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ABSTRACT

The current paper presents an adversarial autoencoding strategy for
voxelized point cloud geometry based on the principles of distributed
source coding. The encoder characterizes the input voxel blocks with
an array of hash bytes while the decoder combines them with side
information blocks in order to reconstruct the original data. The re-
construction process is optimized by classifying the reconstructed
block with an adversarial discriminator in order to make the recov-
ered data as close as possible to an original block. Experimental re-
sults show that the proposed solution generalizes well while obtain-
ing better coding performance with respect to other state-of-the-art
solutions and allowing high flexibility in rate shaping and decoding
operations.

Index Terms— point cloud compression, adversarial autoen-
coder, distributed source coding, decoding loss

1. INTRODUCTION AND RELATED WORKS

Recent years have witnessed a growing interest in point cloud (PC)
coding and processing strategies. This attention has been nurtured by
the possibility of acquiring clouds of 3D points in an easy and real-
time manner with different types of sensors and systems, as well
as by the wide range of possible applications from automotive to
cultural heritage. Unfortunately, the massive amount of acquired
data and the need of visualize them on heterogeneous devices has
highlighted the need to effective and flexible compression strategies
[1, 2].

Several coding solutions have been proposed so far re-adapting
previous coding solutions that were designed for 2D data like im-
ages and videos Among these, it is worth mentioning the octree-
based schemes [3, 4, 5] or coding engines employing a spatially-
decorrelating transforms [6, 7, 8].

Other solutions rely on graph-based data processing [9, 10, 11],
while other projection-based algorithms map spatialized data (like
color information or attributes) to a texture image, which is then
coded with traditional image/video coding strategies [12, 2, 13]. In
case of dynamic point clouds, temporal correlation is considered as
well in order to predict the information to be coded with respect to
previous points [14, 15]. Moreover, during the last years, different
works have highlighted that clustering and semantic processing of
point cloud data enables optimizing the visualization routines and
reducing the allocated bit rates; as a matter of fact, segmentation
and partitioning algorithms enable some of these coding schemes to
re-organize point cloud data and enhance the rate-distortion perfor-
mance [16, 17, 18]

The work has been partially funded by the University of Padova SID
project “SartreMR”.
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Fig. 1. Block diagram for the proposed encoding/decoding scheme.

The recent widespread of deep neural networks have triggered
the design and the adoption of compression strategies based on deep
learning (DL). Among the first approaches, it is worth mentioning
some of the first image compression solutions based on autoencoders
[19, 20] and RNNs [21]. End-to-end solutions have also been used
for rate optimization purposes, like in [22]. Following strategies
have been addressing other types of media such as video sequences
[23], local descriptors [24]. and finally, 3D point cloud as well [25].

Autoencoders have proved to be extremely effective in the
compression of point clouds [26]. The solution in [25] presents a
three-dimensional convolutional autoencoder which allows outper-
forming the compression strategy of PCL library [27]. Instead, the
work in [28] exploits the correlation among different Levels-Of-
Detail (LODs) and implements the principles of distributed source
coding (DSC) in a UNET hourglass architecture [29]. Following this
trend, the solution in [30] implements an adversarial autoencoder
for 3D representation, while Yang et al. in [31] include a folding
operations to handle irregularly-distributed point clouds.

This work presents an adversarial training strategy for dis-
tributed source autoencoders, which is implemented by introducing
a reconstructed-vs.-original detector for the reconstructed data in the
training phase to regularize the decoder optimization and maximize
the quality of the final point cloud. The proposed solution is applied
to the approach in [28] combining the coding efficiency of a DSC-
based network with the regularization capacity of the adversarial
unit. In a nutshell, the main innovations brought by this paper can
be summarized as follows:

• the presentation of an adversarial distributed source coding
scheme for point cloud geometry data;
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Fig. 2. Architecture of the Adversarial Distributed source Autoencoder.

• the introduction of novel loss functions to optimize the differ-
ent elements in the autoencoder scheme;

• the inclusion of a traditional arithmetic coding scheme to re-
duce the residual correlation depending on the block-based
processing.

In the following, Section 2 describes the overall architecture and
the training strategy, while Section 3 reports the coding performance.
Final conclusions are drawn in Section 4.

