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ABSTRACT

We initiate the study of the computational complexity of training graph neural
networks (GNNs). We consider the classical node classification setting; there,
the intractability of training multidimensonal GNNs immediately follows from
known lower bounds for training classical neural networks (and holds even for
trivial GNNs). However, one-dimensional GNNs form a crucial case of inter-
est: the computational complexity of training such networks depends on both the
graphical structure of the network and the properties of the involved activation and
aggregation functions. As our main result, we establish the NP-hardness of train-
ing ReLU-activated one-dimensional GNNs via a highly non-trivial reduction. We
complement this result with algorithmic upper bounds for the training problem in
the ReLU-activated and linearly-activated settings.

1 INTRODUCTION

Graph neural networks (GNNs) are, without a doubt, among the best studied and most successful
contemporary learning models. Today, GNNs are widely used in a variety of settings, including
recommender systems (Wang et al., 2018; Ying et al., 2018), pharmaceutics (Fout et al., 2017; Do
et al., 2019; Ghorbani et al., 2022) and fraud detection (Dou et al., 2020). And yet, in spite of sig-
nificant efforts and interest in the research community, our current understanding of the theoretical
foundations of graph neural networks is still in its infancy.

In this article, we concentrate on the crucial task of training a GNN, i.e., determining the weights and
biases which best match provided training data. We note that the computational complexity of the
corresponding NEURAL NETWORK TRAINING problem (NNT) has been extensively studied from
the complexity-theoretic point of view: there are numerous recent results proving computational
intractability even in highly restrictive settings (Goel et al., 2021; Froese et al., 2022; Froese &
Hertrich, 2023; Bertschinger et al., 2023) and exact algorithms targeting the problem (Arora et al.,
2018; Boob et al., 2022; Brand et al., 2023). And yet, until now no analogous insights have been
available for GNNs. The aim of this article is to change this not only by laying down the foundations
for the study of the GNN TRAINING problem, but primarily by presenting a highly non-trivial
reduction which establishes the NP-hardness of the problem even for 1-dimensional GNNs.

MODEL AND FORMALIZATION. While a highly successful line of empirically-driven research
has led to the introduction of hundreds of different variants and adaptations of GNNs to spe-
cific settings (Zhou et al., 2020; Kanatsoulis & Ribeiro, 2024; Zhao & Zhang, 2024), for our
complexity-theoretic study we will focus on the standard formalization for the (semi-supervised)
node-classification model as used, e.g., in the pioneering paper of Kipf & Welling (2017) and the
survey of Wu et al. (2021)1. We provide an intuitive and high-level description of such GNNs below,
while formal definitions are deferred to Section 2.

A graph neural network can be viewed as a graph G = (V, E) which performs certain computations
over a specified sequence of consecutively processed layers. At each layer `, each vertex v ∈ V
computes a vector H(`)

v over reals called its feature vector; the vector’s dimensionality depends on

1The model we use here is sometimes called Graph Convolutional Neural Networks and is arguably the
most prominent GNN model to date.
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the layer, and we say that the GNN is a-dimensional if a is the maximum feature vector dimension-
ality over all of the network’s layers. While the initial feature vectors H(0)

v are provided, at each
other layer ` ≥ 1 the network needs to compute H(`)

v from the feature vectors at layer ` − 1. In
the standard model considered here, this will be done via the application of an aggregation function
(which aggregates the feature vectors of v and all of its neighbors in layer `− 1 into a single vector
K`

v) and an activation function (which transforms the aggregated vector K`
v into H(`)

v ). After the
final layer is processed, the GNN reads the feature vectors at certain specified vertices; these are
typically then passed on for further processing, e.g., to a multi-layer perceptron.

A range of aggregation functions have been considered throughout the literature, with notable ex-
amples including SUM, MEAN and SPECTRAL aggregation (Kipf & Welling, 2017). The activation
functions used for GNNs are typically the same as those used for neural networks, and in this work
we focus primarily on the most widely used ReLU activation function. In line with the literature and
previous complexity-theoretic studies on neural network training (Abrahamsen et al., 2021; Brand
et al., 2023), we assume that the type of aggregation and activation function is fixed and uniform
throughout all layers. However, the parameters of the activation function—specifically, the weight
and the bias—will differ from layer to layer, and the task in GNN TRAINING is to compute the
weights and biases of each layer which minimize the error on the output feature vectors (i.e., their
deviation from the provided training data). While the error may be computed using a variety of error
functions, for our main lower-bound result it will be sufficient to use the simple L0 error function,
which merely counts the number of mislabeled vertices.

RESULTS AND TECHNICAL CONTRIBUTION. It is rather straightforward to show that a GNN
consisting of isolated vertices behaves just like a classical fully-connected neural network with the
same activation function, where the number of nodes at each layer is precisely equal to the GNN’s
dimensionality at that layer (see Proposition 2). Hence, existing lower bounds for NEURAL NET-
WORK TRAINING on fully-connected networks can be immediately transferred to GNN TRAINING
on edgeless graphs; however, such results are only known for networks of high dimensionality (see
Section 3) and stem purely from the intractability of training higher-dimensional ReLU functions—
without requiring any insights into the structure of the GNN or its aggregation function whatsoever.

On the other side of the spectrum lie 1-dimensional GNNs. For these, one in fact cannot hope
to transfer lower bounds from NEURAL NETWORK TRAINING, as the corresponding “purely 1-
dimensional” ReLU-activated neural networks can be trained in polynomial time (see Proposition 7
later). Essentially, the 1-dimensional case is the crucial one for ReLU-activated GNN TRAINING
(ReLU-GNNT): here both the aggregation and activation functions are easy to deal with in isolation,
and the challenge stems from how these interact with each other via the graph structure. As our main
result, we prove:
Theorem 1. 1-dimensional ReLU-GNNT is NP-hard for any Lp error function with p ∈ [0, 1),
and any of the following aggregation functions: SUM, MEAN and SPECTRAL.

The proof of Theorem 1 relies on an intricate reduction from POSITIVE-1-IN-3-SAT2, which is
first developed for the SUM aggregation function and then adapted to the remaining two. On a high
level, the difficulty of the reduction stems from the fact that while the weights and biases have a high
degree of freedom at each layer, we need to achieve a correspondence between the training outcome
and a solution to our initial SAT instance (where each variable is assigned to be either true or false).
We note that it seems difficult—perhaps even impossible—to reuse previously developed gadgets
and insights targeting NEURAL NETWORK TRAINING, as there each weight and bias is associated
with a single edge of the network while here the weights and biases at a layer are applied globally
to every vertex in the GNN on that layer.

