CP-AGENT: CONTEXT-AWARE MULTIMODAL REASON-ING FOR CELLULAR MORPHOLOGICAL PROFILING UNDER CHEMICAL PERTURBATIONS

Anonymous authors

000

001

002

004 005 006

007

008

010

011

013

014

015

016

017

018

019

020

021

023

024

027

029

030

031

033

035

036

037

038

040

041

042

043

045

Paper under double-blind review

ABSTRACT

Cell Painting combines multiplexed fluorescent staining, high-content imaging, and quantitative analysis to generate high-dimensional phenotypic readouts to support diverse downstream tasks such as mechanism-of-action (MoA) inference, toxicity prediction, and construction of drug-disease atlases. However, existing workflows are slow, costly and difficult to interpret. Approaches for drug screening modeling predominantly focus on molecular representation learning, while neglecting actual experimental context (e.g., cell line, dosing schedule, etc.), limiting generalization and MoA resolution. We introduce CP-Agent, an agentic multimodal large language model (MLLM) capable of generating mechanism-relevant, human-interpretable rationales for cell morphological changes under drug perturbations. At its core, CP-Agent leverages a context-aware alignment module, CP-CLIP, that jointly embeds high-content images and experimental metadata to enable robust treatment and MoA discrimination (achieving a maximum F1-score of 0.896). By integrating CP-CLIP outputs with agentic tool usage and reasoning, CP-Agent compiles rationales into a structured report to guide experimental design and hypothesis refinement. These capabilities highlight CP-Agent's potential to accelerate drug discovery by enabling more interpretable, scalable, and context-aware phenotypic screening—streamlining iterative cycles of hypothesis generation in drug discovery.

1 Introduction

High-content imaging with Cell Painting has become a workhorse for scalable phenotypic drug discovery. This technique, integrating advanced microscopy, multiplexed fluorescent staining and quantitative image analysis, allows us to establish high-dimensional morphological cell profiles that capture rich multiscale cellular responses to chemical perturbations. These profiles have been proven valuable in supporting mechanism-of-action (MoA) inference (Tian et al., 2023), toxicity prediction (Ewald et al., 2025), hit triage (Vincent et al., 2020), and drug repurposing (Fredin Haslum et al., 2024), while also enabling the construction of reference atlases and improved target deconvolution (Moffat et al., 2017).

In Cell Painting workflows, cells are perturbed under diverse conditions and the experimental context is not a nuisance to control but a signal to model. For instance, dose and time define trajectories; cellular background modulates pathway readouts (Appendix B.2). The resulting profiles guide follow-up experiments and can advance phenotype-driven drug discovery. However, Cell Painting-based drug discovery remains limited by several challenges: (i) **complex intermediate dependencies**: Morphological responses are highly context-dependent. For example, concentration-dependent profiles show low correlations across dose levels (Pearson r = 0.21-0.26) (Trapotsi et al., 2022), and MoA prediction is sensitive to cell line context (Seal et al., 2024). Ignoring these structures conflates biology with acquisition artifacts and wastes the valuable metadata; (ii) **convergent morphologies**: Compounds with distinct mechanisms may induce morphological readouts convergence, reducing MoA resolution, thereby complicating the extraction of standardized, inter-

pretable descriptors. (iii) Lack of semantic grounding: Representing image embeddings as unstructured feature vectors restricts their capacity for semantic reasoning and downstream biological inference.

Recently, various AI methods have been introduced to Cell Painting datasets, such as generative approaches to synthesize images under perturbations (Navidi et al., 2024; Cross-Zamirski et al., 2023; Palma et al., 2025), multimodal frameworks integrating chemical and genetic annotations (Sanchez-Fernandez et al., 2023). However, many existing models offer visual embeddings as black-box features, which lack semantic interpretability. Moreover, experimental context is often under-used: metadata is appended via late fusion or treated as unstructured text, yielding less informative representations and hindering iterative, closed-loop experimental design. Meanwhile, emerging multimodal large language models (MLLMs) offer reasoning capabilities and have been applied in diverse biological domains, such as genomics, biomedical imaging, and omics data analysis (Zhang et al., 2024a; Lin et al., 2025; Liu et al., 2024b; Hu et al., 2024b; Zhang et al., 2024b). Yet their applications in drug screening remain underexplored.

In this work, we introduce CP-Agent, a context-aware, agentic MLLM framework for Cell Painting drug perturbation screening. At its core is CP-CLIP, a contrastive alignment module that jointly embeds Cell Painting images and structured experimental context, including drug compounds and other essential experimental conditions, enhancing the biological relevance of cell morphology. The model is pretrained on 1.9 million image-context pairs, with a customized token injection strategy that embeds key fields for better alignment. Comprehensive evaluations across curated classification tasks show that CP-CLIP outperforms general-purpose baselines. Built on this perception layer, CP-Agent integrates tool-augmented reasoning and task-adapted MLLMs grounded in phenotype descriptors and MoA ontologies to generate structured, interpretable outputs. Together, this agentic system supports scalable and interoperable phenotypic analysis, enabling cross-study generalization and providing actionable insights for assay prioritization and iteration, thereby accelerating hypothesis generation and improving decision-making in phenotypic drug discovery.

2 METHOD

2.1 Dataset

We employed three open-access Cell Painting datasets, consisting of approximately 1.9 million pairs: BBBC021 (Caie et al., 2010), CPJUMP1 (Chandrasekaran et al., 2024), and RxRx3 (Fay et al., 2023), encompassing diverse compound-induced phenotypes. Each image-context pair comprises a microscopy image and its associated experimental context (e.g., cell lines, experimental treatment conditions) We curated compounds to ensure traceable MoA labels across datasets. For each collection, we matched SMILES representations of the perturbing chemical compounds to ChEMBL, retrieved their targets and MoAs, and retained only compounds with publicly resolvable MoA names. A summary of the curated multi-dataset setting is provided in Table 1. More details about dataset backgrounds are provided in Appendix C.

Table 1: Summary of datasets used in this study

Dataset	Cell line	Channel	Compound	Concentration	Time	Image Pair
BBBC021	MCF-7 (p53 WT)	3	34	Variable 8-point half-log	24 h	144,411
CPJUMP1	U2OS, A549	5	62	5.0 μΜ	24 h, 48 h	562,687
RXRX3	HUVEC	6	380	Fixed 8-point half-log	${\sim}20~\text{h}$	1,265,984

2.2 MOLECULAR DRUG ENCODING

Several established approaches map compound perturbations to vector representations, enabling alignment with image embeddings and facilitating multimodal learning (Winter et al., 2019; Wu et al., 2025). For instance, SMILES-based (e.g., ChemBERTa) and graph-based models learn molecular embeddings from structure, often using RDKit for preprocessing. Alternatively, one can compute continuous molecular descriptor embeddings (e.g., physicochemical and topological descriptors), formalized as a parameterized fea-

ture extractor: $\phi_{\text{desc}}(x; P) = [f_1(x; P_1), f_2(x; P_2), \dots, f_d(x; P_d)] \in \mathbb{R}^d$, where x is an input molecular representation (e.g., SMILES strings or molecular graphs), and each $f_i(x; P_i)$ extracts a specific property, forming a d-dimensional real-valued feature vector. In contrast, binary fingerprint embeddings that encode the presence/absence of substructures (e.g., Morgan/circular, MACCS, or path-based fingerprints) (Bento et al., 2020) $\phi_{\rm fp}: \mathcal{M} \to \{0,1\}^d$ or \mathbb{N}_0^d , yield binary or count-based encoding over the molecular space \mathcal{M} .

2.3 CP-CLIP: REPROCESSING

To harmonize **Cell Painting images** across datasets with varying resolution and signal quality, we defined a channel-wise preprocessing step: $\mathcal{P}:\mathbb{R}^{H_0 \times W_0} \to \mathbb{R}^{H \times W}$, applied independently to each fluorescence channel. This includes Contrast Limited Adaptive Histogram Equalization (CLAHE), random Laplacian sharpening, and gamma correction, yielding enhanced images $\tilde{I}=\mathcal{P}(I)$. Enhanced single-channel images are then cropped into 512×512 patches and stacked, yielding input tiles $x_p \in \mathbb{R}^{512 \times 512 \times C}$. For each perturbation tile x_p , a corresponding control tile $x_c \in \mathbb{R}^{512 \times 512 \times C}$ is independently sampled from a matching control set $\Omega\left(x_p\right)$, which share all experimental contexts (e.g., plate, cell line, channel) with x_p , except for the perturbation compound. That is $x_c \sim \mathcal{U}\left(\Omega\left(x_p\right)\right)$. The final image branch input is formed by concatenating the grayscale perturbation and control tiles along the channel dimension, $\hat{x}=\mathrm{concat}\left(x_p,x_c\right)\in\mathbb{R}^{512\times512\times2}$. This paired design encourages the model to learn the contrasts between treated and untreated states.

Molecular descriptors are projected via a fixed dimensional mapping $f_{\text{desc}}: \mathcal{X} \to \mathbb{R}^d$, where each feature dimension corresponds to a predefined physicochemical or topological property (See Appendix D). Let $v = f_{\text{desc}}(x) \in \mathbb{R}^d$ denote the raw descriptor vector for compound $x \in \mathcal{X}$. To ensure numerical stability and comparability across compounds, dimensions containing undefined values (e.g., NaNs or Infs) are removed, and z-score normalization is applied independently to each feature dimension $\tilde{v}_i = \frac{v_i - \mu_i}{\sigma_i}$.

To account for the **compound-specific dosing scheme**, each molecule is represented by a normalized dosing pair $[\rho_{\max}, s(C)]$, where ρ_{\max} denotes the molecular mass-normalized maximum concentration (in mg/mL), and s(C) is the log-scaled dose step index corresponding to a given concentration. Let $M \in \mathbb{R}_{>0}$ denote the molecular weight (in Da or g/mol), and $C_{\max} \in \mathbb{R}_{>0}$ the nominal maximum concentration (in μM). So, the molecular maximum mass concentration is given by:

$$\rho_{\text{max}}[\text{mg/mL}] := \frac{M[\text{Da}] \cdot C_{\text{max}}[\mu M]}{10^6} \tag{1}$$

where the denominator 10^6 reflects the conversion from μM and Da to mg/mL. While for each titration point $C \in \{C_1, \dots, C_8\}$, a pseudo-step index is computed on a log scale to reflect dilution ratios:

$$s(C) := \frac{\log_{10}(C_{\text{max}}) - \log_{10}(C)}{\Delta \log}, \quad \Delta \log = 0.5$$
 (2)

where the denominator 0.5 corresponds to the log-fold change between adjacent titration levels in a 2-fold serial dilution protocol. A detailed derivation is provided in Appendix E.

For **observation time**, let $t \in \mathbb{R}_{\geq 0}$ denote time in days. Temporal normalization rescales t into the unit interval via: $\tilde{t} = \frac{t}{T_{\max}}$, with $T_{\max} = 112$. The 112-day (16-week) window reflects the FDA's stopping rule, adopted by Watkins et al. (2022) in their pharmacoeconomic analysis. These representations ensure that the input space remains consistent across compounds with varying dosing schemes and time-points.

2.4 CP-CLIP: CONTEXT-AWARE TOKEN PROJECTION

Our contrastive framework uses a structured text encoder tailored to the metadata obtained from drug screening experiments (Figure 1, bottom). Each experiment is represented as a prompt-like sequence composed of cell culture, imaging, and drug compound perturbation conditions. To accommodate structured context and consistent representations of perturbing compounds, we introduced field-specific placeholder tokens (i.e.

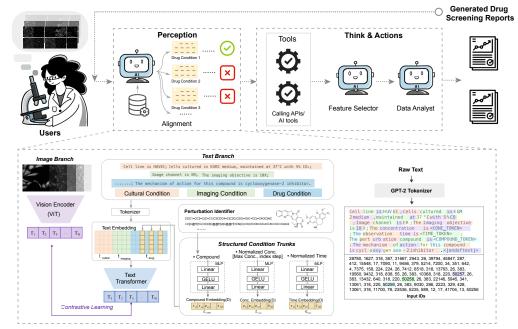


Figure 1: Illustration of the CP-agent (top) and CP-CLIP (bottom).

<CMPD>, <CONC>, <TIME>) for compound descriptors $z_{\rm cmpd} = \phi_{\rm desc} \left(x; P \right) \in \mathbb{R}^d$, normalized concentration $z_{\rm conc} = \left[\rho_{\rm max}, s(C) \right] \in \mathbb{R}^2$, and normalized time $z_{\rm time} = \tilde{t} \in \mathbb{R}$. The special placeholder tokens are directly inserted into the text sequence and treated as atomic units. Their embeddings are dynamically computed via field-specific Multilayer Perceptron (MLP) trunks $f_* : \mathbb{R}^{d'} \to \mathbb{R}^D$:

$$e_{\text{cmpd}} = f_{\text{cmpd}} (z_{\text{cmpd}}) \in \mathbb{R}^{D}$$

$$e_{\text{conc}} = f_{\text{conc}} (z_{\text{conc}}) \in \mathbb{R}^{D}$$

$$e_{\text{time}} = f_{\text{time}} (z_{\text{time}}) \in \mathbb{R}^{D}$$
(3)

where f_{cmpd} , f_{conc} , and f_{time} are lightweight MLP trunks encoding compound identity, concentration, and time-point used in place of the placeholders. The resulting text input is a hybrid sequence:

$$X = [\text{CLS}, t_1, t_2, \dots, \underbrace{e_{\text{cmpd}}}_{< \text{CMPD}>}, \dots, \underbrace{e_{\text{conc}}}_{< \text{CONC}>}, \dots, \underbrace{e_{\text{time}}}_{< \text{TIME}>}, \dots]$$
(4)

This hybrid sequence, combining standard subword embeddings $t_i \in \mathbb{R}^D$ with structured embeddings $\mathbf{e}_* \in \mathbb{R}^D$ from field-specific MLPs, is fed into the text Transformer to produce final text representation. Implementation details are in Appendix F. By replacing placeholder tokens with learned embeddings, the model fuses continuous metadata with discrete language tokens in a shared embedding space. The text encoder thus captures both experimental signals and linguistic coherence, enabling better semantic alignment.

2.5 CP-AGENT WORKFLOW

CP-Agent adopts a modular, memory-augmented architecture that connects perception, tooling, and analysis into a single-pass pipeline (Figure 1, top). Given user-provided Cell Painting images, a lightweight memory retriever powered by CP-CLIP fetches the most probable experimental context (i.e., cell line, fluorescence channels, imaging settings, chemical perturbations). Once the experimental context is retrieved, the pipeline proceeds to visual analysis. Rather than relying on vision backbones that produce holistic, biologically opaque embeddings, we extract handcrafted single-cell morphological features. These interpretable

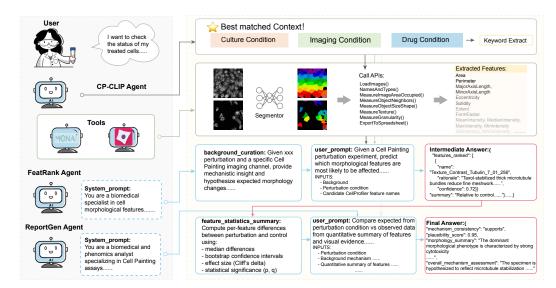


Figure 2: Automated cell-phenotype assessment pipeline of CP-Agent.

representations are processed by a modular, MLLM-driven agent architecture, where the MLLM serves as a policy layer that dynamically routes tasks to interchangeable tools and integrates their outputs.

We instantiate this concept on fluorescence Cell Painting data via a specialized CP-Agent workflow (Figure 2), which comprises the following steps:

- **CPContext Agent** Given paired Cell Painting images (control vs. perturbation) acquired under matched conditions, the *CPContext Agent* employs a pre-trained CP-CLIP retriever to obtain experimental context from a curated knowledge base. Simultaneously, it harmonizes metadata via controlled-vocabulary tagging and channel labeling to generate standardized descriptors. Retrieved context is routed both (A) as a context bundle to *FeatRank Agent*, *ReportGen Agent*, and (B) as metadata keywords to the *CellFeat Agent*.
- ChannelSeg Agent Given Cell Painting images, the *ChannelSeg Agent* performs nuclei instance segmentation on DNA-stained channels and whole-cell segmentation on non-DNA channels (e.g., RNA, Actin, ER, etc.). It outputs channel-specific instance masks, which are passed to the *CellFeat Agent*.
- CellFeat Agent Given Cell Painting images, corresponding masks, and harmonized metadata, the *CellFeat Agent* extracts per-cell morphological, intensity, texture, granularity, neighborhood, and occupancy features using a configured CellProfiler pipeline (Appendix H). Output is routed both (A) as extracted feature items to the *FeatRank Agent* for mechanism-aware selection, and (B) as channel-wise single-cell feature matrices to the *StatSynth Agent* for statistical evidence synthesis.
- **FeatRank Agent** Given extracted feature items and experimental context, the *FeatRank Agent* scores and ranks features by their likelihood of being influenced by the perturbation. It generates confidence-weighted rationales to support prioritization. Output is routed as a prioritized feature list with explanations to the *StatSynth Agent*.
- **StatSynth Agent** Given the prioritized feature list, full feature matrices, and experiment-level context, the *StatSynth Agent* computes per-feature statistical evidence between control and perturbation conditions based on the prioritized features. It summarizes distribution shifts, effect sizes, confidence intervals, and statistical significance. Outputs are routed as statistical summaries and interpretations to the *ReportGen Agent* for final report composition.
- ReportGen Agent Given statistical summaries, prioritized features, visual exemplars, and experimental
 context, the ReportGen Agent composes an integrated interpretation of the perturbation's biological impact. It identifies key morphological shifts and evaluates their consistency with expected cellular responses

to infer plausible mechanisms. The resulting report summarizes these findings, provides follow-up recommendations and visualizations, and is delivered to the users for downstream access.

The agent tool stack integrates both classical and learning-based components. For segmentation, we fine-tuned VISTA-2D He et al. for 20 epochs using diverse augmentation strategies to mitigate optics-induced batch effects. The model generates channel-specific masks that enable biologically consistent segmentation across diverse imaging conditions. More details regarding dataset preparation and training of the segmentation model are provided in Appendix J. The *StatSynth Agent* is tasked with reasoning over high-dimensional single-cell morphological data (typically 30–300 cells per image), which is impractical for direct LLM application due to length constraints and noise (Fang et al., 2024). Instead, we curate agentic tools that (i) aggregate summary statistics for key features, and (ii) quantify distribution shifts between control and perturbed samples. These compact, interpretable summaries support reliable LLM-based reasoning. Detailed procedures for this step are provided in Appendix L.

3 EXPERIMENTS AND RESULTS

Table 2: Model performance on classification tasks

					I .								
Model	Cell line	Channel					Perturb	ation Comp	ound				
			Flindokalner	Racecadotril	AZM-475271	Misoprostol	Trazodone	Orantinib	Rufinamide	Lumiracoxib	BIRB-796	Methoxsalen	Macro-avg
Random Guessing	0.25	0.143	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Grok-4	0.448	0.228	0.215	0.174	0.0	0.0	0.410	0.190	0.034	0.0	0.0	0.0	0.102
GPT-5	0.377	0.439	0.059	0.168	0.0	0.0	0.353	0.0	0.0	0.0	0.0	0.0	0.074
Claude-4-Sonnet	0.450	0.198	0.0	0.00	0.0	0.057	0.0	0.0	0.0	0.0	0.211	0.0	0.027
Gemini-2.5-Pro	0.526	0.628	0.0	0.0	0.0	0.0	0.0	0.023	0.0	0.0	0.045	0.0	0.007
CLIP ViT-B/16	1.000	0.955	0.776	0.680	0.661	0.216	0.629	0.447	0.500	0.600	0.575	0.642	0.657
SigLIP-ViT-B/16	1.000	0.925	0.734	0.471	0.515	0.826	0.291	0.638	0.395	0.272	0.604	0.400	0.514
CP-CLIP SigLIP-ViT-B/16 (descriptor)	1.000	0.934	0.685	0.442	0.485	0.776	0.351	0.860	0.255	0.186	0.660	0.620	0.532
CP-CLIP ViT-B/16 (fingerprint)	1.000	0.991	0.839	0.862	0.891	0.875	0.913	0.914	0.894	0.840	0.971	0.875	0.887
CP-CLIP ViT-B/16 (descriptor)	1.000	0.882	0.907	0.869	0.857	0.942	0.848	0.940	0.884	0.854	0.932	0.922	0.896
CP-CLIP ViT-L/16 (descriptor)	1.000	0.849	0.928	0.880	0.896	0.846	0.843	0.929	0.911	0.819	0.915	0.941	0.891

Table 3: Unseen drugs similarity score

Model	Regorafenib	Sacubitril	Buparlisib	Dexamethasone	Nimodipine	AZ258	Nilotinib	MG-132	Average
CLIP ViT-B/16	0.207 ± 0.082	0.2058 ± 0.104	0.289 ± 0.046	0.3601 ± 0.049	0.377 ± 0.039	0.328 ± 0.069	0.174 ± 0.080	0.346 ± 0.072	0.286
SigLIP ViT-B/16	0.038 ± 0.082	0.095 ± 0.099	0.129 ± 0.073	0.146 ± 0.091	0.183 ± 0.067	0.090 ± 0.186	-0.055 ± 0.103	0.143 ± 0.101	0.096
CP-CLIP SigLIP-ViT-B/16 (descriptor)	$0.378 \pm \textbf{0.077}$	$0.420 \pm \textbf{0.193}$	0.323 ± 0.102	0.503 ± 0.130	0.515 ± 0.075	$\boldsymbol{0.488 \pm 0.115}$	0.303 ± 0.090	0.380 ± 0.114	0.414
CP-CLIP ViT-B/16 (fingerprint)	$0.297 \pm \textbf{0.093}$	0.222 ± 0.072	0.375 ± 0.053	0.468 ± 0.052	0.461 ± 0.046	0.429 ± 0.120	0.210 ± 0.109	$0.420 \pm \text{0.081}$	0.360
CP-CLIP ViT-B/16 (descriptor)	0.432 ± 0.098	0.412 ± 0.094	0.396 ± 0.043	$0.503 \pm \textbf{0.073}$	0.469 ± 0.032	0.468 ± 0.104	$\boldsymbol{0.324 \pm 0.085}$	0.448 ± 0.081	0.432
CP-CLIP ViT-L/16 (descriptor)	$\boldsymbol{0.455} \pm 0.115$	$\boldsymbol{0.445 \pm 0.135}$	$\boldsymbol{0.408 \pm 0.053}$	$\boldsymbol{0.530 \pm 0.072}$	$\boldsymbol{0.523 \pm 0.032}$	0.448 ± 0.106	$0.295 \pm \textbf{0.089}$	$\boldsymbol{0.448 \pm 0.077}$	0.444

To assess the effectiveness of CP-Agent, we isolated and evaluated its core components before measuring end-to-end reporting quality: (a) CP-CLIP (context-aware retrieval and alignment): we evaluate its accuracy on in-distribution classification (seen-drug) and generalization (unseen-drug matching), ablations against MLLM baselines and CLIP variants; (b) Vision embedding structure: we evaluate whether CP-CLIP embeddings encode chemically grounded, dose- and MoA-dependent morphology; (c) Statistical synthesis and reporting: whether compact summaries enable robust comparisons between control and perturbation in the generated report. Finally, we assessed the effectiveness of full CP-Agent reports via expert review.

