
Published as a conference paper at ICLR 2025

GEOMETRY-AWARE RL FOR MANIPULATION OF VARY-
ING SHAPES AND DEFORMABLE OBJECTS

Tai Hoang1∗ , Huy Le1,2, Philipp Becker1, Ngo Anh Vien2, Gerhard Neumann1

1Autonomous Learning Robots, Karlsruhe Institute of Technology
2Bosch Center for Artificial Intelligence

ABSTRACT

Manipulating objects with varying geometries and deformable objects is a major
challenge in robotics. Tasks such as insertion with different objects or cloth hang-
ing require precise control and effective modelling of complex dynamics. In this
work, we frame this problem through the lens of a heterogeneous graph that com-
prises smaller sub-graphs, such as actuators and objects, accompanied by different
edge types describing their interactions. This graph representation serves as a uni-
fied structure for both rigid and deformable objects tasks, and can be extended
further to tasks comprising multiple actuators. To evaluate this setup, we present
a novel and challenging reinforcement learning benchmark, including rigid in-
sertion of diverse objects, as well as rope and cloth manipulation with multiple
end-effectors. These tasks present a large search space, as both the initial and tar-
get configurations are uniformly sampled in 3D space. To address this issue, we
propose a novel graph-based policy model, dubbed Heterogeneous Equivariant
Policy (HEPi), utilizing SE(3) equivariant message passing networks as the main
backbone to exploit the geometric symmetry. In addition, by modeling explicit
heterogeneity, HEPi can outperform Transformer-based and non-heterogeneous
equivariant policies in terms of average returns, sample efficiency, and generaliza-
tion to unseen objects. Our project page is available here.

1 INTRODUCTION

Geometric structure plays a crucial role in robotic manipulation. For instance, in insertion tasks, a
robot must precisely align objects with their corresponding target placements. Understanding the
geometries is therefore essential in such tasks, as each pair requires a unique alignment (Zeng et al.,
2020; Tang et al., 2024). Similarly, for deformable objects like cloths, whose shapes change over
time, successfully completing the task requires a policy that can capture these dynamic geometric
changes (Lin et al., 2021; Antonova et al., 2021; Shi et al., 2024). In both scenarios, these geometric
structures can be naturally represented as graphs, a widely adopted framework in robot learning
(Wang et al., 2018; Huang et al., 2020; Ryu et al., 2023; Shi et al., 2024). In this paper, we frame
manipulation problems as heterogeneous graphs. Taking the Cloth-Hanging task as an example,
depicted in Figure 1, the cloth and the actuators are represented as two distinct node sets, connected
by a set of directed inter-edges. Each node is associated with a geometric vector representing its
3D coordinates. Yet, this representation results in high-dimensional observation and action spaces,
which makes learning policies that generalize seamlessly to novel orientations, poses, and unseen
geometries challenging.

To address this issue, recent works (Zeng et al., 2020; Huang et al., 2022; 2024; Ryu et al., 2023) in-
troduced equivariance in the SE(3) space as an inductive bias. Using Equivariant Message Passing
Networks (EMPNs), they learn policies that generalize to different poses by leveraging the geometric
structure of the scene. These works learn by imitation, and most only consider simple pick-and-place
tasks, where the model only has to produce a desired end-effector pose to be reached by a controller.
An exception is the recent Equibot (Yang et al., 2024), where the policy outputs velocity vectors
rather than static end-effector poses, enabling success in more complex and dynamic tasks like cloth
folding and wrapping by imitation. This work investigates how to transfer these ideas from imitation

∗Correspondence to tai.hoang@kit.edu

1

https://thobotics.github.io/hepi
mailto:tai.hoang@kit.edu

Published as a conference paper at ICLR 2025

: Actuator

: Inter-edge: Intra-edge

: Object : Target

Heterogeneous Equivariant Policy (HEPi)

: Velocity vector

EMPN

xm

EMPN

x1

EMPN

xn

Figure 1: Left: A Cloth-Hanging task represented by a heterogeneous graph that comprises two
disjoint node sets, objects, and actuators, connected through directed, fully-connected inter-edges.
Intra-edges occur within each set (both objects and actuators) to capture relationships within clus-
ters. Information is aggregated from objects to actuators via inter-edges. The target distance is ab-
sorbed into the feature representation rather than treated as a separate node type. Right: Overview
of Heterogeneous Equivariant Policy (HEPi), consisting of multiple Equivariant Message Passing
Networks (EMPNs) process the graph, and the outputs are aggregated to generate the final action.

to reinforcement learning. Unlike supervised imitation, training policies with reinforcement learn-
ing presents additional challenges, particularly due to the need for high-frequency data collection
and efficient adaptation to new experiences. Large policy networks struggle in these settings, as
they are unable to quickly adapt to changing data (Andrychowicz et al., 2021). To address these is-
sues, we design a lightweight heterogenous equivariant architecture, amenable to efficient on-policy
reinforcement learning. The architecture’s equivariance allows generalizing between poses and its
heterogeneity enables us to include and exploit knowledge about the scene as well as the unactuated
and actuated objects in it. For training, we find that naively using Proximal Policy Optimization
(PPO) (Schulman et al., 2017), can result in suboptimal performance, and we propose to employ a
more principled trust region approach from Otto et al. (2021) to achieve stable convergence.

To evaluate our approach and future advancements in this direction, we propose a novel suite of
seven tasks, realized using NIVIDA IsaacLab (Mittal et al., 2023) to utilize its GPU-based simula-
tion engine. They are designed to highlight the role of geometric structure in manipulation tasks,
with a progressive increase in difficulty, from simple rigid-body manipulation with diverse objects
to more challenging tasks involving multiple actuators and deformable objects. Our experimen-
tal results demonstrate that the proposed Heterogeneous Equivariant Policy (HEPi) outperforms
both Transformer-based and pure EMPN baselines, particularly in complex 3D manipulation tasks.
HEPi’s integration of equivariance and explicit heterogeneity modelling improves performance in
terms of average returns, sample efficiency, and generalization to unseen objects.

To summarize, our contributions are i) a novel benchmark comprising rigid insertion of varying ge-
ometries and deformable objects manipulation that is particularly well-suited for geometry aware
reinforcement learning research; ii) HEPi, a graph-based policy that is expressive and computa-
tionally efficient while being constrained to be SE(3)-equivariant, perfectly suitable for solving
complex 3D manipulation tasks under reinforcement learning settings; iii) a theoretical justification
and extensive empirical analysis for our design choices.

2 BACKGROUND

Message Passing Neural Networks (MPNN) Consider a graph G = (V, E), where V represents
the nodes and E the edges. In a standard Graph Neural Network (GNN) (Battaglia et al., 2018), each
node v ∈ V updates its feature representation by aggregating information from its neighbors N(v).
This process is formalized as

f (k+1)
v = ϕ

f (k)v ,
⊕

u∈N(v)

ψ
(
f (k)v , f (k)u , euv

) , (1)

2

Published as a conference paper at ICLR 2025

where f
(k)
v is the feature vector of node v at iteration k, euv is the edge feature between nodes

u and v, ϕ and ψ are often deep neural networks, and
⊕

represents an aggregation function like
summation, mean or max.

SE(3) Equivariance and Invariance In this work, we focus on geometric graphs G = (V, E ,X),
where each node v is associated with coordinates xv ∈ X = R3 and steerable geometric features
fv . A feature is considered steerable if it transforms consistently under the action of a group g ∈ G
through a group representation ρ. For instance, a vector v ∈ R3 under a rotation R ∈ SO(3)
transforms as v′ = Rv. In this case, v is a finite-dimensional vector, and its transformation is
described by an invertible matrix representation with determinant 1, ρ(g) = R.

Equivariance and invariance are two fundamental concepts in this context, can be formalized as
follows, using the notation from Brandstetter et al. (2022):
Definition 2.1. Let G be a group with representations ρX and ρY . A function f : X → Y is
equivariant if

ρY(g)[f(x)] = f(ρX (g)[x]), ∀g ∈ G, x ∈ X ,
and invariant if

f(x) = f(ρX (g)[x]), ∀g ∈ G, x ∈ X .

In simpler terms, equivariance guarantees that applying a transformation g to the input space X and
then applying the function f produces the same result as applying f first and then transforming the
output space Y . On the other hand, invariance implies that the function f remains unchanged when
the input undergoes a transformation in X .

Symmetries in MDPs A Markov Decision Process (MDP) is defined by the tuple (S,A, P,R, γ),
where S is the set of states, A the actions, P (s′|s, a) the transition probability, R(s, a) the reward
function, and γ ∈ [0, 1] the discount factor. The goal is to find a policy π : S → A that maximizes
the expected discounted reward Eπ[

∑∞
t=0 γ

tR(st, at)].

In MDPs with symmetries, both the transition distribution P (s′|s, a) and policy distribution π(a|s)
are invariant under group transformations g ∈ G via left-regular representation Lg and Kg for state
and action, respectively, resulting in the following conditions:

P (Lg[s
′]|Lg[s],K

s
g [a]) = P (s′|s, a), π(Ks

g [a]|Lg[s]) = π(a|s),

and similarly for the reward function: R(Lg[s],K
s
g [a]) = R(s, a). This allows leveraging symme-

tries to reduce the complexity of learning, potentially improving sample efficiency and generaliza-
tion, as it results in a group-structured MDP homomorphism (Van der Pol et al., 2020).

3 METHODOLOGY

Problem Statement We aim to solve robotic manipulation problems using an on-policy actor-
critic reinforcement learning approach. To address the symmetries present in the state and action
spaces of the Markov Decision Process (MDP), we leverage equivariant policies, ensuring that
transformations applied to the state space are consistently reflected in the action space. To handle
the complexities of robotic manipulation, where actuators and objects play distinct roles, we propose
the Heterogeneous Equivariant Policy (HEPi), which comprises three key components:

• Equivariant MPN backbone: An efficient and expressive EMPN capable of exploiting en-
vironment symmetries, thereby significantly reducing the search space complexity.

• Heterogeneous graph design and update rules: A graph structure with distinct actuator and
object nodes, with tailored message-passing rules to handle the system’s heterogeneity.

• Employing a principled trust-region method to stabilize training in complex, high-
dimensional environments.

3.1 EQUIVARIANT MPN BACKBONE

An Equivariant Message Passing Network (EMPN) can be constructed (Brandstetter et al., 2022;
Duval et al., 2023; Bekkers et al., 2024) by enforcing equivariance in the functions ϕ and ψ in

3

Published as a conference paper at ICLR 2025

Equation 1, ensuring that their inputs and outputs are steerable and transform consistently under the
group G, as described in Definition 2.1. Constructing such functions for high-dimensional steerable
features is challenging and typically requires spherical harmonics embeddings (Duval et al., 2023),
where matrix-vector multiplications are carried out using Clebsch-Gordan tensor products, followed
by steerable activation functions (Brandstetter et al., 2022; Bekkers et al., 2024). While these op-
erations guarantee equivariance, they also introduce high computational complexity, making them
impractical for reinforcement learning settings. To mitigate this issue, Bekkers et al. (2024) intro-
duced the PONITA framework, an efficient equivariant message-passing approach. We use it as our
EMPN backbone and refer to it as EMPN throughout the rest of the paper for consistency.