Essentially, our reduction allows us to associate each variable xi in the SAT instance with a pair of
consecutive layers, and uses special gadgets to ensure that there are precisely two viable choices for
weights and biases at these two layers: one corresponding to xi being true, and the other to it being
false. The truth value of xi is then stored in the form of feature vectors on vertices along dedicated
path-like subgraphs. As the feature vectors on these subgraphs are subject to the same weights and
biases that are used to encode the truth values of other variables, special care is taken to preserve

2A variant of 3-SAT where each literal is positive, but each clause requires precisely one true literal to be
satisfied; see also the proof of Theorem 1.
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Figure 1: High-level construction for the reduction from POSITIVE-1-IN-3-SAT to ReLU-GNNT.
The vertices of the graph are partitioned into 2n+ 1 ranks (visualized as horizontal lines). For each
variable xi, we construct several identical path-like subgraphs spanning all of the ranks (depicted
as multicolored columns): two for the variable itself and an additional copy for each literal of xi
in a clause. The path-like subgraphs for xi contain a special Selection gadget at ranks 2i − 1 and
2i (depicted in blue), where the weights and biases determine whether the feature vector for xi at
all ranks above 2i encodes that xi is set to true, or false. On all other ranks up to 2n, the path-
like subgraphs of xi consist of specialized Waiting and Preservation gadgets (illustrated in gray
and orange, respectively) which prevent the selection procedure for other variables from interfering
with the feature vectors encoding the truth value of xi. On the final rank, we use Clause gadgets to
ensure that each clause is satisfied by their literals and Variable gadgets to ensure that each variable
has been correctly set to true or false (depicted in purple).

the truth value of xi during the whole course of the computation. In particular, our construction
partitions the vertices of the instance into ranks and ensures that the only “relevant” feature values
at layer ` are precisely the values of vertices belonging to rank `. In this sense, as the GNN proceeds
with the computation, the information can be seen as being “transmitted” along the aforementioned
path-like subgraphs.

Once we have forced the GNN to make a choice for each of the variables, we use special gadgets
in the final layer to verify that all of the clauses are satisfied by the truth assignment—this is done
by ensuring that not satisfying a clause would lead to a specified error threshold being exceeded. A
high-level illustration of the reduction is provided in Fig. 1. While the intuition of the reduction is
easier to grasp when considering the SUM aggregation function, in our construction we ensure that
the obtained graph is uniform—in particular, the degree of each vertex is precisely 6—which allows
the proof to work analogously for the other two considered aggregation functions.

Finally, we complement our main theorem with three complexity-theoretic upper bounds.

Supplementary Result 1. We obtain the first algorithmic upper bound for ReLU-activated GNN
TRAINING. In particular, we show that the training problem on a ∆max-dimensional GNN with n
vertices and d layers can be solved in time at most LO(1)2O(nd∆max)(nd∆max)O(d∆2

max), where L
is the bit encoding size of the data.

Supplementary Result 2. Recall that ReLU-activated GNN TRAINING is computationally in-
tractable even on edgeless graphs (as argued in the beginning of this paragraph), or even for
1-dimensional networks (as shown in Theorem 1). This raises the question: what happens if we
combine both of these restrictions? We show that—at least under these severe restrictions and in the
exact training setting3—GNN TRAINING can be solved in polynomial time.

Supplementary Result 3. We establish that exact GNN TRAINING—under the same aggregation
and dimensionality conditions as in Theorem 1—becomes polynomial-time solvable when one uses
linear activation functions instead of ReLU. While these are far less common than ReLU, we believe
this algorithmic result to still be of interest as it follows up on previous complexity-theoretic results
for linearly activated neural networks (Panigrahi et al., 2020; Abrahamsen et al., 2021; Brand et al.,
2023) and rules out an analogue of Theorem 1 in the exact linearly-activated setting.

3In exact training, the task is to achieve an exact fit for the training data.

3



Published as a conference paper at ICLR 2025

2 PRELIMINARIES

Our notation follows prior works on graph neural networks (Kipf & Welling, 2017; Wu et al., 2021)
as well as the terminology established for the setting of training neural networks (Froese et al.,
2022; Brand et al., 2023). A GNN for semi-supervised node classification with depth d is a tuple
(G,∆,Y), where G = (V, E) is a graph with adjacency matrix A. The vector ∆ ∈ Nd+1 gives the
dimensionality of each layer. If a = max`∈{0,...,d}∆`, we call the GNN a-dimensional. The GNN
processes a set of features of every vertex (the data), which is given by X ∈ R|V|×∆0 . Further,
Y ⊆ V denotes a set of labeled nodes, and in the training setting we also have a function Y : Y →
R∆d which determines their target labels.

Given that our work focuses on ReLU- and linearly-activated GNNs, we assume that a trained GNN
further comes with weights W (`) ∈ R∆`−1×∆` and biases B(`) ∈ R∆` for each layer ` ∈ [d],
where [d] = {1, . . . , d}. The activations (features) of the nodes in the `th layer are denoted by
H(`) ∈ R|V|×∆` . In particular, we write H(0) = X for the initial features and H(d) for the final
features. Features propagate over the layers. In general, a propagation rule is of the form

H(`) = f(A, H(`−1),W (`), B(`)).

Graph Convolutional Networks (GCNs), which are the common type of GNNs that are considered
in this article, are characterized by a certain form of propagation. There, one first aggregates the
features of the node’s neighborhood by a given aggregation function (such as SUM, MEAN, or MAX)
and then applies a given activation function (such as ReLU or linear activation) that involves the
weights and biases. As common, we will assume a fixed aggregation function and a fixed activation
function across all vertices and layers and call the GNN ReLU- or linearly-activated, respectively.
Formally, the feature of a node v ∈ V in layer ` ≥ 1 is defined as

H
(v)
` = activation

(
W (`) · aggregation

(
H

(`−1)
N [v]

)
+B(`)

)
,

where N [v] denotes the closed neighborhood of v in G.

For SUM aggregation and ReLU activation, the ith dimension in the feature of a node v ∈ V in layer
` ≥ 1 is computed as

(H(`)
v )i =

(
∆∑̀
j=1

(W
(`)
i )j

( ∑
u∈N [v]

(H(`−1)
u )j

)
+B

(`)
i

)+

,

where (x)+ = max(0, x). The two other types of aggregation functions considered here are
MEAN aggregation, where a factor of 1

|N [v]| is added before the inner sum, and SPECTRAL ag-
gregation (Kipf & Welling, 2017), which adds a factor of 1√

|N [v]|
√
|N [u]|

inside the innermost sum.