3.1 MODEL VARIANTS AND MLLM BASELINES

To contextualize the performance of our proposed model, we compared it against several leading MLLMs. Specifically, we included Grok-4 (xAI, 2025), GPT-5 (OpenAI, 2025), Claude-4-Sonnet (Anthropic, 2025), and Gemini-2.5-Pro (Google DeepMind, 2025), which have demonstrated strong performance across a range

of general-purpose multimodal benchmarks. To adapt these models to our domain-specific tasks, we implemented a two-stage prompting pipeline. First, the models were prompted to curate background knowledge. Then, they were asked to answer multiple-choice questions about experimental conditions based on the background knowledge, paired control and perturbation images, and masked textual prompts. Full experimental details are provided in the Appendix M.2.

Alongside these MLLMs, we benchmarked multiple variants of our contrastive learning framework, CP-CLIP, which extends the CLIP architecture by integrating structured experimental context into training. As a baseline, we used the original CLIP model based on the ViT-B/16 vision backbone, retrained on natural language text aligned with Cell Painting images. All CP-CLIP variants enhance this setup by injecting serialized numerical metadata, as detailed in Section 2.4. We evaluated CP-CLIP variants that differ in compound encoding and loss function (See Appendix G), including: (i) a descriptor-based model used continuous molecular descriptors, and (ii) a fingerprint-based model used binary fingerprints. We also tested a SigLIP variant that uses a sigmoid-based pairwise contrastive objective (Zhai et al., 2023). To assess the impact of vision model capacity on performance, we tested a CP-CLIP variant with ViT-L/16 vision backbone.

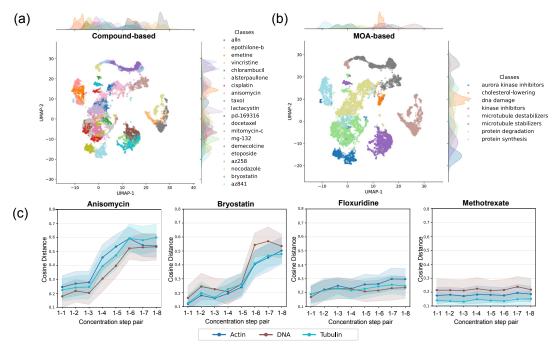


Figure 3: CP-CLIP captures pharmacologically meaningful morphology.

3.2 TASK I: SEEN-DRUG CLASSIFICATION

To benchmark in-distribution performance, we designed classification tasks across three categories: cell line, fluorescence channel and compound. In each task, one attribute is masked in the prompt, and model selected the most similar candidate prompt based on image embeddings. For compound classification, 10 compounds were randomly sampled to form a balanced multi-class setting. The same protocol was applied to other tasks. Table 2 summarizes the results. Among all general-purpose MLLMs, Gemini-2.5-Pro achieved the best performance on the cell line and channel prediction tasks (F1: 0.526 and 0.628). However, on compound classification, performance dropped sharply: All models fell below random baseline, except for Grok-4, which slightly exceeded it. Confusion matrices (Appendix M.3) revealed near-zero F1 scores, indicating systematic failure in identifying perturbing chemical compounds and limited generalization of

current MLLMs. In contrast, CP-CLIP consistently outperformed both the baseline CLIP and all MLLMs across tasks. Descriptor-based models slightly outperformed fingerprint-based ones on compound classification (F1: 0.891 vs. 0.887), indicating that continuous encodings provide richer chemical contexts. Scaling the vision encoder from ViT-B/16 to ViT-L/16 yielded no significant gain (F1: 0.896 vs. 0.891), indicating that a lightweight backbone suffices when paired with strong chemical priors.

3.3 TASK II: UNSEEN-DRUG MATCHING

To evaluate generalization, we performed zero-shot prompt-image matching on held-out compounds by computing cosine similarity between image and prompt embeddings (Table 3). The baseline CLIP model (ViT-B/16) yielded low alignment on unseen drugs (avg. similarity = 0.286), while CP-CLIP (descriptor, ViT-B/16) achieved 0.432, a 14.6% absolute increase. Descriptor-based models also outperformed fingerprint-based ones (0.432 vs. 0.360), indicating that continuous encodings capture more relevant chemical contexts. Scaling the vision encoder from ViT-B/16 to ViT-L/16 further improved performance to 0.444, suggesting enhanced robustness to morphological variation. To provide a comparative reference, we also evaluated similarity on seen drugs (Appendix I). Notably, performance on unseen drugs remained close, indicating strong generalization. Specifically, descriptor-based ViT-B/16 and ViT-L/16 models achieved 0.549/0.432 and 0.561/0.444 on seen/unseen drugs, suggesting that CP-CLIP captures mechanism-relevant biology, rather than memorizing labels. This zero-shot capability supports practical applications such as MoA hypothesis generation, hit prioritization, and generalization to novel perturbation contexts.

3.4 VISION EMBEDDING ANALYSES

Figure 3a-b shows UMAP projections of embeddings from CP-CLIP ViT-B/16 (descriptor). The UMAP projection reveals clustering by MoA, indicating the learned representation encodes pharmacologically meaningful morphology beyond compound identity. Figure 3c shows concentration-related patterns for four drugs selected from the BBBC021 and RxRx3 datasets. CP-CLIP embeddings exhibited clear dose–response trajectories, reflecting concentration-dependent morphological change. In particular, the sharp dose-responses observed for Anisomycin and Bryostatin are consistent with previous reports. Cranston et al. (1982); Marshall et al. (2002). In contrast, drugs with minimal morphological impacts show flatter trends across dosage. More examples and a detailed explanation of this schematic are provided in the Appendix K.

3.5 CP-AGENT REPORTS

We present three case studies from different datasets to demonstrate CP-Agent generated reports (Figure 4): (i) Example 1 (BBBC021, MCF7 + Taxol): Taxol induces a clear cytoskeletal phenotype by stabilizing microtubules and arresting mitosis (Kiwanuka et al., 2022). CP-Agent detected the localized changes in tubulin texture and correctly linked them to microtubule stabilization and mitotic arrest, demonstrating its ability to recognize canonical, visually prominent phenotypes. (ii) Example 2 (CPJUMP, A549 + Sorbinil): Sorbinil is an aldose reductase inhibitor that produces a subtle and uncertain phenotype (Zietek et al., 2025). CP-Agent detected modest shifts (e.g., smoother RNA texture, reduced granularity), and suggested potential stress granule suppression. Meanwhile, it also flagged ambiguity and suggested further validation, illustrating its ability to reason under uncertainty. (iii) Example 3 (RxRx3, HUVEC + BGT226): BGT226 is a PI3K/mTOR inhibitor, leading to a multi-compartment phenotype affecting organelles, cell shape, and density (Kampa-Schittenhelm et al., 2013). By integrating mitochondrial texture, cell area, and density changes, CP-Agent inferred PI3K/mTOR inhibition, showcasing its capacity to synthesize complex morphological cues into mechanistic insights. Together, these cases show that CP-Agent adapts to diverse biological contexts, ranging from clear to ambiguous phenotypes, and generates biologically grounded summaries. Additional examples and reasoning details are provided in Appendix O.

We conducted an expert survey to assess whether LLM-based CP-Agent produces accurate and well-reasoned screening reports. Four LLMs (mentioned in Section 3.1) each generated reports for ten control-perturbation image pairs. Experts (N = 12), ranging from PhD students to professors in pharmacology

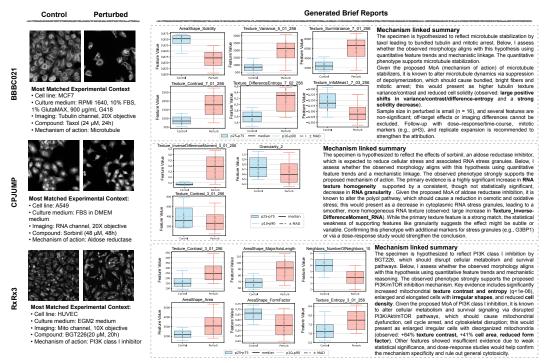


Figure 4: Summary reports generated from CP-Agent.

or related fields, rated 40 reports (10 pairs × 4 models) on a 1–7 scale across ten criteria from Waqas et al. (2025), covering language quality and reasoning quality. Full criteria definitions and examples are provided in Appendix P. As shown in Figure 16, most metrics received high scores across models. CP-Agent powered by GPT-5 showed the strongest overall reasoning performance, followed closely by Gemini-2.5-Pro.

4 DISCUSSION AND CONCLUSION

We present CP-Agent, a context-aware multimodal reasoning framework for interpretable analysis of Cell Painting drug responses. Its core, CP-CLIP, aligns imaging data with experimental context, enhanced by numerically grounded token injection. This yields strong generalization and outperforms baselines on multiple classification tasks. CP-Agent separates and coordinates perception, retrieval, analysis, and reporting into specialized agents (i.e., CPContext, ChannelSeg, CellFeat, FeatRank, StatSynth, ReportGen). This enables an evidence-first workflow where CP-Agent converts high-dimensional morphological features, together with the experimental context, into compact, calibrated summaries that an MLLM synthesizes into interpretable narratives. Hence, CP-Agent allows end-to-end biological interpretability. Users can trace predicted mechanisms back to corresponding morphological features—from images to masks, features, statistics, and final explanations. Unlike histology tasks, where many agent-based pipelines can perform well without training by using a well-designed chain-of-thought with off-the-shelf MLLMs, our results show that zero-shot prompting for Cell Painting datasets consistently underperforms, and biologically grounded supervision is essential for meaningful reasoning. CP-Agent also generalizes to various imaging modalities such as quantitative phase imaging (QPI), digital holographic microscopy, and brightfield time-lapse imaging (Lo et al., 2024; Siu et al., 2023; Zhang et al., 2023; Lee et al., 2025) and integrates flexibly with tools like ilastik, Fiji, and Icy. Overall, it establishes a new paradigm for combining MLLMs with mechanistically grounded analysis, offering a foundation for next-generation AI systems in phenotypic drug discovery. Looking forward, the modular agentic architecture of CP-Agent could flexibly be extended for experimental planning (e.g., dose strategy refinement), multi-omics fusion, as well as causal priors for counterfactual reasoning.

423 ETHICAL STATEMENT

This work does not involve human subjects, animal experiments, or personally identifiable data. All experiments are conducted on publicly available Cell Painting datasets.

REPRODUCIBILITY STATEMENT

All code, training scripts, and instructions necessary to reproduce our results are available at the anonymized repository: https://anonymous.4open.science/r/CP-Agent-4F9C/

REFERENCES

- Anthropic. Claude 4 sonnet. *Anthropic Model Card*, 2025. Available at: https://www.anthropic.com[Accessed: September 2025].
- Reza Averly, Frazier N Baker, Ian A Watson, and Xia Ning. Liddia: Language-based intelligent drug discovery agent. *arXiv preprint arXiv:2502.13959*, 2025.
- Nitin Sai Beesabathuni, Neil Alvin B Adia, Eshan Thilakaratne, Ritika Gangaraju, and Priya S Shah. Image-based temporal profiling of autophagy-related phenotypes. *Autophagy reports*, 4(1):2484835, 2025.
- A Patrícia Bento, Anne Hersey, Eloy Félix, Greg Landrum, Anna Gaulton, Francis Atkinson, Louisa J Bellis, Marleen De Veij, and Andrew R Leach. An open source chemical structure curation pipeline using rdkit. *Journal of Cheminformatics*, 12(1):51, 2020.
- Mark-Anthony Bray, Shantanu Singh, Han Han, Chadwick T Davis, Blake Borgeson, Cathy Hartland, Maria Kost-Alimova, Sigrun M Gustafsdottir, Christopher C Gibson, and Anne E Carpenter. Cell painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes. *Nature protocols*, 11(9):1757–1774, 2016.
- Peter D Caie, Rebecca E Walls, Alexandra Ingleston-Orme, Sandeep Daya, Tom Houslay, Rob Eagle, Mark E Roberts, and Neil O Carragher. High-content phenotypic profiling of drug response signatures across distinct cancer cells. *Molecular cancer therapeutics*, 9(6):1913–1926, 2010.
- Srinivas Niranj Chandrasekaran, Beth A Cimini, Amy Goodale, Lisa Miller, Maria Kost-Alimova, Nasim Jamali, John G Doench, Briana Fritchman, Adam Skepner, Michelle Melanson, et al. Three million images and morphological profiles of cells treated with matched chemical and genetic perturbations. *Nature Methods*, 21(6):1114–1121, 2024.
- Jonathan Choy, Yanqing Kan, Steve Cifelli, Josephine Johnson, Michelle Chen, Lin-Lin Shiao, Haihong Zhou, Stephen Previs, Ying Lei, Richard Johnstone, et al. High-throughput screening to identify small molecules that selectively inhibit apoll protein level in podocytes. *SLAS DISCOVERY: Advancing the Science of Drug Discovery*, 26(9):1225–1237, 2021.
- WI Cranston, RF Hellon, and Y Townsend. Further observations on the suppression of fever in rabbits by intracerebral action of anisomycin. *The Journal of Physiology*, 322(1):441–445, 1982.
- Jan Oscar Cross-Zamirski, Praveen Anand, Guy Williams, Elizabeth Mouchet, Yinhai Wang, and Carola-Bibiane Schönlieb. Class-guided image-to-image diffusion: Cell painting from brightfield images with class labels. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 3800–3809, 2023.

Jessica D Ewald, Katherine L Titterton, Alex Bäuerle, Alex Beatson, Daniil A Boiko, Ángel A Cabrera, Jaime Cheah, Beth A Cimini, Bram Gorissen, Thouis Jones, et al. Cell painting for cytotoxicity and mode-of-action analysis in primary human hepatocytes. *bioRxiv*, 2025.

Xi Fang, Weijie Xu, Fiona Anting Tan, Jiani Zhang, Ziqing Hu, Yanjun Qi, Scott Nickleach, Diego Socolinsky, Srinivasan Sengamedu, and Christos Faloutsos. Large language models (Ilms) on tabular data: Prediction, generation, and understanding–a survey. *arXiv preprint arXiv:2402.17944*, 2024.

Marta M Fay, Oren Kraus, Mason Victors, Lakshmanan Arumugam, Kamal Vuggumudi, John Urbanik, Kyle Hansen, Safiye Celik, Nico Cernek, Ganesh Jagannathan, et al. Rxrx3: Phenomics map of biology. *Biorxiv*, pp. 2023–02, 2023.

Johan Fredin Haslum, Charles-Hugues Lardeau, Johan Karlsson, Riku Turkki, Karl-Johan Leuchowius, Kevin Smith, and Erik Müllers. Cell painting-based bioactivity prediction boosts high-throughput screening hit-rates and compound diversity. *Nature Communications*, 15(1):3470, 2024.

Google DeepMind. Gemini 2.5 pro. *Google DeepMind*, 2025. Available at: https://deepmind.google[Accessed: September 2025].

Linda Harkness, Xiaoli Chen, Marianne Gillard, Peter Paul Gray, and Anthony Mitchell Davies. Media composition modulates human embryonic stem cell morphology and may influence preferential lineage differentiation potential. *PLoS One*, 14(3):e0213678, 2019.

 Y He, P Guo, Y Tang, A Myronenko, V Nath, Z Xu, et al. Vista3d: a unified segmentation foundation model for 3d medical imaging (2024).

Haigen Hu, Xiaoyuan Wang, Yan Zhang, Qi Chen, and Qiu Guan. A comprehensive survey on contrastive learning. *Neurocomputing*, 610:128645, 2024a.

Mingzhe Hu, Joshua Qian, Shaoyan Pan, Yuheng Li, Richard LJ Qiu, and Xiaofeng Yang. Advancing medical imaging with language models: featuring a spotlight on chatgpt. *Physics in Medicine & Biology*, 69(10):10TR01, 2024b.

David J Huggins, Ashok R Venkitaraman, and David R Spring. Rational methods for the selection of diverse screening compounds. *ACS chemical biology*, 6(3):208–217, 2011.

Kerstin Maria Kampa-Schittenhelm, Michael Charles Heinrich, Figen Akmut, Katharina Henriette Rasp, Barbara Illing, Hartmut Döhner, Konstanze Döhner, and Marcus Matthias Schittenhelm. Cell cycledependent activity of the novel dual pi3k-mtorc1/2 inhibitor nvp-bgt226 in acute leukemia. *Molecular cancer*, 12(1):46, 2013.

Martin Kiwanuka, Ghodeejah Higgins, Silindile Ngcobo, Juliet Nagawa, Dirk M Lang, Muhammad H Zaman, Neil H Davies, and Thomas Franz. Effect of paclitaxel treatment on cellular mechanics and morphology of human oesophageal squamous cell carcinoma in 2d and 3d environments. *Integrative Biology*, 14(6):137–149, 2022.

Thiel Lee, Evelyn HY Cheung, Kelvin CM Lee, Dickson MD Siu, Michelle CK Lo, Edmund Y Lam, Ruchi Goswami, Salvatore Girardo, Kyoohyun Kim, Felix Reichel, et al. High-throughput multimodal optofluidic biophysical imaging cytometry. *Lab on a Chip*, 2025.

Vanille Lejal, David Rouquié, and Olivier Taboureau. Cell morphology and gene expression: tracking changes and complementarity across time and cell lines. *Toxicology and Applied Pharmacology*, 504: 117530, 2025. ISSN 0041-008X. doi: https://doi.org/10.1016/j.taap.2025.117530. URL https://www.sciencedirect.com/science/article/pii/S0041008X25003060.

Anqi Lin, Junpu Ye, Chang Qi, Lingxuan Zhu, Weiming Mou, Wenyi Gan, Dongqiang Zeng, Bufu Tang, Mingjia Xiao, Guangdi Chu, et al. Bridging artificial intelligence and biological sciences: a comprehensive review of large language models in bioinformatics. *Briefings in Bioinformatics*, 26(4):bbaf357, 2025.

- Fangyu Liu, Olivier Mailhot, Isabella S Glenn, Seth F Vigneron, Violla Bassim, Xinyu Xu, Karla Fonseca-Valencia, Matthew S Smith, Dmytro S Radchenko, James S Fraser, et al. The impact of library size and scale of testing on virtual screening. *Nature chemical biology*, pp. 1–7, 2025a.
- Haoyang Liu, Shuyu Chen, Ye Zhang, and Haohan Wang. Genotex: An llm agent benchmark for automated gene expression data analysis. *arXiv* preprint arXiv:2406.15341, 2024a.
- Tianyu Liu, Yijia Xiao, Xiao Luo, Hua Xu, W Jim Zheng, and Hongyu Zhao. Geneverse: A collection of open-source multimodal large language models for genomic and proteomic research. *arXiv preprint arXiv:2406.15534*, 2024b.
- Wuchao Liu, Han Peng, Wengen Li, Yichao Zhang, Jihong Guan, and Shuigeng Zhou. sci2cl: Effectively integrating single-cell multi-omics by intra-and inter-omics contrastive learning. *arXiv* preprint *arXiv*:2508.18304, 2025b.
- Michelle CK Lo, Dickson MD Siu, Kelvin CM Lee, Justin SJ Wong, Maximus CF Yeung, Michael KY Hsin, James CM Ho, and Kevin K Tsia. Information-distilled generative label-free morphological profiling encodes cellular heterogeneity. *Advanced science*, 11(29):2307591, 2024.
- Ming Y Lu, Bowen Chen, Drew FK Williamson, Richard J Chen, Melissa Zhao, Aaron K Chow, Kenji Ikemura, Ahrong Kim, Dimitra Pouli, Ankush Patel, et al. A multimodal generative ai copilot for human pathology. *Nature*, 634(8033):466–473, 2024.
- John L Marshall, Neelesh Bangalore, Dorraya El-Ashry, Yair Fuxman, Michael Johnson, Brian Norris, Michael Oberst, Elizabeth Ness, Slawomir Wojtowicz-Praga, Pankaj Bhargava, et al. Phase i study of prolonged infusion bryostatin-1 in patients. *Cancer biology & therapy*, 1(4):409–416, 2002.
- Akira Miyajima, Fumiya Nishimura, Daigo Natsuhara, Yuka Kiba, Shunya Okamoto, Moeto Nagai, Tadashi Yamamuro, Masashi Kitamura, and Takayuki Shibata. Parallel dilution microfluidic device for enabling logarithmic concentration generation in molecular diagnostics. *Lab on a Chip*, 25(13):3242–3253, 2025.
- John G Moffat, Fabien Vincent, Jonathan A Lee, Jörg Eder, and Marco Prunotto. Opportunities and challenges in phenotypic drug discovery: an industry perspective. *Nature reviews Drug discovery*, 16(8): 531–543, 2017.
- Zeinab Navidi, Jun Ma, Esteban A Miglietta, Le Liu, Anne E Carpenter, Beth A Cimini, Benjamin Haibe-Kains, and Bo Wang. Morphodiff: Cellular morphology painting with diffusion models. *bioRxiv*, 2024.
- Floriane Odje, David Meijer, Elena Von Coburg, Justin JJ van der Hooft, Sebastian Dunst, Marnix H Medema, and Andrea Volkamer. Unleashing the potential of cell painting assays for compound activities and hazards prediction. *Frontiers in toxicology*, 6:1401036, 2024.
- OpenAI. Gpt-5. OpenAI Blog, 2025. Available at: https://openai.com[Accessed: September 2025].
- Alessandro Palma, Fabian J Theis, and Mohammad Lotfollahi. Predicting cell morphological responses to perturbations using generative modeling. *Nature Communications*, 16(1):505, 2025.
- Ana Sanchez-Fernandez, Elisabeth Rumetshofer, Sepp Hochreiter, and Günter Klambauer. Cloome: contrastive learning unlocks bioimaging databases for queries with chemical structures. *Nature Communications*, 14(1):7339, 2023.

Srijit Seal, Maria-Anna Trapotsi, Ola Spjuth, Shantanu Singh, Jordi Carreras-Puigvert, Nigel Greene, Andreas Bender, and Anne E Carpenter. A decade in a systematic review: The evolution and impact of cell painting. *bioRxiv*, 2024.

Rohit Singh, Samuel Sledzieski, Bryan Bryson, Lenore Cowen, and Bonnie Berger. Contrastive learning in protein language space predicts interactions between drugs and protein targets. *Proceedings of the National Academy of Sciences*, 120(24):e2220778120, 2023.

Dickson MD Siu, Kelvin CM Lee, Bob MF Chung, Justin SJ Wong, Guoan Zheng, and Kevin K Tsia. Optofluidic imaging meets deep learning: from merging to emerging. *Lab on a Chip*, 23(5):1011–1033, 2023.

Houcheng Su, Weicai Long, and Yanlin Zhang. Biomaster: Multi-agent system for automated bioinformatics analysis workflow. *bioRxiv*, pp. 2025–01, 2025.

Guangyan Tian, Philip J Harrison, Akshai P Sreenivasan, Jordi Carreras-Puigvert, and Ola Spjuth. Combining molecular and cell painting image data for mechanism of action prediction. *Artificial Intelligence in the Life Sciences*, 3:100060, 2023.