Consider the message function in Equation 1, where ψ(f (k)v , f
(k)
u , euv) = k(xu−xv)fu is defined as

a linear function with steerable feature fu, and summation is used as the aggregation function,
⊕

=∑
. Here, k is a convolution kernel, and (xu − xv) represents the relative position between nodes u

and v. This leads to the convolutional message-passing update rule, f ′v =
∑

u∈N(v) k(xu − xv)fu.
On a regular grid, e.g., an image, each relative position (xu−xv) has a corresponding weight Wu,v

and is stored in one single matrix W . However, this does not apply to non-uniform grids, e.g. point
clouds, k(xu,xv) in this case can be parameterized by a neural network, resulting in the formulation
f ′v =

∫
X kθ(xu,xv)fudxu. Under this general formulation, Bekkers et al. (2024) showed that k

can be made SE(3) equivariant by “lifting” the input domain from X = R3 to X ↑ = R3 × S2.
Specifically, for every position p ∈ R3, an associated orientation o ∈ S2 is introduced. This allows
features in EMPN to be embedded in both spatial and orientation spaces, leading to the following
convolutional form:

f ′v =

∫
R3

∫
S2

kθ([(pu,ou), (pv,ov)])fudpudou.

Furthermore, to improve computational efficiency, the kernel function is factorized as:

kθ([(pu,ou), (pv,ov)]) = K
(3)
θ k

(2)
θ (o⊤

v ou) k
(1)
θ (o⊤

v (pu − pv), ∥ov ⊥ (pu − pv)∥),

where k(1) handles spatial interactions based on the relative position (pu−pv) and the perpendicular
component ∥ov ⊥ (pu − pv)∥, k(2) manages orientation-based interactions via dot products o⊤

v ou,
and K(3) performs channel-wise mixing across features. This formulation preserves the universal
approximation property of equivariant functions while being significantly more computationally
efficient and not requiring specialized network structures. Furthermore, o can be sampled on a
uniform grid over S2, making EMPN only approximately equivariant. However, in practice, it
achieves strong performance even with a limited number of samples, as discussed in Appendix D.

3.2 HETEROGENEOUS EQUIVARIANT POLICY

In robotic manipulation tasks, actuators and objects play fundamentally distinct roles. The graph
is defined as G = (V, E), where V = Vact ∪ Vobj represents disjoint node sets for actuators and
objects. Our approach captures these roles by first processing local information within the object
and actuator clusters and then aggregating it globally to the actuators via directed, fully-connected
inter-edges, as shown in Figure 1. This design distinguishes object-to-object, actuator-to-actuator,
and object-to-actuator interactions, allowing the system to separate local processing from global
information exchange.

The updates for both object and actuator nodes can be expressed as

f obj, new
v = ϕobj

f obj
v ,

∑
u∈N(v)obj

k(xobj
u , xobj

v ; θobj-obj)f
obj
u

 , v ∈ Vobj,

f act, new
v = ϕact-local

f act
v ,

∑
w∈N(v)act

k(xact
w , x

act
v ; θact-act)f

act
w

 , v ∈ Vact,

f act, final
v = f act, new

v + ϕact-global

f act
v ,

∑
u∈Vobj

k(xobj
u , xact

v ; θobj-act)f
obj, new
u

 , v ∈ Vact.

(2)

4

Published as a conference paper at ICLR 2025

Here, f obj, new
v represents the updated object features after local object-to-object interactions, f act, new

v
refers to the updated actuator features after local actuator-to-actuator interactions, and f act, final

v is the
final feature for actuator nodes after aggregating information from both the objects and its actua-
tor neighbors. Here each of the kernels k(·, ·; θobj-obj), k(·, ·; θobj-act), and k(·, ·; θact-act), has it own
learnable parameters, allowing them to specialize the learning process for each interaction type.

Moreover, each node v ∈ V encodes its node type as a one-hot scalar-vector, along with normal-
ized position vectors pv and velocities vv . For object nodes, the feature vector also includes the
relative distance to the target, dv,target, embedding target information directly without the need for
an additional target node. For actuator nodes, the output consists of both a scalar c and a vector vout,
where the final output vector is computed as vout = c · v. This setup ensures flexibility for diverse
tasks while maintaining consistency with the geometric properties of the system.

Value Function We employ DeepSets (Zaheer et al., 2017) with the same input structure as the
policy to preserve permutation invariance of the node features, while keeping the architecture both
simple and computationally efficient, similar to the prior work Simm et al. (2021). The value func-
tion is computed as V (s) = MLPouter

(∑
v∈V MLPinner(sv)

)
, where sv represents the feature of node

v. These node features may differ from those used in the policy network to capture task-specific ob-
servations. For example, in the Cloth-Hanging task, the value function considers features from all
nodes, while the policy network focuses only on the hole boundary nodes. Full details of the input
features used for the value function are provided in the Appendix B.

Trust-Region Projection Layers Standard on-policy reinforcement learning approaches such as
Proximal Policy Optimization (PPO) (Schulman et al., 2017), learn a policy by optimizing the sur-
rogate objective

θk+1 = argmax
θ

E(s,a)∼πθk

[
πθ(a|s)
πθk(a|s)

Aπθk (s, a)

]
s.t. DKL(πθ||πθk) ≤ δ,

where Aπθk (s, a) is the advantage function. Here, DKL(πθ||πθk) is the KL-divergence between the
new policy πθ and the old policy πθk , constrained by δ to ensure stable updates and prevent overly
large policy changes. PPO approximates this trust region by clipping the importance sampling ratio
to limit updates. This, however, requires careful hyperparameters turning to make it work stably,
as pointed out by Andrychowicz et al. (2021). We will show later in the Results Section 4.2, this
is also applied to graph-based policy. On the other hand, Trust Region Projection Layers (TRPL)
(Otto et al., 2021) adopt a more principled approach. TRPL projects policy parameters onto trust
region boundaries using a differentiable convex optimization, ensuring stability by projecting both
the mean and variance of the Gaussian policy to satisfy trust region constraints.

In this paper, we adopt TRPL to ensure stable policy updates, and we will show in the Result Sec-
tion 4.2, TRPL consistently outperforms PPO, with little hyperparameter tuning required, especially
in tasks requiring complex exploration, as also observed in the prior works (Otto et al., 2023; Li
et al., 2023; Celik et al., 2024).

3.3 THEORETICAL JUSTIFICATION

HEPi is inspired by adding global Virtual Nodes (VNG) to Message Passing Neural Networks,
(MPNNs). For example, Southern et al. (2024) proposed MPNN + VNG which seperates local and
global updates. Here, the local updates are equivalent to our object node updates, and the global
ones correspond to our actuator node update. Based on this interpretation, we show that locally
connecting actuator nodes to only k-nearest object nodes can not capture relevant relation between
object and actuator nodes, while treating the actuator nodes as VN that connects to all object nodes
can. We name the graph network with locally connected actuators and object nodes as MPNN +
VNLocal. We show that for HEPi any two actuator and object nodes can exchange information, while
this is not the case for MPNN + VNLocal.
Proposition 3.1. For MPNN + VNLocal, the Jacobian ∂f act

v /∂f obj
u is independent of u whenever

object node u and actuator node v are separated by more than 2 hops. In contrast, HEPi with
node connections and updates as described in Section 3.2 can exchange information between any
actuator and object nodes after a single layer.

The proof is provided in Appendix A. This result implies that HEPi’s connection design allows the
actuators to receive relevant information to predict actions w.r.t changes at object nodes. In contrast,

5

Published as a conference paper at ICLR 2025

Rigid Insertion

Cloth Hanging

Rigid Insertion with Two Agents

Rope Shaping

t = 0 t = T...t = 0 t = T...

t = 0 t = T... t = 0 t = T...

t = 0

Figure 2: Illustration of our diverse and challenging manipulation tasks, involving both rigid and
deformable objects. These tasks require precise control under complex geometric constraints, co-
ordination between multiple actuators, and handling of intricate interactions between objects and
actuators. The variety of tasks highlights the need for policies that can understand the geometric
structure in large observation and action spaces.

for MPNN + VNLocal the actuators could fail to predict relevant actions to changes at object node u.
We provide experimental ablations across various values of k to clearly emphasize this distinction
in Appendix D.

4 EXPERIMENTS

In this section, we outline the experimental setup and present the results comparing the proposed
HEPi against other baselines.

4.1 EXPERIMENTAL SETUP

Task Design Our task design, illustrated in Figure 2, emphasizes testing the role of geometric
structure and information exchange between objects and actuators in robotic manipulation. To focus
on this, we abstract away the specifics of the robot body and consider only end-effector control. We
introduce two categories of tasks: rigid manipulation on diverse geometries and deformable object
manipulation, all implemented in NVIDIA IsaacLab (Mittal et al., 2023) to leverage its GPU-based
parallelization capabilities1.

The rigid manipulation tasks are inspired by Transporter Net (Zeng et al., 2020). Rigid-Sliding
mimics using a suction gripper to slide an object across a 2D plane to a target position and orienta-
tion, with 10 distinct objects, and randomized initial and target poses. Next, Rigid-Pushing removes
the physical connection between the actuator and the object, allowing the actuator to move freely
in the x-y plane to push the object to a desired target position and orientation. Rigid-Insertion,
similar to the assembly kit task in Transporter Net, extends this to 3D, requiring precise alignment
and insertion of objects into holes, using 8 different objects. Additionally, we introduce a novel
Rigid-Insertion-Two-Agents task, where two linear actuators work together to control an object,
guiding it to a target randomly positioned in the upper hemisphere of the S2.

For deformable object manipulation, we first adopt the Rope-Closing task from Laezza et al. (2021),
where two actuators manipulate a deformable rope to wrap around a cylindrical object in a 2D
plane, with randomized initial configurations. We then introduce a novel task, Rope-Shaping, which
increases complexity by requiring the rope to form a specific shape (a “W” from the LASA dataset
(Khansari-Zadeh & Billard, 2011)) to a desired orientation. Finally, we introduce Cloth-Hanging,
where four actuators control the corners of a cloth to hang it onto a hanger, with randomized starting
positions and orientations in 3D space.

These tasks present a range of manipulation challenges, emphasizing the role of geometric structure
and requiring complex exploration strategies to coordinate the agents in completing the tasks. Full
task details, including reward definitions, are provided in Appendix B.

1A video showcasing the tasks can be found in the supplementary material.

