

]
(F.9)

F.6 EXAMPLE 6

Plugging in the convex conjugate, the regret measure is given by

Vϕ,β(X) = inf
t>0

tβ + tE

[(
1

4

(
X

t

)2

+
X

t

)
I{Xt ≥−2}

]
(F.10)

= inf
t>0

tβ +
1

4t
E
[(

(X + 2t)2 − 4t2
)
I{X+2t>0}

]
. (F.11)

For the risk measure, we use an equivalent divergence function and its convex conjugate

ϕ(x) =

{
x2 − 1, x ≥ 0

+∞, x < 0
, ϕ∗(z) =

{
z2

4 + 1, z ≥ 0

1, z < 0
= 1 +

z2

4
Iz≥0 . (F.12)

Plugging in the convex conjugate, the risk measure is given by

Rϕ,β(X) = inf
C∈R,t>0

C + tβ + tE

[(
1

4

(
X − C
t

)2

I{X−Ct ≥0}
+ 1

)]
(F.13)

= min
C∈R

inf
t>0

C + t(β + 1) +
1

4t
E
[
(X − C)

2
I{X−C>0}

]
(F.14)

= min
C∈R

C +

√
(β + 1)E

[
(X − C)

2
I{X−C>0}

]
. (F.15)

The optimal t∗ is

√
E[(X−C)2I{X−C>0}]

4(β+1) . By Krokhmal (2007), the optimal C∗ is the second-order

quantile.
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G PROOF OF EQUIVALENCE

The equivalence between 5.7 and 5.8 is proved as follows. By Theorem 2.1, Problem 5.7 is equiva-
lent to

min
f
Dϕ,β(Z̄f ), calculate C = S(Z̄f ) . (G.1)

The equivalence to Problem 5.8 follows from the dual representation of Dϕ,β(X) in 3.3.

H STATISTIC AND RISK IDENTIFIER

H.1 PROOF OF PROPOSITION J.1

Lemma H.1 (Convexity). Let f : R× (0,∞)→ R be such that

f(C, t) = C + tβ + E
[
tϕ∗
(X − C

t

)]
. (H.1)

Then f(C, t) is convex in (C, t) and

∂(C,t)(f(C, t)) = (1, β)> + E
[
∂(C,t)

(
tϕ∗

(
X − C
t

))]
, (H.2)

where ∂(C,t)(f(C, t)) denotes a subdifferential of a convex function f(C, t) with respect to the vector
(C, t)> ∈ R × (0,∞), cf. (Rockafellar, 1970, Definition 23.1). The “+” sign in H.2 is understood
in the sense of the Minkowski sum.

Proof. To prove the first part of the lemma it suffices to establish that the function

ψ(z, t) = tϕ∗(z/t), z ∈ R, t ∈ (0,∞)

is convex. This follows from the fact that the function h(z, t) = tg(z/t), z ∈ Rn, t > 0 is convex
if and only if g is convex. Such function h is called a perspective function, cf. (Dacorogna and
Maréchal, 2008, Lemma 2.1). Hence, since ϕ∗ is convex then ψ is also convex as a perspective
function. Therefore, f(C, t) is convex since convexity is preserved under linear transformations.

The second part of the lemma follows from (Rockafellar, 1977, Theorem 23). Indeed, since the func-
tion under the expectation in H.1 is convex, hence measurable (cf. Rockafellar and Wets (1998)),
the subdifferential can be interchanged with the expectation.

Proposition H.1 (Proposition J.1). Let (Rϕ,β ,Dϕ,β ,Vϕ,β , Eϕ,β) be a primal extended ϕ-divergence
quadrangle. Statistic in this quadrangle equals

Sϕ,β(X) =

{
C ∈ R : 0 ∈ (1, β)> + E

[
∂(C,t)

(
tϕ∗

(
X − C
t

))]}
. (H.3)

Proof. Definition 2.8 implies that the statistic is equal to

Sϕ,β(X) = arg min
C∈R

{
C + Vϕ,β(X − C)

}
= arg min

C∈R
inf
t>0

f(C, t) ,
(H.4)

where f(C, t) = C + tβ + E
[
tϕ∗
(
X−C
t

)]
. To find the statistic one has to minimize f(C, t) with

respect to (C, t). Since f(C, t) is convex, cf. Lemma H.1, then it reaches the minimum if and only
if

0 ∈ ∂(C,t)f(C, t) . (H.5)
Therefore, cf. Lemma H.1, condition H.5 is equivalent to

0 ∈ (1, β)> + E
[
∂(C,t)

(
tϕ∗

(
X − C
t

))]
. (H.6)
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If for an extended divergence function ϕ(x), the conjugate ϕ∗(z) is positive homogeneous, then the
expression 3.11 for statistic is reduced to