Maria-Anna Trapotsi, Elizabeth Mouchet, Guy Williams, Tiziana Monteverde, Karolina Juhani, Riku Turkki, Filip Miljkovic, Anton Martinsson, Lewis Mervin, Kenneth R Pryde, et al. Cell morphological profiling enables high-throughput screening for proteolysis targeting chimera (protac) phenotypic signature. *ACS Chemical Biology*, 17(7):1733–1744, 2022.

Fabien Vincent, Paula M Loria, Andrea D Weston, Claire M Steppan, Regis Doyonnas, Yue-Ming Wang, Kristin L Rockwell, and Marie-Claire Peakman. Hit triage and validation in phenotypic screening: considerations and strategies. *Cell Chemical Biology*, 27(11):1332–1346, 2020.

Hanchen Wang, Yichun He, Paula P Coelho, Matthew Bucci, Abbas Nazir, Bob Chen, Linh Trinh, Serena Zhang, Kexin Huang, Vineethkrishna Chandrasekar, et al. Jure leskovec, and aviv regev. *Metric mirages in cell embeddings. bioRxiv*, pp. 2024–04, 2024.

Asim Waqas, Asma Khan, Zarifa Gahramanli Ozturk, Daryoush Saeed-Vafa, Weishen Chen, Jasreman Dhillon, Andrey Bychkov, Marilyn M Bui, Ehsan Ullah, Farah Khalil, et al. Reasoning beyond accuracy: Expert evaluation of large language models in diagnostic pathology. *medRxiv*, 2025.

Stephanie Watkins, Joshua C Toliver, Nina Kim, Sarah Whitmire, and W Timothy Garvey. Economic outcomes of antiobesity medication use among adults in the united states: a retrospective cohort study. *Journal of managed care & specialty pharmacy*, 28(10):1066–1079, 2022.

Robin Winter, Floriane Montanari, Frank Noé, and Djork-Arné Clevert. Learning continuous and data-driven molecular descriptors by translating equivalent chemical representations. *Chemical science*, 10(6): 1692–1701, 2019.

Ting Wu, Peilin Zhan, Wei Chen, Miaoqing Lin, Quanyuan Qiu, Yinan Hu, Jiuhang Song, and Xiaoqing Lin. Chemberta embeddings and ensemble learning for prediction of density and melting point of deep eutectic solvents with hybrid features. *Computers & Chemical Engineering*, 196:109065, 2025.

xAI. Grok 4. xAI Documentation, 2025. Available at: https://x.ai [Accessed: September 2025].

Yuxin Yang, Abby Jerger, Song Feng, Zixu Wang, Christina Brasfield, Margaret S Cheung, Jeremy Zucker, and Qiang Guan. Improved enzyme functional annotation prediction using contrastive learning with structural inference. *Communications Biology*, 7(1):1690, 2024.

- Li Yiyao, Nirvi Vakharia, Weixin Liang, Aaron T Mayer, Ruibang Luo, Alexandro E Trevino, and Zhenqin Wu. Omicsnavigator: an Ilm-driven multi-agent system for autonomous zero-shot biological analysis in spatial omics. *bioRxiv*, pp. 2025–07, 2025.
 - Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language image pre-training. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 11975–11986, 2023.
 - Duzhen Zhang, Yahan Yu, Jiahua Dong, Chenxing Li, Dan Su, Chenhui Chu, and Dong Yu. Mm-llms: Recent advances in multimodal large language models. *arXiv preprint arXiv:2401.13601*, 2024a.
 - Shanghang Zhang, Gaole Dai, Tiejun Huang, and Jianxu Chen. Multimodal large language models for bioimage analysis. *nature methods*, 21(8):1390–1393, 2024b.
 - Ziqi Zhang, Kelvin CM Lee, Dickson MD Siu, Michelle CK Lo, Queenie TK Lai, Edmund Y Lam, and Kevin K Tsia. Morphological profiling by high-throughput single-cell biophysical fractometry. *Communications biology*, 6(1):449, 2023.
 - Matylda A Zietek, Akshar Lohith, Derfel Terciano, Beverley M Rabbitts, Aswad Khadilkar, John B MacMillan, and R Scott Lokey. Cell painting in activated cells illuminates phenotypic dark space and uncovers novel drug mechanisms of action. *bioRxiv*, 2025.

A USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (e.g., GPT-4) for non-substantive assistance during manuscript preparation. Specifically, LLMs were used to improve writing clarity, grammar, and phrasing, but not for generating scientific content or experimental design. All technical contributions, experiments, and interpretations were conceived and conducted by the authors.

The authors take full responsibility for the content of the manuscript, including any text generatedor polished by the LLM. We have ensured that the [LM-generated text adheres to ethical guidelinesand does not contribute to plagiarism or scientific misconduct.

B PRELIMINARIES AND BACKGROUND

B.1 HIGH-CONTENT IMAGING

High-content imaging (HCI) leverages automated microscopy and quantitative morphology to profile compound effects. Cell Painting stains multiple cellular components and extracts hundreds of single-cell features, producing high-dimensional representations that enable cross-perturbation comparisons, including compound clustering, target and pathway inference, and prediction of unannotated mechanisms (Bray et al., 2016; Odje et al., 2024).

B.2 MULTIDIMENSIONAL EXPERIMENTAL DESIGN IN CELL PAINTING ASSAYS

Drug screening with Cell Painting involves diverse experimental factors that strongly shape cell morphology. (Overview of high-content imaging (HCI) can be referred to Appendix B.1). Key sources of variability include the cell line (Lejal et al., 2025), culture medium Harkness et al. (2019), incubation environment, and drug administration, each capable of inducing substantial morphological shifts. Drug libraries typically contain hundreds of thousands of molecules (Huggins et al., 2011; Liu et al., 2025a), with concentrations

sampled using half-logarithmic dilution series to capture dose—response characteristics across orders of magnitude (Choy et al., 2021; Miyajima et al., 2025). Meanwhile, temporal variables staging further increase complexity, as different observation time points can capture different call phases of treatment response, revealing both immediate and progressive morphological changes (Beesabathuni et al., 2025; Lejal et al., 2025). The interplay of experimental variables defines a high-dimensional space which condition combinations yield diverse morphological phenotypes.

B.3 MLLM AGENTS FOR BIOINFORMATICS

Large language models (LLMs) are demonstrating growing potential across diverse domains of bioinformatics, with applications ranging from gene expression analysis (Liu et al., 2024a) and drug discovery (Averly et al., 2025) to pathology image interpretation (Lu et al., 2024), spatial transcriptomics (Wang et al., 2024), and gene perturbation studies. Because datasets in these fields are often high-dimensional, recent efforts have increasingly turned to multimodal large language models (MLLMs), which integrate visual features from images with prior textual knowledge. Leveraging logical inference strategies such as deduction, induction, abduction, and analogy, MLLMs can support existing pipelines and facilitate novel scientific insights.

More recently, an emerging paradigm has focused on deploying MLLMs as autonomous or semi-autonomous agents to execute complex bioinformatics workflows (Yiyao et al., 2025; Su et al., 2025). Such agents integrate heterogeneous tools and interact through natural language, enabling biological data analysis guided by human instructions. While early studies highlight the promise of MLLM-driven agents in augmenting traditional pipelines, their scope has largely been limited to direct perception and recognition tasks. They remain insufficient for deeper understanding of complex biological processes and for generating novel hypotheses. Addressing this gap, we introduce CL-CLIP, a multi-agent system that extends beyond the visual capacities of current state-of-the-art MLLMs to capture subtle pharmacological features, provide interpretable analysis, and facilitate hypothesis generation in pharmacological research.

B.4 Contrastive Learning

Contrastive learning is a self-supervised paradigm that learns representations by pulling semantically related pairs closer and pushing unrelated pairs apart in a shared embedding space (Hu et al., 2024a). In biology, contrastive learning has underpinned several applications, such as single-cell multi-omics integration (scRNA-seq and scATAC-seq) (Liu et al., 2025b), protein function prediction for classify enzyme activities (Yang et al., 2024), drug-target interaction prediction through protein-compound embedding (Singh et al., 2023). CLIP exemplifies the dual-encoder contrastive paradigm for multi-modal learning, it trains an image encoder and a text encoder so that matched image—text pairs have high cosine similarity while mismatched pairs are pushed apart. By scaling to large, CLIP can produce transferable embeddings that generalize across tasks.

C DATASET BACKGROUNDS

BBBC021 profiles MCF-7 cells treated with 38 reference drugs covering 12 mechanisms of action, imaged across up to eight half-log doses and three channels (DNA, β -tubulin, actin) (Caie et al., 2010). CPJUMP1 includes 301 small molecules (46 controls) perturbed in U2OS and A549 cells, imaged in five channels (DNA; mitochondria; actin/Golgi/plasma membrane; nucleoli and cytoplasmic RNA; endoplasmic reticulum) (Chandrasekaran et al., 2024). RxRx3 assays HUVECs with 1,674 bioactive compounds across eight concentrations and six fluorescence channels to capture dose–response phenotypes (Fay et al., 2023).

DETAILED RDKIT2D FEATURE OVERVIEW

Table 4: Categorized RDKit2D Descriptors Used in This Study (174 descriptors)

Feature Category	Descriptors
Topological and Complexity Descriptors	BalabanJ, BertzCT, Chi0, Chi0n, Chi0v, Chi1, Chi1n, Chi1v, Chi2n, Chi2v, Chi3n, Chi3v, Chi4n, Chi4v, Ipc, Kappa1, Kappa2, Kappa3
Basic Physicochemical Properties	MolWt, ExactMolWt, HeavyAtomMolWt, MolLogP, MolMR, LabuteASA, TPSA
Atom and Bond Counts	HeavyAtomCount, NumValenceElectrons, NumRotatableBonds, NumHAcceptors, NumHDonors, NHOHCount, NOCount, NumHeteroatoms, FractionCSP3
Ring Structure Descriptors	RingCount, NumAromaticRings, NumSaturatedRings, NumAliphaticRings, NumAromaticCarbocycles, NumAromaticHeterocycles, NumSaturatedCarbocycles, NumSaturatedHeterocycles, NumAliphaticCarbocycles, NumAliphaticHeterocycles
Electrotopological State (EState) Descriptors	MaxEStateIndex, MinEStateIndex, MaxAbsEStateIndex, MinAbsEStateIndex
VSA (Van der Waals Surface Area) Descriptors	EState_VSA1-11, PEOE_VSA1-14, SMR_VSA1-10, SlogP_VSA1-12, VSA_EState1-10
Fingerprint Density Descriptors	FpDensityMorgan1, FpDensityMorgan2, FpDensityMorgan3
Fragment-Based Functional Group Descriptors	fr_Al_COO, fr_Al_OH, fr_Al_OH_noTert, fr_ArN, fr_Ar_COO, fr_Ar_N, fr_Ar_NH, fr_Ar_OH, fr_COO, fr_COO2, fr_C_O, fr_C_O_noCOO, fr_HOCCN, fr_Imine, fr_NH0, fr_NH1, fr_NH2, fr_Ndealkylation1, fr_Ndealkylation2, fr_Nhpyrrole, fr_SH, fr_aldehyde, fr_alkyl_carbamate, fr_alkyl_halide, fr_allylic_oxid, fr_amide, fr_amidine, fr_aniline, fr_aryl_methyl, fr_azo, fr_benzene, fr_bicyclic, fr_dihydropyridine, fr_epoxide, fr_ester, fr_ether, fr_furan, fr_halogen, fr_methoxy, fr_morpholine, fr_nitrile, fr_nitro, fr_nitro_arom, fr_nitro_arom_nonortho, fr_para_hydroxylation, fr_phenol, fr_phenol_noOrthoHbond, fr_phos_acid, fr_phos_ester, fr_piperdine, fr_piperzine, fr_priamide, fr_pyridine, fr_sulfide, fr_sulfonamd, fr_sulfone, fr_thiazole, fr_thiophene, fr_unbrch_alkane, fr_urea
Drug-Likeness Score	qed

LOG-DOSE INDEXING FOR SERIAL DILUTION

To represent compound concentrations on a consistent and model-friendly scale, we transform raw concentrations into log-scaled step values. This transformation is based on the assumption that concentrations follow a serial dilution protocol in logarithmic space.

Let $C_{\max} \in \mathbb{R}_{>0}$ denote the nominal maximum concentration for a compound, and let $C \in \mathbb{R}_{>0}$ be any intermediate concentration point. In a standard protocol with logarithmic dilution spacing, each dose is reduced by a fixed factor per step. This can be expressed as:

$$C_k = C_{\text{max}} \cdot 10^{-k \cdot \Delta \log}, \quad k = 0, 1, 2, \dots$$
 (5)

753

754

755

756 757

758

759760761

762

763

764

765

766 767 768

769 770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

787

788

789 790 791

792 793

794

795

796

798

where $\Delta \log > 0$ is the logarithmic step size (in base 10. For example, $\Delta \log = 0.5$ corresponds to a 3.16-fold dilution between adjacent doses, since $10^{-0.5} \approx 0.3162$.

To recover the step index s(C) corresponding to any concentration C, we invert the above relation:

$$C = C_{\text{max}} \cdot 10^{-s(C) \cdot \Delta \log}$$

$$\Rightarrow \log_{10}(C) = \log_{10}(C_{\text{max}}) - s(C) \cdot \Delta \log$$

$$\Rightarrow s(C) = \frac{\log_{10}(C_{\text{max}}) - \log_{10}(C)}{\Delta \log}$$
(6)

Thus, the log-scaled step transformation is defined as:

$$s(C) := \frac{\log_{10}(C_{\text{max}}) - \log_{10}(C)}{\Delta \log}, \quad \Delta \log = 0.5$$
 (7)

This representation maps concentrations to a normalized step index in log space, which is more suitable for modeling, especially in contexts where concentration-response relationships are approximately log-linear.

F CONTEXT-AWARE TOKEN PROJECTION MODULES

Algorithm 1 CP-CLIP: Context-Aware Token Projection Modules

```
1: function ENCODE IMAGE(x_{img})
 2:
            f_{\text{img}} \leftarrow V(x_{\text{img}})
            return normalize (f_{img})
 3:
 4: end function
 5: function ENCODETEXT(x_{txt}, c, t, e)
            X \leftarrow \text{TokenEmbedding}(x_{\text{txt}})
 7:
            if <CONC> in x_{txt} then
                                                                                                       \triangleright c \in \mathbb{R}^2, conc_mlp: \mathbb{R}^2 \to \mathbb{R}^{d_h} \to \mathbb{R}^d
                  X[<CONC>] \leftarrow conc\_mlp(c)
 8:
 9:
           if \langle TIME \rangle in x_{txt} then
10:
                                                                                                       \triangleright t \in \mathbb{R}^1, time_mlp: \mathbb{R}^1 \to \mathbb{R}^{d_h} \to \mathbb{R}^d
                  X[<TIME>] \leftarrow time\_mlp(t)
11:
12:
13:
           if <CMPD> in x_{txt} then
                                                                                   \triangleright e \in \mathbb{R}^{d_{\text{cmp}}}, compound_mlp: \mathbb{R}^{d_{\text{cmp}}} \to \mathbb{R}^{d_h} \to \mathbb{R}^d
14:
                 X[<CMPD>] \leftarrow compound\_mlp(e)
15:
            end if
            X \leftarrow X + \text{PosEmb}(X)
16:
            f_{\text{txt}} \leftarrow T(X)
17:
            return normalize(f_{txt})
19: end function
```

G TRAINING LOSSES

We train the alignment with a symmetric CLIP-style contrastive objective. Specifically, we employ the InfoNCE loss, which encourages matched image-text pairs to have high similarity while contrasting them against all other mismatched pairs in the batch:

$$\mathcal{L}_{\text{InfoNCE}} = \frac{1}{2N} \sum_{k=1}^{N} \left[\ell_{\text{CE}} \left(S_{i \to t}^{(k,;)}, y_k \right) + \ell_{\text{CE}} \left(S_{t \to i}^{(k,;)}, y_k \right) \right]$$
(8)

Here, $F_i = [f_i^{(1)},...,f_i^{(N)}]^{\top} \in \mathbb{R}^{N \times d}$ and $F_t = [f_t^{(1)},...,f_t^{(N)}]^{\top} \in \mathbb{R}^{N \times d}$ are the batch of normalized image and text embeddings. The similarity matrices are computed as $S_{i \to t} = s \cdot F_i F_t^{\top} \in \mathbb{R}^{N \times N}$. The ground-truth labels $y_k \in \{0,1,\ldots,N-1\}$ indicate the correct matching pair for each sample in the batch. $\ell_{\text{CE}}(\cdot,\cdot)$ denotes the standard cross-entropy between the similarity scores and the target labels.

In our experiments, we additionally compare InfoNCE loss with an alternative loss recently proposed in SigLIP, which simplifies the contrastive objective by directly operate joint embeddings in a shared representation space.

$$\mathcal{L}_{\text{SigLIP}} = \frac{1}{N} \sum_{k=1}^{N} \sum_{j=1}^{N} -\log \sigma \left(y_{kj} \cdot s \cdot \left\langle f_i^{(k)}, f_t^{(j)} \right\rangle \right) \tag{9}$$

Here, s is a learnable temperature parameter. To isolate the effect of the loss function from the model architecture, we apply both loss types within our CP-CLIP framework for a fair comparison.

H CELLPROFILER PIPELINE

For all DNA channels, we extracted per-cell features using the workflow described in Table 5. This pipeline is specifically optimized for nuclear segmentation and feature extraction, using modules that measure grayscale features like shape, texture, and granularity. These features are particularly suitable for DNA stains. For all non-DNA channels (such as Actin, Tubulin, etc.), we applied a consistent pipeline template described in 6. This workflow is tailored to cytoplasmic or filamentous structures, which differ in spatial organization and image characteristics compared to nuclei.

Some feature modules differ between the two workflows, particularly in how certain parameters are configured. For example, texture features were computed at different spatial scales: for DNA, we used smaller scales (e.g., 3, 5, 7) to capture fine-grained nuclear texture, while for non-DNA channels, larger scales (e.g., 5, 10, 15) were used to capture broader cytoskeletal patterns. Similarly, granularity features and shape descriptors such as Zernike moments were customized to reflect the typical size and morphology of structures in each channel. These differences in pipeline configuration ensure that the measurements are biologically meaningful and adapted to the unique characteristics of each fluorescence channel.

Table 5: CellProfiler pipeline modules and measured features for DNA channel.

Module	Key Settings / Notes	Measured Features
1. Images	Load images; filter by: isimage, exclude folders with regex	_
2. Metadata	Extract metadata from filename and folder using regex patterns	Plate, Well, Site, ChannelNumber, Date
3. NamesAndTypes	Assign names: DNA (grayscale), nuclei_mask (objects); match rules: file contains "DNA", file contains "nuclei"	Image names: DNA, mask; Object names: nuclei, Nucleus
4. Groups	Grouping disabled	<u> </u>
5. MeasureImageAreaOccupied	Measure area of nuclei objects	AreaOccupied_nuclei
6. MeasureObjectNeighbors	Measure neighbors of nuclei within 10 pixels	Neighbors_10px_Count, Neighbors_10px_PercentTouching
7. MeasureObjectNeighbors	Measure neighbors of nuclei within 50 pixels	Neighbors_50px_Count, Neighbors_50px_PercentTouching
8. MeasureObjectSizeShape	Measure nuclei; include Zernike moments and advanced features	Shape: Area, Perimeter, Solidity, FormFactor, etc.; Zernike: Zernike_0_0 to Zernike_9_9
9. MeasureTexture	Texture of DNA in nuclei; scales: 3, 5, 7; levels: 256; mode: both image and object	Texture features per scale: Contrast, Entropy, Correlation, etc.
10. MeasureGranularity	Granularity of DNA in nuclei; radius = 8, spectrum range = 4	Granularity_14_DNA_in_nucle
11. ExportToSpreadsheet	Export all features with metadata; output file: DATA.csv with prefix Expt_	All per-object and per-image features above, including per-image mean/median/std

Table 6: CellProfiler pipeline modules and measured features for Actin channel.

Module	Key Settings / Notes	Measured Features
1. Images	Load images; filter by: isimage, exclude folders with regex	_
2. Metadata	Extract metadata from filename and folder using regex patterns	Plate, Well, Site, ChannelNumber, Date
3. NamesAndTypes	Assign names: Actin (grayscale), cell_mask (objects); Match rules: file contains "Actin", file contains "cell"	Image names: DNA, mask Object names: nuclei, Nucleus
4. Groups	Grouping disabled	_
5. MeasureImageAreaOccupied	Measure area of cell objects	AreaOccupied_Cell
6. MeasureObjectNeighbors	Measure neighbors of cell within 10 pixels	Neighbors_10px_Count, Neighbors_10px_ PercentTouching
7. MeasureObjectNeighbors	Measure neighbors of cell within 50 pixels	Neighbors_50px_Count, Neighbors_50px_ PercentTouching
8. MeasureObjectSizeShape	Measure cell; include Zernike moments and advanced features	Shape: Area, Perimeter, Solidity, FormFactor, MaxFeretDiameter, EquivalentDiameter, etc. Zernike: Zernike_0_0 to Zernike_9_9
9. MeasureTexture	Texture of Actin in cell; scales: 3, 5, 7; levels: 256	Texture features per scale: Contrast, Correlation, Entropy, SumEntropy, DifferenceEntropy, InfoMeas1, InfoMeas2 Granularity_14_
10. MeasureGranularity	Granularity of Actin in cell; radius = 8, spectrum range = 4	Actin_in_cell 11. ExportToSpreadsheet
Export all features with metadata; output file: DATA.csv	All per-object and per-image features above, including per-image mean/median/std	

I SIMILARITY PERFORMANCE ON SEEN DRUG COMPOUNDS

Table 7: Similarity Performance on Seen Drug Compounds

Model	Flindokalner	Racecadotril	AZM475271	Misoprostol	Trazodone	Orantinib	Rufinamide	lumiracoxib	BIRB-796	Methoxsalen
CLIP ViT-B/16	0.486 ± 0.049	0.528 ± 0.009	0.496 ± 0.032	0.437 ± 0.051	0.499 ± 0.036	0.427 ± 0.044	0.500 ± 0.030	0.433 ± 0.042	0.422 ± 0.041	0.440 ± 0.036
SigLIP ViT-B/16	0.308 ± 0.088	0.323 ± 0.075	0.209 ± 0.080	0.329 ± 0.077	0.214 ± 0.074	0.322 ± 0.083	0.222 ± 0.068	0.211 ± 0.063	$0.2407 \pm \textbf{0.086}$	0.314 ± 0.073
CP-CLIP SigLIP-ViT-B/16 (descriptor)	0.538 ± 0.066	0.539 ± 0.057	$0.456 \pm \text{0.040}$	0.531 ± 0.052	$0.448 \pm \text{0.039}$	0.545 ± 0.046	$0.452 \pm \scriptstyle{0.042}$	0.448 ± 0.040	$0.479 \pm \scriptstyle{0.059}$	$0.525 \pm \scriptstyle{0.051}$
CP-CLIP ViT-B/16 (fingerprint)	0.592 ± 0.050	0.598 ± 0.036	0.510 ± 0.045	0.599 ± 0.043	0.510 ± 0.042	$0.602 \pm \textbf{0.040}$	0.510 ± 0.036	$\boldsymbol{0.499 \pm 0.049}$	0.516 ± 0.036	$0.581 \pm \scriptstyle{0.051}$
CP-CLIP ViT-B/16 (descriptor)	0.590 ± 0.052	0.594 ± 0.037	$0.510 \pm \textbf{0.047}$	0.595 ± 0.047	0.504 ± 0.046	0.596 ± 0.042	$\boldsymbol{0.511} \pm 0.044$	0.497 ± 0.049	$\boldsymbol{0.525 \pm 0.031}$	$0.573 \pm \textbf{0.057}$
CP-CLIP ViT-L/16 (descriptor)	$\boldsymbol{0.608 \pm 0.057}$	$\boldsymbol{0.620 \pm 0.043}$	$\boldsymbol{0.511} \pm 0.060$	$\boldsymbol{0.626 \pm 0.039}$	$\boldsymbol{0.503 \pm 0.053}$	$\boldsymbol{0.626 \pm 0.043}$	0.509 ± 0.057	0.496 ± 0.060	0.513 ± 0.050	$\boldsymbol{0.599 \pm 0.064}$

Table 8: Seen drugs similarity averaged score

CLIP ViT-B/16	SigLIP ViT-B/16	CP-CLIP SigLIP-ViT-B/16 (descriptor)	CP-CLIP ViT-B/16 (fingerprint)	CP-CLIP ViT-B/16 (descriptor)	CP-CLIP ViT-L/16 (descriptor)
0.467	0.269	0.496	0.552	0.549	0.561

J VISTA-2D FINE-TUNE

The original VISTA2D model does not consistently achieve accurate segmentation across all fluorescent channels, especially when applied to diverse cell painting datasets. To address this limitation, we fine-tuned the segmentation model using the Cell Painting dataset. Figures below illustrate representative instance segmentation results across different channels and datasets (BBBC021, RxRx1, and CPJUMP, respectively), demonstrating improved mask quality and channel-specific accuracy. Three standard instance segmentation metrics are used to evaluate the fine-tuned model's instance mask quality on 500 test data, with improvements shown in Table 9:

ullet Intersection over Union (IoU) The IoU evaluates the overlap between a predicted instance P and ground truth instance label T:

$$IoU(P,T) = \frac{|P \cap T|}{|P \cup T|}$$
(10)

Where $|P \cap T|$ is number of pixels in the intersection of P and T.