As for the activation functions, in the final part of our article we will also consider linear activation,
where (·)+ is replaced by (·).

The error of a trained GNN is determined by an error function over the predicted and true labels of
all labeled data points, where in a real-life network the read-out data points on the final layer would
first undergo further processing through a perceptron. For our results, we focus on the special case
where the perceptron is trivial (i.e., merely outputs the identity). For p ∈ Q, the Lp error function
considered here assumes we are given predictions ỹ1, . . . , ỹk and labels y1, . . . , yk and is equal to∑

i∈[k] ||yi − ỹi||p, where || · || denotes the Euclidean norm. Of particular importance will be the
case of p = 0, which simply counts the number of mislabeled vertices. In particular, we show that
the training problem is NP-hard even in this particular setting.

We are now ready to formally state the ReLU-activated GNN training problem considered here.

ReLU-GNNT for Aggregation Function σ and Error Function η
Input: Graph G = (V, E), a (d+ 1)-dimensional vector ∆ of positive integers, data X , a

set Y of vertices labeled with Y , and an error bound t.
Question: Are there weightsW (1), . . . ,W (d) and biasesB(1), . . . , B(d) such that the result-

ing error on the ReLU-activated GNN using σ aggregation is at most t?
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We define the training problem Lin-GNNT on GNNs with linear activation analogously. Finally, we
assume that the bit encoding of the dataX is provided on the input and that basic number operations
can be carried out in constant time.

3 RELATION TO NEURAL NETWORK TRAINING

Before proceeding towards our main result, we first discuss some connections between ReLU-
GNNT (Lin-GNNT) and the corresponding training problems on classical neural networks. For
classical neural network training, we follow the standard terminology and definitions used in the lit-
erature (Arora et al., 2018; Boob et al., 2022; Froese et al., 2022; Brand et al., 2023) and denote the
corresponding training problems as ReLU-NNT and Lin-NNT, respectively. Below, we formalize
an equivalence between training edgeless GNNs and training fully connected neural networks.

Proposition 2. There is a linear-time computable bijection f between (1) the set of ReLU-GNNT
(or Lin-GNNT) instances with SUM, MEAN, or SPECTRAL aggregation where the graph is
G = (Y, ∅) and (2) the set of ReLU-NNT (or Lin-NNT) instances where each pair of consec-
utive layers is fully connected, such that the following holds. For all such GNN-training instances
I = (G,∆, X,Y,Y , t):

• I is a yes-instance if and only if f(I) is a yes-instance;

• I and f(I) have the same depth, error function, and error bound t;

• each layer ` of the classical neural network architecture in f(I) consists of ∆` nodes.4

As an immediate corollary of the previous proposition, we can transfer known lower bounds where
the dimensionality is not bounded by a fixed constant from ReLU-NNT to ReLU-GNNT. In par-
ticular, the following observation builds on the hardness result from Froese et al. (2022).

Observation 3. ReLU-GNNT with SUM, MEAN, or SPECTRAL aggregation for any error function
Lp, p ∈ Q≥0 is NP-hard, even if the depth is d = 1, ∆1 = 1, and the graph G = (V, ∅) consists of
isolated vertices. Further, the corresponding problems cannot be solved in time f(∆0) · no(∆0) for
any computable function f unless the Exponential Time Hypothesis fails.

The above reduction works for any fully connected neural network with ReLU-activated nodes, and
may hence likely also allow one to transfer other lower bounds from neural network training (Goel
et al., 2021; Bertschinger et al., 2023) to the GNNT setting; however, Observation 3 fully suffices
for our aim of arguing the intractability of training higher-dimensional graph neural networks.

4 TRAINING ONE-DIMENSIONAL GNNS IS NP-HARD

We note that the GNNs obtained in Observation 3 have a dimensionality of 1 in the last layer, but
the dimensionality of the first layer is not bounded by any fixed constant. In fact, it is impossible
to leverage Proposition 2 to obtain lower bounds for training 1-dimensional GNNs, as the corre-
sponding case in ReLU-activated neural networks boils down to training very simple architectures
(see, e.g., Proposition 7 later). Hence, our lower bound for ReLU-GNNT in the base 1-dimensional
setting must exploit both the structure of the network and the properties of the activation function.

For our hardness reduction we require the following observation, which allows us to shift the ab-
solute values of weights to the first layer. This lemma is inspired by a similar result on classical
neural networks (Brand et al., 2023); curiously, in the classical neural network setting this was used
to obtain algorithmic results, while here it facilitates our construction of an NP-hardness reduction.
For the remainder of this work, whenever we consider features of dimensionality 1, we simplify the
notation by w(`) := (W

(`)
1 )1 and b(`) := B

(`)
1 as well as H(`)

v := (H
(`)
v )1.

Lemma 4. Consider any 1-dimensional ReLU-activated GNN with SUM, MEAN, or SPECTRAL

aggregation and depth d. For all weights and biases W,B ∈ Rd, there are weights W̃ , B̃ ∈ Rd

4For convenience, we consider the 0th layer of an classical neural network to describe its input nodes, that
is, the input dimensionality of the neural network equals ∆0.
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such that for all but the first weight in W̃ we have w̃(2), . . . , w̃(d) ∈ {−1, 1} and using W̃ and B̃
produces the same feature at each vertex after d layers as when using W and B.

With Lemma 4 in hand, we proceed directly to the proof of our main result.
Theorem 1. 1-dimensional ReLU-GNNT is NP-hard for any Lp error function with p ∈ [0, 1),
and any of the following aggregation functions: SUM, MEAN and SPECTRAL.

Proof. We first show the statement for SUM aggregation and L0-error, that is, each mislabeled
vertex contributes exactly 1 to the total error. We reduce from the NP-hard POSITIVE 1-IN-3-
SAT problem Schaefer (1978): given a set of n variables x1, . . . , xn and m clauses of the form
(xi ∨ xj ∨ xk) (for 1 ≤ i < j < k ≤ n), determine whether there exists an assignment of the
variables to {TRUE, FALSE} such that each clause is satisfied by precisely one literal.

We now construct an equivalent 1-dimensional ReLU-GNNT instance of depth d = 2n+ 1. When
describing the construction of the graph G, we will assign each vertex to a “rank”—an integer be-
tween 0 and 2n + 1. One basic building block used in our reduction is a decision gadget, which is
the subgraph depicted in Fig. 2 that will intuitively be used to set a variable xi to be either TRUE or
FALSE.

. . .

xi

1 2 2n0 2(i− 1)

. . .

. . .