2. OVERVIEW OF THE COMPRESSION SCHEME

The proposed scheme is derived from the syndrome-based (or dis-
tributed) autoencoder reported in [28], which applies a traditional
DSC scheme with no feedback channel ( see [32, 33, 34] for some
examples) into an autoencoder architecture.

The main idea is to code each point cloud element independently
and to decode it using a lower resolution reconstruction (available at
the decoder) as side information. The decoder must be able to use
multiple different blocks as side information provided that they are
enough correlated with the one to be decoded.

Indeed, the encoder generates some hash symbols that can be
associated to parity bits in a block channel decoder; it is possible to
state that the hash values permit correcting the side information into
a reconstructed version of the original block.

The general processing pipeline is reported in Fig. 1 and can
be summarized as follows. Adopting a strategy similar to [25], the
coordinates x, y, z of the input point cloud PC(x, y, z) are quan-
tized and represented as N bits integers; in this way, the total num-
ber of 3D points can be reduced and represented by a voxel volume
g(u, v, w) sizedN×N×N 1. This voxel volume represents the input
data at the highest LOD (here denoted as L-0). Each voxel g(u, v, w)
assumes the value 1 or 0 depending on whether there is at least one
point of PC(x, y, z) associated to it. A progressive and iterative
resampling of the voxel grid with factor 2 (along each dimension)
generates different lower resolution versions of the original data un-
til a minimum level L-ND , which depends on the original value N
and to the desired decomposition level. In this paper, the LOD ob-
tained at the k-th iteration of the resamplig will be denoted as L-k
and is sized (N/2k)3. The lowest LOD L-ND can be coded using a
standard coding strategies (in this case, TMC1).

1In this paper, this resolution will be denoted as N3 for the sake of con-
ciseness.

Note that LOD L-k can be approximated interpolating the data
in L-(k + 1), e.g., the volume g(u, v, w) at resolution L0 can be
approximated interpolating L-1 with factor 2 generating the volume
g′(u, v, w). The proposed coding scheme shows that this approxi-
mation can be improved by including in the reconstruction process
some additional hash or syndrome data; in this case, the interpolated
LOD will act as side information in the DSC decoder.

In order to generate the hash data, the input volume g(u, v, w)
is then divided into blocks bt with resolution 8×8×8 voxels. Each
block bt is processed by a convolutional encoder which generates a
byte array st = [si], i = 0, . . . , nH − 1. All the i-th features sn,i

for all the blocks st are then gathered together and compressed using
a 255-symbols adaptive Arithmetic coder (see Fig. 1).

The generated bit stream is then processed by the decoder which
recovers the string s and decode it using the corresponding block in
the previous LOD (L − 1) as side information. This scheme can be
hierarchically iterated multiple times at different resolution layers
until it reaches the minimum decomposition LOD (L−ND).

According to block channel code properties, this coding strategy
enables a higher flexibility in the use of side information: whenever
the number ns of syndrome values is enough with respect to the cor-
relation between bt and bs

t , the DSC decoder is capable of a perfect
reconstruction (i.e., b̂t ≡ bt). Following this rationale, provided
that the correlation bound is respected, it could be possible to recon-
struct LOD L0 from L2 instead of L1. This is possible whenever the
model interpolated from resolution L-(N/22)3 to N3 is sufficiently
close to g(u, v, w). Moreover, in case of dynamic sequences, it is
possible to use PC data of previous time instants to decode the cur-
rent point clouds.

In the following sections, further details about the designed ad-
versarial coding strategy will be provided.

2.1. Adversarial Distributed source Autoencoding (ADAE)

Adversarial autoencoders are among the most widely-diffused Gen-
erative Adversarial Networks (GANs). Their usual structure consists
in a set of encoding layers generated a hidden representation, which
is then processed by a decoding phase that aims at reversing the op-
erations of the encoder phase minimizing the final distortion on the
reconstructed data. Between these two sections, an adversarial role
is played by a discriminator, which takes in input the hidden repre-
sentation and classify it. In the iterative training phase of adversarial
autoencoders, the autoencoder is tuned in order to generate finer and
finer data that are capable of tricking the discriminator and leading



it to wrong classifications; at the same time, the discriminator is up-
date in order to prevent this eventuality and pair the changes in the
autoencoders. This process can be modeled as an iterative multi-
stage non-cooperative game where one of the player (the autoen-
coder) aims at minimizing the gain of the other (the discriminator).
As a result, the hidden representations are uniformly distributed in
the vector space enabling an efficient compression.