• Aggregated Jaccard Index (AJI): The AJI generalizes IoU to an entire image containing multiple instances. It is the ratio of the total number of overlapping pixels between matched ground truth and prediction pairs, to the total number of pixels in their union plus the pixels in all unmatched predicted instances, and can be formulated as:

$$AJI(P,T) = \frac{\sum_{i=1}^{n} |T_i \cap P_{\pi(i)}|}{\sum_{i=1}^{n} |T_i \cup P_{\pi(i)}| + \sum_{j \in U} |P_j|}$$
(11)

Where $\pi(i)$ the index mapping that assigns predicted instances align with ground truth instances. U is the set of unmatched predicted instances.

• Panoptic Quality (PQ): PQ is a metric that jointly evaluates segmentation quality and recognition quality in instance segmentation. It reflects both how accurately the matched segments overlap (IoU) and how well all instances are detected (accounting for false positives and false negatives). PQ rewards correct segmentations while penalizing missing or spurious predictions. PQ can be formulated as:

$$PQ(P,T) = \underbrace{\frac{1}{|\mathcal{M}|} \sum_{(p,t)\in\mathcal{M}} IoU(p,t)}_{\text{Segmentation Quality (SQ)}} \times \underbrace{\frac{|\mathcal{M}|}{|\mathcal{M}| + \frac{1}{2} |\mathcal{P}_{\text{unmatched}}| + \frac{1}{2} |\mathcal{T}_{\text{unmatched}}|}_{\text{Detection Quality (DQ)}}$$
(12)

Where \mathcal{M} is the number of ground truth pairs, $\mathcal{P}_{unmatched}$ is unmatched predicted instances (False Positives), $\mathcal{T}_{unmatched}$ is unmatched ground truth instances (False Negatives).

Table 9: Instance Mask Evaluation Metrics

VISTA-2d	IoU	AJI	PQ
before fine tune after fine tune	0.272	0.290	0.151
	0.824	0.791	0.682

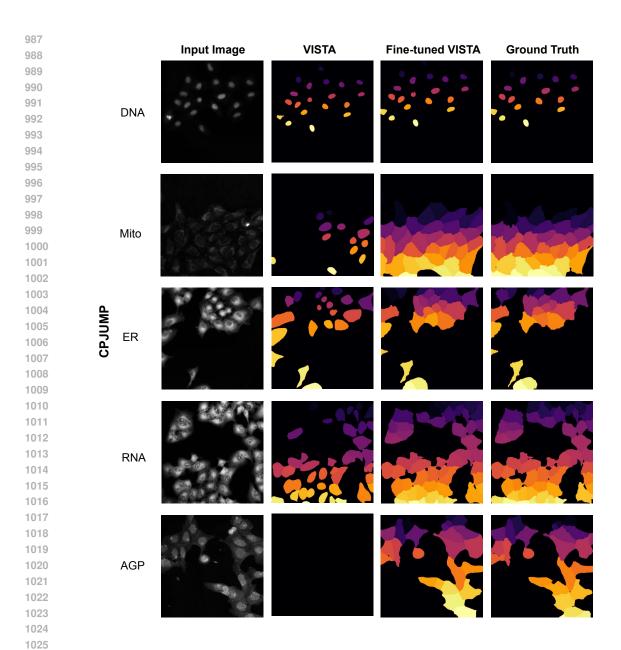


Figure 5: Segmentation performance comparison on CP-JUMP dataset across different imaging channels.

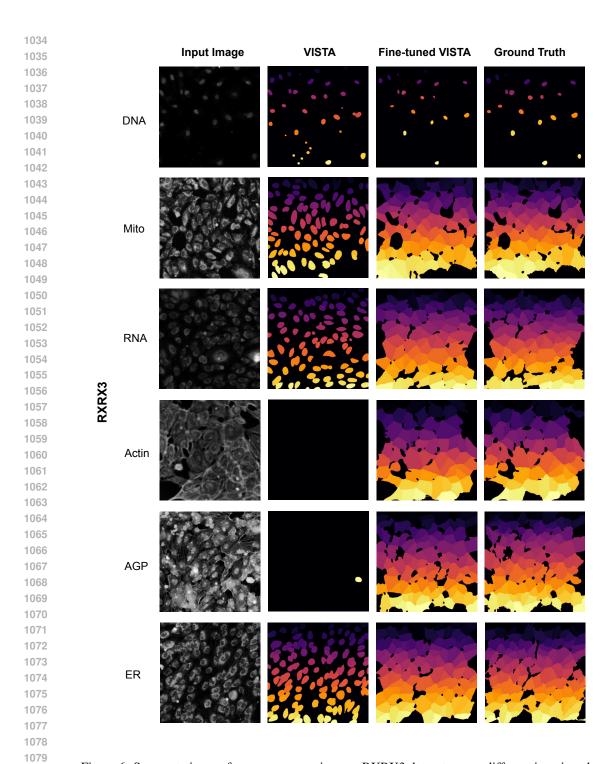


Figure 6: Segmentation performance comparison on RXRX3 dataset across different imaging channels.

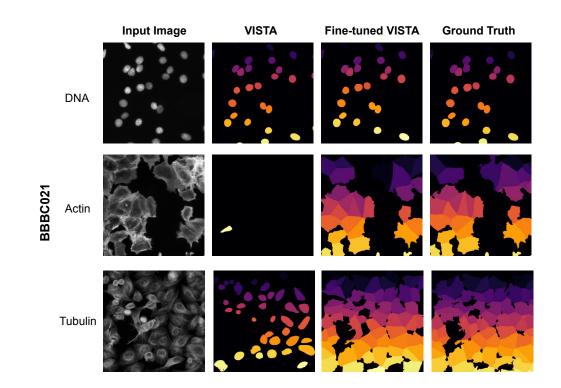


Figure 7: Segmentation performance comparison on BBBC021 dataset across different imaging channels.

K Dose response examples

To further illustrate the diversity of dose–response behaviors captured by CP-CLIP embeddings, Figure K shows additional examples from two datasets: BBBC021 and RxRx3 since only the two datasets designed dose scheme based experiments. For each compound, we compute the cosine distance between image embeddings at different concentration levels, focusing on perturbation effects within individual imaging channels.

The x-axis denotes concentration step pairs relative to the first experimental dose. Because different datasets use either fixed or variable half-log concentration series, we normalize the comparisons by indexing each dose level (e.g., 1 for the lowest concentration, 8 for the highest). A label such as "1–2" indicates the cosine distance between embeddings at concentration step 1 and step 2. For example, if the lowest concentration is 0.0001 μ M and a half-log step is used, then: step 1 is 0.0001 μ M, step 2 is 0.000316 μ M, step8 is 0 μ M. The cosine distance is computed between embeddings z_i and z_j at two different doses i and j, where

$$d_{ij} = 1 - \frac{\mathbf{z}_i \cdot \mathbf{z}_j}{\|\mathbf{z}_i\| \|\mathbf{z}_j\|} \tag{13}$$

The y-axis reflects this cosine distance, providing a quantitative measure of morphological difference between two concentrations. A rising trend along the x-axis indicates increasing morphological divergence from the baseline as concentration increases, which indicating a hallmark of a dose-dependent phenotype. Sharp trajectories are observed for drugs such as Alsterpaullone, Camptothecin, Cisplatin, Emetine, Mitox-

antrone, Acetophenazine, Buclizine, and Thiothixene, which are also consistent with their known mechanisms. In contrast, compounds such as Eszopiclone and Methsuximide produce more stable embeddings across doses, suggesting limited morphological response. These visualizations provide additional support for the claim that CP-CLIP embeddings can sensitively capture dose-dependent morphological variation across diverse chemical perturbations.

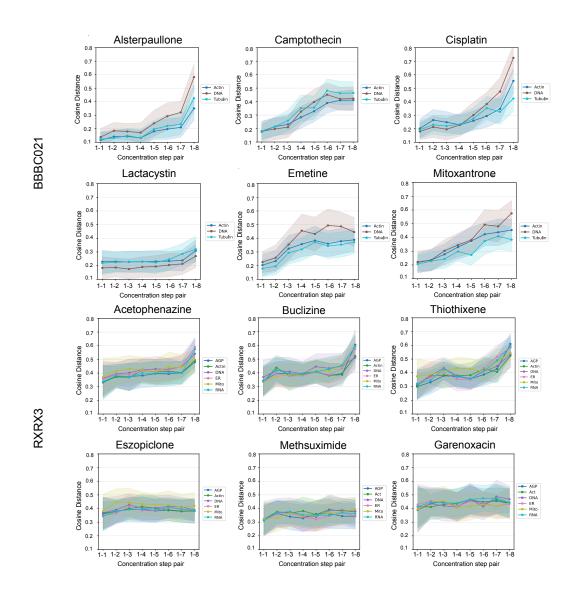


Figure 8: Dose–response consistency across compounds in BBBC021 and RxRx3 datasets, measured by cosine distance between CP-CLIP embeddings at different concentration step pairs.

L STATISTICAL EVIDENCE SYNTHESIZER EQUATIONS

Table 10: Summary of statistical parameters for image

Parameter Name	Expression	Variable Description
n_control n_perturb	$\begin{vmatrix} a \\ b \end{vmatrix}$	a: Number of cells from the control groupb: Number of cells from the perturbation group

Table 11: Summary of statistical parameters for each feature metric and their definitions

Tuese 11. Summar	y or statistical parameters for	eden reactive metric and their deminitions
Parameter Name	Expression	Variable Description
median_control	median(a)	median: Median of a
median_perturb	median(b)	median: Median of b
mad_control	median(a - median(a))	MAD: Median absolute deviation of a
mad_perturb	$\operatorname{median}(b - \operatorname{median}(b))$	MAD: Median absolute deviation of b
p10_control	$Q_a(0.10)$	$Q_a(p)$: p-th quantile of control group a
p25_control	$Q_a(0.25)$	Same as above
p50_control	$Q_a(0.50)$	Same as above
p75_control	$Q_a(0.75)$	Same as above
p90_control	$Q_a(0.90)$	Same as above
p10_perturb	$Q_b(0.10)$	$Q_b(p)$: p-th quantile of perturbation group b
p25_perturb	$Q_b(0.25)$	Same as above
p50_perturb	$Q_b(0.50)$	Same as above
p75_perturb	$Q_b(0.75)$	Same as above
p90_perturb	$Q_b(0.90)$	Same as above
delta_median	median(b) - median(a)	Difference in medians between groups
bootstrap_ci_lower	$\mathrm{CI}_{\mathrm{low}}$	Lower bound of bootstrap confidence interval
bootstrap_ci_upper	$\mathrm{CI}_{\mathrm{up}}$	Upper bound of bootstrap confidence interval
cliffs_delta	d	d: Cliff's delta effect size
p_value	p	p: Statistical significance from hypothesis test

The lower and upper bounds of the bootstrap confidence interval, denoted as $\mathrm{CI}_{\mathrm{low}}$ and $\mathrm{CI}_{\mathrm{up}}$, estimate the confidence interval of the median difference between control and perturbed sample using the bootstrap resampling method. Specifically, 1000 rounds of bootstrap sampling are performed. It can be computed as:

$$\operatorname{CI}_{\operatorname{low}} = \operatorname{Percentile}_{2.5}(\{\delta_i^*\})$$
 (14)

$$CI_{up} = Percentile_{97.5} (\{\delta_i^*\})$$
 (15)

Let δ_i^* denote the median difference obtained in the *i*-th round of bootstrap resampling, the collection $\{\delta_i^*\}$ represents the set of median differences obtained from N rounds of bootstrap resampling.

Cliff's delta is a nonparametric effect size that quantifies the magnitude of difference between two distributions. It is computed as:

$$d = \frac{1}{|a||b|} \sum_{i=1}^{n_x} \sum_{j=1}^{n_y} \left[\mathbb{I}(x_i > y_j) - \mathbb{I}(x_i < y_j) \right]$$
 (16)

Where x_i denotes the i-th sample from the control group, and y_j denotes the j-th sample perturbation (or treatment) group. The indicator function $\mathbb{I}(\cdot)$ returns 1 if the condition inside the brackets is true, and 0 otherwise. Cliff's delta, which quantifies the degree of difference between the two groups. Its value ranges from -1 to 1, where d=0 indicates no difference, d=1 indicates the control group has a much bigger value.

The *p*-value corresponds to the result of a two-sided Mann–Whitney U test. It helps assess whether the observed difference could be explained by random variation, under the assumption that the null hypothesis is true. The *p*-value is computed as:

$$p = 2 \cdot \left(1 - \Phi \left(\left| \frac{U - \frac{n_a n_b}{2}}{\sqrt{\frac{n_a n_b (n_a + n_b + 1)}{12}}} \right| \right) \right)$$
 (17)

Where U is the Mann–Whitney U statistic, and n_a , n_b are the sample sizes of the two groups being compared. The term $\Phi(\cdot)$ denotes the cumulative distribution function (CDF) of the standard normal distribution. The numerator measures the deviation of the observed U value from its expected value under the null hypothesis. This standardization transforms the U statistic into a z-score, which is then used to compute the two-tailed p-value. A small p-value indicates that the observed difference in distributions is unlikely to have occurred by chance.

M MLLMS BASELINE DETAILS

M.1 METHODS

To evaluate the reasoning capability of current mainstream MLLMs on the Cell Painting dataset, we test four API-accessible models: Grok-4, GPT-5, Claude-4-Sonnet, and Gemini-2.5-Pro. The experimental workflow consists of two stages. First, each MLLM performs background knowledge curation as a single preliminary task. The curated information is then used as context for zero-shot VQA across three tasks: the cell line task, the channel task, and the perturbation compound task. During background knowledge curation, the decoding parameters are set to temperature = 0.7 and top-p = 0.95, whereas for VQA they are set to temperature = 1 and top-p = 1 to ensure response stability. All MLLMs are prompted with the same structured instructions specifying the evaluation criteria. In the VQA stage, the models receive both control and perturbation images together with masked textual descriptions. Their task is to select the correct answer from multiple-choice options that include the ground-truth label and to provide both a confidence estimate and a concise rationale. An example prompt is shown below.

1269 M.2 PROMPTS 1270 1271 1272 1273 1274 1275 1276 1277 Task: Cell Line 1278 1279 **Background Information Curation** 1280 You are a knowledgeable biological research assistant specializing in Cell Painting-based phenotypic profiling Goal: 1281 curate background knowledge that helps analyze Cell Painting experiments with control and perturbation images from {Cell Painting Gallery}. 1282 Scope: Candidate cell lines: {A549, MCF7, U2OS, HUVEC}. 1283 Available imaging channels (subset may appear per sample): {DNA, RNA, ER, Mito, Actin, AGP}. 1284 Your responsibilities: For each candidate cell line, provide a concise dossier including: 1285 Canonical morphology (cell shape/size, adhesion/spreading, colony patterns, proliferation tendencies). 1286 Nuclear features (heterogeneity, nucleoli prominence) and cytoplasmic texture under fluorescence microscopy. Channel-anchored cues in Cell Painting (what is typically observable in DNA/RNA/Actin/Tubulin/ER/Mito; note if a channel is not informative). 1287 Robust cues that tend to persist across many perturbations vs cues that are sensitive to dose, time, confluency, or imaging settings. 1288 Typical culture conditions (media, supplements) that may influence morphology. 1289 Key discriminative features that help distinguish the listed cell lines from one another (summarize differences succinctly). 1290 A compact "Core vs Line-specific" visual observation checklist that standardizes what to look for across samples. Confounders and limitations: 1291 Common technical and biological confounders (plate/batch effects, illumination, magnification, confluency/overgrowth, serum %, dose/time, channel availability). 1292 Fields that may trivially identify the line (e.g., specific media names); mark these as "identity-revealing" variables Guidelines to down-weight or ignore cues when required channels are missing. 1293 Output requirements: 1294 Be accurate, concise, and avoid redundancy or speculation; if information is uncertain, state "unknown". Provide two parts: (A) a short, structured narrative; and (B) a machine-readable JSON block following the schema below. 1295 1296 1297 Task: Cell Line Task: Cell Line

System Instruction for VQA

You are a biomedical imaging expert with deep knowledge of Cell Painting assays.

You will receive:

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313 1314

1315

(1) two microscopy images: Image A = control, Image B = perturbation of the same experiment,

(2) an experiment description with one attribute masked (the cell line),

(3) structured background knowledge in JSON describing candidate cell lines, their canonical morphology, channel-specific cues, and discriminative features.

Your task:

infer the most likely cell line for the masked attribute by comparing Image A and Image B with the background knowledge.

Be conservative: if evidence is weak or ambiguous, distribute probability mass across candidates rather than guessing with overconfidence.

Return only a JSON response matching the required schema.

User Input Template for VQA

TASK:

Predict the masked cell line.

EXPERIMENT_DESCRIPTION:

 $\{masked_text\}$

BACKGROUND_KNOWLEDGE_JSON:

{background}

${\bf CANDIDATE_CELL_LINES:}$

A549, MCF7, U2OS, HUVEC ATTACHED IMAGES:

ATTACHED_IMAGES

Image A: Control

Image B: Perturbation

${\bf OUTPUT_JSON_SCHEMA:}$

Now answer in JSON only

```
{
    "task": "cell_line_prediction",
    "pred": "<one of [A549, MCF7, U2OS, HUVEC]>",
    "probs": {{ "A549": float, "MCF7": float, "U2OS": float,
    "HUVEC": float}},
    "confidence": float, // equals probs[pred]
    "rationale_50w": "<describe the key control vs perturb
    differences and why they match the predicted line>"
}
```