2n− 22n− 42i2(i− 2) 2(i+ 1)

Figure 2: Decision gadget for variable xi. Each column represents a rank. The blue color marks
where the selection happens and the orange part preserves the selected value to the last rank and
layer. Gray edges and gray dummy vertices are used to give every vertex except the ones in rank 2n
(which will be connected to rank 2n+1) degree 2 or 4, which will later help us to turn the graph into
one where every vertex has the same degree, namely 6, and allow for a more convenient analysis.

We use the above building block in the construction of G as follows. For each clause xi ∨ xj ∨ xk,
we create a copy of each of the three corresponding decision gadgets (i.e., one for xi, one for xj and
one for xk) and connect these together via a clause gadget consisting of a clause check vertex and a
dummy vertex, as depicted in Fig. 3(left). Assign the clause check vertex the label 2.

xi

2n

. . .

2n+ 1

xj

. . .

xk

. . .

2n

. . .

2n+ 1

xk

xi xi

2n

. . .

2n+ 1

xj

. . .

xk

. . .

xi

xj

xk

2n

. . .

. . .

. . .

Figure 3: Clause gadget (left), variable gadget (center), and integrity gadget (right). The black
vertices are the clause check, variable check, and integrity check vertices, respectively, and are the
only labeled vertices in the graph. Gray edges and gray dummy vertices are used to give every vertex
degree 2, 4, or 6. Dots indicate that individual copies of the respective decision gadget are included,
even if only the ultimate rank is depicted.

We want to ensure that all vertices xi representing a variable have one of two values in the penul-
timate layer, which corresponds to the variable being TRUE or FALSE. Thus, for each variable xi,
add two variable gadgets, each with a variable check vertex and a copy of the respective decision
gadget, see Fig. 3 (center). Give one of the variable check vertices label 1 and the other label 2.
Last, pick an arbitrary clause y1 ∨ y2 ∨ y3 and add an integrity gadget that connects two decision
gadgets for each of its variables (6 in total), see Fig. 3 (right). Give the connecting integrity check
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vertex label 3. We now define the rank of each vertex. The two left most vertices of each decision
gadget are assigned rank 0 and the rank of each other vertex equals its distance to any vertex of rank
0. Note that all labeled vertices (clause, variable, and integrity check vertices) have rank d = 2n+1.

While this completes the main part of our construction, we further add a set of dummy vertices
whose sole purpose is to make the constructed graph 6-regular (a property which will be useful
when dealing with the MEAN and SPECTRAL aggregation functions). Note that all vertices have
degree 2, 4, or 6. For each vertex v with degree at most 4, add a copy of the clique K7. If v has
degree 4, delete an arbitrary edge e from the K7 and add edges from v to the endpoints of e. If v has
degree 2, delete two disjoint edges from the K7 and add edges from v to the 4 endpoints of these
edges. This ensures that v and all added dummy vertices have degree 6.

For the data X , let Xv = 1 for each vertex v in rank 0 and Xu = 0 for every other vertex u.
Observe that the constructed GNN training problem can be computed in time polynomial in the size
of the 1-IN-3-SAT instance. A high-level illustration of the construction for the most important
elements is provided in Fig. 1 and the complete graph constructed for an exemplary, simple 1-
IN-3-SAT instance is visualized in Fig. 4 in Appendix B. It remains to show that the constructed
ReLU-GNNT instance has a solution with error at most n if and only if the 1-IN-3-SAT instance
has a solution.

Suppose there is a solution (i.e., a satisfying assignment) to the 1-IN-3-SAT instance and consider
the following weights w(`) and biases b(`), ` ∈ [d]. Let w(`) = 1 for all ` ∈ [d]. For all i ∈ [n], if xi
is TRUE in the solution, let b(2i−1) = −1 and b(2i) = 0. Otherwise, let b(2i−1) = 0 and b(2i) = −1.
Let b(2n+1) = 1. Crucially, this leads to the following observations: As all biases except for the last
one are non-positive and only vertices in rank 0 have a positive feature in X , in layer ` all vertices v
with rank r > ` have H(`)

v = 0. With this and as the only labeled vertices are in rank d = 2n + 1,
note that by our construction

• the first time a vertex in rank r may take a positive value is layer ` = r,

• this value is only determined by its neighbors in rank r−1 in layer r−1 (all other neighbors
have feature 0 in layer r − 1), and

• whichever value a vertex in rank r takes in layers ` > r does not matter as this information
does not propagate to the labeled vertices in rank d = 2n+ 1 within the remaining layers.

In particular, this implies that the gray dummy edges and vertices in the gadgets do not impact the
final features at the labeled vertices. With these observations, note that the two topmost (black)
vertices v in rank 2j, j ∈ [n], in all decision gadgets haveH(2j)

v = 1, no matter which of the choices
are made for the biases b(2i−1) and b(2i) for all i ≤ j: We prove this by induction over j. Clearly,
it holds for j = 0. Assume for some arbitrary but fixed j we have H(2j)

v = 1 for each black vertex
v in rank 2j. If b(2j+1) = −1 and b(2j+2) = 0, then for the black vertex v′ in each gadget in rank
2j + 1 we have H(2j+1)

v′ = 1 and for each black vertex v′′ in rank 2(j + 1) we have H(2(j+1))
v′′ = 1.

Otherwise, b(2j+1) = 0 and b(2j+2) = −1, so we have H(2j+1)
v′ = 2 and H(2(j+1))

v′′ = 1.

Consider the decision gadgets of any variable xi. Note that in layer 2i−1 the two bottommost (blue)
vertices have exactly one neighbor with feature 1 and all other neighbors have value 0 by the above
observations. Thus, if b(2i) = 0 and b(2i+1) = −1 then for the gadget’s bottom-most, blue vertex v
in rank 2i + 2 we have H(2i+2)

v = 1 and if b(2i) = −1 and b(2i+1) = 0 then H(2i+2)
v = 0. Next,

observe that in the bottom (orange) conservation part, the value is conserved as in every odd layer
the feature is increased by 1. This excess is subtracted either in this or the next layer depending
on the chosen biases. Thus, each vertex v with even rank r in the bottom path of variable xi will
have H(r)

v = 1 if xi is TRUE and H(r)
v = 0 otherwise. This is in particular true for the vertices

xi with rank 2n. Now consider the last layer d = 2n + 1. As we chose a variable assignment
satisfying the 1-IN-3-SAT instance, each clause check vertex is connected to exactly one vertex v
with H(d−1)

v = 1; all other neighbors v′ have value H(d−1)
v′ = 0. Hence, for each clause check

vertex vc we have
H(d)

vc = w(d)(1 + 0 · 6) + b(d) = 1 + b(d) = 2,
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incurring no error. The integrity check vertex v′c does not incur any error as there

H
(d)
v′c

= w(d)(1 · 2 + 0 · 5) + b(d) = 2 + b(d) = 3.