6

Published as a conference paper at ICLR 2025

HEPi (Ours) EMPN Transformer

0 4 8 12 16 20-2.00

-1.50

-1.00
IQ

M
 R

et
ur

n
rigid-sliding-2D

0 4 8 12 16 20-2.00

-1.75

-1.50

-1.25

-1.00 rigid-insertion-2D+z

0 2 4 6-2.00

-1.75

-1.50

-1.25

-1.00
rigid-insertion-
two-agents-3D

0 6 12 18 24 30-3.00

-2.50

-2.00

-1.50 rigid-pushing-2D

0 1 2 3 4
Env Steps (1M)

-3.00

-2.00

-1.00

IQ
M

 R
et

ur
n

rope-closing-2D

0 2 4 6 8 10
Env Steps (1M)

-4.00

-3.00

-2.00
rope-shaping-2D

0 1 2 3 4 5
Env Steps (1M)

-1.60

-1.40

-1.20

-1.00 cloth-hanging-3D

Figure 3: Evaluation curves for our seven manipulation tasks, comparing HEPi (ours), EMPN,
and Transformer baselines. Results are averaged over 10 seeds, using IQM with 95% confidence
intervals. HEPi consistently outperforms EMPN and Transformer in tasks requiring complex ex-
ploration and heterogeneity handling, such as rigid-insertion-two-agents-3D, rigid-pushing-2D and
cloth-hanging-3D.

Baselines We compare HEPi against two primary baselines: policies based on a Transformer
(Vaswani et al., 2017) and a naive EMPN. Transformers serve as a strong baseline to evaluate in our
setting as it can be seen as a fully-connected GNN (Battaglia et al., 2018), and have achieved state-
of-the-art performance in other graph-based reinforcement learning problems (Kurin et al., 2021;
Trabucco et al., 2022; Gupta et al., 2022; Hong et al., 2022). In addition, for the Cloth-Hanging
task, we evaluate two additional baselines, Heterogeneous GNN (HeteroGNN) and a naive GNN to
highlight the effectiveness of incorporating equivariant constraints in a large 3D space.

Our experimental setup aims to answer the following key questions: (1) Can explicitly modeling het-
erogeneity between actuators and objects, combined with SE(3) equivariance, improve performance
in complex 3D tasks? (2) How well does HEPi generalize when dealing with different geometries,
resolutions in rigid tasks, and varying sample spaces in the complex 3D cloth-hanging task? (3)
Attention mechanisms are often employed in GNNs to capture heterogeneity, do they offer the same
benefits as explicitly modeling heterogeneity in HEPi? (4) Does using trust-region methods in HEPi
stabilize the training process more effectively than a naive PPO?

4.2 RESULTS AND DISCUSSIONS

In the main evaluations, we generate 1000 scenes per task (sampled according to Appendix B) and
compute the undiscounted return over 10 seeds, and report the average using Interquartile Mean
(IQM) (Agarwal et al., 2021) with 95% confident interval. Figure 3 shows the evaluation curves for
the seven manipulation tasks. Overall, both EMPN and HEPi outperform the Transformer in terms
of sample complexity, owing to their ability to exploit symmetry.

For final performance on rigid tasks, firstly in rigid-slding-2D and rigid-insertion-2D+z tasks, HEPi
and Transformer policies perform comparably, suggesting that the limited task complexity does not
fully leverage the benefits of equivariant constraints. However, when the search space grows larger,
as in the case of rigid-insertion-two-agents-3D, Transformer struggles to find a policy that general-
izes to all poses. EMPN, on the other hand, gets stuck in local optima due to its lack of expressive-
ness, especially in tasks requiring more exploration, such as rigid-pushing-2D, rigid-insertion-2D+z
and rigid-insertion-two-agents-3D. In contrast, HEPi’s explicit handling of heterogeneity allows for
more effective exploration, leading to better overall performance.

In rope-closing and rope-shaping, simple deformable object tasks, the Transformer exhibits poor
generalization, likely due to the complexity introduced by non-rigid constraints and random orienta-
tions. HEPi and EMPN perform similarly on the 2D tasks, but as tasks scale up to 3D environments,
such as cloth-hanging-3D, HEPi shows a significant advantage, outperforming both baselines. This
highlights the importance of explicitly capturing heterogeneity and task geometry in manipulation.

7

Published as a conference paper at ICLR 2025

HEPi (Ours) EMPN Transformer HeteroGNN GNN

0 1 2 3 4 5
Env Steps (1M)

-1.75

-1.50

-1.25

-1.00
IQ

M
 R

et
ur

n

(a) Original 3D Space

0 1 2 3 4 5
Env Steps (1M)

-1.75

-1.50

-1.25

-1.00

(b) 2D Half Circle

0 1 2 3 4 5
Env Steps (1M)

-1.75

-1.50

-1.25

-1.00

(c) 2D Quarter Circle

Figure 4: Performance of different models on the Cloth-Hanging task across varying sample spaces.
Overall, performance improves as the sample space decreases. In terms of final performance, het-
erogeneous models outperform homogeneous baselines in most cases, demonstrating the benefits of
explicit heterogeneity modeling. Additionally, applying equivariant constraints is critical for achiev-
ing superior performance in 3D tasks. More results can be found in Appendix D.

0.0 0.05 0.1 0.15
Velocity Noise (std)

0.
0

0.
05

0.
1

0.
15

Po
sit

io
n

No
ise

 (s
td

)

-1.53 -1.55 -1.61 -1.80

-1.54 -1.51 -1.61 -1.80

-1.69 -1.67 -1.70 -1.89

-2.25 -2.26 -2.27 -2.35

Low-resolution objects
(~ 20 nodes)

0.0 0.05 0.1 0.15
Velocity Noise (std)

-1.61 -1.64 -1.74 -1.93

-1.63 -1.54 -1.66 -1.80

-1.78 -1.65 -1.70 -1.84

-2.55 -2.25 -2.23 -2.29

High-resolution objects
(~ 1200 nodes)

HEPi (Ours) Transformer

1 2 32.0

1.5

1.0

IQ
M

 R
et

ur
n

rigid-sliding-2D

1 2 32.00

1.75

1.50

1.25

1.00rigid-insertion-2D+z

Figure 5: Left: Analysis of noise sensitivity and scalability to high-resolution objects in the Rigid-
Pushing task. Heatmaps show average returns under varying levels of artificial Gaussian noise in
position and velocity inputs for both low-resolution and high-resolution objects. A single HEPi
agent, trained on a low-resolution with additive Gaussian Noise (σ = 0.01), was used for all evalu-
ations. Right: Generalization performance on Rigid-Sliding and Rigid-Insertion tasks. Models are
trained on one object (plus), two objects (plus, star), and three objects (plus, star, pentagon) and
tested on the remaining unseen objects. Overall, HEPi generalizes well to unseen objects, performs
consistently across resolutions, and handles noise effectively, making it suitable for real-world tasks.

Generalizability Figure 4 compares the performance of different models on the Cloth-Hanging
task across varying sample spaces. As expected, smaller sample spaces simplify the exploration and
improve performance. Heterogeneous models (HeteroGNN and HEPi) consistently achieve higher
final returns than their homogeneous counterparts, demonstrating greater expressiveness. However,
HeteroGNN requires more samples, whereas HEPi’s use of EMPN significantly improves sample
efficiency by leveraging equivariant constraints in large 3D spaces.

Next, we evaluate the robustness of HEPi to noisy inputs and its ability to handle high-resolution
object meshes on the Rigid-Pushing task. GNNs naturally capture locality through message pass-
ing, allowing them to scale effectively to higher-resolution graphs without retraining (Li et al., 2020;
Freymuth et al., 2023). During training, we added Gaussian noise (σ = 0.01) to normalized posi-
tions and velocities to encourage diverse node representations, a common GNN regularization tech-
nique (Godwin et al., 2022). The best HEPi agent was then evaluated with varying Gaussian noise
levels applied to pre-normalized inputs (environment noise) and across low-resolution (∼ 20 nodes)
and high-resolution (∼ 1200 nodes) object meshes. As shown in Figure 5 (left), HEPi maintains high
performance across resolutions with only mild degradation at higher noise levels, demonstrating its
scalability and robustness to noisy and diverse object representations.

Finally, we evaluate the generalization of these models to unseen objects on two rigid tasks: rigid-
sliding and rigid-insertion. Both tasks are trained on subsets of objects—one (plus), two (plus, star),

8

Published as a conference paper at ICLR 2025

HEPi (Ours) HEPi + Attention EMPN + Attention EMPN

-1.40

-1.20

-1.00
IQ

M
 R

et
ur

n
rigid-sliding-2D

-1.40

-1.20

-1.00
rigid-insertion-2D+z

-1.40

-1.20

-1.00

rigid-insertion-
two-agents-3D

-2.00

-1.80

-1.60

rigid-pushing-2D

-2.00

-1.75

-1.50

-1.25

IQ
M

 R
et

ur
n

rope-closing-2D

-2.40

-2.20

-2.00

-1.80
rope-shaping-2D

-1.40

-1.20

-1.00 cloth-hanging-3D

0.00

1.00

2.00

Computational
overhead

Figure 7: Performance comparison on tasks with and without attention mechanisms over 10 seeds.
Adding attention significantly increases the training time but does not improve performance, as
shown on the right. The computational overhead is measured as the ratio of training time per iteration
(over seven tasks) relative to HEPi.

and three (plus, star, pentagon)—and tested on the remaining objects. Figure 5 (right) shows that
HEPi generalizes better than the Transformer baseline, benefiting from the ability of graph-based
models to exploit object topology. In contrast, Transformers lack structure-aware embeddings and
struggle with graph-structured inputs, as noted in prior work (Hong et al., 2022).

Attention Attention mechanisms are widely used in graph neural networks to capture heterogene-
ity. In this experiment, we examine the impact of adding attention as an aggregation function in
Equation 1 to both homogeneous and heterogeneous graph networks, framing the popular Graph
Attention Network (GAT) framework (Veličković et al., 2018). However, as shown in Figure 7,
attention does not provide any noticeable benefit across the tasks.

While attention helps capture some heterogeneity, particularly in tasks like rigid-pushing-2D and
rigid-insertion-two-agents-3D, it ultimately complicates the learning process in on-policy reinforce-
ment learning, making the optimization landscape more difficult to traverse. Additionally, adding
attention significantly increases training time without improving performance, e.g., for HEPi it al-
most doubled.

Training Stability To investigate the impact of the TRPL method, we compare it against PPO. For
a fair comparison, we perform a grid search over the clip eps parameter in PPO (Appendix E.3).
Overall, as depicted in Figure 8, in tasks requiring high exploration such as cloth-hanging-3D, PPO
struggles to maintain conservative updates, often resulting in unstable performance. However, in
tasks with a lower-dimensional action space, such as 2D environments, well-tuned PPO performs
comparably to TRPL in terms of final average return, though being less sample efficient. This
suggests that while PPO can be tuned to perform adequately in simpler action spaces, TRPL provides
more stability and robustness, particularly in complex 3D environments that demand more effective
exploration control.