ъ.		
9	cound Information Curation a knowledgeable biological research assistant specializing in Cell Paint	ting, based phanotypic profiling
Goal:	a knowledgeable biblogical research assistant specializing in Cen Fami	ung-based phenotypic profitning.
Curate b	ackground knowledge that helps analyze Cell Painting experiments wit	ch control and perturbation images from {Cell Painting Gallery}.
Scope:	te channels: {DNA, RNA, ER, Mito, Actin, AGP}.	
	e cell lines (subset may appear per sample): {DNA, RNA, ER, Mito, A	ctin, AGP}.
	ponsibilities:	
	dossiers (for each channel in {candidate_channels}): e stain labels biologically (structure/process) and expected subcellular le	ocalization
		ominant, nucleoli visibility; filamentous networks; perinuclear reticulum; punctat
	ganelles; membrane/Golgi patterns).	
	ve cues vs. look-alikes (how to tell this channel apart from visually simes, sensitive cues; which patterns persist across cell types/perturbations	· · · · · · · · · · · · · · · · · · ·
		ation, focus blur; recommended pre-processing (e.g., background normalization,
	ng, gentle contrast enhancement).	
	annel comparison: se table of discriminative features (e.g., "nuclear dominant", "filamento	ous_cytoskeleton", "perinuclear_reticulum", "mitochondrial_punctate_network",
"cortical_	actin_band_or_stress_fibers", "golgi_perinuclear_crescent_or_membra	ane_outline") with each channel's typical strength (0-1).
	n confusion pairs (e.g., RNA vs DNA in nucleoli; Actin vs Tubulin fila	ments; ER vs Mito near the nucleus) and how to resolve them.
	ders & identity leakage: al confounders: batch/plate effects, illumination non-uniformity, focus,	magnification, bit-depth, camera gain.
Biologic	al confounders: confluency/overgrowth, cell-cycle stage, apoptosis/nec	rosis.
	revealing metadata to avoid relying on (e.g., file names or embedded cl	hannel tags).
_	heuristics for downstream use: a small set of boolean/evidence checks (see keys below) and a lightwei	ight decision rubric (if/then rules or weights) to combine them into per-channel
likelihood	ls.	- , , , , , , , , , , , , , , , , , , ,
	an "Unknown/ambiguous" fallback when evidence is insufficient.	
_	equirements: rate, concise, and avoid redundancy or speculation; if information is un-	certain, state "unknown".
Be accur	•	
Be accur	rate, concise, and avoid redundancy or speculation; if information is unc	
Be accur Provide	ate, concise, and avoid redundancy or speculation; if information is untwo parts: (A) a short, structured narrative; and (B) a machine-readable	JSON block following the schema below.
Be accur Provide	rate, concise, and avoid redundancy or speculation; if information is unc	
Be accur Provide	ate, concise, and avoid redundancy or speculation; if information is untwo parts: (A) a short, structured narrative; and (B) a machine-readable	JSON block following the schema below.
Task: (System You are a	Tate, concise, and avoid redundancy or speculation; if information is untwo parts: (A) a short, structured narrative; and (B) a machine-readable Cell Line Instruction for VQA biomedical imaging expert with deep knowledge of Cell	Task: Cell Line User Input Template for VQA TASK:
Be accur Provide Task: (Tate, concise, and avoid redundancy or speculation; if information is untwo parts: (A) a short, structured narrative; and (B) a machine-readable Cell Line Instruction for VQA biomedical imaging expert with deep knowledge of Cell	Task: Cell Line User Input Template for VQA TASK: Predict the masked image channel.
Provide Task: 0 System You are a	Tate, concise, and avoid redundancy or speculation; if information is untwo parts: (A) a short, structured narrative; and (B) a machine-readable cell Line Instruction for VQA biomedical imaging expert with deep knowledge of Cell issays.	Task: Cell Line User Input Template for VQA TASK:
Task: (System You are a Painting a You will (1) two n	Tate, concise, and avoid redundancy or speculation; if information is untwo parts: (A) a short, structured narrative; and (B) a machine-readable cell Line Instruction for VQA biomedical imaging expert with deep knowledge of Cell issays. receive: microscopy images: Image A = control, Image B =	Task: Cell Line User Input Template for VQA TASK: Predict the masked image channel. EXPERIMENT_DESCRIPTION: {masked_text} BACKGROUND_KNOWLEDGE_JSON:
Task: 6 System You are a Painting a You will (1) two perturbati	Tate, concise, and avoid redundancy or speculation; if information is untwo parts: (A) a short, structured narrative; and (B) a machine-readable cell Line Instruction for VQA biomedical imaging expert with deep knowledge of Cell assays. receive: microscopy images: Image A = control, Image B = on of the same experiment,	Task: Cell Line User Input Template for VQA TASK: Predict the masked image channel. EXPERIMENT_DESCRIPTION: {masked_text} BACKGROUND_KNOWLEDGE_JSON: {background}
Task: 6 System You are a Painting a You will (1) two perturbati	Tate, concise, and avoid redundancy or speculation; if information is untwo parts: (A) a short, structured narrative; and (B) a machine-readable cell Line Instruction for VQA biomedical imaging expert with deep knowledge of Cell issays. receive: microscopy images: Image A = control, Image B =	Task: Cell Line User Input Template for VQA TASK: Predict the masked image channel. EXPERIMENT_DESCRIPTION: {masked_text} BACKGROUND_KNOWLEDGE_JSON:
Task: (System You are a Painting a You will (1) two o perturbati (2) an ex channel), (3) struc	Tate, concise, and avoid redundancy or speculation; if information is untwo parts: (A) a short, structured narrative; and (B) a machine-readable control of the control of	Task: Cell Line User Input Template for VQA TASK: Predict the masked image channel. EXPERIMENT_DESCRIPTION: {masked_text} BACKGROUND_KNOWLEDGE_JSON: {background} CANDIDATE_CHANNELS: AGP, Actin, DNA, ER, Mito, RNA, Tubulin ATTACHED_IMAGES:
Task: (System You are a Painting a You will (1) two perturbati (2) an ex channel), (3) struc fingerprir	Tate, concise, and avoid redundancy or speculation; if information is untwo parts: (A) a short, structured narrative; and (B) a machine-readable control of the control of	Task: Cell Line User Input Template for VQA TASK: Predict the masked image channel. EXPERIMENT_DESCRIPTION: {masked_text} BACKGROUND_KNOWLEDGE_JSON: {background} CANDIDATE_CHANNELS: AGP, Actin, DNA, ER, Mito, RNA, Tubulin ATTACHED_IMAGES: Image A: Control
Task: (System You are a Painting a You will (1) two perturbati (2) an ex channel), (3) struc fingerprir	Tate, concise, and avoid redundancy or speculation; if information is untwo parts: (A) a short, structured narrative; and (B) a machine-readable control of the control of	Task: Cell Line User Input Template for VQA TASK: Predict the masked image channel. EXPERIMENT_DESCRIPTION: {masked_text} BACKGROUND_KNOWLEDGE_JSON: {background} CANDIDATE_CHANNELS: AGP, Actin, DNA, ER, Mito, RNA, Tubulin ATTACHED_IMAGES:
Task: (System You are a Painting a You will (1) two of pertrainting (2) an ey channel), (3) structing fingerprin Mito, RN Your tasi	Tate, concise, and avoid redundancy or speculation; if information is untwo parts: (A) a short, structured narrative; and (B) a machine-readable control of the control of	Task: Cell Line User Input Template for VQA TASK: Predict the masked image channel. EXPERIMENT_DESCRIPTION: {masked_text} BACKGROUND_KNOWLEDGE_JSON: {background} CANDIDATE_CHANNELS: AGP, Actin, DNA, ER, Mito, RNA, Tubulin ATTACHED_IMAGES: Image A: Control Image B: Perturbation OUTPUT_JSON_SCHEMA: {
Task: (System You are a Painting a You will (1) two o perturbati (2) an ey channel), (3) strue fingerprir Mito, RN Your tasl infer the	Tate, concise, and avoid redundancy or speculation; if information is untwo parts: (A) a short, structured narrative; and (B) a machine-readable control of the control of	Task: Cell Line User Input Template for VQA TASK: Predict the masked image channel. EXPERIMENT_DESCRIPTION: {masked_text} BACKGROUND_KNOWLEDGE_JSON: {background} CANDIDATE_CHANNELS: AGP, Actin, DNA, ER, Mito, RNA, Tubulin ATTACHED_IMAGES: Image A: Control Image B: Perturbation OUTPUT_JSON_SCHEMA: { "task": "image_channel_prediction",
Be accum Provide Task: 6 System You are a Painting a You will (1) two o perturbati (2) an exchannel), (3) structing fingerprime Mito, RN Your task infer the comparin	Tate, concise, and avoid redundancy or speculation; if information is untwo parts: (A) a short, structured narrative; and (B) a machine-readable control of the control of	Task: Cell Line User Input Template for VQA TASK: Predict the masked image channel. EXPERIMENT_DESCRIPTION: {masked_text} BACKGROUND_KNOWLEDGE_JSON: {background} CANDIDATE_CHANNELS: AGP, Actin, DNA, ER, Mito, RNA, Tubulin ATTACHED_IMAGES: Image A: Control Image B: Perturbation OUTPUT_JSON_SCHEMA: {
Be accur Provide Task: 6 System You are a Painting a You will (1) two 1 perturbati (2) an ex channel), (3) struc fingerprir Mito, RN Your task infer the comparin Be calib mass over	Tate, concise, and avoid redundancy or speculation; if information is unit two parts: (A) a short, structured narrative; and (B) a machine-readable and the parts: (A) a short, structured narrative; and (B) a machine-readable and the parts: (A) a short, structured narrative; and (B) a machine-readable and the parts: (B) a machine-readable and the parts: (A) a short, structured between the parts: (B) a machine-readable and (B) a mac	Task: Cell Line User Input Template for VQA TASK: Predict the masked image channel. EXPERIMENT_DESCRIPTION: {masked_text} BACKGROUND_KNOWLEDGE_JSON: {background} CANDIDATE_CHANNELS: AGP, Actin, DNA, ER, Mito, RNA, Tubulin ATTACHED_IMAGES: Image A: Control Image B: Perturbation OUTPUT_JSON_SCHEMA: { "task": "image_channel_prediction", "pred": " <one [agp,="" actin,="" dna,="" er,="" mito,="" of="" rna,="" tubulin]="">", "probs": ("AGP": float, "Actin": float, "DNA": float, "ER": float, "Mito": float, "RNA": float, "Tubulin": float},</one>
Task: 6 System You are a Painting a You will (1) two n perturbati (2) an en channel), (3) struc fingerprim Mito, RN Your task infer the comparin Be calib mass over	Tate, concise, and avoid redundancy or speculation; if information is unit two parts: (A) a short, structured narrative; and (B) a machine-readable control of the control	Task: Cell Line User Input Template for VQA TASK: Predict the masked image channel. EXPERIMENT_DESCRIPTION: {masked_text} BACKGROUND_KNOWLEDGE_JSON: {background} CANDIDATE_CHANNELS: AGP, Actin, DNA, ER, Mito, RNA, Tubulin ATTACHED_IMAGES: Image A: Control Image B: Perturbation OUTPUT_JSON_SCHEMA: { "task": "image_channel_prediction", "pred": " <one [agp,="" actin,="" dna,="" er,="" mito,="" of="" rna,="" tubulin]="">", "probs": { "AGP": float, "Actin": float, "DNA": float, "ER": float, "Mito": float, "RNA": float, "Tubulin": float}, "confidence": float,</one>
Task: 6 System You are Painting a You will (1) two of perturbati (2) an exchannel), (3) strue fingerprim Mito, RN Your tasl infer the comparin Be calib mass over	Tate, concise, and avoid redundancy or speculation; if information is unit two parts: (A) a short, structured narrative; and (B) a machine-readable and the parts: (A) a short, structured narrative; and (B) a machine-readable and the parts: (A) a short, structured narrative; and (B) a machine-readable and the parts: (B) a machine-readable and the parts: (A) a short, structured between the parts: (B) a machine-readable and (B) a mac	Task: Cell Line User Input Template for VQA TASK: Predict the masked image channel. EXPERIMENT_DESCRIPTION: {masked_text} BACKGROUND_KNOWLEDGE_JSON: {background} CANDIDATE_CHANNELS: AGP, Actin, DNA, ER, Mito, RNA, Tubulin ATTACHED_IMAGES: Image A: Control Image B: Perturbation OUTPUT_JSON_SCHEMA: { "task": "image_channel_prediction", "pred": " <one [agp,="" actin,="" dna,="" er,="" mito,="" of="" rna,="" tubulin]="">", "probs": ("AGP": float, "Actin": float, "DNA": float, "ER": float, "Mito": float, "RNA": float, "Tubulin": float},</one>
Task: (System You are a Painting a You will (1) two n perturbati (2) an ex channel), (3) struc fingerprir Mito, RN Your task infer the comparin Be calib mass over	Tate, concise, and avoid redundancy or speculation; if information is unit two parts: (A) a short, structured narrative; and (B) a machine-readable and the parts: (A) a short, structured narrative; and (B) a machine-readable and the parts: (A) a short, structured narrative; and (B) a machine-readable and the parts: (B) a machine-readable and the parts: (A) a short, structured between the parts: (B) a machine-readable and (B) a mac	Task: Cell Line User Input Template for VQA TASK: Predict the masked image channel. EXPERIMENT_DESCRIPTION: {masked_text} BACKGROUND_KNOWLEDGE_JSON: {background} CANDIDATE_CHANNELS: AGP, Actin, DNA, ER, Mito, RNA, Tubulin ATTACHED_IMAGES: Image A: Control Image B: Perturbation OUTPUT_JSON_SCHEMA: { "task": "image_channel_prediction", "pred": " <one [agp,="" actin,="" dna,="" er,="" mito,="" of="" rna,="" tubulin]="">", "probs": { "AGP": float, "Actin": float, "DNA": float, "ER": float, "Mito": float, "RNA": float, "Tubulin": float}, "confidence": float,</one>
Task: 6 System You are a Painting a You will (1) two or perturbati (2) an exchannel), (3) structing fingerprim Mito, RN Your task infer the comparin Be calib mass over	Tate, concise, and avoid redundancy or speculation; if information is unit two parts: (A) a short, structured narrative; and (B) a machine-readable and the parts: (A) a short, structured narrative; and (B) a machine-readable and the parts: (A) a short, structured narrative; and (B) a machine-readable and the parts: (B) a machine-readable and the parts: (A) a short, structured between the parts: (B) a machine-readable and (B) a mac	Task: Cell Line User Input Template for VQA TASK: Predict the masked image channel. EXPERIMENT_DESCRIPTION: {masked_text} BACKGROUND_KNOWLEDGE_JSON: {background} CANDIDATE_CHANNELS: AGP, Actin, DNA, ER, Mito, RNA, Tubulin ATTACHED_IMAGES: Image A: Control Image B: Perturbation OUTPUT_JSON_SCHEMA: { "task": "image_channel_prediction", "pred": " <one [agp,="" actin,="" dna,="" er,="" mito,="" of="" rna,="" tubulin]="">", "probs": { "AGP": float, "Actin": float, "DNA": float, "ER": float, "Mito": float, "RNA": float, "Tubulin": float}, "confidence": float,</one>

Background Information Curation				
You are a knowledgeable biological research assistant specializing in	Cell Painting-based phenotypic profiling.			
Goal:				
Curate background knowledge that helps analyze Cell Painting exper Scope:	ments with control and perturbation images from {Cell Painting Gallery}.			
•	prostol, trazodone, orantinib, rufinamide, lumiracoxib, birb-796, methoxsalen}.			
Your responsibilities:				
Compound dossiers (for each compound in {{acetohexamide, azm47.trazodone}}):	2271, esomeprazole, flindokalner, letrozole, misoprostol, nimodipine, orantinib, sacubitril,			
Mechanism of action (MoA; write "unknown" if unclear) and primary	targets (with confidence: high/medium/low).			
	bation, using channel-agnostic language (e.g., cell size/spread, rounding/contraction,			
filamentous/bundled patterns, stress-fiber loss, nuclear size/heterogene patterns, changes in population density).	tty, micronuclei, nucleoli prominence, cytoplasmic granularity, vacuoles, mitotic-arrest-like			
1 / 2 11 //	itions; which are sensitive to dose, time, confluency, imaging conditions.			
	time priors: typical effective concentration range (µM; log ranges allowed) and onset window (hours).			
Common off-target/secondary phenotypes that may confound interpretable Likely confusions (compounds or MoA) and how to disambiguate usi				
Cross-compound comparison:	ng mage-omy edes.			
A concise table of discriminative features (e.g., "nuclear_dominant",	$`filamentous_cytoskeleton", ``perinuclear_reticulum", ``mitochondrial_punctate_network", \\$			
	ical_actin_band_or_stress_fibers", "golgi_perinuclear_crescent_or_membrane_outline") with each channel's typical strength (0-1). nmon confusion pairs (e.g., RNA vs DNA in nucleoli; Actin vs Tubulin filaments; ER vs Mito near the nucleus) and how to resolve them.			
Confounders & identity leakage:	admi manono, EX vo vino near die nucleus) alla now to resolve dieni.			
Technical confounders: batch/plate, illumination non-uniformity, focus				
Biological confounders: confluency/overgrowth, serum %, cell-cycle	stage, apoptosis/necrosis. buld be documented but flagged as "not to be used as shortcuts"; prediction must rely on			
image evidence.	and be documented but magged as mot to be used as shortcuts; prediction must rely on			
Output requirements:				
Be accurate, concise, and avoid redundancy or speculation; if information				
Be accurate, concise, and avoid redundancy or speculation; if information				
Be accurate, concise, and avoid redundancy or speculation; if information Provide two parts: (A) a short, structured narrative; and (B) a machin	-readable JSON block following the schema below.			
Be accurate, concise, and avoid redundancy or speculation; if information	Task: Perturbation Compound			
Be accurate, concise, and avoid redundancy or speculation; if informe Provide two parts: (A) a short, structured narrative; and (B) a machin Task: Perturbation Compound System Instruction for VQA	Task: Perturbation Compound User Input Template for VQA			
Be accurate, concise, and avoid redundancy or speculation; if informer Provide two parts: (A) a short, structured narrative; and (B) a machin Task: Perturbation Compound System Instruction for VQA You are a biomedical imaging expert with deep knowledge of Cell	Task: Perturbation Compound User Input Template for VQA TASK:			
Be accurate, concise, and avoid redundancy or speculation; if informe Provide two parts: (A) a short, structured narrative; and (B) a machin Task: Perturbation Compound System Instruction for VQA	Task: Perturbation Compound User Input Template for VQA			
Be accurate, concise, and avoid redundancy or speculation; if informe Provide two parts: (A) a short, structured narrative; and (B) a machin Task: Perturbation Compound System Instruction for VQA You are a biomedical imaging expert with deep knowledge of Cell Painting assays. You will receive:	Task: Perturbation Compound User Input Template for VQA TASK: Predict the masked image compound. EXPERIMENT_DESCRIPTION: {masked_text}			
Be accurate, concise, and avoid redundancy or speculation; if informe Provide two parts: (A) a short, structured narrative; and (B) a machin Task: Perturbation Compound System Instruction for VQA You are a biomedical imaging expert with deep knowledge of Cell Painting assays. You will receive: (1) two microscopy images: Image A = control, Image B =	Task: Perturbation Compound User Input Template for VQA TASK: Predict the masked image compound. EXPERIMENT_DESCRIPTION: {masked_text} BACKGROUND_KNOWLEDGE_JSON:			
Be accurate, concise, and avoid redundancy or speculation; if informe Provide two parts: (A) a short, structured narrative; and (B) a machin Task: Perturbation Compound System Instruction for VQA You are a biomedical imaging expert with deep knowledge of Cell Painting assays. You will receive:	Task: Perturbation Compound User Input Template for VQA TASK: Predict the masked image compound. EXPERIMENT_DESCRIPTION: {masked_text}			
Be accurate, concise, and avoid redundancy or speculation; if informe Provide two parts: (A) a short, structured narrative; and (B) a machin Task: Perturbation Compound System Instruction for VQA You are a biomedical imaging expert with deep knowledge of Cell Painting assays. You will receive: (1) two microscopy images: Image A = control, Image B = perturbation of the same experiment, (2) an experiment description with one attribute masked (the image channel),	Task: Perturbation Compound User Input Template for VQA TASK: Predict the masked image compound. EXPERIMENT_DESCRIPTION: {masked_text} BACKGROUND_KNOWLEDGE_JSON: {background} CANDIDATE_COMPOUNDS: acetohexamide, azm475271, esomeprazole, flindokalner, letrozole,			
Be accurate, concise, and avoid redundancy or speculation; if informa Provide two parts: (A) a short, structured narrative; and (B) a machin Task: Perturbation Compound System Instruction for VQA You are a biomedical imaging expert with deep knowledge of Cell Painting assays. You will receive: (1) two microscopy images: Image A = control, Image B = perturbation of the same experiment, (2) an experiment description with one attribute masked (the image channel), (3) structured background knowledge in JSON describing candidate	Task: Perturbation Compound User Input Template for VQA TASK: Predict the masked image compound. EXPERIMENT_DESCRIPTION: {masked_text} BACKGROUND_KNOWLEDGE_JSON: {background} CANDIDATE_COMPOUNDS: acetohexamide, azm475271, esomeprazole, flindokalner, letrozole, misoprostol, nimodipine, orantinib, sacubitril, trazodone			
Be accurate, concise, and avoid redundancy or speculation; if information Provide two parts: (A) a short, structured narrative; and (B) a machin Task: Perturbation Compound System Instruction for VQA You are a biomedical imaging expert with deep knowledge of Cell Painting assays. You will receive: (1) two microscopy images: Image A = control, Image B = perturbation of the same experiment, (2) an experiment description with one attribute masked (the image channel),	Task: Perturbation Compound User Input Template for VQA TASK: Predict the masked image compound. EXPERIMENT_DESCRIPTION: {masked_text} BACKGROUND_KNOWLEDGE_JSON: {background} CANDIDATE_COMPOUNDS: acetohexamide, azm475271, esomeprazole, flindokalner, letrozole,			
Be accurate, concise, and avoid redundancy or speculation; if informe Provide two parts: (A) a short, structured narrative; and (B) a machin Task: Perturbation Compound System Instruction for VQA You are a biomedical imaging expert with deep knowledge of Cell Painting assays. You will receive: (1) two microscopy images: Image A = control, Image B = perturbation of the same experiment, (2) an experiment description with one attribute masked (the image channel), (3) structured background knowledge in JSON describing candidate compounds (their MoA/targets, expected image-only morphological signatures, and dose-time priors).	Task: Perturbation Compound User Input Template for VQA TASK: Predict the masked image compound. EXPERIMENT_DESCRIPTION: {masked_text} BACKGROUND_KNOWLEDGE_JSON: {background} CANDIDATE_COMPOUNDS: acetohexamide, azm475271, esomeprazole, flindokalner, letrozole, misoprostol, nimodipine, orantinib, sacubitril, trazodone ATTACHED_IMAGES: Image A: Control Image B: Perturbation			
Be accurate, concise, and avoid redundancy or speculation; if informe Provide two parts: (A) a short, structured narrative; and (B) a machin Task: Perturbation Compound System Instruction for VQA You are a biomedical imaging expert with deep knowledge of Cell Painting assays. You will receive: (1) two microscopy images: Image A = control, Image B = perturbation of the same experiment, (2) an experiment description with one attribute masked (the image channel), (3) structured background knowledge in JSON describing candidate compounds (their MoA/targets, expected image-only morphological signatures, and dose-time priors).	Task: Perturbation Compound User Input Template for VQA TASK: Predict the masked image compound. EXPERIMENT_DESCRIPTION: {masked_text} BACKGROUND_KNOWLEDGE_JSON: {background} CANDIDATE_COMPOUNDS: acetohexamide, azm475271, esomeprazole, flindokalner, letrozole, misoprostol, nimodipine, orantinib, sacubitril, trazodone ATTACHED_IMAGES: Image A: Control			
Be accurate, concise, and avoid redundancy or speculation; if informs Provide two parts: (A) a short, structured narrative; and (B) a machin Task: Perturbation Compound System Instruction for VQA You are a biomedical imaging expert with deep knowledge of Cell Painting assays. You will receive: (1) two microscopy images: Image A = control, Image B = perturbation of the same experiment, (2) an experiment description with one attribute masked (the image channel), (3) structured background knowledge in JSON describing candidate compounds (their MoA/targets, expected image-only morphological signatures, and dose-time priors).	Task: Perturbation Compound User Input Template for VQA TASK: Predict the masked image compound. EXPERIMENT_DESCRIPTION: {masked_text} BACKGROUND_KNOWLEDGE_JSON: {background} CANDIDATE_COMPOUNDS: acetohexamide, azm475271, esomeprazole, flindokalner, letrozole, misoprostol, nimodipine, orantinib, sacubitril, trazodone ATTACHED_IMAGES: Image A: Control Image B: Perturbation			
Be accurate, concise, and avoid redundancy or speculation; if informe Provide two parts: (A) a short, structured narrative; and (B) a machin Task: Perturbation Compound System Instruction for VQA You are a biomedical imaging expert with deep knowledge of Cell Painting assays. You will receive: (1) two microscopy images: Image A = control, Image B = perturbation of the same experiment, (2) an experiment description with one attribute masked (the image channel), (3) structured background knowledge in JSON describing candidate compounds (their MoA/targets, expected image-only morphological signatures, and dose-time priors). Your task: infer the most likely image channel for the masked attribute by comparing Image A and Image B with the background knowledge. Be calibrated: if evidence is weak or conflicting, distribute probability	Task: Perturbation Compound User Input Template for VQA TASK: Predict the masked image compound. EXPERIMENT_DESCRIPTION: {masked_text} BACKGROUND_KNOWLEDGE_JSON: {background} CANDIDATE_COMPOUNDS: acetohexamide, azm475271, esomeprazole, flindokalner, letrozole, misoprostol, nimodipine, orantinib, sacubitril, trazodone ATTACHED_IMAGES: Image A: Control Image B: Perturbation OUTPUT_JSON_SCHEMA: { "task": "compound_prediction", "pred": " <one [<candidate_compounds="" of="">]>",</one>			
Be accurate, concise, and avoid redundancy or speculation; if informe Provide two parts: (A) a short, structured narrative; and (B) a machin Task: Perturbation Compound System Instruction for VQA You are a biomedical imaging expert with deep knowledge of Cell Painting assays. You will receive: (1) two microscopy images: Image A = control, Image B = perturbation of the same experiment, (2) an experiment description with one attribute masked (the image channel), (3) structured background knowledge in JSON describing candidate compounds (their MoA/targets, expected image-only morphological signatures, and dose-time priors). Your task: infer the most likely image channel for the masked attribute by comparing Image A and Image B with the background knowledge. Be calibrated: if evidence is weak or conflicting, distribute probability mass over candidates rather than overconfident guessing.	Task: Perturbation Compound User Input Template for VQA TASK: Predict the masked image compound. EXPERIMENT_DESCRIPTION: {masked_text} BACKGROUND_KNOWLEDGE_JSON: {background} CANDIDATE_COMPOUNDS: acetohexamide, azm475271, esomeprazole, flindokalner, letrozole, misoprostol, nimodipine, orantinib, sacubitril, trazodone ATTACHED_IMAGES: Image A: Control Image B: Perturbation OUTPUT_JSON_SCHEMA: { "task": "compound_prediction", "pred": " <one [<candidate_compounds="" of="">]>", "probs": {"<compound_l>": float, "": float},</compound_l></one>			
Be accurate, concise, and avoid redundancy or speculation; if information Provide two parts: (A) a short, structured narrative; and (B) a maching a maching and the provide two parts: (A) a short, structured narrative; and (B) a maching a maching assays. You are a biomedical imaging expert with deep knowledge of Cell Painting assays. You will receive: (1) two microscopy images: Image A = control, Image B = perturbation of the same experiment, (2) an experiment description with one attribute masked (the image channel), (3) structured background knowledge in JSON describing candidate compounds (their MoA/targets, expected image-only morphological signatures, and dose-time priors). Your task: infer the most likely image channel for the masked attribute by comparing Image A and Image B with the background knowledge. Be calibrated: if evidence is weak or conflicting, distribute probability	Task: Perturbation Compound User Input Template for VQA TASK: Predict the masked image compound. EXPERIMENT_DESCRIPTION: {masked_text} BACKGROUND_KNOWLEDGE_JSON: {background} CANDIDATE_COMPOUNDS: acetohexamide, azm475271, esomeprazole, flindokalner, letrozole, misoprostol, nimodipine, orantinib, sacubitril, trazodone ATTACHED_IMAGES: Image A: Control Image B: Perturbation OUTPUT_JSON_SCHEMA: { "task": "compound_prediction", "pred": " <one [<candidate_compounds="" of="">]>",</one>			
Be accurate, concise, and avoid redundancy or speculation; if information Provide two parts: (A) a short, structured narrative; and (B) a machin Provide two parts: (A) a short, structured narrative; and (B) a machin Provide two parts: (A) a short, structured narrative; and (B) a machin Provide two parts: (A) a short, structured narrative; and (B) a machin Provide Painting assays. You will receive: (1) two microscopy images: Image A = control, Image B = perturbation of the same experiment, (2) an experiment description with one attribute masked (the image channel), (3) structured background knowledge in JSON describing candidate compounds (their MoA/targets, expected image-only morphological signatures, and dose-time priors). Your task: infer the most likely image channel for the masked attribute by comparing Image A and Image B with the background knowledge. Be calibrated: if evidence is weak or conflicting, distribute probability mass over candidates rather than overconfident guessing.	Task: Perturbation Compound User Input Template for VQA TASK: Predict the masked image compound. EXPERIMENT_DESCRIPTION: {masked_text} BACKGROUND_KNOWLEDGE_JSON: {background} CANDIDATE_COMPOUNDS: acetohexamide, azm475271, esomeprazole, flindokalner, letrozole, misoprostol, nimodipine, orantinib, sacubitril, trazodone ATTACHED_IMAGES: Image A: Control Image B: Perturbation OUTPUT_JSON_SCHEMA: { "task"; "compound_prediction", "probs": {"compound_prediction", "p			
Be accurate, concise, and avoid redundancy or speculation; if informe Provide two parts: (A) a short, structured narrative; and (B) a machin Task: Perturbation Compound System Instruction for VQA You are a biomedical imaging expert with deep knowledge of Cell Painting assays. You will receive: (1) two microscopy images: Image A = control, Image B = perturbation of the same experiment, (2) an experiment description with one attribute masked (the image channel), (3) structured background knowledge in JSON describing candidate compounds (their MoA/targets, expected image-only morphological signatures, and dose-time priors). Your task: infer the most likely image channel for the masked attribute by comparing Image A and Image B with the background knowledge. Be calibrated: if evidence is weak or conflicting, distribute probability mass over candidates rather than overconfident guessing.	Task: Perturbation Compound User Input Template for VQA TASK: Predict the masked image compound. EXPERIMENT_DESCRIPTION: {masked_text} BACKGROUND_KNOWLEDGE_JSON: {background} CANDIDATE_COMPOUNDS: acetohexamide, azm475271, esomeprazole, flindokalner, letrozole, misoprostol, nimodipine, orantinib, sacubitril, trazodone ATTACHED_IMAGES: Image A: Control Image B: Perturbation OUTPUT_JSON_SCHEMA: { "task": "compound_prediction", "pred": " <one [<candidate_compounds="" of="">]>", "probs": ["<compound_l>": float, "": float}, "confidence": float, // equals probs[pred] "rationale": "<words, and="" a→b="" differences="" how="" key="" suppo<="" th="" they="" visual=""></words,></compound_l></one>			
Be accurate, concise, and avoid redundancy or speculation; if informa Provide two parts: (A) a short, structured narrative; and (B) a machin Task: Perturbation Compound System Instruction for VQA You are a biomedical imaging expert with deep knowledge of Cell Painting assays. You will receive: (1) two microscopy images: Image A = control, Image B = perturbation of the same experiment, (2) an experiment description with one attribute masked (the image channel), (3) structured background knowledge in JSON describing candidate compounds (their MoA/targets, expected image-only morphological signatures, and dose-time priors). Your task: infer the most likely image channel for the masked attribute by comparing Image A and Image B with the background knowledge. Be calibrated: if evidence is weak or conflicting, distribute probability mass over candidates rather than overconfident guessing.	Task: Perturbation Compound User Input Template for VQA TASK: Predict the masked image compound. EXPERIMENT_DESCRIPTION: {masked_text} BACKGROUND_KNOWLEDGE_JSON: {background} CANDIDATE_COMPOUNDS: acetohexamide, azm475271, esomeprazole, flindokalner, letrozole, misoprostol, nimodipine, orantinib, sacubitril, trazodone ATTACHED_IMAGES: Image A: Control Image B: Perturbation OUTPUT_JSON_SCHEMA: { "task": "compound_prediction", "pred": " <one [<candidate_compounds="" of="">]>", "probs": ["<compound_l>": float, "": float}, "confidence": float, // equals probs[pred] "rationale": "<words, and="" a→b="" differences="" how="" key="" suppo<="" th="" they="" visual=""></words,></compound_l></one>			