Sϕ,β(X) = arg min
C∈R

C + E[ϕ∗(X − C)] . (H.7)

The (Rockafellar and Uryasev, 2013, Expectation Theorem) in this case implies

Sϕ,β(X) =

{
C ∈ R : E

[
∂−

∂z
ϕ∗(z)

∣∣∣∣
x=X−C

]
≤ 1 ≤ E

[
∂+

∂z
ϕ∗(z)

∣∣∣∣
x=X−C

]}
, (H.8)

where
∂−

∂z
,
∂+

∂z
denote left and right derivatives with respect to z ∈ R. As a finite convex homo-

geneous function, ϕ∗(z) is the support function of a closed interval (Corollary 13.2.2, Rockafellar
(1970)). The convex conjugate of a support function is an indicator function. Since ϕ(1) = 0, it
must be in the form of the ϕ(x) in Example 10.

In fact, Dommel and Pichler (2020) provided optimality conditions for (C, t) in 3.7. For differ-
entiable function ϕ∗, they developed a set of equations known as the characterizing equations for
optimal (C, t). Further, we provide a system of equations similar to the characterizing equations
developed by Dommel and Pichler (2020).
Definition H.1 (Characterizing Equations). Let ϕ∗(z) ∈ C1(R). Characterizing system of equa-
tions is defined by:

E

[
dϕ∗(z)

dz

∣∣∣∣
z=X−C

t

]
= 1 ,

β + E
[
ϕ∗
(
X − C
t

)]
− 1

t
E

[
(X − C)

dϕ∗(z)

dz

∣∣∣∣
z=X−C

t

]
= 0 .

(H.9)

The following Corollary H.1 provides an expression for the statistic Sϕ,β with smooth ϕ∗(z).

Corollary H.1 (Characterization of Sϕ,β : Smooth Case). Let ϕ∗(z) ∈ C1(R), then the statistic
equals

Sϕ,β(X) = {C ∈ R : (C, t) is a solution to Characterizing Equations H.9 }.

Proof. Replacing the subdifferential in H.6 with the gradient∇(C,t) leads to the system of equations
H.9.

H.2 PROOF OF PROPOSITION 6.1

Lemma H.2 (Subgradients of expectation, Bauschke and Combettes (2011)). Let (Ω,A, P0) be a
probability space and ψ : R→ R be a proper, lsc, and convex function. Set

ρ = E[ψ(X)]. (H.10)

Then ρ is proper, convex lsc functional and, for every X ∈ dom(ρ),

∂Xρ(X) = {Q ∈ L2 : Q ∈ ∂ψ(X) P0 − a.s.}. (H.11)

Proposition H.2 (Proposition 6.1). Denote by C∗ and t∗ the optimal C and t in the primal repre-
sentation 3.7 of extended ϕ-divergence risk measure. The risk identifier of risk measure Rϕ,β(X)
can be expressed as follows

Q∗(ω) ∈ ∂ϕ∗
(
X(ω)

t∗
− C∗

)
. (H.12)

Denote by C∗ the optimal C in the primal representation 3.10 of extended ϕ-divergence risk mea-
sure. The risk identifier of extended ϕ-divergence error measure Eϕ,β(X) can be expressed as
follows

Q∗(ω) ∈ ∂ϕ∗
(
X(ω)

t∗

)
. (H.13)
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Proof. It is known that the risk identifier is the subgradient of the risk function (see, for example,
Proposition 8.36 of Royset and Wets (2022)). Therefore, H.12 is obtained by taking the subdiffer-
ential of 3.7 following Lemma H.2. The expression H.13 is obtained analogously.

Note that the envelope Qϕ,β of error does not have the constraint EQ = 1. However, when we
minimize Eϕ,β(X−C) with respect to C to get statistic Sϕ,β(X), the constraint EQ = 1 is satisfied
automatically. This can be seen from the necessary condition for saddle point (C∗, Q∗)

∂

∂C
E[(X − C)(Q∗ − 1)]

∣∣∣
C=C∗

= 0. (H.14)

I PROOF OF PROPOSITION 7.1

Proposition I.1 (Proposition 7.1). Let ϕ(x) be a divergence function. ϕ-divergence can be recov-
ered from the elements in ϕ-divergence quadrangle by

Dϕ(P ||P0) = sup
X∈L2,β>0

{E[XQ]−Rϕ,β (X)− β} (I.1)

= sup
X∈L2,β>0

{E[X(Q− 1)]−Dϕ,β (X)− β} (I.2)

= sup
X∈L2,β>0,C

{E[XQ]− Vϕ,β (X − C) + C − β} (I.3)

= sup
X∈L2,β>0,C

{E[X(Q− 1)]− Eϕ,β (X − C)− β}. (I.4)

Proof. From ??, we have by convex conjugate

Rtϕ (X) = inf
β>0
{tβ +Rϕ,β (X)}. (I.5)

I.5 is a generalization of Proposition 3.1 in Föllmer and Knispel (2011).