5 RELATED WORK

Equivariant Policies for Robotic Manipulation In imitation learning for robotic manipulation,
equivariance has been widely applied to reduce the effort of collecting human demonstrations (Zeng
et al., 2020; Huang et al., 2022; 2024; Ryu et al., 2023; Yang et al., 2024). Most prior work fo-
cuses on simple pick-and-place tasks, where the policy outputs the 3D pose of the end-effector.
By leveraging equivariance, these policies can generalize across different object poses, significantly
reducing the number of required demonstrations (e.g., only 5 to 10 demonstrations in (Ryu et al.,
2023)). However, 3D pose actions are insufficient for tasks that require higher dexterity or involve
deformable objects. To address this limitation, Equibot (Yang et al., 2024) designed an equivariant
policy that outputs velocity vectors, achieving success in more complex tasks such as cloth folding
and object wrapping.

9

Published as a conference paper at ICLR 2025

HEPi with TRPL HEPi with PPO Transformer with TRPL Transformer with PPO

0 4 8 12 16 20
Env Steps (1M)

-2.00

-1.75

-1.50

-1.25

-1.00
IQ

M
 R

et
ur

n
rigid-insertion-2D+z

0 2 4 6 8 10
Env Steps (1M)

-4.00

-3.00

-2.00
rope-shaping-2D

0 1 2 3 4 5
Env Steps (1M)

-2.50

-2.00

-1.50

-1.00 cloth-hanging-3D

Figure 8: Performance comparison between HEPi and Transformer models with TRPL and PPO
over 10 seeds. TRPL shows stable performance across all tasks, while PPO struggles in tasks requir-
ing high exploration, especially in 3D environments like cloth-hanging-3D. In tasks with a lower-
dimensional action space (e.g., 2D tasks), both methods perform comparably when carefully tuned.

There has been limited work on exploiting equivariant policies in reinforcement learning, and ex-
isting approaches have largely focused on 2D spaces (Wang et al., 2022; Nguyen et al., 2023). In
this work, we extend the study of equivariant policies to 3D space within a reinforcement learning
setting, which, to the best of our knowledge, has not yet been explored for robotic manipulation.

RL with GNNs Graph-based representations in reinforcement learning have shown great success
across diverse domains, including molecular design (Simm et al., 2021), adaptive mesh refinement
(Freymuth et al., 2023), and multi-agent systems like traffic light control (van der Pol et al., 2022).
Among these, the most closely related work to ours is morphology reinforcement learning (Wang
et al., 2018; Huang et al., 2020; Trabucco et al., 2022; Hong et al., 2022; Gupta et al., 2022), where
the robot’s kinematic structure is represented as a graph, allowing actuators to be controlled through
message passing. This approach enables policies to generalize across different robot topologies,
particularly in locomotion tasks (Gupta et al., 2022). Chen et al. (2023) extend these ideas to handle
3D environments, but only with sub-equivariant policies for rotations around the gravity axis.

However, these works primarily exploit the locality of graph structures, framing the problem as
multi-agent reinforcement learning on graphs (Jiang et al., 2020), where each node can make de-
cisions influenced by its neighbors. In contrast, our work focuses on the underactuated problem
where only a small subset of nodes (actuators) controls a much larger set of object nodes, framing
a heterogeneous graph. The interactions between the nodes are therefore much more complex to
capture using homogeneous GNN models.

6 CONCLUSION

We have demonstrated that robotic manipulation problems can be effectively represented as hetero-
geneous graphs, comprising two sub-graphs to capture the geometric structure of the environment.
Building on this, we introduced HEPi, a graph-based policy featuring multiple equivariant message-
passing networks as its backbone. These networks are constrained to be equivariant under SE(3)
transformations, which significantly improves sample efficiency. Furthermore, HEPi explicitly mod-
els heterogeneity by assigning distinct network parameters for each interaction type, reducing mes-
sage mixing and improving expressiveness. This approach has proven less prone to converging on
sub-optimal solutions. To assess the effectiveness of our approach, we developed a new reinforce-
ment learning benchmark focused on manipulating objects with diverse geometries and deformable
materials. Our results show that HEPi outperforms both the state-of-the-art Transformer and its
non-heterogeneous, non-equivariant counterparts.

Limitation In our current setup, we abstract away the robot body, focusing solely on end-effector
movements. Future work could explore incorporating a more structured representation of actuator
nodes, potentially leveraging the robot’s full morphology. Moreover, although our approach does
not require full object meshes, we assume that the keypoint coordinates are readily available as our
main observation. This limitation could be addressed by integrating state-of-the-art computer vision
techniques to extract keypoints from cameras (Tumanyan et al., 2024; Hou et al., 2024), using these
as object nodes, thus increasing its applicability in real-world scenarios.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

This work is part of the M4 subproject of the DFG AI Research Unit 5339, which focuses on design-
ing distributed policy optimization methodologies to accelerate manufacturing process maturation.
We gratefully acknowledge financial support from the German Research Foundation (DFG) and
computational resources provided by bwHPC and the HoreKa supercomputer, funded by the Min-
istry of Science, Research, and the Arts Baden-Württemberg and the German Federal Ministry of
Education and Research.

We thank Niklas Freymuth, Philipp Dahlinger, Onur Celik, Aleksandar Taranovic, and Mayank
Mittal for their insightful discussions during both the initial and rebuttal phases of this paper, as well
as for their technical support. We also appreciate Reviewer 6nhr for suggesting the Rigid-Pushing
task.

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. Advances in Neural Informa-
tion Processing Systems, 34, 2021.

Marcin Andrychowicz, Anton Raichuk, Piotr Stańczyk, Manu Orsini, Sertan Girgin, Raphaël
Marinier, Leonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, Sylvain Gelly,
and Olivier Bachem. What matters for on-policy deep actor-critic methods? a large-scale study.
In International Conference on Learning Representations, 2021.

Rika Antonova, Peiyang Shi, Hang Yin, Zehang Weng, and Danica Kragic Jensfelt. Dynamic envi-
ronments with deformable objects. In Thirty-fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 2), 2021. URL https://openreview.
net/forum?id=WcY35wjmCBA.

Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinı́cius Flores
Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner,
Çaglar Gülçehre, H. Francis Song, Andrew J. Ballard, Justin Gilmer, George E. Dahl, Ashish
Vaswani, Kelsey R. Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess, Daan
Wierstra, Pushmeet Kohli, Matthew Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu.
Relational inductive biases, deep learning, and graph networks. CoRR, abs/1806.01261, 2018.

Erik J Bekkers, Sharvaree Vadgama, Rob Hesselink, Putri A Van der Linden, and David W. Romero.
Fast, expressive $\mathrm{SE}(n)$ equivariant networks through weight-sharing in position-
orientation space. In The Twelfth International Conference on Learning Representations, 2024.

Albert Bou, Matteo Bettini, Sebastian Dittert, Vikash Kumar, Shagun Sodhani, Xiaomeng Yang,
Gianni De Fabritiis, and Vincent Moens. Torchrl: A data-driven decision-making library for
pytorch, 2023.

Johannes Brandstetter, Rob Hesselink, Elise van der Pol, Erik J Bekkers, and Max Welling. Geomet-
ric and physical quantities improve e(3) equivariant message passing. In International Conference
on Learning Representations, 2022.

Chen Cai, Truong Son Hy, Rose Yu, and Yusu Wang. On the connection between MPNN and
graph transformer. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt,
Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on
Machine Learning, volume 202 of Proceedings of Machine Learning Research, pp. 3408–3430.
PMLR, 23–29 Jul 2023.

Onur Celik, Aleksandar Taranovic, and Gerhard Neumann. Acquiring diverse skills using curricu-
lum reinforcement learning with mixture of experts. In Forty-first International Conference on
Machine Learning, 2024. URL https://openreview.net/forum?id=9ZkUFSwlUH.

Runfa Chen, Jiaqi Han, Fuchun Sun, and Wenbing Huang. Subequivariant graph reinforcement
learning in 3d environment. In International Conference on Machine Learning. PMLR, 2023.

11

https://openreview.net/forum?id=WcY35wjmCBA
https://openreview.net/forum?id=WcY35wjmCBA
https://openreview.net/forum?id=9ZkUFSwlUH

Published as a conference paper at ICLR 2025

Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Liò, and Michael
Bronstein. On over-squashing in message passing neural networks: the impact of width, depth,
and topology. In Proceedings of the 40th International Conference on Machine Learning,
ICML’23. JMLR.org, 2023.

Alexandre Duval, Simon V. Mathis, Chaitanya K. Joshi, Victor Schmidt, Santiago Miret,
Fragkiskos D. Malliaros, Taco Cohen, Pietro Lio, Yoshua Bengio, and Michael Bronstein. A
hitchhiker’s guide to geometric gnns for 3d atomic systems, 2023.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Niklas Freymuth, Philipp Dahlinger, Tobias Daniel Würth, Simon Reisch, Luise Kärger, and Ger-
hard Neumann. Swarm reinforcement learning for adaptive mesh refinement. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023. URL https://openreview.
net/forum?id=rZqRu8e4uc.

Jonathan Godwin, Michael Schaarschmidt, Alexander L Gaunt, Alvaro Sanchez-Gonzalez, Yulia
Rubanova, Petar Veličković, James Kirkpatrick, and Peter Battaglia. Simple GNN regularisa-
tion for 3d molecular property prediction and beyond. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=1wVvweK3oIb.

Agrim Gupta, Linxi Fan, Surya Ganguli, and Li Fei-Fei. Metamorph: Learning universal con-
trollers with transformers. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=Opmqtk_GvYL.

Sunghoon Hong, Deunsol Yoon, and Kee-Eung Kim. Structure-aware transformer policy for inho-
mogeneous multi-task reinforcement learning. In International Conference on Learning Repre-
sentations, 2022.

Chengkai Hou, Zhengrong Xue, Bingyang Zhou, Jinghan Ke, Lin Shao, and Huazhe Xu. Key-grid:
Unsupervised 3d keypoints detection using grid heatmap features. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024. URL https://openreview.
net/forum?id=4pCu9c8leX.

Haojie Huang, Dian Wang, Robin Walters, and Robert Platt. Equivariant transporter network. In
Proceedings of Robotics: Science and Systems, New York City, NY, USA, June 2022. doi: 10.
15607/RSS.2022.XVIII.007.

Haojie Huang, Owen Lewis Howell, Dian Wang, Xupeng Zhu, Robert Platt, and Robin Walters.
Fourier transporter: Bi-equivariant robotic manipulation in 3d. In The Twelfth International Con-
ference on Learning Representations, 2024.

Wenlong Huang, Igor Mordatch, and Deepak Pathak. One policy to control them all: Shared modular
policies for agent-agnostic control. In ICML, 2020.