M.3 DETAILED RESULTS

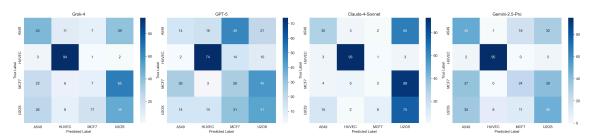


Figure 9: Confusion matrix on cell line task.

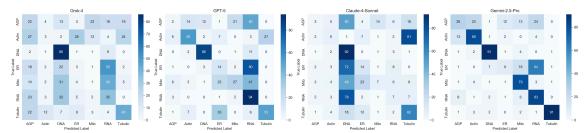


Figure 10: Confusion matrix on image channel task.

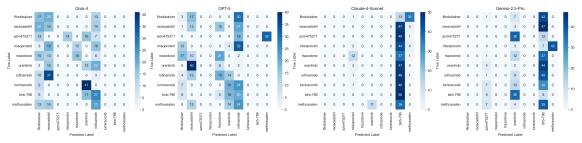


Figure 11: Confusion matrix on perturbation compound task.

N CP-AGENT PROMPTS

The prompts guide the CP-Agent through a multi-step reasoning process to interpret morphological effects of perturbations in Cell Painting data. Figure 12 introduces two tasks: (1) a background curation step, where the agent synthesizes prior biological knowledge about a compound's mechanism of action (MoA) and predicts which CellProfiler feature classes are likely to be affected in a specific imaging channel, and (2) a feature ranking task, where individual features are prioritized based on their relevance to the predicted morphological response. Figure 13 guides the CP-Agent to evaluate whether observed morphological changes under a perturbation are consistent with the proposed mechanism of action (MoA). Using prior biological knowledge and quantitative feature summaries, the agent assesses each feature's directional change, links it to the expected mechanism, and assigns confidence scores. The agent then provides an overall judgment of mechanism plausibility, highlighting supporting or conflicting evidence. All prompts enforce structured JSON outputs to ensure compatibility with automated downstream analysis and promote reproducibility.

```
1457
1458
                           Task: Report Generation
1459
                           Background Information Curation
1460
                                     a biomedical research assistant with expertise in chemical biology and phenotypic profiling
1461
                           Task:
                             Given a chemical perturbation and a specific Cell Painting imaging channel, provide mechanistic insight and hypothesize expected
1462
                            morphology changes specific to that cellular component
                              Perturbation condition (compound name, Cell Painting imaging channel, dose, time, etc.): {{ perturbation_condition }}
1464
                           Your responsibilities:
                              Mechanism summary: a 1-2 sentence description of the compound's mechanism of action (MoA).
1465
                              - Channel-relevant hypotheses: a list of morphology-level effects expected for the given cellular component (e.g., "Tubulin depolym-
1466
                           erization lower microtubule texture", "ER fragmentation granularity increase") with reasoning focused on the selected channel
                              - Likely impacted feature types: a list of CellProfiler feature types likely to change in this channel (e.g., "Texture_Tubulin", "Granu-
1467
                           larity_Tubulin", "AreaShape").
1468
                           Output format:
                             Return only JSON in the following format:
1469
1470
                               "mechanism_summary": "<short description>"
                               "morphology_hypotheses": ["<hypothesis 1>","<hypothesis 2>"],
1471
                               "likely_feature_types": ["AreaShape", "Texture_Tubulin", "Granularity_Tubulin", "Neighbors", "Location", "Number"]
1472
1473
                           Notes:
                              - Focus all hypotheses and feature types on the specific imaging channel.
1474
                              - If the compound is known to affect this structure, be specific. If the effect is indirect or uncertain, say so.
1475
                              - Be biologically grounded but concise.
1476
1477
                            Task: Report Generation
1478
                            Feature Ranking Template for VQA
1479
                            feature_prediction_sy
1480
                              You are a biomedical specialist in cell morphological features.
                              Follow instructions exactly. Remain grounded in the provided context.
1481
                              Return JSON only, with no extra text.
1482
                            feature_prediction_user
1483
                             Given a Cell Painting perturbation experiment, predict which morphological features are most likely to be affected.
1484
                               Background biological knowledge (from prior curation step):
1485
                              {{ background_curation_json }}
1486
                              - Perturbation condition: {{ perturbation_condition }}
                              - Candidate CellProfiler feature names (i.e., the only allowed feature namespace): {{ feature_names_json }}
1487
                            Your responsibilities:
1488
                               Select from the provided feature name list only.
                              - Predict which features are most likely to show morphological change under this perturbation.
1489
                              - Ground your reasoning in both the known biological mechanism and expected morphological effects
                              - If possible, relate features to biological structures (e.g., nuclear shape, texture, granularity, area, neighbor count, etc.).
1490
                               - Be conservative: do not overclaim. If uncertain, assign lower confidence.
1491
                            Output format:
                              Return only JSON in the following format:
1492
1493
                                "features_ranked": [
1494
                                  "name": "<feature_name from provided list>",
1495
                                  "rationale": "<1-2 sentence rationale grounded in A vs B visual differences and context>",
                                  "confidence": <float between 0 and 1>
1496
                                summary": "<bri>brief one-paragraph summary of key morphology differences observed in B relative to A>"
1498
1499
```

Figure 12: Prompt templates for background curation and feature ranking.

```
1504
1505
                                    Task: Report Generation
1506
                                    Feature Mechanism Consistency Template for VQA
1507
                                       ature_mechanism_consistency_sys:
You are a biomedical imaging and phenomics analyst specializing in Cell Painting assays.
1508
                                       Your primary evidence is quantitative feature summaries derived from curated CellProfiler outputs. Visual evidence may be referenced only if
1509
                                    explicitly provided as inputs
                                       Please output ONLY a valid JSON object without any explanation, markdown formatting, or extra text.
                                    feature_mechanism_consistency_user:
                                    Context:
1511
                                         The perturbation condition provided below may be incorrect, noisy, or adversarial (e.g., a fake drug name)
                                       - Prior biological knowledge about the perturbation is a SOFT prior only. You must verify it against quantitative evidence. If there is a mismatch,
                                    you must say so
1513
                                       - Evidence priority: (1) quantitative statistics, (2) visual evidence, (3) prior mechanism. Be conservative: if mechanism name/alias is not recognized
                                    or could be confused (e.g., fake or uncommon), set plausibility low and avoid strong claims
1514
                                        - Control image: A (DMSO)
1515
                                        Perturbation image: B (perturbed)
1516
                                        Perturbation condition: {{ perturbation_condition }}
                                        Background mechanism and morphology expectations (from prior knowledge): {{ background_curation_json }}
1517
                                        Quantitative summary of features (based on population statistics): {{ summary of features (based on population statistics): }
                                    Your responsibilities:
1518
                                        You are given two grayscale microscopy images: A = control (DMSO), B = perturbed.
                                       - Compare expected from perturbation condition vs observed data from quantitative summary of features and visual evidence
1519
                                        For each feature in the
                                                                     nmary, evaluate whether its change supports, contradicts, or is insufficient relative to the mechanism. Provide a
                                    confidence score (0.0-1.0) for your judgment.
1520
                                        You must evaluate **every feature ** provided, even if not statistically significant. If evidence is weak (e.g., high q-value, CI crosses 0, or small
1521
                                    effect size), state that explicitly and assign low confidence
                                        You may order features by significance, but do not skip any.
Summarize the dominant morphology change and explain how the quantitative trends support or contradict expectations. If contradict, explain why
1522
                                    (e.g., incorrect mechanism, off-target, low dose/time, or similar phenotype to another class)
1523
                                        Provide a concise overall assessment of whether the observed phenotype aligns with the proposed mechanism, highlighting key supporting or
                                    conflicting features based on quantitative summary of features.
1524
                                    Output format:
1525
                                       Only return JSON. Do not include any non-JSON text, comments, or markdown.
1526
                                         "features_ranked": [
1527
                                            "name": "<feature name from provided list>"
                                           "direction": "<increaseldecreaselambiguous>"
1528
                                           "observed_evidence": "<1-2 sentences citing quantitative stats (delta/CI/Cliff's delta/q) and, if clear, visual differences. No claims beyond
                                    provided evidence.
                                            "mechanism_link": "<why this feature's change would support/contradict the proposed mechanism; if unclear, state ambiguity.>",
1530
                                            "supports_proposed_mechanism": "<supports|contradicts|insufficient>"
"support_confidence": <float between 0 and 1>
1531
1532
                                         "mechanism_consistency": "<supportslcontradictslinsufficient>"
1533
                                         "plausibility score": "<float between 0 and 1 estimate of how credible the perturbation condition is, based on the selected feature name and their
                                    supporting scores for the proposed mechanism. Lower if conflicting>",
"morphology_summary": "<One concise paragraph summarizing the dominant morphological changes observed in Perturbed (B) vs Control (A),
based primarily on quantitative features. If visual evidence is available and clearly supports the trends (e.g., more fragmented mitochondria, loss of
1534
1535
                                    structure), you may briefly mention it as secondary support.>",
"overall_mechanism_assessment": """
1536
                                         Write 5 parts in order:
1537
                                          - Prelude: briefly state
                                           a) what the image/condition is hypothesized to show (the proposed MoA or phenotype guess), and
1538
                                           b) what this assessment will do next (evaluate consistency using quantitative features and mechanistic reasoning).

Example: "The specimen is hypothesized to reflect [proposed MoA/phenotype]. Below, I assess whether the observed morphology aligns with
1539
                                    this hypothesis using quantitative feature trends and a mechanistic linkage.
1540
                                           Mechanism verdict
                                           Evidence summary.
1541
                                           Mechanistic linkage sentence: explicitly link MoA cellular process expected morphologies observed features.
                                           Use one of:
1542
                                           "Given the proposed MoA [MoA], it is known to alter [process A] via [action], which should cause [outcome B]; this would present as [features
                                    (observed: [metrics]).
1543
                                           "If [MoA] perturbs [process A], it could plausibly produce [outcome B], aligning with [features] (observed: [metrics]); however, this is tentative
                                    due to [limitation].
                                          - Caveats and alternatives if have (1-2 sentences): note inconsistencies/limitations and suggest next checks (e.g., dose-response, time-course,
1545
                                         Do not claim causality beyond the provided evidence; keep wording falsifiable and bounded by data
1546
1547
```

Figure 13: Prompt template for evaluating mechanism-feature consistency in Cell Painting data.

ADDITIONAL CASE STUDIES

1551

1552

1553 1554 1555

1556

1557

1558

1559 1560

1561

1562

1563

1564

1565 1566

1567

1568

1569

1570

1576

1577

1578

1579

1580

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596 1597

O.1 ADDITIONAL CASE 1: TAXOL IN MCF7

Cell Painting Drug Experiment Brief — Taxol in MCF7 (Tubulin, 20X; 24 µM, 24 h)

1. Most Matched Experimental Context Cell line: MCF7 (human breast cancer)

- Culture medium: RPMI 1640, 10% FBS, 1% GlutaMAX, 900 μg/mL G418
- Imaging: Tubulin channel, 20X objective
- Compound: Taxol (24 µM, 24h)
 Mechanism of action: Microtubule stabilization

2. Visual Overview: Control vs Perturbation Imag

3. Anticipated Feature Changes Based on Mechanism

- · Expected effects of taxol (microtubule stabilizer):
 - Relative to control, 24 µM taxol for 24 hours in MCF7 is expected to produce stabilized, thick microtubule bundles with perinuclear and cortical enrichment and mitotic spindle/aster formations.
- These changes reduce fine-scale heterogeneity while increasing large-scale order, leading to:
- ↓ Entropy / contrast at large offsets
- Angular second moment, correlation, homogeneity
- Scale-dependent granularity shifts (↓ fine scale, ↑ mid-scale)

4. Key Feature Evidence from Data

AreaShape_Solidity
Direction: decrease
Observed evidence: Median decreased by -0.082 (CI [-Observed evidence: Median decreased by -0.082 (C 0.114, -0.055)); large effect (Cliff's $\delta = 0.82$); highly significant (q = $6.27e{-}06$). Mechanism link: Microtubule stabilization can induce

mitotic arrest and cell shape irregularities, reducing solidity via protrusions/aster-like structures.

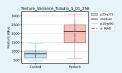
Supports proposed mechanism:

Yes (0.9 confidence)

Texture_Contrast_Tubulin_7_01_256 Direction: increase

Observed evidence: Median increased by +932 (CI [384, 1452]); strong effect (Cliff's δ = -0.638); significant (q = 0.000412).

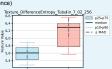
U.000412). Mechanism link: Thick, bright bundles next to darker cytoplasm increase local contrast, consistent with microtubule stabilization. Supports proposed mechanism: Supports (0.85


confidence)

Texture_Variance_Tubulin_5_01_256
Direction: increase
Observed evidence: Median increased by +1267 (CI [615, 1599]); strong effect (Cliff's \(\bar{0} = -0.627 \); significant (q = 0.000413).

Mechanism link: Stabilized, thick bundles and spindles raise intensity variance within cells.

Supports proposed mechanism:
Yes (0.85 confidence)


Texture_DifferenceEntropy_Tubulin_7_02_256

Observed evidence: Median increased by +0.689 (CI [0.186, 0.809]); large effect (Cliff's δ = -0.672); significant

(U.166, U.309); large enect (Ulins 6 o = ~0.6/2); significant (q = 0.000252).

Mechanism link: Bundling and spindle poles introduce pronounced intensity differences, elevating difference-entropy; compatible with stabilized microtubules.

Supports proposed mechanism: Ø supports (0.82 confidence)

Morphology_summary

Texture_SumVariance_Tubulin_7_01_256 Direction: increase

Observed evidence: Median increased by +4228 (CI [1972] 5274]); strong effect (Cliff's δ = -0.602); significant (q = 0.000610).

Mechanism link: Global variability across neighborhoods is expected to rise with bundled microtubules and spindle structures Supports proposed mechanism: Ves (0.84 confidence)

Texture_InfoMeas1_Tubulin_7_03_256 Direction: decrease


Direction: decrease

Observed evidence: Median decreased by −0.049 (CI [−0.076, −0.014]); moderate effect (Cliff's δ = 0.468); significant (q = 0.00881).

Mechanism link: Lower informational measure of correlation can reflect stronger structured heterogeneity from bundled fibers and asters.

Supports proposed mechanism: ⊗ supports (0.7 exceptions).

confidence)

5. Mechanism Assessment and Conclusion

Key Evidence (Features with Large Effect Sizes):

- 1.Texture_Variance_Tubulin_5_01_256
- ↑ Median bv +1267
- q = 4.13e-04

. Indicates increased intensity heterogeneity due to bundled microtubules

- 2.Texture_SumVariance_Tubulin_7_01_256
- ↑ Median by +4228 q = 6.10e-04

Suggests increased global variability in tubulin texture

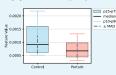
3 .Texture Contrast Tubulin 7 01 256 ↑ Median by +932 q = 4.12e-04

Reflects sharper contrast from bright bundles vs

4 .Texture_DifferenceEntropy_Tubulin_7_02_256 ↑ Median by +0.689

Perturbed cells are far fewer (16 vs 66) and show strong increases in Tubulin texture variance, sum-variance, contrast, and difference-entropy, alongside a marked decrease in cell solidity. These quantitative trends indicate more pronounced, bright microtubule structures and irregular cell outlines, consistent with bundled/stabilized microtubules and mitotic arrest phenotypes. Other texture and shape metrics show weak or non-significant

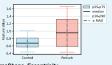
Overall_mechanism_linked_summary

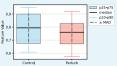

The specimen is hypothesized to reflect microtubule stabilization by taxol leading to bundled tubulin and mitotic arrest. Below, I assess whether the observed morphology aligns with this hypothesis using quantitative feature trends and mechanistic linkage. The quantitative phenotype supports microtubule stabilization.

Given the proposed MoA (mechanism of action) of microtubule stabilizers, it is known to alter microtubule dynamics via suppression of depolymerization, which should cause bundled, bright fibers and mitotic arrest; this would present as higher tubulin texture variance/contrast and reduced cell solidity (observed: large positive shifts in variance/contrast/difference-entropy and a strong solidity decrease).