Following this idea, the generic distributed source autoencoder
architecture was modified as it is reported in Fig. 2 and described in
detail by the following subsections.

2.1.1. Encoder

The encoder phase is made of 4 stacks of layers (named “3D CNN
encoder block“) which correspond to a Dropout layer (excluded in
the first stack) followed by two three-dimensional convolutional lay-
ers with ReLU activation functions; each convolutional layer is char-
acterized by nf filters and followed by a batch normalization stage.
Kernel sizes are 3 × 3 × 3 with padding equal to 1, while dropout
probability is 0.5; the number of filter is proportional to the number
of syndrome symbols that are to be generated (ns).

After the second batch normalization, a max pooling layer with
width and stride equal to 2 × 2 × 2 concludes the stack (made ex-
ception for the final one)

At the end, the generated hidden variables are reshaped into an
array whose values are rescaled to the range [0, 255] and casted to a
uint8 type array s.

2.1.2. Decoder

The decoder implements a hourglass architecture with skip connec-
tions similar to UNET [29]; the proposed solution departs from the
original UNET scheme since encoding and decoding phases are not
paired with the same input/output. The input of the hourglass en-
coder is an 8×8×8 side information voxel block bs

t (see the decoder
diagram in Fig. 2), but the central hidden variables are replaced by
the hash array st received from the encoder. The st is processed by
a sequence of layer stacks where Dropout is followed by a ReLU-
activated transposed convolution with nf filters. After each decod-
ing layers stack a concatenation unit joins the interpolated data with
the corresponding depth layer generated from the side information
bs
t . The final unit is a simple 3D convolutional layer that generates a

reconstructed 8×8×8 block of real values. These are then rescaled
in the range [0, 1] and processed by a sigmoid (in order to implement
a differentiable step function).

The concatenation of encoder and decoder creates a distributed
source autoencoder structure similar to that reported in [28]. One of
the main innovations brought by the current paper is the inclusion of
a discriminator used to implement an adversarial learning process.
More details will be reported in the following subsection.

2.1.3. Discriminator

The final unit is a discriminator block that aims at distinguishing the
original blocks from those reconstructed by the autoencoder. Note
that in traditional adversarial autoencoders the input of the discrim-
inator is the hidden layer. In this case, since the hash array st does
not directly characterize the input block bt (since it is intended to
correct the side information block bs

t ), the discriminator processed
the reconstructed block b̂t directly. The discriminator combines a
3D CNN encoder stack and a fully connected layer with sigmoid ac-

tivation function. The output is a binary variable bt stating whether
the input block is reconstructed or not.

2.2. Training phase

The training phase was carried on in multiple stages depending on
the involved units.

2.2.1. Autoencoder

At first, the basic autoencoder is pretrained minimizing the loss func-
tion LAE(bt, b̂t) that can be defined as

L(bt, b̂t)= λ
∥∥∥bt − b̂t

∥∥∥
2
+

(1− λ)

2
dF (nH ,bt, b̂t)·

·
[
dP (bt, b̂t) + dP (b̂t,bt)

] (1)

which combines the Mean Square Error between bt and b̂t, the
decoding failure coefficient dF , and the distance point-to-plane
dP
(
b, b̂t

)
. This latter distance can be modelled via the equation

dP
(
b, b̂t

)
=
∑
u,v,w

|p1u+ p2v + p3w + p4|√
(p21 + p22 + p23)

b̂t(u, v, w) (2)

where p1, p2, p3, p4 are the parameters that define the plane fitting
bt(u, v, w). The purpose of this metric is to prevent the decoder
from reconstructing geometrically-inconsistent blocks keeping the
reconstructed points close to the fitted plane.