Further, exactly half of the variable check vertices are mislabeled, giving a total error of n as desired.

For the other direction, suppose there are weights and biases giving a total error of at most n. Note
that for all ` ∈ [d], if two vertices v, v′ have isomorphic `-distance-neighborhoods with respect to
the initial features in X , then H(`)

v = H
(`)
v′ . In particular, this applies to the final feature of the

two variable check vertices for each variable. Hence, at most one of these can be labeled correctly.
As there are n such pairs of variable check vertices, we get that exactly one vertex in each pair is
labeled correctly and all clause check vertices and the integrity vertex are labeled correctly.

Further, observe that every vertex in the graph has the same degree and (except for the ones in rank 0)
the same initial value. Hence, for all r ∈ [d], all vertices in rank r and their adjacent dummy vertices
have the same, uniform feature in all layers ` < r as by construction the non-uniform values from
rank 0 only propagate by one rank each layer. For layer d − 1, let a be the uniform feature of all
labeled vertices in rank d and their adjacent dummy vertices. This further implies that two vertices
in rank r with isomorphic (r−1)-distance-neighborhood in ranks r′ ≤ r have the same feature value
in layer r. In particular, the orange vertex xi (or yi) in rank 2n has the same feature value in layer
2n = d − 1 across all copies of the decision gadget for variable xi. We hence refer to the feature
value of any of these vertices in layer ` by H(d−1)

xi . With this, we can narrow down the weight and
bias in the ultimate layer. By Lemma 4, we can assume w(d) ∈ {−1, 1}. First, consider the case
w(d) = 1. Both the integrity check vertex and the corresponding clause check vertex (i.e. the one
for the clause over the same variables as used in the integrity gadget) are labeled correctly, so

2(H(d−1)
y1

+H(d−1)
y2

+H(d−1)
y3

) + a+ b(d) = 3 and

H(d−1)
y1

+H(d−1)
y2

+H(d−1)
y3

+ 4a+ b(d) = 2. (1)

Combining the equations gives H(d−1)
y1 +H

(d−1)
y2 +H

(d−1)
y3 = 3a+1. Applying this back in Eq. (1)

yields b(d) = −7a+ 1. If w(d) = −1 we obtain H(d−1)
y1 +H

(d−1)
y2 +H

(d−1)
y3 = 3a− 1 and b(d) =

7a + 1. Next, consider any variable xi and assume w(d) = 1. Exactly one of the corresponding
variable check vertices is labeled correctly, so exactly one of the following two equations is true:

H(d−1)
xi

+ 6a+ b(d) = 2, that is, H(d−1)
xi

= a+ 1 or

H(d−1)
xi

+ 6a+ b(d) = 1, that is, H(d−1)
xi

= a.

We let xi be TRUE in the first case and FALSE otherwise. Similar to Eq. (1), for each clause
xi ∨ xj ∨ xk the corresponding clause check vertex enforces

H(d−1)
xi

+H(d−1)
xj

+H(d−1)
xk

+ 4a+ b(d) = 2, that is, H(d−1)
xi

+H(d−1)
xj

+H(d−1)
xk

= 3a+ 1.

This holds if and only if exactly one of the variables xi, xj , xk is TRUE giving a yes-instance of
1-IN-3-SAT. The case w(d) = −1 works analogously. For all i ∈ [n] we have that either

−H(d−1)
xi

− 6a+ b(d) = 2, that is, H(d−1)
xi

= a− 1 or

−H(d−1)
xi

− 6a+ b(d) = 1, that is, H(d−1)
xi

= a.

We let xi be TRUE in the first case and FALSE otherwise. For each clause xi ∨ xj ∨ xk the
corresponding clause check vertex enforces

−H(d−1)
xi

−H(d−1)
xj

−H(d−1)
xk

− 4a+ b = 2, that is, H(d−1)
xi

+H(d−1)
xj

+H(d−1)
xk

= 3a− 1,

which holds if and only if exactly one of the variables xi, xj , xk is TRUE.

The only purpose of the L0 error function is to ensure that the error incurred by the variable check
vertices is minimal if exactly one of the labels is met exactly (and not if the final feature is somewhere
in between the labels 1 and 2). Thus, the same construction with an correspondingly updated error
bound can be used with any Lp error function for which p ∈ [0, 1).

Further, on 6-regular graphs, such as the constructed one, the aggregation variants in the statement
can be translated to each other by multiplying or dividing all weights by 6. Hence, solving ReLU-
GNNT on this instance with SUM aggregation trivially reduces to solving the same instance with
MEAN or SPECTRAL aggregation, yielding hardness for these settings as well.
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5 ALGORITHMIC UPPER BOUNDS AND TRACTABLE CLASSES

In this section, we obtain three results which can be seen as counterparts to Theorem 1.

SUPPLEMENTARY RESULT 1. We begin by establishing a general algorithmic upper bound for
solving ReLU-GNNT.
Theorem 5. ∆max-dimensional ReLU-GNNT with SUM, MEAN, or SPECTRAL aggregation and
any Lp error function for non-negative integer p, depth d and a graph of n vertices can be solved in
time LO(1)2O(nd∆max)(nd∆max)O(d∆2

max), where L is the bit encoding size for the data X .

Proof. We begin by exhaustively branching to determine the following information: for each vertex
v, dimension i and layer `, whether the ReLU function will flatten the feature of v at dimension i
and layer `, i.e., whether (H

(`)
v )i = 0. This requires an overall branching factor of at most 2nd∆max ,

and allows us to concentrate on the case where we assume to have this information available.

For each branch, we construct a set of (in)equalities (i.e., constraints) whose variables represent the
set of weights W and biases B in the GNN. In particular, we use a variable for each scalar in every
weight and bias, that is, for all ` ∈ [d], i ∈ [∆`] and j ∈ [∆`−1], we have the variables (W

(`)
i )j and

B
(`)
i . For convenience, we define for each ` ∈ {0, . . . , d}, every vertex v, and dimension i ∈ [∆`] a

placeholder v(`)
i which represents a term capturing the value of (H

(`)
v )i; these will be used to state

our constraints more concisely. The definition of these placeholders is as follows:

For all i ∈ [∆0] and each vertex v, we define v(0)
i := (Xv)i. We define v(`)

i := 0 for all places where
we branched that (H

(`)
v )i = 0. The remaining placeholders are defined recursively by

v
(`)
i := B

(`)
i +

∆`−1∑
j=1

(
W

(`)
i,j

∑
u∈N [v]

1

C
u

(`−1)
j

)
,

where we let C = 1 for SUM, C = |N [v]| for MEAN, and C =
√
|N [v]|

√
|N [u]| for SPECTRAL

aggregation. For each v(`)
i which our current branch assumes to be flattened, we add a constraint

requiring B(`)
i +

∑∆`−1

j=1

(
W

(`)
i,j

∑
u∈N [v]

1
Cu

(`−1)
j

)
≤ 0, while for all others we add a constraint

requiring v(`)
i ≥ 0.