Caveats: Sample size in perturbed is small (n = 16), and several features are Caveats: Sample size in peruniee is small (if = 10), and several reactions are non-significant; off-target effects or imaging differences cannot be excluded. Follow-up with dose–response/time-course, mitotic markers (e.g., pH3), and replicate expansion is recommended to strengthen the attribution.

Cell Painting Drug Experiment Brief - Vincristine in MCF7 (Tubulin, 20X; 24 µM, 24 h)


1598 O.2 ADDITIONAL CASE 2: VINCRISTINE IN MCF7 1599 1600 1601 1. Most Matched Experimental Context • Cell line: MCF7 (human breast cancer) • Culture medium: RPMI 1640, 10% FBS, 1% GlutaMAX, 900 μg/mL G418 2. Visual Overview: Control vs Perturbation Imag 1602 Imaging: Tubulin channel, 20X objective Compound: Vincristine (24 μM, 24h) Mechanism of action: Microtubule destabilizers 1603 1604 1605 3. Anticipated Feature Changes Based on Mechanism 1606 • Expected effects of vincristine (microtubule destabilizer): Vincristine disrupts microtubules, leading to cytoskeletal collapse, mitotic arrest, and morphological changes in treated cells Relative to control, vincristine treatment is expected to cause Loss of microtubule structure and texture 1608 Cytoskeletal collapse resulting in more rounded, smaller cells Accumulation of cells in mitosis (increased cell number) These changes are expected to manifest in Cell Painting features as: 1609 ese changes are expected to maintest in Cell Painting reatures as: 1 Tubulin texture contrast and entropy (e.g., Texture_Contrast_Tubulin, Texture_Entropy_Tubulin) 1 Angular second moment (e.g., Texture_AngularSecondMoment_Tubulin) due to more uniform st 1 Eccentricity, † FormFactor (more circular cells) 2 AreaShape, Area (due to mitotic rounding) 1 Number_Object_Number (mitotic arrest increases cell count) 1610 1611 1612 Scale-dependent granularity shifts in tubulin (e.g., Granularity_2_Tubulin) 1613 4. Key Feature Evidence from Data Texture Contrast 3 01.256 Direction: increase Observed evidence: Median increased by +459.3 (q = 2.15e.08, Cliffs delta = -0.83) Mechanism link: Microtubule destabilization leads to the collapse of the fine filamentous network into bright, dense aggregates (paracrystals) and dark, emply cytoplasmic regions. This reorganization drastically increases the contrast between adiacent pixels. 1614 1615 Observed evidence: Median decreased by -8.5 (q = 0.0156, Cliff's delta = 0.38) Mechanism link: Vincristine is a cytotoxic agent that induces mitotic arrest, often leading to apoptosis and subsequent cell death. A reduction in cell count after 24 hours is a direct and expected consequence. Supports proposed mechanism: ② Yes (0.9 confidence) 1616 1617 ntrast between adjacent pixels. pports proposed mechanism: Ves (1.0 confidence) 1618 1619 1620 1621 Texture_AngularSecondMoment_3_01_256 AreaShape_FormFactor Direction: increase Direction: decrease Observed evidence: Median decreased by -0.00024 (q = 0.0156, Cliffs delta = 0.366) Mechanism link: Reflects a loss of homogeneous Observed evidence: Median increased by +0.689 (CI [0.186, 0.809]); large effect (Cliff's δ = -0.672); significant (q = 1623 1624 filamentous texture in control cells, replaced by heterogeneous pattern of bright aggregates and dark 1625 Supports proposed mechanism: 📀 Yes (0.9 confidence) 1627



Observed evidence: Median increased by +0.276 (q = Observed evidence: Median increased by +0.276 (q = 0.0156, Cliffs eldta = -0.376) Mechanism link: Feature quantifies emergence of coarser textures. Depolymertization of fine microtubules and reassembly into larger aggregates is consistent with increased granularity.

Supports proposed mechanism: Ø Yes (0.9 confidence)

ction: decrease erved evidence: Median decreased by -0.033 (q = Observed evidence: Median decreased by -0.033 (q s 0.184) — not statistically significant Mechanism link: Complementary to FormFactor; also indicates cell rounding due to cytoskeletal collapse. Supports proposed mechanism: Yes (0.5

5. Mechanism Assessment and Conclusion

Key Evidence (Features with Large Effect 1.Texture_Contrast_Tubulin_3_01_256 ↑ Median bv +459.3

= 2 15e-08

1632

1633

1634

1635

1636

1640

1641

1642

1644

q = 2.15e-08
Indicates increased local pixel intensity variation due to tubulin network collapse and aggregation
2.Granularity. 2.Tubulin
Y. Median by 4.0.276
q = 0.0156

Quantifies emergence of coarse texture patterns caused by tubulin depolymerization and aggregate formation 3.Texture_AngularSecondMoment_Tubu-lin 3.01_256 ↓ Median by −0.00024

q = 0.0156

Reflects loss of homogeneous filamentous texture, consistent with microtubule disruption

4.Number_Object_Number

↓ Median by -8.5

q = 0.0156

Indicates reduced cell count, consistent with mitotic arrest and vincristine-induced cytotoxicity

Morphology summary

The dominant morphological change is a profound disruption of the tubulin cytoskeleton. Quantitatively, this is captured by a highly significant increase in Texture_Contrast_Tubulin and Granularity 2_Tubulin, reflecting the collapse of the filamentous network into coarse, bright aggregates. This cytoskeletal failure is consistent with the observed (though not statistically significant) trends toward a more rounded cell shape, indicated by an increase in AreaShape, FormFactor. Furthermore, the treatment induced significant cytotoxicity, evidenced by a marked decrease in the Number_Object_Number.

Overall_mechanism_linked_summary

The specimen is hypothesized to reflect microtubule destabilization induced by vincristine. Below. I assess whether the observed morphology aligns with this hypothesis using quantitative feature trends and a mechanistic linkage.

The observed phenotype strongly supports the proposed mechanism of action The most significant changes are in tubulin texture, with a massive increase in Texture_Contrast_Tubulin (delta_median: +459.3) and a decrease in homogeneity (Texture_AngularSecond-

Moment_Tubulin), indicating tubulin aggregation. This is accompanied by a significant decrease in cell number (Number_Object_Number), suggesting cytotoxicity. Given the proposed MoA of microtubule destabilization, vincristine is known to alter tubulin one in the proposed move of influence designation, which should cause cytoskeletal collapse and mitotic arrest; this would present as a loss of filamentous structures, formation of tubulin aggregates, and cell rounding, aligning with the observed increases in tubulin contrast and granularity (observed: q < 0.02 for texture features).

While the textural and cytotoxicity evidence is definitive, the expected changes in cell shape did not reach statistical significance, which could be due to insufficient statistical power or population

0.3ADDITIONAL CASE 3: SORBINIL IN A549

Cell Painting Drug Experiment Brief — Sorbinil in A549 (RNA, 20X; 48µM, 48h)

Most Matched Experimental Context Cell line: A549 Culture medium: 2% FBS in DMEM medium

1645

1646

1647

1648 1649

1651 1652

1653

1661

1662

1663

1664 1665 1666

1668

1670

1671 1672

1674

1675

1676 1677

1678

1679 1680

1681

1682

1683

1685

1687

1689

1691

- · Imaging: RNA channel, 20X objective
- · Compound: Sorbinil (48 µM, 48h)

Mechanism of action: Aldose Reductase Inhibitor

3. Anticipated Feature Changes Based on Mechanism

Expected effects of sorbinil (aldose reductase inhibitor under oxidative/osmotic stress):
 Sorbinil is expected to perturb RNA organization through redox/osmotic stress, leading to nucleolar compaction, cytoplasmic RNA puncta formation, and perinuclear RNA redistribution.
 Relative to control, sorbinil treatment is expected to cause:

- Relative to control, sorbinil treatment is expected to cause:
 Increased RNA texture heterogeneity
 Formation of stress granule—like puncta
 Redistribution of RNA to nucleol and perinuclear zones
 These changes are expected to manifest in Cell Painting features as:
 ↑ RNA texture entropy (e.g., Texture_Entropy, RNA _ 5.02_256, Texture_Entropy_RNA_7_02_256)
 ↑ RNA texture contrast (e.g., Texture_DifferenceEntropy, RNA_5_02_256, Texture_Contrast_RNA_7_02_256)
 ↑ Local intensity variability (e.g., Texture_DifferenceEntropy, RNA_5_02_256, Texture_DifferenceVariance_RNA_5_02_256)
 ↑ Texture variance and sum variance (e.g., Texture_Variance_RNA_5_02_256, Texture_DifferenceVariance_RNA_5_02_256)
 ↑ Mid- to coarse-scale granularity (e.g., Granularity_2_RNA, Granularity_3_RNA, Granularity_4_RNA)

4. Key Feature Evidence from Data

Texture_Entropy_5_02_256 Direction: decrease

unection: decrease Observed evidence: Median decreased by ~3.782 (CI [~5.094, ~2.508]); large effect (Cilf* 5 = 0.782); q = 9.55e-08 Mechanism link: Lower entropy indicates more uniform/ordered RNA signal, consistent with nucleolar compaction or consolidation under redov/osmotic stress from aldose reductase inhibition.

Supports proposed mechanism:

Yes (0.92 confidence)

 $\label{eq:total_constraints} \textbf{Texture_DifferenceVariance_5_02_256} \ \text{Direction: increase} \ \text{Observed evidence: Median increased by +5.27e-04 (CI [1.50e-04, 1.12e-03]); moderate effect (Cliffs <math display="inline">\delta$ = -0.473); q =

U-0121

Mechanism link: Increased difference variance can reflect sharper boundaries or localized foc; this is consistent with formation of distinct nucleolar/cytoplasmic RNA foc under stress.

Supports pronned and the contraction of the con

Texture_Entropy_7_02_256 Direction: decrease


Direction: decrease
Observed evidence: Median decreased by -3.655 (CI [-5.041, -2.486]); large effect (Cliff's δ = 0.781); q = 9.55e-

08
Mechanism link: Reduced large-scale entropy aligns with more homogeneous RNA distribution and potential nucleolar consolidation expected with nucleolar stress.
Supports proposed mechanism: ② Yes (0.91 confidence)

Texture DifferenceEntropy 5 02 256

Direction: decrease Median decreased by -1,046 (Cl [-1.781, 0.28]) models with the control of th

Texture_InverseDifferenceMoment_5_02_256 Direction: increase Observed evidence: Median increased by +0.293 (CI [0.176, 0.430]); strong effect (Cliff's δ = -0.708); q = 1.23e-0.

Wechanism link: Higher homogeneity (IDM) suggests smoother/less varied RNA texture, compatible with condensed nucleolar signal and reduced diffuse RNA. Supports proposed mechanism:

Yes (0.88 confidence)

2. Visual Overview: Control vs Perturbation Image

 $\label{eq:Granularity_3_RNA} \begin{tabular}{ll} \end{tabular} Direction: decrease \\ \end{tabular} Observed evidence: Median decreased by -0.176 (CI [-0.406, 0.051]); small-moderate effect (Cliff's <math>\delta$ = 0.317); q =

0.0523
Mechanism link: A decrease in mid-scale granularity could reflect smoother RNA texture or consolidation into fewer/larger regions; directionally compatible but statistically marginal.
Supports proposed mechanism:

Insufficient (0.45

confidence)

Granularity_2_RNA

Direction: decrease
Observed evidence: Median decreased by -0.140 (CI [0.325, 0.064]); small effect (Cliffs 5 = 0.288); q = 0.0774

Mechanism link: Reduced small-scale granularity could Mechanism link: Reduced small-scale granularity could indicate loss of fine RNA puncta, which only partially matches

Supports proposed mechanism: 🔥 Insufficient (0.38

5. Mechanism Assessment and Conclusion

Key Evidence (Features with Large Effect Sizes): 1.Texture_Entropy_RNA_5_02_256 ↓ Median by -3.782 q = 9.55e-08

Indicates increased RNA ordering and reduced

intensity heterogeneity

2.Texture_Entropy_RNA_7_02_256

↓ Median by -3.655

q = 9.55e-08

Reflects large-scale RNA homogenization,

consistent with nucleolar consolidation
3. Texture_InverseDifferenceMoment_R-NA_5_02_256 ↑ Median by +0.293

q = 1.23e - 06Suggests increased homogeneity of RNA texture

4.Texture_DifferenceVariance_RNA_5_02_256

↑ Median by +5.27e-04

a = 0.0021y = 0.0021 Indicates sharper local gray-level differences, compatible with nucleolar foci 5.Texture_DifferenceEntropy_RNA_5_02_256 ↓ Median by −1.046

a = 0.00464

Morphology_summary

The perturbed condition exhibits markedly reduced RNA texture entropy and increased homogeneity (higher niverse difference moment), indicating a more ordered RNA distribution.

**Identification approximation sunnest sharper but more predictable local gray-level

Difference-variance and difference-entropy metrics suggest sharper but more predictable local gray-level relationships, compatible with consolidation of RNA signal into structured subnuclear regions and a reduction of diffuse nucleoplasmic RNA. Granularily measures trend downward at small-to-mid scales but are statistically marginal, implying limited evidence for increased cytoplasmic puncta. Overall, the dominant change is smoother, more ordered RNA texture consistent with nucleolar compaction or consolidation.

Overall_mechanism_linked_summary
The specimen is hypothesized to reflect aldose reductase inhibition by sorbinil causing redox/osmotic stress with

The specimen is hypothesized to reliect addose relocated influition by softwinic addising teodoxismions stress with mix nucleolar/RNA processing alterations. Below, I assess whether the observed morphology aligns with this hypothesis using quantitative feature trends and mechanistic linkage. Mechanism verifict: The observed RNA texture changes are broadly consistent with the proposed mechanism. Evidence summary: Texture, Entropy_RNA (5 and 7 px) decreases strongly ($\Delta \approx -3.7$, $q \approx 1e-7$), and Texture_InverseDifferenceMoment increases ($\Delta = 4.023$, $q \approx 1e-6$), indicating higher hongeneity. DifferenceEntropy decreases and DifferenceVariance increases ($q \leq 0.005$), supporting more ordered yet sharper binderince. Includy decleases and of interince variance incleases (§ 2.0.00), supporting more ordered yet shaper local structure. Granularity metrics show small, non-significant decreases; contrast changes are in the expected direction but not significant.

If the proposed MoA aldose reductase inhibitor perturbs redox balance and osmotic stress, it could plausibly

in the proposed wind actives reductase imminion benturis reduct valantice and ostnicut resistenss, it could pleadistip produce nucleolar stress leading to compaction/consolidation of rRNA-rich regions and reduced diffuse transcription; this would present as lower entropy and higher homogeneity in RNA texture (observed: strong decreases in entropy and increases in IDM, with supporting difference-statistics).

Caveats and alternatives: Many granularity and contrast features are not significant, and direct evidence for cytoplasmic stress-granule-like puncta is lacking. Replicate expansion, dose-response, and inclusion of cytoplasmic stress-granule-like puncta is lacking. Replicate expansion, dose-response, and inclusion of

nucleolar/translation markers would help disambiguate nucleolar consolidation from general transcriptional downshift or imaging/segmentation artifact

ADDITIONAL CASE 4: BGT226 IN HUVEC

1692

1722

1723

1724

1730

1731

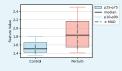
1733

1734 1735

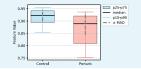
1736

1737 1738

Cell Painting Drug Experiment Brief — BGT226 in HUVEC (Mito, 10X; 20µM, 20h)


1693 1694 1695 1696 2. Visual Overview: Control vs Perturbation Imag 1. Most Matched Experimental Context 1697 Cell line: HUVEC 1698 Culture medium: EGM2 medium Imaging: Mito channel, 10X objective 1699 Compound: BGT226 (20 μM, 20h) Mechanism of action: PI2-kinase Class I Inhibitor 1700 1701 3. Anticipated Feature Changes Based on Mechanism 1702 Expected effects of BGT226 (PI3K/mTOR inhibitor) BGT226 treatment is expected to impair mitochondrial integrity through inhibition of PI3K/mTOR signaling, leading to mitochondrial fragmentation, 1703 reduced mitochondrial mass, and cristae disruption. Relative to control, BGT226 treatment is expected to cause 1704 . Loss of mitochondrial area (due to reduced mass) Mitochondrial fragmentation and network disruption Changes in mitochondrial shape (less elongated, more circular) 1705 Altered cristae structure and internal texture Modified spatial organization of mitochondrial objects 1706 These changes are expected to manifest in Cell Painting features as: ↓ Mitochondrial area (e.g., AreaShape_Area) 1707 | Milochondrial area (e.g., Areachape_New | Milochondrial compactness and form factor (e.g., AreaShape_Compactness, AreaShape_FormFactor) | | Eccentricity, | MajorAxisLength (e.g., AreaShape_Eccentricity, AreaShape_MajorAxisLength) | | Granularity at medium scales (e.g., Granularity_3_Mito) | | Texture contrast and entropy (e.g., Texture_Contrast_Mito_3_01_256, Texture_Entropy_Mito_3_01_256) 1708 1709 1710 - Usolidity (e.g., AreaShape_Solidity) - Changes in mitochondrial neighborhood structure (e.g., Neighbors_NumberOfNeighbors_10) 1711 4. Key Feature Evidence from Data 1712 Texture_Contrast_3_01_256 Direction: increase Disection: increase Observed evidence: Strong increase from 151.2 to 247.6 (Δ = +96.4, Cl: [58.9, 142.1], Cliffs δ = −0.57, q = 6.8e−08) Mechanism link: PISK/mTOR inhibition could disrupt mitochondrial organization and cristae structure, leading to increased heterogeneity and contrast in mitochondrial staining patterns. Supports proposed mechanism: ② Yes (0.8 confidence) AreaShape_MajorAxisLength Direction: increase 1713 Observed evidence: Significant increase from 69.2 to 92.0 (Δ = +22.7, CI: [10.4, 29.8], Cliff's δ = -0.56, q = 1714 6.8e-08) Mechanism link: PI3K/mTOR inhibition can induce cell 1715 1716 1717

stress and alter cytoskeletal organization, potentially causing cell elongation as part of stress response or altered adhesion.


AreaShape_Compactness

AreaShape_Compactness
Direction: increase from 1.511 to 1.83 (△ =
+0.33, Cl: [0.18, 0.43], Cliff's δ = -0.50, q = 8.9e-07)
Mechanism link: Pi3K/mTOR inhibition can disrupt
cytoskeletal organization and cell adhesion, leading to
less compact, more irregular cell shapes.
Supports proposed mechanism: ② Yes (0.7 confidence)

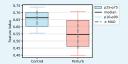
AreaShape_Solidity Direction: decrease

Observed evidence: Decrease from 0.92 to 0.89 (Δ = 0.03, CI: [-0.08, -0.01], Cliff's δ = 0.43, q = 2.0e-05) Mechanism link: PI3K/mTOR inhibition can affect cytoskeletal organization and cell adhesion, leading to less solid cell shapes with more protrusions or irregularities. Supports proposed mechanism: Yes (0.6 confidence)

Neighbors_NumberOfNeighbors_10

Perturbed

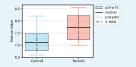
Direction: decrease Discussion: decrease from 6.0 to 4.0 neighbors (Δ = -2.0, CI: [-2.0, -1.0], Cliff's δ = 0.55, q = 6.8e-08) Mechanism link: Pl3K/mTOR inhibition can reduce cell proliferation and survival, leading to lower cell density and fewer neighboring cells.


Supports proposed mechanism:

Yes (0.8 confidence)

AreaShape_FormFactor Direction: decrease

Observed evidence: Decrease from 0.66 to 0.55 (Δ = -0.12, CI: [-0.15, -0.07], Cliff's δ = 0.50, q = 8.9e-07) Mechanism link: Consistent with compactness changes, PI3K/mTOR inhibition disrupts normal cell morphology, making cells less circular and more irregular. Supports proposed mechanism: Yes (0.7 confidence)


Direction: decrease Observed violence: Weak decrease from 2.54 to 2.31 (Δ = -0.24, Ci: [-0.94, 0.19], Cilffs 5 = 0.16, q = 0.11) Mechanism link PI3K/mTOR inhibition might reduce mitochondrial granularity through altered mitochondrial biogenesis, but violence is insufficient. Supports proposed mechanism: Δ Insufficient (0.2 confidence)

confidence) AreaShape_Eccentricity

Direction: increase Observed evidence: Weak increase from 0.78 to 0.80 (Δ = +0.02, CI: [-0.02, 0.08], Cliff's δ = -0.16, q = 0.11) Mechanism link: Slight increase in eccentricity could relate to cell elongation, but the effect is too weak to draw

Supports proposed mechanism:

Insufficient (0.2 confidence)

Texture_Entropy_3_01_256
Direction: increase
Observed evidence: Increase from 7.10 to 7.74 (Δ = +0.63, CI: [0.36, 0.99], Cliffs δ = -0.49, q = 9.7e-07)
Mechanism line: PISK/mTOR inhibition can disrupt milochondrial organization and function, leading to more betarrozeneous and disroctions and disroctions.

heterogeneous and disordered mitochondrial structures. Supports proposed mechanism: Yes (0.8 confidence)

Observed evidence: Significant increase from 2179.5 to 3075.0 (Δ = +895.5, CI: [510.5, 1335.0], Cliff's δ = -0.52, q

307.9.1 (a = +s9s.5, v.: [510.5, 133.9.1], Ullif \$ 0 = -0.52, q = 4.9e-07)

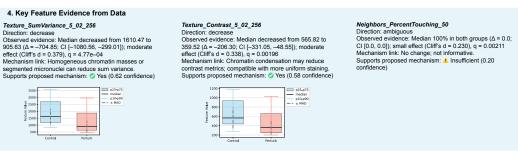
Mechanism link: PI3K/mTOR inhibition can cause cell cycle arrest and stress-induced cell enlargement, consistent with metabolic disruption and altered growth signaling.