Jiechuan Jiang, Chen Dun, Tiejun Huang, and Zongqing Lu. Graph convolutional reinforcement
learning. In International Conference on Learning Representations, 2020. URL https://
openreview.net/forum?id=HkxdQkSYDB.

S. Mohammad Khansari-Zadeh and Aude Billard. Learning stable nonlinear dynamical systems
with gaussian mixture models. IEEE Transactions on Robotics, 27(5):943–957, 2011. doi: 10.
1109/TRO.2011.2159412.

Vitaly Kurin, Maximilian Igl, Tim Rocktäschel, Wendelin Boehmer, and Shimon Whiteson. My
body is a cage: the role of morphology in graph-based incompatible control. In International
Conference on Learning Representations, 2021.

Rita Laezza, Robert Gieselmann, Florian T. Pokorny, and Yiannis Karayiannidis. Reform: A robot
learning sandbox for deformable linear object manipulation. In 2021 IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 4717–4723, 2021. doi: 10.1109/ICRA48506.2021.
9561766.

12

https://openreview.net/forum?id=rZqRu8e4uc
https://openreview.net/forum?id=rZqRu8e4uc
https://openreview.net/forum?id=1wVvweK3oIb
https://openreview.net/forum?id=Opmqtk_GvYL
https://openreview.net/forum?id=4pCu9c8leX
https://openreview.net/forum?id=4pCu9c8leX
https://openreview.net/forum?id=HkxdQkSYDB
https://openreview.net/forum?id=HkxdQkSYDB

Published as a conference paper at ICLR 2025

Ge Li, Hongyi Zhou, Dominik Roth, Serge Thilges, Fabian Otto, Rudolf Lioutikov, and Gerhard
Neumann. Open the black box: Step-based policy updates for temporally-correlated episodic
reinforcement learning. In The Twelfth International Conference on Learning Representations,
2023.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Multipole graph neural operator for parametric partial
differential equations. In Advances in Neural Information Processing Systems, volume 33, pp.
6755–6766, 2020.

Xingyu Lin, Yufei Wang, Jake Olkin, and David Held. Softgym: Benchmarking deep rein-
forcement learning for deformable object manipulation. In Jens Kober, Fabio Ramos, and
Claire Tomlin (eds.), Proceedings of the 2020 Conference on Robot Learning, volume 155 of
Proceedings of Machine Learning Research, pp. 432–448. PMLR, 16–18 Nov 2021. URL
https://proceedings.mlr.press/v155/lin21a.html.

Mayank Mittal, Calvin Yu, Qinxi Yu, Jingzhou Liu, Nikita Rudin, David Hoeller, Jia Lin Yuan,
Ritvik Singh, Yunrong Guo, Hammad Mazhar, Ajay Mandlekar, Buck Babich, Gavriel State,
Marco Hutter, and Animesh Garg. Orbit: A unified simulation framework for interactive robot
learning environments. IEEE Robotics and Automation Letters, 8(6):3740–3747, 2023. doi:
10.1109/LRA.2023.3270034.

Hai Huu Nguyen, Andrea Baisero, David Klee, Dian Wang, Robert Platt, and Christopher Am-
ato. Equivariant reinforcement learning under partial observability. In 7th Annual Conference on
Robot Learning, 2023.

Fabian Otto, Philipp Becker, Vien Anh Ngo, Hanna Carolin Maria Ziesche, and Gerhard Neu-
mann. Differentiable trust region layers for deep reinforcement learning. In International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=
qYZD-AO1Vn.

Fabian Otto, Onur Celik, Hongyi Zhou, Hanna Ziesche, Vien Anh Ngo, and Gerhard Neumann.
Deep black-box reinforcement learning with movement primitives. In Karen Liu, Dana Kulic,
and Jeff Ichnowski (eds.), Proceedings of The 6th Conference on Robot Learning, volume 205
of Proceedings of Machine Learning Research, pp. 1244–1265. PMLR, 14–18 Dec 2023. URL
https://proceedings.mlr.press/v205/otto23a.html.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NIPS-W, 2017.

Eran Rosenbluth, Jan Tönshoff, Martin Ritzert, Berke Kisin, and Martin Grohe. Distinguished in
uniform: Self-attention vs. virtual nodes. In The Twelfth International Conference on Learning
Representations, 2024.

Hyunwoo Ryu, Jiwoo Kim, Junwoo Chang, Hyun Seok Ahn, Joohwan Seo, Taehan Kim, Jongeun
Choi, and Roberto Horowitz. Diffusion-edfs: Bi-equivariant denoising generative modeling on
se(3) for visual robotic manipulation. arXiv preprint arXiv:2309.02685, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017.

Haochen Shi, Huazhe Xu, Zhiao Huang, Yunzhu Li, and Jiajun Wu. Robocraft: Learning to see,
simulate, and shape elasto-plastic objects in 3d with graph networks. The International Journal
of Robotics Research, 43(4):533–549, 2024. doi: 10.1177/02783649231219020.

Gregor N. C. Simm, Robert Pinsler, Gábor Csányi, and José Miguel Hernández-Lobato. Symmetry-
aware actor-critic for 3d molecular design. In International Conference on Learning Representa-
tions, 2021. URL https://openreview.net/forum?id=jEYKjPE1xYN.

Joshua Southern, Francesco Di Giovanni, Michael Bronstein, and Johannes F Lutzeyer. Under-
standing virtual nodes: Oversmoothing, oversquashing, and node heterogeneity. arXiv preprint
arXiv:2405.13526, 2024.

13

https://proceedings.mlr.press/v155/lin21a.html
https://openreview.net/forum?id=qYZD-AO1Vn
https://openreview.net/forum?id=qYZD-AO1Vn
https://proceedings.mlr.press/v205/otto23a.html
https://openreview.net/forum?id=jEYKjPE1xYN

Published as a conference paper at ICLR 2025

Bingjie Tang, Iretiayo Akinola, Jie Xu, Bowen Wen, Ankur Handa, Karl Van Wyk, Dieter Fox,
Gaurav S. Sukhatme, Fabio Ramos, and Yashraj Narang. Automate: Specialist and generalist
assembly policies over diverse geometries. In Robotics: Science and Systems, 2024.

Brandon Trabucco, Mariano Phielipp, and Glen Berseth. AnyMorph: Learning transferable po-
lices by inferring agent morphology. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference
on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pp. 21677–
21691. PMLR, 17–23 Jul 2022.

Narek Tumanyan, Assaf Singer, Shai Bagon, and Tali Dekel. Dino-tracker: Taming dino for self-
supervised point tracking in a single video, 2024.

Elise Van der Pol, Daniel Worrall, Herke van Hoof, Frans Oliehoek, and Max Welling. Mdp homo-
morphic networks: Group symmetries in reinforcement learning. Advances in Neural Information
Processing Systems, 33:4199–4210, 2020.

Elise van der Pol, Herke van Hoof, Frans A Oliehoek, and Max Welling. Multi-agent MDP ho-
momorphic networks. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=H7HDG--DJF0.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Dian Wang, Robin Walters, and Robert Platt. SO(2)-equivariant reinforcement learning. In Inter-
national Conference on Learning Representations, 2022.

Tingwu Wang, Renjie Liao, Jimmy Ba, and Sanja Fidler. Nervenet: Learning structured policy with
graph neural networks. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=S1sqHMZCb.

Jingyun Yang, Ziang Cao, Congyue Deng, Rika Antonova, Shuran Song, and Jeannette Bohg. Equi-
bot: SIM(3)-equivariant diffusion policy for generalizable and data efficient learning. In 8th
Annual Conference on Robot Learning, 2024.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017.

Andy Zeng, Pete Florence, Jonathan Tompson, Stefan Welker, Jonathan Chien, Maria Attarian,
Travis Armstrong, Ivan Krasin, Dan Duong, Vikas Sindhwani, and Johnny Lee. Transporter
networks: Rearranging the visual world for robotic manipulation. Conference on Robot Learning
(CoRL), 2020.

14

https://openreview.net/forum?id=H7HDG--DJF0
https://openreview.net/forum?id=S1sqHMZCb

Published as a conference paper at ICLR 2025

A PROOFS OF PROPOSITION 3.1

Proof. We write simplified updates of HEPi and MPNN + VNlocal as follows,

HEPi:

f obj,(l+1)
v = f obj,(l)

v + σ

W (l)
o

∑
u∈N(v)obj

k(·, ·; θobj-obj)f
obj,(l)
u

 , v ∈ Vobj,

f act, new,(l+1)
v = f act,(l)

v + σ

W local,(l)
a

∑
w∈N(v)act

k(·, ·; θact-act)f
act,(l)
w

 , v ∈ Vact,

f act,(l+1)
v = f act, new,(l+1)

v + f act,(l)
v + σ

W (l)
a

∑
u∈Vobj

k(·, ·; θobj-act)f
obj, L
u

 , v ∈ Vact.

(3)

where σ is activation function, and W (l) is the weight at layer l. Note that the object nodes are
updated through L layers.

MPNN + VNlocal:

f obj,(l+1)
v = f obj,(l)

v + σ

W (l)
o

∑
u∈N(v)obj

k(·, ·; θobj-obj)f
obj,(l)
u

 , v ∈ Vobj,

f act, new,(l+1)
v = f act,(l)

v + σ

W local,(l)
a

∑
w∈N(v)act

k(·, ·; θact-act)f
act,(l)
w

 , v ∈ Vact,

f act,(l+1)
v = f act, new,(l+1)

v + f act,(l)
v + σ

W (l)
a

∑
u∈Nk(v)obj

k(·, ·; θobj-act)f
obj,L
u

 , v ∈ Vact.

(4)

As seen, the main difference between HEPi and MPNN + VNlocal is at treating the actuator nodes as
VN nodes as in MPNN + VNG or normal graph nodes with k-NN connections.

For HEPi, the actuator nodes are updated through every object node as in the third equation in Eq. 3.
Explicitly, we compute its Jacobian w.r.t object nodes as

∂f
act,(l+1)
v

∂f obj,L
u

=2∇f act,(l)
v + σ′(zlocal,(l)

v)W local,(l)
a

∑
w∈N(v)act

k(xv, xw; θact-act)∇f act,(l)
v

+ σ′(z(l)v)W (l)
a k(xv, xu; θobj-act)

(5)

with z(l)v = W
(l)
a

∑
u∈Vobj

k(·, ·; θobj-act)f
obj,L
u and zlocal,(l)

v =W local,(l)
a

∑
w∈N(v)act

k(·, ·; θact-act)f
act,(l)
w

be the evaluation of the argument of the function σ. This shows that any object node can exchange
information with the actuator nodes after a single layer of the object-actuator update.