Let t be the error bound. To complete the construction, we distinguish two subcases. If p = 0 (i.e.,
if the error function merely counts the number of mislabeled vertices), we perform an additional
round of branching to determine a set of |Y| − t vertices which will be labeled correctly, and in
each such branch we add a constraint of the form v

(d)
i = Y (v)i for each selected labeled vertex v

and dimension i ∈ [∆d]. This yields another branching factor of
(|Y|

t

)
≤ 2n. On the other hand, if

p > 0, we add one constraint t ≥
∑

v∈Y ||v
(d)
i − Y (v)i||p.

Having constructed the set of inequalities described above, we invoke Renegar’s Theorem (Renegar,
1992a;b;c) to solve the corresponding instance of the formula in the Existential Theory of the Reals.

Observe that in both cases, weights and biases that label the data as desired yield a solution to the
system of (in)equalities and, vice versa, a solution to the system yields such weights and biases.
Thus, deciding whether the system has any solution decides the ReLU-GNNT problem. In both
cases we have O(d∆2

max) variables and O(nd∆max) constraints. Note that each constraint has
total degree O(d). Such an instance of the Existential Theory of the Reals can be decided in time in
LO(1)(nd∆max)O(d∆2

max) (Renegar, 1992a;b;c). Combining this factor with the number of branches
yields the stated runtime bounds.

We note that the same approach can be used to solve Lin-GNNT. There, the algorithm skips the
branching step and drops all constraints except for those of the form v

(d)
i = Y (v)i.

Corollary 6. ∆max-dimensional Lin-GNNT with SUM, MEAN, or SPECTRAL aggregation, error
bound t, and any Lp error function for non-negative integer p, depth d and a graph of n vertices

9
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can be solved in time LO(1)(nd∆max)O(d∆2
max) if p > 0 and in time LO(1)

(|Y|
t

)
(nd∆max)O(d∆2

max)

if p = 0, where L is the bit encoding size for the data X .

SUPPLEMENTARY RESULT 2. Next, we proceed with establishing the polynomial-time solvability
of exact training for GNNs which are both 1-dimensional and edgeless. Towards this aim, we first
tackle the neural network training problem in the corresponding setting.

Proposition 7. For any honest5 error function, ReLU-NNT with t = 0 and precisely one node per
layer can be solved in polynomial time.

Propositions 2 and 7 together yield tractability for 1-dimensional ReLU-GNNT on edgeless graphs.

Theorem 8. 1-dimensional ReLU-GNNT with t = 0 on edgeless graphs with SUM, MEAN, or
SPECTRAL aggregation and any honest error function can be solved in polynomial time.

SUPPLEMENTARY RESULT 3. Finally, for the simpler linear activation function, we are able to
improve the result of Theorem 5 in the setting of exact training and uniform dimensionality to a
polynomial time algorithm. First, we provide a weight shifting argument that reduces the number of
non-trivial weights. For the following, let Ia denote the identity matrix with dimension a ∈ N.

Lemma 9. Consider any linearly-activated GNN with SUM, MEAN or SPECTRAL aggregation and
depth d such that ∆0 = . . . = ∆d. For all weights and biases W ∈ Rd×∆0×∆0 , B ∈ Rd×∆0 , there
are weights W̃ , B̃ such that all for all ` ∈ {2, . . . , d} we have W (`) = I∆0

and using W̃ and B̃
computes the same feature function at each vertex in the final layer as when using W and B.

We are now able to give a polynomial time algorithm for Lin-GNNT instances where all layers have
the same dimensionality—including 1-dimensional networks as a special case. Intuitively, once we
use Lemma 9 to assume without loss of generality that all but the first weight matrix in the solution
are the identity matrix, we can provide a system of linear equations equivalent to our problem and
solve it in polynomial time.

Theorem 10. Lin-GNNT with SUM, MEAN or SPECTRAL aggregation, t = 0, and depth d such
that ∆0 = . . . = ∆d with any honest error function can be solved in polynomial time.

6 CONCLUDING REMARKS

Our main NP-hardness result can be interpreted as showing that the intractability of GNN training
does not stem solely from the inherent difficulty of multidimensional classical neural networks train-
ing, and hence one cannot hope to make progress by designing heuristics targeting solely this aspect.
Still, we view it as merely the first—albeit critical—step towards understanding the complexity of
training GNNs, one which opens us multiple follow-up questions. For instance, can one identify
natural classes of network architectures which allow for efficient (i.e., polynomial-time) training in
the 1-dimensional (or, more generally, d-dimensional for constant d) setting? Our Theorem 1 ex-
cludes efficient training for planar networks as the instances arising from the reduction are in fact
planar, but leaves open the question of whether one can efficiently train networks which are, e.g.,
acyclic. Another question that remains open is whether ReLU-GNNT for 1-dimensional networks
is also in NP, or lies higher in the polynomial hierarchy; here, one can note that the training problem
on ReLU-activated classical neural networks was recently shown to be complete for the complexity
class ∃R, which lies between NP and PSPACE (Bertschinger et al., 2023).

Another important branch of follow-up question asks for the complexity of training variants of graph
neural networks that differ from the one discussed here. These includes varying the GNN’s objec-
tive (e.g., graph classification instead of node classification), the propagation paradigm (by going
beyond message passing), or the employed activation and/or loss functions (e.g., by considering
Leaky ReLU or Sigmoid activation, the Lp loss function for p ≥ 2, or the cross-entropy loss af-
ter some perceptron post-processing). We believe our work acts as an important base case in the
exploration of these areas.

5An error function is honest if it returns a value of 0 precisely when the network perfectly fits the
data (Bertschinger et al., 2023).
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A APPENDIX: FULL PROOFS

PROOF OF PROPOSITION 2

Proof. For every depth d ReLU-GNNT (or Lin-GNNT) instance I = (G,∆, X,Y,Y , t) we con-
struct a ReLU-NNT (or Lin-NNT) instance f(I) as follows. Let N be a fully connected neural
network architecture of depth d (that is, N yields d consecutive propagation steps). Let each layer
` ∈ {0, . . . , d} in N consist of ∆` ReLU-activated nodes. Let D contain a data point (Xv,Y (v))
for every labeled vertex v ∈ Y . Keep the same error bound t and error function. Note that this
construction describes a bijection between the two sets of instances and f as well as its inversion
f−1 are computable in linear time.