Supports proposed mechanism: ② Yes (0.7 confidence)

AreaShape_Area Direction: increase Observed evidence

Cell Painting Drug Experiment Brief — BGT226 in HUVEC (Mito, 10X; 20µM, 20h) 5. Mechanism Assessment and Conclusion Morphology_summary The perturbed cells show a consistent pattern of stress-related morphological changes The perturbed cells show a consistent pattern of stress-related morphological changes including significantly increased cell size (area +41%), elongation (major axis +33%), and reduced cell density (fewer neighbors). Mitochondrial organization appears disrupted with increased texture contrast and entropy, suggesting fragmented or disorganized mitochondrial networks. Cell shape becomes less compact and circular, with reduced solidity, indicating cytoskeletal disruption and irregular morphology typical of metabolic stress. Overall, the dominant change is smoother, more ordered RNA texture consistent with nucleolar Key Evidence (Features with Large Effect Sizes): 1.Texture_Contrast_Mito_3_01_256 ↑ Median by +96.4 q = 6.8e-08 Indicates increased mitochondrial texture contrast, consistent with cristae disruption and mitochondrial heterogeneity 2.Texture_Entropy_Mito_3_01_256 ↑ Median by +0.63 q = 9.7e-07 Suggests increased mitochondrial texture disorder and suggests increased millioribilitatile texture fragmentation 3.AreaShape_Area ↑ Median by +895.5 q = 4.9e-07 Reflects stress-induced cell enlargement Overall_mechanism_linked_summary The specimen is hypothesized to reflect PI3K class I inhibition by BGT226, which should disrupt cellular metabolism and survival pathways. Below, I assess whether the observed morphology aligns with this hypothesis using quantitative feature trends and mechanistic reasoning. The observed phenotype strongly supports the proposed PI3K/mTOR inhibition mechanism. Key evidence includes significantly increased mitochondrial texture contrast and entropy (q<1e-06), enlarged and elongated cells with irregular shapes, and reduced cell density. Given the proposed 4. AreaShape_MajorAxisLength ↑ Median by +22.7 elinarget and einigated cells with integular shapes, and reduced cell cells its cover in epipopos MoA of PI3K class I inhibition, it is known to alter cellular metabolism and survival signaling via disrupted PI3K/Ak/mTOR pathways, which should cause mitochondrial dysfunction, cell cycle arrest, and cytoskeletal disruption; this would present as enlarged irregular cells with disorganized mitochondria (observed: +64% texture contrast, +41% cell area, reduced form q = 6.8e-08 Consistent with cell elongation under stress or cytoskeletal remodeling 5.Neighbors_NumberOfNeighbors_10 factor). Two features showed insufficient evidence due to weak statistical significance, and dose-response studies would help confirm the mechanism specificity and rule out general \downarrow Median by -2.0 q = 6.8e-08cytotoxicity. Indicates reduced cell density, possibly due to proliferation arrest or cytotoxicity

O.5 ADDITIONAL CASE 5: AZ841 IN MCF7


1786

1830

1832

1787 1788 Cell Painting Drug Experiment Brief — AZ841 in MCF7 (DNA, 20X: 24µM, 24h) 1789 2. Visual Overview: Control vs Perturbation Imag 1790 1. Most Matched Experimental Context Culture medium: RPMI 1640, 10% FBS, 1% GlutaMAX, 900 µg/mL G418 1791 Imaging: DNA channel, 20X objective Compound: AZ841(24 µM, 24h) 1792 · Mechanism of action: Aurora Kinase Inhibitor 1793 1794 3. Anticipated Feature Changes Based on Mechanism Expected effects of Aurora kinase inhibition (e.g., AZ841, 24µM, 24h): 1795 Aurora kinase inhibition is expected to cause mitotic arrest, cytokinesis failure, and apoptotic fragmentation. This leads to a mixed nuclear phenotype including small condensed mitotic nuclei, enlarged or multinucleated cells, and micronuclei or nuclear debris Relative to control, Aurora kinase inhibitor treatment is expected to cause: 1796 1797 Mitotic arrest with small, round, hyperintense chromatin Polyploidy and multinucleation due to cytokinesis failure 1798 Formation of micronuclei and nuclear fragmentation Irregular nuclear shapes and boundaries Increased chromatin heterogeneity and punctate signals 1799 Possible reduction in cell count and altered nuclear packing These changes are expected to manifest in Cell Painting features as: ↑ Nuclear size and dispersion (e.g., AreaShape_Area, AreaShape_EquivalentDiameter, AreaShape_MaxFeretDiameter) 1800 1801 - † Shape irregularity and fragmentation (e.g., AreaShape_Eccentricity, AreaShape_Solidity, AreaShape_FormFactor, AreaShape_Perimeter, AreaShape_EulerNumber) 1802 Areashabe_Euterivalinor) - ↑ Mid- and coarse-scale DNA granularity (e.g., Granularity_2_DNA, Granularity_3_DNA) - ↑ DNA texture heterogeneity and local variability (e.g., Texture_Contrast_DNA_5_02_256, Texture_Entropy_DNA_5_02_256, Texture_Variance_DNA_5_02_256, Texture_SumVariance_DNA_5_02_256, Texture_DifferenceEntropy_DNA_5_02_256) - ↑ Texture smoothness / homogeneity (e.g., Texture_InverseDifferenceMoment_DNA_5_02_256, Texture_Correlation_DNA_5_02_256, Texture_AngularSecondMoment_DNA_5_02_256) 1803 1804 - | Object count (due to cell loss) (e.g., Number, Object, Number) 1805 ↑ Neighbor contact due to clustering or enlarged nuclei (e.g., Neighbors_PercentTouching_50) 1806 1807 4. Key Feature Evidence from Data AreaShape MaxFeretDiameter Direction: increase Observed evidence: Median increased from 39.26 to 50.60 (A = +11.32; Cl | 72.1, 14.65); moderate effect (Cliff's d = −0.612), q = 2.1e-08 Mechanism link: Polyploidy/multinucleation can yield larger nuclear extents, increasing maximum Feret diameter. Supports proposed mechanism: ② Yes (0.90 confidence) $\label{eq:Granularity.3} \begin{tabular}{ll} Granularity.3 \\ Direction: increase \\ Observed evidence: Median increased from 0.246 to 0.926 (<math>\Delta$ = 40.680; CI [0.532, 0.778]); large effect (Cliff's d = -0.796), q = 1.3e-13 \\ Mechanism link: Larger-scale chromatin clumping/micronuclei from mitotic errors would increase coarse DNA constants. Granularity_2 Direction: increase Observed evidence: Median increased from 0.298 to 0.818 (a = +0.520; CI [0.431, 0.635]); very large effect (Cliff's d = -0.931), q = 3.8e-18 Mechanism link: Autora kinase inhibition can cause condensate or fearmented chromatin and micropropules 1809 1810 condensed or fragmented chromatin and micronuclei which would elevate DNA granularity at intermediate 1811 ed mechanism: Ves (0.96 confidence) Supports proposed mechanism: Ves (0.98 confidence) 1812 = median - p10-p90 - ± MAD 1813 1814 1815 1816 AreaShape_Solidity Direction: decrease AreaShape_FormFactor Direction: decrease Direction: decrease Observed evidence: Median decreased from 0.911 to 0.821 (∆ = -0.090; Cl [-0.115, -0.069]); moderate effect (Cliff's d = 0.554), q = 3.16e-07 Mechanism link: Nuclear irregularity, indentations, or partial fragmentation expected with chromosome mis-segregation reduce form factor (roundness). Supports proposed mechanism: ② Yes (0.86 confidence) Observed evidence: Median decreased from 0.973 to Observed evidence: Median increased from 114.15 to 152.0 (Δ = +37.87; CI [117.78, 45.21]); moderate effect (Cliff's d = -0.504), q = 3.55e-06 Mechanism link: Enlarged and more complex nuclear contours from multinucleation/irregularity increase perimeter Supports proposed mechanism: ② Yes (0.84 confidence) 1817 Observed evidence: mediant locetases in foil 10.973 to 0.960 (a = 0.013; Cl [-0.021, -0.006]); moderate effect (Cliff's d = 0.582), q = 8.6e-08 Mechanism link: Irregular or lobulated nuclei/multinuclear aggregates from cytokinesis failure lower solidity. Supports proposed mechanism: ⊘ Yes (0.88 confidence) 1818 1819 1820 1821 1822 1823 AreaShape_Area Direction: increase Observed evidence: Median increased from 955 to 1501 (△ Observed evidence: Median increased from 955 to 1501 (△ Observed evidence: Median increased from 34.87 to 43.72 e +546: CI [147, 726]); moderate effect (Cliff's d = -0.419), (△ = +8.85; CI [2.5, 61,158]); moderate effect (Cliff's d = -0.419), (△ = +8.85; CI [2.5, 61,158]); moderate effect (Cliff's d = -0.419), (△ = +8.85; CI [2.5, 61,158]); moderate effect (Cliff's d = -0.419), (△ = +8.85; CI [2.5, 61,158]); moderate effect (Cliff's d = -0.419), (△ = +8.85; CI [2.5, 61,158]); moderate effect (Cliff's d = -0.419), (△ = +8.85; CI [2.5, 61,158]); moderate effect (Cliff's d = -0.419), (△ = +8.85; CI [2.5, 61,158]); moderate effect (Cliff's d = -0.419), (△ = +8.85; CI [2.5, 61,158]); moderate effect (Cliff's d = -0.419), (△ = +8.85; CI [2.5, 61,158]); moderate effect (Cliff's d = -0.419), (△ = +8.85; CI [2.5, 61,158]); moderate effect (Cliff's d = -0.419), (△ = +8.85; CI [2.5, 61,158]); moderate effect (Cliff's d = -0.419), (△ = +8.85; CI [2.5, 61,158]); moderate effect (Cliff's d = -0.419), (△ = +8.85; CI [2.5, 61,158]); moderate effect (Cliff's d = -0.419), (△ = +8.85; CI [2.5, 61,158]); moderate effect (Cliff's d = -0.419), (△ = +0.419); (△ Texture_Variance_5_02_256 Direction: decrease 1824 Direction: decrease Observed evidence: Median decreased from 554.32 to 332.95 (Δ = -221.37; C1 [-395.86, -73.95]); moderate effect (Cliff's d = 0.400), q = 2.42e-04 Mechanism link: Condensed chromosomes within mitotic or abnormal nuclei can reduce local intensity variance at this condensed. 1825 1826 1827 posed mechanism: Ves (0.65 confidence) p10-p90 ± MAD 1828

Cell Painting Drug Experiment Brief — AZ841 in MCF7 (DNA, 20X; 24µM, 24h)

5. Mechanism Assessment and Conclusion

Key Evidence (Features with Large Effect Sizes):
1.Granularity_2_DNA:
↑ Median by +0.52, q = 3.8e–18
Strongest evidence for chromatin condensation/micronuclei

2.Granularity_3_DNA:

↑ Median by +0.68, q = 1.3e–13

Further supports increased coarse chromatin structure 3.AreaShape_MaxFeretDiameter / Area / EquivalentDiameter / Perimeter:

↑ indicates nuclear enlargement and irregular boundaries
4.AreaShape_Solidity / FormFactor:

 Indicates nuclear fragmentation or lobulation 5. Texture metrics (Variance, SumVariance, Contrast):
 Suggest reduced internal heterogeneity.

Suggest reduced internal heterogeneity, consistent with chromatin compaction

Morphology_summary

The perturbed nuclei show strong increases in DNA granularity at multiple scales and larger, more irregular nuclear shapes (higher area, equivalent diameter, perimeter, reduced solidity and form factor). Cell counts per field trend lower. DNA texture metrics generally decrease in variance/contrast, suggesting more compact or discretized chromatin. Together, these patterns are consistent with mitotic errors leading to multinucleation/polyploidy and chromatin condensation. Overall, the dominant change is smoother, more ordered RNA texture consistent with nucleolar compaction or consolidation.

Overall_mechanism_linked_summary

The specimen is hypothesized to reflect aurora kinase inhibition causing mitotic disruption. Below, I assess whether the observed morphology aligns with this hypothesis using quantitative feature trends and mechanistic linkage.

Mechanism verdict: The quantitative phenotype is broadly consistent with aurora kinase inhibition. Evidence summary: Strong increases in Granularity_2/3_DNA (deltas+0.52/+0.68; q ≤ 1e-13) and enlarged, more irregular nuclei (Area/Perimeter/MaxFeret up; Solidity/FormFactor down; q ≤ 1e-04) dominate. Texture metrics (Variance, SumVariance, Contrast) decrease with q ≤ 0.002, while cell number modestly drops with CI touching 0. Non-informative features show no significant change. Mechanistic linkage sentence: Given the proposed MoA aurora kinase inhibitors, it is known to alter mitotic progression via inhibition of chromosome segregation/cytokinesis, which should cause mitotic arrest and multinucleation/polyploidy; this would present as increased DNA granularity and larger, irregular nuclei with potential micronuclei (observed: Granularity_2/3 up; Area/EquivalentDiameter/Perimeter up; Solidity/FormFactor down).

Caveats and alternatives: Some texture changes are modest and several features are non-significant, and we only have DNA channel at a single timepoint. Follow-up with multi-channel Cell Painting (tubulin/actin), cell cycle profiling, and dose–response/time-course would strengthen mechanistic attribution and distinguish from other mitotic poisons.

P REASONING EVALUATION CRITERIA

The survey is designed via Google Form, and can be accessed here: https://docs.google.com/forms/d/e/1FAIpQLSc_W2x6ro6huDANCTaOwc5IGvJ2PUXyvt2zMIKYIlI2npyi3w/viewform?usp=header

To facilitate consistent and high-quality responses, we shared the following rubric and example list with participated experts as initial guidance. This framework outlines key criteria for evaluating **Language Quality** and **Reasoning Quality** of model-generated explanations in biological tasks. The rubric emphasizes five core aspects of language quality—including accuracy, relevance, coherence, depth, and conciseness, as well as five reasoning quality metrics such as pattern recognition, stepwise reasoning, biological deduction, hypothesis formation, and mechanistic insight. Each criterion is paired with both positive and negative examples to help clarify expectations and common pitfalls.

P.1 LANGUAGE QUALITY CRITERIA

Language Quality Criteria

Criteria	Excellent Performance	▼ Positive Examples	× Negative Examples
1. Accuracy - Terminology, data, and mechanism descriptions are correct; no factual errors.	Uses correct biological terms, mechanism names, and data. Describes cell processes and drug mechanisms accurately.	▼Example 1: "Eg5 inhibition leads to monopolar spindle formation, a hallmark of mitotic arrest." Explanation: Correctly links Eg5 inhibition to monopolar spindle formation and mitotic arrest, demonstrating mechanistic accuracy. ▼Example 2: "KIF11, also known as Eg5, is essential for centrosome separation during mitosis." Explanation: Accurately identifies KIF11 as Eg5 and correctly explains its role in centrosome separation.	➤ Example: "Granularity in the cytoplasm reflects chromatin condensation during mitosis." Explanation: Chromatin condensation occurs in the nucleus, not the cytoplasm. This shows incorrect terminology.
2. Relevance - Focused on the core problem; avoids unrelated content.	Stays focused on the image-based mechanism, features, and hypothesis testing. Avoids discussing unrelated pathways.	▼ Example: "Texture changes are evaluated in the context of mitotic arrest, not other cell cycle stages." Explanation: Stays on-topic by linking texture features specifically to mitotic arrest.	➤ Example "EGFR inhibitors are commonly used in lung cancer therapy and act on tyrosine kinase domains." Explanation: If the task is about Eg5 inhibition, discussing EGFR is irrelevant and off-topic.
3. Coherence - Logical flow, structured reasoning, and natural transitions.	Clear cause-effect relationships between observations and interpretations.	✓ Example 1: "Because Eg5 inhibition blocks bipolar spindle formation, the observed increase in DNA granularity is expected." Explanation: Uses a "because → therefore" structure to logically connect mechanism to observation. ✓ Example 2: "We first observe increased chromatin granularity and reduced cell number. Given these findings, we hypothesize Eg5 inhibition as the likely mechanism, which aligns with known spindle dysfunction phenotypes." Explanation: Well-structured progression from observation to hypothesis and biological context.	X Example "The cells look abnormal. Therefore, Eg5 inhibition is the cause." Explanation: Jumps to conclusion without explaining intermediate steps like spindle defects or mitotic arrest.
4. Depth - Goes beyond "what" to explain "why"; considers alternative mechanisms or limitations.	Provides mechanistic reasoning, alternative explanations, or validation proposals.	■ Example 1: "Although increased granularity may suggest mitotic arrest, it could also reflect apoptosis; further staining is needed." Explanation: Considers multiple hypotheses and proposes validation, showing analytical depth. ■ Example 2: "To confirm that increased granularity results from mitotic arrest, time-lapse imaging could be used to track cell cycle progression in real time." Explanation: Suggests a forward-looking validation approach, demonstrating a deeper level of reasoning.	X Example "The cells show increased granularity and reduced number." Explanation: Only observes phenomena without explaining their significance or underlying cause.
5. Conciseness - Clear and efficient language; no redundancy.	Expresses complete logic using minimal words.	▼ Example 1: "Granularity ↑, Entropy ↓ — consistent with chromatin condensation under Eg5 inhibition." Explanation: Uses symbolic shorthand to summarize findings clearly and effectively. ▼ Example 2: "Mitotic arrest inferred from monopolar spindles and chromatin compaction." Explanation: Omits unnecessary words yet remains scientifically complete & precise.	➤ Example 1: "The texture of the chromatin appears to be more granular and also shows increased granularity in its texture." Explanation: Repetitive phrasing; the same idea is stated twice. ➤ Example 2: "Due to the potential inhibition of Eg5, which is known to be related to spindle formation during mitosis, the cells may possibly experience something like a blockage in mitotic progression." Explanation: Wordy, vague, and redundant. Can be simplified to: "Eg5 inhibition likely caused mitotic arrest."

Figure 14: Language quality criteria for evaluating CP-Agent generated Cell Painting reports.

P.2 REASONING QUALITY CRITERIA

Reasoning Quality Criteria

Criteria	Excellent Performance	▼ Positive Examples	× Negative Examples
6. Pattern Recognition Ability to identify key visual differences such as cell morphology or staining patterns and link them to biological meaning.	Connects visual features with plausible mechanisms.	Example 1: "Granular, compact chromatin morphology is consistent with mitotic arrest." Explanation: Recognizes dense, granular chromatin as a sign of mitotic arrest. Example 2: "Reduced cell count and round, compact nuclei are consistent with mitotic accumulation and arrest." Explanation: Integrates multiple visual cues to explain a biological state.	X Example 1: "The cells look mostly the same as normal." Explanation: Fails to recognize evident morphological changes. X Example 2: "The blurry area in the cytoplasm might be the nucleolus." Explanation: Confuses cytoplasmic structure with nuclear organelles, showing poor structural understanding.
7. Algorithmic Reasoning (Stepwise Thinking) - Systematic step-by-step reasoning from visual features to diagnostic conclusion.	Follows a clear "observe — infer — verify" logic chain.	✓ Example 1: "Step 1: Check DNA granularity ↑ → Step 2: Consider mitotic arrest → Step 3: Confirm with texture shift → Conclusion: Eg5 inhibition likely." Explanation: Follows a diagnostic-style reasoning flow. ✓ Example 2: "Metric: High DNA granularity + low heterogeneity → Hypothesis: Nuclear compaction → Biological context: Consistent with metaphase arrest → Likely cause: Eg5 inhibition." Explanation: Builds a multistep logic from feature to mechanism.	X Example 1: "This is clearly due to Eg5 inhibition." Explanation: Conclusion is stated without supporting steps or evidence. X Example 2: "Maybe it's apoptosis, but the chromatin is dense and also the granularity is high. Eg5 is involved in spindles." Explanation: Disorganized reasoning, lacks structured flow.
8. Deductive Reasoning - Uses known biological rules to predict specific outcomes.	Explains observed features using established mechanisms or canonical pathways.	▼ Example 1: "If Eg5 is inhibited, bipolar spindle formation is blocked → cells accumulate in mitosis → chromatin condenses." Explanation: Demonstrates a clear biological cause-effect chain from inhibition to phenotype. ▼ Example 2: "Apoptosis leads to nuclear fragmentation and increased DNA texture heterogeneity. This would appear as irregular, punctate chromatin staining." Explanation: Applies known apoptosis features to interpret image data.	Example 1: "If Eg5 is inhibited, chromatin looks like this." Explanation: Skips required mechanistic reasoning steps; lacks causality. Example 2: "Because mitosis is complicated, maybe that's why the chromatin looks dense." Explanation: Vague and unscientific language; lacks specific mechanistic explanation.
9. Induction / Hypothesis Testing - Forms hypotheses from observations and supports or refines them with evidence.	Proposes alternative hypotheses, weighs evidence, and draws reasoned conclusions.	☑ Example 1: "Hypothesis: DNA granularity suggests either mitotic arrest or apoptosis. Evidence: Low Entropy + High Contrast → favors mitosis." Explanation: Proposes alternatives and uses features to evaluate them. ☑ Example 2: "Hypothesis: Granular chromatin → mitotic arrest. To validate: Use PH3 staining to confirm mitotic accumulation." Explanation: Suggests hypothesis and a concrete method for testing it.	X Example 1:"This must be Eg5 inhibition." Explanation: States a conclusion without forming or testing a hypothesis.
10. Mechanistic Insight Links visual observations to underlying molecular or cellular pathways.	Traces a causal path from molecular intervention → cellular structure/function → image features.	Example 1: "Eg5 inhibition prevents centrosome separation, leading to monopolar spindles, which induce checkpoint-mediated mitotic arrest." Explanation: Demonstrates a full causal chain from drug action to phenotype. Example 2: "Mitotic cells lose substrate adhesion due to reorganization of cortical actin and detachment from the ECM, resulting in rounded morphology in imaging." Explanation: Explains how cytoskeletal changes translate to visual cell shape.	X Example 1:"This must be mitotic arrest because the nuclei look dense." Explanation: Observation is not linked to any molecular or cellular mechanism; lacks causal reasoning.

Figure 15: Reasoning quality criteria for evaluating CP-Agent generated Cell Painting reports.

Q EXPERT RATINGS OF CP-AGENT GENERATED REPORTS ACROSS LANGUAGE AND REASONING CRITERIA

Figure 16 summarizes expert evaluations across ten rubric criteria, split into five language quality dimensions (Figure 16a) and five reasoning quality dimensions (Figure 16b). On average, all four LLMs received high ratings (mostly above 5.0 on a 7-point scale), indicating strong performance in generating biologically grounded screening reports. Among the models, GPT-5 consistently achieved the highest scores across most reasoning metrics—including pattern recognition, algorithmic reasoning, and mechanistic insight—while also maintaining strong language quality. Gemini-2.5-Pro closely followed, particularly excelling in relevance and coherence. Claude-Sonnet-4 underperformed slightly in mechanistic insight and inductive reasoning, indicating slightly weaker performance in higher-order biological inference. Grok-4 showed relatively balanced language quality but lagged slightly in depth and coherence compared to top-performing models. The bar chart (Figure 16c) further illustrates per-metric mean scores, reinforcing the finding that reasoning dimensions pose a greater challenge than surface-level language quality, especially in tasks requiring mechanistic interpretation and hypothesis generation.

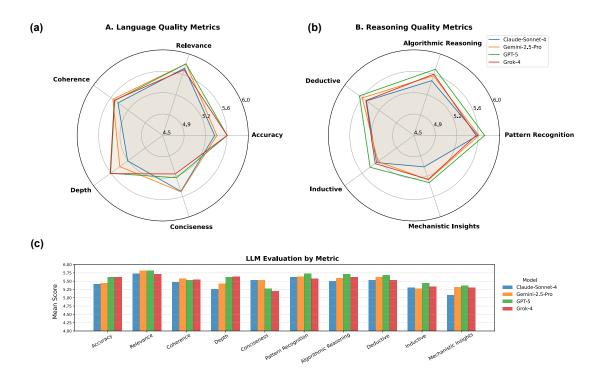


Figure 16: Expert evaluation of LLM-generated screening reports across language and reasoning dimensions. (a–b) Mean expert ratings (on a 7-point scale) for language and reasoning quality, based on ten rubric-based evaluation criteria. (c) Bar chart summarizing per-metric mean scores across the four evaluated models: Claude-Sonnet-4 (blue), Gemini-2.5-Pro (orange), GPT-5 (green), and Grok-4 (red).