Next, we have

E[ϕ(Q)] = sup
X∈L2

{E[XQ]−Rϕ(X)} (I.6)

= sup
X∈L2

{E[XQ]− inf
β>0
{β +Rϕ,β (X)}} (I.7)

= sup
X∈L2,β>0

{E[XQ]−Rϕ,β (X)− β}, (I.8)

where I.6 is by ??, I.7 is by plugging in I.5 to ??.

Since ϕ(x) is a divergence function, E[ϕ(Q)] = Dϕ(P ||P0). The rest of the proof is by quadrangle
relations.

J CHARACTERIZATION OF STATISTICS

Proposition J.1 (Characterization of Sϕ,β). Let (Rϕ,β ,Dϕ,β ,Vϕ,β , Eϕ,β) be a primal extended ϕ-
divergence quadrangle. Statistic in this quadrangle equals

Sϕ,β(X) =

{
C ∈ R : 0 ∈ (1, β)> + E

[
∂(C,t)

(
tϕ∗

(
X − C
t

))]}
.

K DETAILS OF CASE STUDY

Risk Identifier We first solve the problems 5.4, 5.1 and 5.7 in primal representations. With the
optimal solutions, we obtain the random variable X in three problems, respectively. By plugging in
ϕ∗(z) = z2/2 + 1 to Proposition 6.1, we obtain the risk identifier Q∗ = (X/t∗ − C∗)2/2 + 1.
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Data The data for portfolio optimization and regression are the same: it is generated by drawing
1,000 samples from a bivariate zero-mean Gaussian distribution. The variance of both random
variables is 1, while the covariance is 0.5. The data for classification is generated by two normal
distributions with different mean and different covariance matrix. The first has mean (−0.3, 0),
while the second has mean (0.3, 0). For both distributions, the variance is 0.05 while the covariance
is 0.02. Each class has 100 samples. The value of the risk identifier Q∗ is represented through the
intensity of color. Darker points have larger values.

Portfolio Optimization We illustrate the idea with Markowitz portfolio optimization from the
mean quadrangle (Example 2). The data points (x, y) represents the loss (negative return) of two
assets. We choose β = 100. The optimal portfolio weight is (0.4999038, 0.5000962). The value
of the risk identifier Q∗ is represented through the intensity of color in Figure 1b. Darker color
corresponds to a larger value. Larger values are assigned to data points incurring larger loss, i.e.,
points whose both coordinates are larger.

Classification We illustrate the idea with large margin distribution machine from the mean quad-
rangle (Example 2). We choose β = 0.01 and γ(w) = ||w||22. The optimal decision line is
y = −28.826x − 0.486. The circles represent samples with label 1, while the diamonds repre-
sent samples with label −1. The value of the risk identifier Q∗ is represented through the intensity
of color in Figure 1a. A darker spot corresponds to a larger value. Larger values are assigned to data
points incurring larger loss (negative margin), i.e., points that are correctly classified and have larger
perpendicular distance from the optimal decision line.

Regression We illustrate the idea with least squares regression from the mean quadrangle (Exam-
ple 2). We choose β = 100. The regression line is y = 0.495x − 0.0127. The value of the risk
identifier Q∗ is represented through the intensity of color in Figure 1c. A darker spot corresponds to
a larger value. Larger values are assigned to data points incurring larger loss, i.e., data points further
above the regression line.

23


	Introduction
	Preliminaries
	-Divergence and -Divergence Risk Measure
	The Fundamental Risk Quadrangle Framework

	Extended -Divergence Quadrangle
	Dual Representation of Extended -Divergence Quadrangle
	Discussion on Risk Identifier Q
	Primal Representation of Extended -Divergence Quadrangle
	Relation between -Divergence Risk Quadrangle and Extended Version

	Examples of Extended -Divergence Quadrangle
	Extended -Divergence Quadrangles
	-Divergence Quadrangles

	Robust Optimization Interpretation for Various Applications
	Examples of Robust Optimization Interpretation

	Statistic and Risk Identifier
	Recovering -divergence from Quadrangle Elements
	Case Study: Risk Identifier Visualization
	Conclusion
	Quadrangle Theorem
	Functional Space Setting
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	More Examples
	Derivation for Examples
	Example 1
	Example 4
	Example 5
	Example 2
	Example 9
	Example 6

	Proof of Equivalence
	Statistic and Risk Identifier
	Proof of Proposition J.1
	Proof of Proposition 6.1

	Proof of Proposition 7.1
	Characterization of Statistics
	Details of Case Study