It remains to argue that f preserves yes- and no-instances, which we prove by showing that each set
of weights W (1), . . . ,W (d) and biases B(1), . . . , B(d) incurs the same error on I as on f(I). Fix
any such set of weights and biases. Recalling Section 2, let (H

(`)
v )i be the value of the ith dimension

in layer ` at vertex v, when processing the GNN in I with these weights and biases. Analogously,
for each data point (x, y) ∈ D, each layer ` ∈ {0, . . . , d}, and all i ∈ [∆`], let (H̃

(`)
(x,y))i denote the

value of the ith node in layer ` in the neural network N of f(I) when processing data point (x, y)
with the fixed weights and biases. Let g be the bijection that associates each vertex v in I with its
associated data point g(v) in f(I). We prove by induction over the layers that (H

(`)
v )i = (H̃

(`)
g(v))i

for all choices of v, `, and i. By construction, we have (H
(0)
v )i = (H̃

(0)
g(v))i. Further, the propagation

rules in classical neural networks and GNNs respectively yield that

(H̃
(`)
g(v))i =

 ∆∑̀
j=1

(W
(`)
i )j · (H̃(`−1)

g(v) )j +B
(`)
i

+

and

(H(`)
v )i =

 ∆∑̀
j=1

(W
(`)
i )j · (H(`−1)

v )j +B
(`)
i

+

,

as G is edgeless and hence N [v] = {v}. By the induction hypothesis we have (H̃
(`−1)
g(v) )j =

(H
(`−1)
v )j and thus (H̃

(`)
g(v))i = (H

(`)
v )i. As this holds in particular for ` = d and as g(v) =

(Xv,Y (v)), the error on both instances is the same. The same reasoning holds for linear activation
when all (·)+ are replaced by (·).

PROOF OF OBSERVATION 3

Proof. We reduce from ReLU-NNT with depth 1, n input nodes, and 1 ReLU-activated output
node. This problem is NP-hard and cannot be solved in time f(n) · |D|o(∆0) for any computable
function f unless the Exponential Time Hypothesis fails (Froese et al., 2022). We note that strictly
speaking, Froese et al. (2022) show hardness on a depth 2 neural network where the hidden layer
consists of 1 ReLU-activated node and the output layer consists of 1 node that is activated by mul-
tiplying the value at the hidden node by a weight a ∈ {−1, 1}. Nevertheless, their construction
immediately also yields the lower bound for the case where the output layer is omitted and the train-
ing occurs directly on the ReLU-activated neuron. The NP-hardness for depth 1 ReLU-GNNT then
follows by Proposition 2.

PROOF OF LEMMA 4

Proof. We start with the weights W and biases B and iteratively update them to have weights in
{−1, 1} while preserving the computed features. Let ` be the last layer with w(`) /∈ {−1, 1}. If
` = 1 there is nothing to prove. Otherwise, update the weights and biases by setting

w̃(`) := sgn(w(`)), w̃(`−1) := |w(`)|w(`−1), and b̃(`−1) := |w(`)|b(`−1),

where sgn(x) = 1 if x ≥ 0 and sgn(x) = −1, otherwise. Then replace the respective weights and
biases accordingly. The updated weights and biases produce the same features as before: Consider
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any vertex v with closed neighborhood N [v]. With the original set of weights and biases we have

H(`)
v =

(
w(`)

∑
u∈N [v]

1

C

(
w(`−1)H(`−1)

u + b(`−1)
)+

+ b(`)
)+

,

where C = 1 for SUM, C = |N [v]| for MEAN, and C =
√
|N [v]|

√
|N [u]| for SPECTRAL aggrega-

tion. For the updated weights and biases we have

H̃(`)
v =

(
sgn(w(`))

∑
u∈N [v]

1

C

(
|w(`)|w(`−1)H(`−1)

u + |w(`)|b(`−1)
)+

+ b(`)
)+

.

If w(`) = 0 we have H(`)
v = H̃

(`)
v = (b(`))+. Otherwise observe that for all u ∈ N [v] we have

w(`−1)H
(`−1)
u + b(`−1) ≤ 0 if and only if |w(`)|w(`−1)H

(`−1)
u + |w(`)|b(`−1) ≤ 0. Hence, for all

u ∈ N [v],

w(`)(w(`−1)H(`−1)
u + b(`−1))+ = sgn(w(`))(|w(`)|w(`−1)H(`−1)

u + |w(`)|b(`−1))+

and thus H(`)
v = H̃

(`)
v . This procedure can be repeated until ` = 1.

PROOF OF PROPOSITION 7

Proof. We prove the statement by showing that every 1-dimensional ReLU-NNT instance of depth
d > 3 can be reduced to an equivalent 1-dimensional instance of depth at most 3. We start by proving
by induction over the layers that the function computed by N on D in layer ` can be expressed by

f `(x) = w̃min(k,max(j, x)) + b̃

for some j, k, w̃, b̃ ∈ R with j ≤ k. In the input layer ` = 0, the claim holds by letting w̃ = 1, b̃ =
0, j = min(xi,yi)∈D xi, k = max(xi,yi)∈D xi. Now assume the claim holds in any fixed layer `. Let
the weight and bias for layer ` + 1 be w(`+1) and b(`+1). Then, by the inductive hypothesis, the
function computed in layer `+ 1 is

f `+1(x) =
(
w(`+1)w̃min(k,max(j, x)) + w(`+1)b̃+ b(`+1)

)+

.

If w(`+1) = 0, the claim holds for layer `+ 1 by letting w̃′ = 0 and b̃′ = max(0, b(`+1)). If w̃ = 0,
the claim holds with w̃′ = 0 and b̃′ = max(0, w(`+1)b̃+ b(`+1)). Otherwise, let

w̃′ = w(`+1)w̃, b̃′ = w(`+1)b̃+ b(`+1), x̃cut = −(b̃+ b(`+1)/w(`+1))/w̃.

Consider a function g(x) = (wx+ b)+ for any w, b, x ∈ R and let xcut = −b/w. Note that we have
g(x) = w ·max(xcut, x) + b if w > 0 and g(x) = w ·min(xcut, x) + b if w < 0. Thus, we get for
all x in D that

f `+1(x) = w(`+1)w̃min(k′,max(j′, x)) + w(`+1)b̃+ b(`+1) = w̃′min(k′,max(j′, x)) + b̃′

where we let j′ = max(j, x̃cut) and k′ = max(k, x̃cut) if w(`+1)w̃ > 0 and j′ = min(j, x̃cut) as well
as k′ = min(k, x̃cut), otherwise.