For MPNN + VNlocal, if an actuator node v and an object node u are more than 2-hops distant from
each other, the message from node u sent to v will arrive either through another actuator node (via
actuator-actuator updates) or through a node where the k-NN connections of those actuator nodes
overlap (depicted in Figure 9). However, in both cases, the Jacobian at the actuator node v becomes
independent of the feature at the object node u, i.e., it can only receive a homogeneous value from
the VN (overlapping node or other actuator node) (Southern et al., 2024). Consequently, the policy
could fail to predict relevant actions in response to changes at the object node u.

Related Work for Oversquashing in Graph Neural Networks Transformers (Vaswani et al.,
2017) can be viewed as fully connected GNNs under the Message Passing Neural Network (MPNN)
framework (Battaglia et al., 2018), since self-attention can be seen as a mechanism to aggregate

15

Published as a conference paper at ICLR 2025

(a) Overlapping node. (b) No overlapping node.

Figure 9: Demonstration of graph with overlapping and non-overlapping nodes. Actuator nodes are
in red, object nodes are in either white or orange.

messages from its neighbors. While GNNs offer efficient local information processing with linear
complexity O(|V | + |E|), they struggle with over-squashing, limiting their ability to propagate
information across distant nodes (Di Giovanni et al., 2023). In contrast, Transformers, by being
fully connected, allow every node to exchange information with all others, making them well-suited
for tasks requiring global information aggregation, though at a higher quadratic complexity O(|V |2).
Recent studies have shown that introducing virtual nodes (VN) in GNNs can mitigate the over-
squashing issue by facilitating long-range information exchange while retaining the lower complex-
ity of GNNs (Di Giovanni et al., 2023; Cai et al., 2023; Rosenbluth et al., 2024). Our HEPi builds
on this insight, treating actuators as virtual nodes to enable efficient global information aggregation
from object nodes, as shown in Figure 1.

B TASKS DETAILS

Here, we provide detailed specifications for each of the seven manipulation tasks introduced in the
main paper.

B.1 RIGID-SLIDING

The goal of the Rigid-Sliding task is to control an object using a suction gripper and slide it on a 2D
plane to a desired target position and orientation. The agent controls the object’s linear velocity v
and angular velocity ω in the yaw direction.

Figure 10: Example trajectory of Rigid Sliding task.

Input and Output The input space for each node includes:

• Gripper nodes: node type, position pa, velocity va, angular velocity ωa.

• Object nodes: node type, position po, distance to target dtarget.

The output consists of the gripper’s linear velocity va and a vector from which the angular velocity
ωa is derived. Specifically, the vector is decomposed into its parallel and tangential components

16

Published as a conference paper at ICLR 2025

with respect to the position vector r, where v∥ =
(

v·r
∥r∥2

)
r and v⊥ = v− v∥. The angular velocity

is then computed as ωa = r×v⊥
∥r∥2 .

Sample Space

• Initial pose: (x, y, θyaw) ∈ [−1, 1]2 × [−π, π].
• Target pose: θyaw ∈ [−π, π].

Reward Function The reward consists of multiple sub-rewards:

• Distance to goal:
Rgoal = ∥po − pgoal∥

where po is the object position and pgoal is the target position.
• Rotation distance:

Rrotation = quat diff(ro, rgoal)

where ro and rgoal are the object and goal orientations in quaternion.
• Object velocity penalty:

Vobject = vangular + vlinear

where vangular and vlinear are the angular and linear velocities of the object.
• Action rate penalty:

Aactions =
√
ai − ai−1

where ai and ai−1 are the actions at the current and previous time steps.

The total time-dependent reward with T = 100 is:

Rtot =

{
−0.8Rgoal − 0.4Rrotation − 0.1Vobject − 0.002Aactions, t < T − 2,

−4.0Rgoal − 2.0Rrotation − 0.1Vobject − 0.002Aactions, t ≥ T − 2.

B.2 RIGID-PUSHING

The goal of the Rigid-Pushing task is to control an object using a rod and push it on a 2D plane to a
desired target position and orientation. The agent controls the object’s linear velocity v.

Figure 11: Example trajectory of Rigid Pushing task.

Input and Output The input space for each node includes:

• Gripper nodes: node type, position pa, velocity va, angular velocity ωa.
• Object nodes: node type, position po, distance to target dtarget, and object’s linear veloc-

ity vo.

The output consists of the actuator’s linear velocity va.

Sample Space

• Initial pose: (x, y, θyaw) ∈ [−0.5, 0.5]2 × [−π, π].
• Target pose: θyaw ∈ [−π, π].

17

Published as a conference paper at ICLR 2025

Reward Function The reward consists of multiple sub-rewards:

• Distance to goal:
Rgoal = ∥po − pgoal∥

where po is the object position and pgoal is the target position.

• Rotation distance:
Rrotation = quat diff(ro, rgoal)

where ro and rgoal are the object and goal orientations in quaternion.

• Distance to object:
Robject = ∥po − pactuator∥,

encouraging the rod (actuator) to stay close to the object during pushing.

The total time-dependent reward with T = 100 is:

Rtot =

{
−0.8Rgoal − 0.08Rrotation − 0.2Robject, t < T − 5,

−8.0Rgoal − 0.8Rrotation − 0.2Robject, t ≥ T − 5.

B.3 RIGID-INSERTION

The Rigid-Insertion task extends Rigid-Sliding to 3D, where the agent must control both linear and
angular velocities to move an object along the z-axis and insert it into a hole. The state space
includes (x, y, z, θ), and precise alignment is required near the hole before sliding and rotating the
object into place.

Figure 12: Example trajectory of Rigid Insertion task.

Input and Output The input space for each node includes:

• Gripper nodes: node type, position pa, velocity va, angular velocity ωa.

• Object nodes: node type, position po, distance to target dtarget.

The output consists of the gripper’s linear velocity va and a vector from which the angular velocity
ωa is derived. Specifically, the vector is decomposed into its parallel and tangential components
with respect to the position vector r, where v∥ =

(
v·r
∥r∥2

)
r and v⊥ = v− v∥. The angular velocity

is then computed as ωa = r×v⊥
∥r∥2 .

Sample Space

• Initial pose: (x, y, z, θyaw) ∈ [−1, 1]2 × [0, 0.5]× [−π, π].
• Target pose: θyaw ∈ [−π, π].

Reward Function The total reward consists of the following sub-rewards:

• Distance to goal:
Rgoal = ∥po − pgoal∥

where po is the object’s position, and pgoal is the target position.

18

Published as a conference paper at ICLR 2025

• Rotation distance:
Rrotation = quat diff(ro, rgoal)

where ro and rgoal are the object and goal orientations in quaternion.
• Distance along z-axis:

Rgoal, z = ∥po,z − pgoal,z∥
where po,z and pgoal,z represent the positions along the z-axis.

The total time-dependent reward with T = 100 is defined as:

Rtot =

{
−0.8Rgoal − 2.0Rrotation − 0.4Rgoal, z, t < T − 2,

−4.0Rgoal − 4.0Rrotation − 0.4Rgoal, z, t ≥ T − 2.

B.4 RIGID-INSERTION-TWO-AGENTS

The Rigid-Insertion-Two-Agents task extends Rigid-Insertion into 3D with two linear actuators con-
trolling the object. The object’s initial position and the target are sampled from the upper hemi-
sphere. Control is limited to linear velocities along two axes, simplifying the task for stability in
physical systems.

Figure 13: Example trajectory of Rigid Insertion with Two Agents task.

Input and Output The input space for each node includes:

• Gripper nodes: node type, position pa, velocity va.
• Object nodes: node type, position po, distance to target dtarget.

The output consists of the gripper’s velocities; however, only the linear velocity va.

Sample Space

• Initial pose: translate in x ∈ [0.25, 0.75], y ∈ [−0.75, 0.75], z ∈ [0.5, 1.25], and rotate
around its own axis between [−π, π].

• Target pose: (θpich, θyaw) ∈ [−π/2, 0] × [−π, π]. These samples lie in an upper-
hemisphere when rotating a unit-vector [1, 0, 0]T - an initial pose of the target placement,
as shown in Figure 14.

Reward Function The total reward consists of the following components:

• Distance to goal:
Rgoal = ∥po − pgoal∥

where po is the object’s position, and pgoal is the target position.
• Rotation distance:

Rrotation = quat diff(ro, rgoal)

where ro and rgoal are the object and goal orientations in quaternion.

The time-dependent reward with T = 100 is defined as:

Rtot =

{
−0.8Rgoal − 0.08Rrotation, t < T − 2,

−4.0Rgoal − 0.6Rrotation, t ≥ T − 2.

19

Published as a conference paper at ICLR 2025

Figure 14: Sample space of the Rigid-Insertion-Two-Agents task.

B.5 ROPE-CLOSING

In Rope-Closing, two actuators manipulate the endpoints of a deformable rope in a 2D plane, with
the goal of wrapping the rope around a cylindrical object and closing the loop. The rope is segmented
into 40 links, with each node representing the pose of a link.

Figure 15: Example trajectory of Rope Closing task.

Input and Output The input space for each node includes:

• Gripper nodes: node type, position pa, velocity va.

• Object nodes: node type, position po, velocity vo, distance to target dtarget.

The output consists of the gripper’s linear velocity va.

Sample Space In this task, the rope starts in a straight configuration, and only the mid-point
position is sampled, with the rope constrained to move accordingly,

• Initial rope mid-point: θyaw ∈ [−π/4, π/4].
• Target cylinder: (x, y, θyaw) ∈ [−0.5, 0.5]2 × [−π, π].

Reward Function The total reward consists of:

• Rope closing reward:

Rrope closing = ∥(xgripper0 , ygripper0)− (xgripper1 , ygripper1)∥

• Center wrapping reward:

Rwrapping = ∥(xhanger, yhanger)− (Crope,x,Crope,y)∥

where Crope is the center of the rope:

Crope =
1

nnodes

nnodes∑
i=1

pnodei

20

Published as a conference paper at ICLR 2025

• Link velocity penalty:

Vlinks =
1

nlinks

nlinks∑
i=1

∥vlinki∥

• Action rate penalty:
Aactions =

√
ai − ai−1

The total time-dependent reward with T = 200 is defined as:

Rtot =

{
−0.8Rwrapping − 0.01Vlinks − 0.001Aactions, t < T − 20,

−2.0Rrope closing − 0.8Rwrapping − 0.01Vlinks − 0.001Aactions, t ≥ T − 20.

B.6 ROPE-SHAPING

This task requires the rope to form a specific shape (e.g., a “W”) to a desired orientation by control-
ling the actuators. The rope is segmented into 80 links, with each node representing the pose of a
link.

Figure 16: Example trajectory of Rope Shaping task.

Input and Output The input space for each node includes:

• Gripper nodes: node type, position pa, velocity va.
• Object nodes: node type, position po, velocity vo, distance to target dtarget.

The output consists of the gripper’s linear velocity va.

Sample Space In this task, the rope starts in a straight configuration, and only the mid-point
position is sampled, with the rope constrained to move accordingly,

• Initial rope mid-point: θyaw ∈ [−π/2,−π/4] ∪ [π/4, π/2].
• Target orientation: θyaw ∈ [−π/2, π/2].