The decoding failure coefficient is instead computed considering
that in a block channel code the number parity bits determines how
many errors can be corrected in the transmitted codewords; similarly,
the number nH of hash bytes st controls the amount of voxels in bs

t

that can be corrected into bt. As a matter of fact, it is possible to
write that

dF (nH ,bt, b̂t) = max

{
2 · ‖bt − b̂t‖0

nH
, 1.0

}
(3)

where ‖ · ‖0 is the L0 norm. This term is deeply related to the DSC
decoding paradigm; in this way, it is possible to weight the different
blocks in each minibatch depending on its decodability.

2.2.2. Discriminator

As for the discriminator, the loss function LD(bt,b
r
t ) corresponds

to the binary cross-entropy function between the actual block label
br
t (real=1 or reconstructed=0) and the outcome of the classifier bt.

The training process operates as follows: 1) at first the autoencoder
is pre-trained minimizing the loss function LAE . Then, a set of re-
constructed blocks b̂t is generated and combined with the original
blocks bt in order to create a trainng set for the discriminator. Then,
the discriminator block is trained minizing the loss LD .

2.2.3. Adversarial training

The last training phase concerns the adversarial refinement of the
autoencoder parameters following the usual GAN optimization strat-
egy, i.e., by alternatively optimizing the encoder parameters and the
discriminator.

In the first phase of each iteration, network parameters for au-
toencoder are modified in order to maximize LD . In the second
iteration, autoencoder parameters are fixed and the discriminator is
trained minimizing LD .
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Fig. 3. PSNR D1 (dB) vs. rate (bpp) performance on longdress (a), queen (b), and house without roof (c) models for ADAE,
TMC1, and PCG-AE with 32 filters. Results for ADAE are reported for nH = 4, 8.

3. EXPERIMENTAL RESULTS

A training dataset of static point cloud (acquired with different
strategies) was adopted from the MPEG G-PCC repository [1]. Fol-
lowing the same training strategy in [1], the coordinates of the input
data were rescaled and quantized in a 10-bits representation in order
to have a uniform format for the input data. Each point cloud was
then voxelized into a N3 volume, and each 8× 8× 8 block bt was
then associated with a corresponding block b′

t from the interpolated
voxel volume of the previous LOD.

Similarly to the approach in [25], models soldier,
redandblack, loot, facade09, facade15, facade64,
frog67, shiva35 were included in the training set, while mod-
els long, queen, house without roof are part of the test
set. Note that training and test models are completely different and
include point clouds with heterogeneous characteristics.

Training data were utterly partitioned into two parts: 55 % of
the blocks were assigned to the training set, while the remaining
were used as validation.

The quality of the reconstructed point cloud is measured using
the PSNR D1 metric, while the bit rate is parameterized by the bit-
per-point value.

Different network parameter values were trained for different
resolutions (N = 8, 9, 10) and number nH of hash variables. Train-
ing was carried on a NVIDIA GeForce GTX 1070S GPU in 100
epochs with patience threshold of 10 (minimum difference 1e− 04)
and varying the λ parameter. Best rate-distortion results were ob-
tained with λ = 0.9., and after an extensive set of trials, the number
of filters nf was set to 2 · nH minimizing the final training loss.

Figure 3 reports the PSNR D1 values (expressed in dB) versus
the bit rate (expressed in bpp) for different coding schemes and point
cloud models. Graphs compare the proposed ADAE scheme, with
TMC1 [35] (being one of the reference codec for point cloud com-
pression), and the PCG-AE solution from [25] (which is based on a
3D CNN autoencoder).

It is possible to notice that the proposed solution outperforms
the other strategies at different bit rates. Indeed, PCG-AE employs
a 3D convolutional network, but it does not exploit the correlation
with side information. On the contrary, the ADAE strategy allows
implementing a sort of predictive strategy using the previous LOD
as a reference. Note also that larger nH values permit achieving
a higher quality at higher resolutions since a longer hash array is
overdimensioned in order to correct LOD-(k + 1) into LOD-k. At
higher resolutions, the characterization of bt becomes more complex
and therefore, larger nH are required. It is also worth noting that bit

Table 1. Bijontegaard ∆rate, ∆PSNR D1, ∆Rp for ablation test.

Model
w/out dF with dF

∆P (dB) ∆R (%) ∆P (dB) ∆R (%)

longdress −0.04 −6.34 0.15 −6.10

house −0.02 −5.76 0.1 −5.80

rate is very close since the features st,i are more correlated along t
allowing the contexts of the adaptive arithmetic coders to converge
more quickly.