Let w̃, b̃, j, and k be as for fd in the last layer of N . We now construct a ReLU-activated
1-dimensional trained neural network N ′ with depth d′ ≤ 3 that computes fd on D. If w̃ = 0,
we let d′ = 1, w(1) = 0, and b(1) = b̃. Otherwise, we require depth d = 3. If w̃ > 0, let

w(1) = w̃, b(1) = −w̃j, w(2) = −1, b(2) = w̃(k − j), w(3) = −1, b(3) = b̃+ w̃k.

Then, N ′ computes the function

f(′x) =
(
−
(
−(w̃x− w̃j)+ + w̃(k − j)

)+
+ b̃+ w̃k

)+

=
(
− (−(w̃max(j, x)− w̃j) + w̃(k − j))+

+ b̃+ w̃k
)+

14
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where we expand the innermost (·)+ using the observation on g(x). We further get

f ′(x) =
(
− (−w̃max(j, x) + w̃k)

+
+ b̃+ w̃k

)+

=
(
− (−w̃min(k,max(j, x)) + w̃k) + b̃+ w̃k

)+

=
(
w̃min(k,max(j, x)) + b̃

)+

.

If w̃ < 0, let

w(1) = |w̃|, b(1) = −|w̃|j, w(2) = −1, b(2) = |w̃|(k − j), w(3) = 1, b(3) = b̃+ w̃k.

We can reuse the above steps except the last one to get that here the computed function is the same:

f ′(x) =
(

(−|w̃|min(k,max(j, x)) + |w̃|k) + b̃+ w̃k
)+

=
(
w̃min(k,max(j, x)) + b̃

)+

.

As N is ReLU-activated and is described by fd+1(x) = w̃min(k,max(j, x)) + b̃ on D, we know
that fd+1(xi) ≥ 0 for all xi in D. Hence, for all xi in D, we have f ′(x) = fd+1(x).

AsN ′ can express the same set of functions on D asN , solving the training problem forN reduces
to solving the training problem on N ′ when using the same data set D, error function, and error
bound. The latter, with depth at most 3 and just one node per layer, can be decided in polynomial
time, for example by the algorithm of Brand et al. (2023). We note that while their result is stated for
the L2 error function, it also holds for every other honest error function as one honest error function
yields error 0 if and only if all other honest error functions do the same.

PROOF OF LEMMA 9

Proof. We start with the weights W and biases B and iteratively update them to obtain identity
matrices for the weights while preserving the computed features. Let ` be the last layer withW (`) 6=
I∆0

. If ` = 1 there is nothing to prove. Otherwise, update the weights and biases by setting

W̃ (`) := I∆0 , W̃ (`−1) := W (`)W (`−1), and B̃(`−1) := W (`)B(`−1).

Then replace the respective weights and biases accordingly. The updated weights and biases produce
the same features as before: Let n denote the number of vertices in the graph G, let Ã = A+ In be
its adjacency matrix with forced self-loops, and let D̃ be its degree matrix that has the vertex degrees
along the diagonal and 0s everywhere else. The forced self-loops increase the degree of every vertex
by 1. Let C = C ′ = In for SUM, C = D̃−1 and C = In for MEAN, and C = C ′ = D̃−1/2 for
SPECTRAL aggregation. With the original set of weights and biases we have

H(`)
v = W (`)(W (`−1)CÃC ′H(`−1) +B(`−1)) +B(`)

while for the updated weights and biases we have

H̃(`)
v = I∆0((W (`)W (`−1))CÃC ′H(`−1) +W (`)B(`−1)) +B(`) = H(`)

v .

This procedure can be repeated until ` = 1.

PROOF OF THEOREM 10

Proof. For every such Lin-GNNT instance, if there is a solution at all, then there are weights and
biases such that all but the first weight matrix are the identity matrix (Lemma 9). Finding these
weights and biases corresponds to finding a solution for the following set of linear equations. Let
there be a variable (W

(1)
i )j for all i, j ∈ [∆0] and a variable B(`)

i for all ` ∈ [d] and i ∈ [∆0]. For
convenience, we state the equations using a placeholder v(`)

i for every ` ∈ {0, . . . , d}, every vertex
v, and dimension i ∈ [∆0]. For all i ∈ [∆0] and each vertex v, we define v(0)

i := (Xv)i and

v
(1)
i := B

(1)
i +

∆0∑
j=1

(
W

(1)
i,j

∑
u∈N [v]

1

C
u

(0)
j

)
,

15



Published as a conference paper at ICLR 2025

where C = 1 for SUM, C = |N [v]| for MEAN, and C =
√
|N [v]|

√
|N [u]| for SPECTRAL aggrega-

tion. The remaining placeholders are defined recursively by

v
(`)
i := B

(`)
i +

∆`−1∑
j=1

( ∑
u∈N [v]

1

C
u

(`−1)
j

)
.

For every labeled vertex v ∈ Y and i ∈ [∆0], add the equation Y (v) = v
(d)
i . This is a linear

equation as, even though the v(d)
i are defined recursively, in none of the expressions two variables

are multiplied with each other. As there are ∆0(∆0 + d) variables, the system of linear equations
can be solved in polynomial time (e.g., by Gaussian elimination).
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B APPENDIX: ADDITIONAL FIGURE
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Figure 4: The graph constructed in the reduction for Theorem 1 for a 1-IN-3-SAT instance with
variables x1, x2, x3 and a single clause x1 ∨ x2 ∨ x3. The initial label (data) for each vertex is 0,
except for the leftmost vertices, where it is 1 (marked with a 1 in a square). Target labels are
marked with a circle. The error bound is 3, i.e., the number of variables in the 1-IN-3-SAT instance.
An exemplary solution that corresponds to setting only x1 to be TRUE is setting wi = 1 for all
i ∈ {1, . . . , 7} and b1 = b4 = b6 = 0 and b2 = b3 = b5 = −1 and b7 = 1. This way, the rightmost
orange vertex of each decision gadget for x1 has value 1 in the penultimate layer. The rightmost
orange vertex in decision gadget for x2 and the rightmost blue vertex in the decision gadget for x3

as well as all labeled vertices and their dummy-neighbors have value 0 in that layer. Hence, in
the ultimate layer, with the added bias of 1, the labeled clause gadget vertex has value 2 and the
labeled integrity gadget vertex has label 3. The solution mislabels only the labeled vertices in the
first variable gadget for x1 and the second variable gadgets for x2 and x3, respectively.
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