Reward Function To allow translation invariance, as the task focuses solely on shaping rather
than the object’s position, the shape descriptor is computed using both local and global geometric
features of the rope. Given the positions of N points along the rope, p = [p1, . . . ,pN], we first
compute vectors between adjacent points, vi = pi+1−pi, and their normalized form v̂i = vi/∥vi∥.
The angles between consecutive segments are then θi = arccos(v̂i · v̂i+1).

Next, we compute the global direction vector, g = pN − p1, and normalize it as ĝ = g/∥g∥. The
angles between each segment and the global direction are θglobal,i = arccos(v̂i · ĝ).
Finally, we compute the relative positions of the points with respect to the midpoint m = (p1 +
pN)/2, and their distances di = ∥pi −m∥. The shape descriptor is formed by concatenating these
angles and distances:

Dshape = [θ1, . . . , θN−2, θglobal,1, . . . , θglobal,N−1,p1 −m, . . . ,pN −m, d1, . . . , dN].

With the shape descriptor defined, the task’s reward function encourages the current rope configura-
tion to match the target shape, while also penalizing rapid changes in actions. The specific reward
components are:

21

Published as a conference paper at ICLR 2025

• Shape matching reward:

Rshape = ∥Dcurrent −Dtarget∥2

where Dcurrent and Dtarget represent the current and target shape descriptors.

• Action rate penalty:
Aactions =

√
ai − ai−1

where ai and ai−1 represent the actions at consecutive time steps.

The total time-dependent reward with T = 200 is defined as:

Rtot =

{
−1.0Rshape − 0.0001Aactions, t < T − 10,

−5.0Rshape − 0.0001Aactions, t ≥ T − 10.

B.7 CLOTH-HANGING

In the Cloth-Hanging task, four actuators are attached to the corners of a cloth with a hole. The goal
is to hang the cloth onto a beam by aligning the hole with the beam. The cloth is represented as a set
of particles and simulated using a multi-body mass-spring-damper system. For the policy, only the
hole boundary particles are used as the object representation (knn points around the hole centroid,
with knn k = 10). However, for the value function, all particle points are used, as required by the
reward function defined below.

Figure 17: Example trajectory of Cloth Hanging task.

Input and Output The input space for each node includes:

• Gripper nodes: node type, position pa, velocity va.

• Object nodes: node type, position po, velocity vo, distance to target hanger dtarget, dis-
tance to initial shape dinitial. For the value function, instead of distances, the absolute coor-
dinates of the target and initial node are used as features, while keeping the other features
the same. We observed that providing the absolute coordinates of the target and initial
points to each node makes learning easier. This may be due to the ability of MLPinner in
DeepSets to infer similarity via dot products between feature channels.

The output consists of the grippers’ linear velocity va.

Sample Space In this task, the cloth always starts in a straight configuration, and the mid-point
position of the cloth is sampled, with the cloth constrained to move accordingly:

• Hole location: each hole location (x, y) is sampled within a predefined range of offsets
from the cloth’s center, with a fixed radius. In total, we generate 20 unique hole locations.

• Initial cloth mid-point: θpitch ∈ [−π, π].

• Target hanger: (x, z) ∈ [−0.5, 0.5]2, and (θroll, θpitch, θyaw) ∈ [−π/4, π/2]×[−π/2, π/2]×
[−π, π]. This results in a sample that lies in the upper hemisphere with a quarter part of
the lower hemisphere when rotating a unit-vector [0, 1, 0]T - an initial pose of the target
hanger, as shown in Figure 18.

22

Published as a conference paper at ICLR 2025

Figure 18: Sample space of the Cloth-Hanging task.

Reward Function The total reward consists of the following sub-rewards:

• Hole-hanger alignment reward:

Rhole-hanger = ∥chole − changer∥+ 0.1 · | cos(θalign)− 1|

where chole and changer represent the centroids of the cloth’s hole and the hanger, and θalign
measures their alignment. The first term is similar to the previous work from Antonova
et al. (2021).

• Point velocity penalty:

Vpoints =
1

N

N∑
i=1

vpointi

where vpointi is the velocity of the i-th point on the cloth, and N is the total number of
points.

• Cloth distortion penalty:

Ddistortion =
1

M

M∑
i=1

∣∣∣∣ lcurrenti − linitiali

linitiali

∣∣∣∣
where lcurrenti and linitiali are the current and initial lengths of the i-th edge of the cloth, and
M is the total number of edges.

• Action rate penalty:
Aactions =

√
(ai − ai−1)2

where ai and ai−1 represent the actions at consecutive time steps.

The total time-dependent reward with T = 100 is defined as:

Rtot =

{
−0.8Rhole-hanger − 0.2Vpoints − 1.0Ddistortion − 0.002Aactions, t < T − 2,

−4.0Rhole-hanger − 0.2Vpoints − 1.0Ddistortion − 0.002Aactions, t ≥ T − 2.

C RIGID-BODY TASK OBJECTS

Table 1 presents the number of nodes used for each of the different geometrical shapes considered
in the rigid manipulation experiments.

D FURTHER EXPERIMENTS

Ablation on smaller sample space Here, we show a more detail version of the ablation in Fig-
ure 4. In addition to different sample spaces in the main paper, we evaluate all the methods on the
scenarios when drawing θyaw ∈ (−π/8, π/8) and with a fixed-angle setting at θroll = 0, θyaw = 0.

23

Published as a conference paper at ICLR 2025

Figure 19: Overview of all objects used in the rigid manipulation tasks. From left to right: Triangle,
Heart, Diamond, Pentagon, Hexagon, Plus, Star, A-shape, T-shape, and E-shape. In sliding tasks,
all objects are used, while the A-shape, and E-shape are excluded in the insertion tasks due to its
complex shape.

Table 1: Number of nodes for different geometrical shapes.

Shape Low Resolution #Nodes High Resolution #Nodes
Triangle 6 1128
Diamond 8 736
Pentagon 10 1032
Hexagon 12 1120
T-shape 16 1152
Star 20 1068
Plus 24 1224
A-shape 23 1660
E-shape 24 1972
Heart 25 1170

As shown in Figure 20, performance generally increases as the orientation range narrows. Interest-
ingly, HeteroGNN performs better than its non-heterogeneous GNN in most cases, showing its high
expressiveness though being less sample efficient. This phenomenon can be attributed to the shared
networks among all the edge types of the naive GNN model. However, once employing EMPN
as the backbone, HEPi consistently outperforms all the baselines in terms of both the performance
and sample effeciency. This proves equivariant constraint plays a crucial role to reduce the problem
complexity in large 3D space.

Ablation on K-NN for obj-to-act edges Ablation in Figure 21 investigates the update of MPNN
+ VNLocal with varying k-nearest neighbors on tasks rigid-insertion, rigid-insertion-two-agents and
rope-shaping. For the two insertion tasks, the maximum node size is 25; therefore, we only vary k
from 1 to 10. On the other hand, rope-shaping task has 80 nodes, so k is picked from {1, 10, 20, 50}.
As shown, when k is small, there are no-overlapping nodes, the actuator nodes can miss the infor-
mation from distant nodes. Meanwhile, when k is bigger, the number of overlapping nodes increase,
and therefore, these nodes can be reached after one layer of message passing, thus resulting in higher
expected return.

Ablation on Number of Message-Passing Steps In this ablation, we examine the impact of vary-
ing the number of message-passing steps (#MPs) in both HEPi and a naive EMPN model. Our goal
is to determine whether increasing the number of message-passing steps improves policy learning.

As shown in Figure 22, increasing the number of message-passing steps does not yield significant
improvements. Moreover, Figure 23 specifically demonstrates that increasing number of message
passing can lead to oversquashing, where the amount of information exponentially decays by the
number of hops, and hence lead to performance drop. HEPi, on the other hand, efficiently reduces
the information transmission time to only one hop. These results suggest that, in our design, fewer

24

Published as a conference paper at ICLR 2025

HEPi (Ours) EMPN Transformer HeteroGNN GNN

0 1 2 3 4 5
Env Steps (1M)

-1.75

-1.50

-1.25

-1.00
IQ

M
 R

et
ur

n

(a)

0 1 2 3 4 5
Env Steps (1M)

-1.75

-1.50

-1.25

-1.00

(b)

0 1 2 3 4 5
Env Steps (1M)

-1.75

-1.50

-1.25

-1.00

(c)

0 1 2 3 4 5
Env Steps (1M)

-1.75

-1.50

-1.25

-1.00

IQ
M

 R
et

ur
n

(d)

0 1 2 3 4 5
Env Steps (1M)

-1.75

-1.50

-1.25

-1.00

(e)

Figure 20: Performance of different models on the Cloth-Hanging task across various sample spaces.
Assuming the global scene located at r = [0, 1, 0]T , then from left to right, we generate sample by
rotating r by (a) θroll ∈ (−π/4, π/2), θyaw ∈ (−π, π), (b) θyaw ∈ (−π/2, π/2), and (c) θyaw ∈
(−π/4, π/4). Meanwhile, the bottom row shows results for (d) θyaw ∈ (−π/8, π/8), and (e) the
fixed orientation at θroll = 0, θyaw = 0. As the sample space decreases, performance improves
across all models, with HEPi consistently outperforming the baselines. The additional plot with
fixed orientation on the bottom are averaged over 5 seeds while the others with 10 seeds.

0 4 8 12 16 20
Env Steps (1M)

-2.00

-1.75

-1.50

-1.25

-1.00

IQ
M

 R
et

ur
n

rigid-insertion-2D+z

k=1
k=10
k=3

k=5
HEPi

0 2 4 6
Env Steps (1M)

-2.00

-1.75

-1.50

-1.25

-1.00
rigid-insertion-
two-agents-3D

k=1
k=10
k=3

k=5
HEPi

0 2 4 6 8 10
Env Steps (1M)

-4.00

-3.00

-2.00

rope-shaping-2D

k=1
k=10
k=20

k=50
HEPi

Figure 21: Ablation on different k-nearest neighbors choices for obj-to-act edges in MPNN +
VNLocal updates (in Section 3.3), evaluated across multiple tasks: rigid-insertion, rigid-insertion-
two-agents, and rope-shaping. Results are averaged over 8 seeds.

message-passing steps suffice to capture the necessary information flow, reinforcing the efficiency
of our graph design.

Ablation on Orientation Discretization (ori dim) In this ablation, we explore the impact of
varying the orientation discretization dimension (ori dim) in the Equivariant Message Passing
Network (EMPN). The ori dim controls how finely we sample orientations from the S2 sphere,
where a higher ori dim increases the number of samples and better approximates full equivari-
ance. In our main experiments, we used a default ori dim of 16. Here, we vary ori dim across
8, 16, and 24.