It is also worth noticing that the compression gain is more evi-
dent for noisy point clouds (see the plot for the house without roof
model). In this case, the high irregularity of points distribution pre-
vents a correct reconstruction using simple CNN layers. By includ-
ing a plane fitting metric in the training phase, the network lean to
fit the points into more regular structures.

Ablation study. In order to test the effectiveness of the pro-
posed loss functions, we run different training and coding operations
changing the loss function. More precisely, we evaluated the Bijon-
tegaard ∆rate and ∆PSNR D1 using LAE and LAE with dF = 1
(to disable the effect of dF ) with respect to the rate-distortion perfor-
mance obtained using a simple MSE loss function (disabling dP and
dF ). Table 1 reports the obtained values for the longdressmodel.
It is possible to notice that most of the improvement is brought by
dP .

4. CONCLUSIONS

The paper presented a new adversarial autoencoding strategy for
the compression of voxelized point cloud geometries. In the train-
ing phase, a distributed source autoencoder is combined with a
reconstructed-vs.-original discriminator processing the decoded
voxel blocks. This latter module acts as a regularizer for the recon-
struction routine improving the quality of the reconstructed data in
terms of PSNR D1. Rate-distortion performances showed that the
proposed solution performs better than other state-of-the-art point
cloud coders.

Future research will be focused on different directions. On one
side, there is a need for effective rate-distortion optimization strate-
gies that tunes the amount of coded data depending on the character-
istics of the input geometry and the available transmission/storage
capacity. Moreover, further investigations are required in order to
test the deployability of the current architecture to low complexity
embedded systems for mobile applications.
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[11] H. Houshiar and A. Nüchter, “3d point cloud compression
using conventional image compression for efficient data trans-
mission,” in Proc. of ICAT 2015, 2015, pp. 1–8.

[12] L. Li, Z. Li, S. Liu, and H. Li, “Occupancy-map-based rate dis-
tortion optimization for video-based point cloud compression,”
in Proc. of IEEE ICIP 2019, Sep. 2019, pp. 3167–3171.

[13] E. S. Jang, M. Preda, K. Mammou, A. M. Tourapis, J. Kim,
D. B. Graziosi, S. Rhyu, and M. Budagavi, “Video-based
point-cloud-compression standard in mpeg: From evidence
collection to committee draft [standards in a nutshell],” IEEE
Signal Process. Mag., vol. 36, no. 3, pp. 118–123, 2019.

[14] D. C. Garcia and R. L. de Queiroz, “Context-Based Octree
Coding For Point-Cloud Video,” in Proc. of ICIP 2017, Sep
2017, pp. 1412–1416.

[15] S. Limuti, E. Polo, and S. Milani, “A Transform Coding Strat-
egy for Voxelized Dynamic Point Clouds,” in Proc. of IEEE
ICIP 2018, Oct. 2018, pp. 2954–2958.

[16] E. Di Palma and I. Tabus, “Compression of point cloud geom-
etry with random access,” in Proc. of EUVIP 2018, 2018.

[17] F. Capraro and S. Milani, “Rendering-aware point cloud cod-
ing for mixed reality devices,” in Proc. of IEEE ICIP 2019,
Sep. 2019, pp. 3706–3710.

[18] K. Zhang, W. Zhu, and Y. Xu, “Hierarchical segmentation
based point cloud attribute compression,” Proc. of IEEE
ICASSP 2018, pp. 3131–3135, 2018.

[19] Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin
Hwang, and Nick Johnston, “Variational image compression
with a scale hyperprior,” in Proc. of ICLR 2018, 2018.

[20] I. Schiopu and A. Munteanu, “Deep-Learning-Based Lossless
Image Coding,” IEEE Trans. Circuits Syst. Video Technol., vol.
30, no. 7, pp. 1829–1842, 2020.

[21] G. Toderici, D. Vincent, N. Johnston, S. J. Hwang, D. Minnen,
J. Shor, and M. Covell, “Full resolution image compression
with recurrent neural networks,” in Proc. of IEEE CVPR 2017,
2017, pp. 5435–5443.
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