As shown in Figure 24, increasing ori dim generally improves performance in 3D tasks, as a
finer discretization better captures orientation changes. However, this comes at the cost of increased

25

Published as a conference paper at ICLR 2025

#MPs=4 #MPs=3 #MPs=2

HEPi EMPN

-1.40

-1.20

-1.00
IQ

M
 R

et
ur

n
rigid-insertion-2D+z

HEPi EMPN

-1.40

-1.20

-1.00

rigid-insertion-
two-agents-3D

HEPi EMPN

-1.40

-1.20

-1.00 cloth-hanging-3D

Figure 22: Ablation on the number of message-passing steps (#MPs) for HEPi and EMPN models.
For HEPi, #MPs=m refers to m − 1 object-to-object message-passing layers. Across all tasks, in-
creasing the number of message-passing steps beyond a certain point does not improve performance,
as the proposed graph design already efficiently transmits information from observations to actions.
Results are averaged over 5 seeds.

HEPi k=1 k=3 k=5 k=10

0 4 8 12 16 20
Env Steps (1M)

-2.00

-1.75

-1.50

-1.25

-1.00

IQ
M

 R
et

ur
n

rigid-insertion-2D+z

(a) m = 1

0 4 8 12 16 20
Env Steps (1M)

-2.00

-1.75

-1.50

-1.25

-1.00 rigid-insertion-2D+z

(b) m = 2

0 4 8 12 16 20
Env Steps (1M)

-2.00

-1.75

-1.50

-1.25

-1.00 rigid-insertion-2D+z

(c) m = 3

Figure 23: Ablation on different k-nearest neighbors for obj-to-act edges in MPNN + VNLocal (in
Section 3.3) updates, evaluated on the Rigid-Insertion task with varying message passing steps m ∈
{1, 2, 3} for object nodes. Increasing the number of message passing steps degrades performance
due to oversquashing. Results are averaged over 5 seeds.

training time due to the higher computational demand. Notably, in simpler 2D tasks, increasing
ori dim does not significantly affect performance, so we focus on 3D tasks for this ablation.

Ablation on K-Nearest Neighbor Graph (KNN k) In this ablation, we evaluate the effect of
varying the number of nearest neighbors (KNN k) used to connect object nodes in our graph. Instead
of relying on mesh edges, we use a K-nearest neighbor (KNN) graph to ensure a more generic
representation, a common practice in PointCloud-based representations.

As shown in Figure 25, our default setting of KNN k=3 performs comparably to higher values of
KNN k. Increasing the number of nearest neighbors does not provide additional benefits and can
even degrade performance slightly, as seen in the rope-shaping-2D task. This is likely due to the
overcapacity of messages being passed through the network, which introduces unnecessary com-
plexity in the message aggregation process.

E EVALUATION DETAILS

E.1 IMPLEMENTATION DETAILS

All experiments were conducted on a machine equipped with an NVIDIA A100 or an NVIDIA
H100 GPU. We utilized the TorchRL framework (Bou et al., 2023) for the implementation of
PPO and TRPL algorithms, and PyG (PyTorch Geometric) (Fey & Lenssen, 2019) for han-

26

Published as a conference paper at ICLR 2025

O=24 O=16 O=8

HEPi EMPN

-1.40

-1.20

-1.00
IQ

M
 R

et
ur

n
rigid-insertion-2D+z

HEPi EMPN

-1.40

-1.20

-1.00

rigid-insertion-
two-agents-3D

HEPi EMPN

-1.40

-1.20

-1.00 cloth-hanging-3D

Figure 24: Ablation on the orientation discretization dimension (ori dim). Increasing ori dim
improves performance in 3D tasks, such as rigid-insertion and cloth-hanging, by better approximat-
ing full equivariance. However, higher ori dim also increases training time. Results are averaged
over 5 seeds.

k=
7

k=
5

k=
3

-1.40

-1.20

-1.00

IQ
M

 R
et

ur
n

rigid-sliding-2D

k=
7

k=
5

k=
3

-1.40

-1.20

-1.00
rigid-insertion-2D+z

k=
7

k=
5

k=
3

-1.40

-1.20

-1.00

rigid-insertion-
two-agents-3D

k=
7

k=
5

k=
3

-2.40

-2.20

-2.00

-1.80
rope-shaping-2D

Figure 25: Ablation on the number of nearest neighbors (KNN k) used in the KNN graph on HEPi.
Increasing KNN k beyond 3 does not improve performance and may even reduce it, particularly in
tasks like rope-shaping-2D, due to message overcapacity. Results are averaged over 5 seeds.

dling the graph-based structure. The Transformer architecture was implemented using the
torch.nn.TransformerEncoder and torch.nn.TransformerEncoderLayer pack-
ages from PyTorch (Paszke et al., 2017).

E.2 COMPUTATIONAL TIME

We report the computational time for each model on all tasks here. Table 2 reports the total training
time and Table 3 demonstrates the size of the input graph, which is the main factor contributing to
the total training time.

Table 2: Total training time for each task (in hours). (*) We note that the fast training speed of
Transformer might be attributed to the internal optimization implementation of PyTorch. (**) In
Rope-Shaping task, we report the training time on NVIDIA H100 GPU.

HEPi EMPN Transformer∗

Rigid-Sliding 2h 10m 2h 56m 1h 15m
Rigid-Pushing 2h 58m 3h 58m 1h 52m
Rigid-Insertion 1h 56m 2h 35m 1h 14m
Rigid-Insertion-Two-Agents 1h 3m 1h 20m 36m
Rope-Closing 1h 14m 1h 40m 51m
Rope-Shaping∗∗ 2h 58m 4h 57m 1h 56m
Cloth-Hanging 2h 40m 2h 36m 2h 21m

27

Published as a conference paper at ICLR 2025

Table 3: Maximum number of nodes and type of connection for each task.

Shape Maximum #nodes Graph Connections
Rigid-Sliding 25 knn=3
Rigid-Insertion 25 knn=3
Rigid-Pushing 25 knn=3
Rigid-Insertion-Two-Agents 25 knn=3
Rope-Closing 40 knn=3
Rope-Shaping 80 knn=3
Cloth-Hanging 10 complete

E.3 GRID SEARCH FOR PPO

To fairly compare PPO with TRPL, we perform a grid search for PPO over 5 seeds and select the
best-performing configuration based on the maximum return. We then run the chosen configuration
on 5 additional seeds and report the results in Figure 8. Specifically, we tune the clip eps param-
eter, which controls how much the new policy is allowed to deviate from the old policy, with values
{0.1, 0.2, 0.3, 0.5}, and explore both with and without annealing (anneal clip eps=True
or False). The clip eps bounds the probability ratio between the new and old policies to
(1 − ϵ, 1 + ϵ), preventing large updates and ensuring stable learning. Lower values of clip eps
result in more conservative updates, while higher values allow more flexibility in policy updates.
Annealing progressively decreases clip eps over time, tightening the constraint as training pro-
gresses.

E.4 HYPERPARAMETERS

We presents the hyperparameters used across all policy models (HEPi, EMPN, and Transformer) for
all the tasks in Table 4.

Table 4: Hyperparameters used for all tasks. In EMPN, the number of layers (*) corresponds to the
number of message-passing steps.

HEPi EMPN Transformer

contextual std true true true
latent dim. 64 64 64
activation GELU GELU ReLU
dropout false false false
num layers n.a. 2∗ 2
num heads n.a. n.a. 2
num messages (obj-to-obj) 1 n.a. n.a.
num messages (obj-to-act) 1 n.a. n.a.
num messages (act-to-act) 1 n.a. n.a.
ponita orientation dim. 16 16 n.a.
ponita degree 2 2 n.a.
ponita spatial hidden dim. [64, 64] [64, 64] n.a.
ponita fiber hidden dim. [64, 64] [64, 64] n.a.
ponita widening factor 4 4 n.a.

The following tables, Table 5 and Table 6 provide details on environment settings, data collection
parameters, and training hyperparameters.

28

Published as a conference paper at ICLR 2025

Table 5: Hyperparameters for Rigid Environments

Rigid-Sliding Rigid-Insertion Rigid-Insertion
/ Rigid-Pushing -Two-Agents

Environments
time steps 100 100 100
warmup steps 5 5 5
episode length (in sec.) 4 4 4
decimation 4 4 4
simulation dt 0.01 0.01 0.01

Data Collection
frames per batch 100k 100k 100k
total frames 20M 20M / 30M 6M

Input Graph
obj-to-obj edges knn=3 knn=3 knn=3
act-to-act edges n.a. n.a. complete

Training
epochs 5 5 5
mini-batch size 1000 1000 1000
learning rate (actor) 3e-4 3e-4 3e-4
learning rate (critic) 3e-4 3e-4 3e-4
critic coeff. 0.5 0.5 0.5
entropy coeff. 0.005 0.005 0.005
clip gradient norm false false false
Projection
trust region coeff. 4.0 1.0 1.0
mean bound 0.05 0.05 0.05
covariant bound 0.001 0.0025 0.0025

Critic (DeepSets)
num inner layers 2 2 2
num outer layers 2 2 2
hidden dim. 64 64 64
activation ReLU ReLU ReLU
layer norm true true true

29

Published as a conference paper at ICLR 2025

Table 6: Hyperparameters for Deformable Environments

Rope-Closing Rope-Shaping Cloth-Hanging

Environments
time steps 200 200 100
warmup steps 10 10 10
episode length (in sec.) 4 4 2
decimation 2 2 2
simulation dt 0.01 0.01 0.01

Data Collection
frames per batch 40k 40k 10k
total frames 4M 10M 5M

Input Graph
obj-to-obj edges knn=3 knn=3 complete
act-to-act edges complete complete complete

Training
epochs 5 5 5
mini-batch size 200 200 200
learning rate (actor) 3e-4 3e-4 3e-4
learning rate (critic) 3e-4 3e-4 3e-4
critic coeff. 0.5 0.5 0.5
entropy coeff. 0.005 0.005 0.005
clip gradient norm false false false
Projection
trust region coeff. 4.0 1.0 4.0
mean bound 0.05 0.05 0.05
covariant bound 0.001 0.0025 0.001

Critic (DeepSets)
num inner layers 2 2 2
num outer layers 2 2 2
hidden dim. 64 64 64
activation ReLU ReLU ReLU
layer norm true true true

30

	Introduction
	Background
	Methodology
	Equivariant MPN Backbone
	Heterogeneous Equivariant Policy
	Theoretical Justification

	Experiments
	Experimental Setup
	Results and Discussions

	Related Work
	Conclusion
	Proofs of Proposition 3.1
	Tasks Details
	Rigid-Sliding
	Rigid-Pushing
	Rigid-Insertion
	Rigid-Insertion-Two-Agents
	Rope-Closing
	Rope-Shaping
	Cloth-Hanging

	Rigid-body Task Objects
	Further Experiments
	Evaluation Details
	Implementation Details
	Computational Time
	Grid Search for PPO
	Hyperparameters

