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ABSTRACT

Cell Painting combines multiplexed fluorescent staining, high-content imaging, and quan-
titative analysis to generate high-dimensional phenotypic readouts to support diverse
downstream tasks such as mechanism-of-action (MoA) inference, toxicity prediction, and
construction of drug—disease atlases. However, existing workflows are slow, costly and
difficult to interpret. Approaches for drug screening modeling predominantly focus on
molecular representation learning, while neglecting actual experimental context (e.g., cell
line, dosing schedule, etc.), limiting generalization and MoA resolution. We introduce
CP-Agent, an agentic multimodal large language model (MLLM) capable of generating
mechanism-relevant, human-interpretable rationales for cell morphological changes under
drug perturbations. At its core, CP-Agent leverages a context-aware alignment module,
CP-CLIP, that jointly embeds high-content images and experimental metadata to enable
robust treatment and MoA discrimination (achieving a maximum F1-score of 0.896). By
integrating CP-CLIP outputs with agentic tool usage and reasoning, CP-Agent compiles
rationales into a structured report to guide experimental design and hypothesis refinement.
These capabilities highlight CP-Agent’s potential to accelerate drug discovery by enabling
more interpretable, scalable, and context-aware phenotypic screening—streamlining iter-
ative cycles of hypothesis generation in drug discovery.

1 INTRODUCTION

High-content imaging with Cell Painting has become a workhorse for scalable phenotypic drug discov-
ery. This technique, integrating advanced microscopy, multiplexed fluorescent staining and quantitative
image analysis, allows us to establish high-dimensional morphological cell profiles that capture rich mul-
tiscale cellular responses to chemical perturbations. These profiles have been proven valuable in support-
ing mechanism-of-action (MoA) inference (Tian et al.| [2023)), toxicity prediction (Ewald et al.| [2025)), hit
triage (Vincent et al., |2020), and drug repurposing (Fredin Haslum et al., [2024), while also enabling the
construction of reference atlases and improved target deconvolution (Moffat et al.,[2017).

In Cell Painting workflows, cells are perturbed under diverse conditions and the experimental context is not
a nuisance to control but a signal to model. For instance, dose and time define trajectories; cellular back-
ground modulates pathway readouts (Appendix [B.2). The resulting profiles guide follow-up experiments
and can advance phenotype-driven drug discovery. However, Cell Painting-based drug discovery remains
limited by several challenges: (i) complex intermediate dependencies: Morphological responses are highly
context-dependent. For example, concentration-dependent profiles show low correlations across dose levels
(Pearson r = 0.21-0.26) (Trapotsi et al., [2022), and MoA prediction is sensitive to cell line context (Seal
et al., 2024)). Ignoring these structures conflates biology with acquisition artifacts and wastes the valuable
metadata; (ii) convergent morphologies: Compounds with distinct mechanisms may induce morphological
readouts convergence, reducing MoA resolution, thereby complicating the extraction of standardized, inter-
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pretable descriptors. (iii) Lack of semantic grounding: Representing image embeddings as unstructured
feature vectors restricts their capacity for semantic reasoning and downstream biological inference.

Recently, various Al methods have been introduced to Cell Painting datasets, such as generative approaches
to synthesize images under perturbations (Navidi et al., 2024; (Cross-Zamirski et al., 2023} [Palma et al.,
2025), multimodal frameworks integrating chemical and genetic annotations (Sanchez-Fernandez et al.|
2023)). However, many existing models offer visual embeddings as black-box features, which lack semantic
interpretability. Moreover, experimental context is often under-used: metadata is appended via late fusion
or treated as unstructured text, yielding less informative representations and hindering iterative, closed-loop
experimental design. Meanwhile, emerging multimodal large language models (MLLMs) offer reasoning
capabilities and have been applied in diverse biological domains, such as genomics, biomedical imaging,
and omics data analysis (Zhang et al., [2024a; [Lin et al.l 2025} |Liu et al., |2024b; |Hu et al., [2024b; [Zhang
et al.|[2024b)). Yet their applications in drug screening remain underexplored.

In this work, we introduce CP-Agent, a context-aware, agentic MLLM framework for Cell Painting drug
perturbation screening. At its core is CP-CLIP, a contrastive alignment module that jointly embeds Cell
Painting images and structured experimental context, including drug compounds and other essential exper-
imental conditions, enhancing the biological relevance of cell morphology. The model is pretrained on 1.9
million image-context pairs, with a customized token injection strategy that embeds key fields for better
alignment. Comprehensive evaluations across curated classification tasks show that CP-CLIP outperforms
general-purpose baselines. Built on this perception layer, CP-Agent integrates tool-augmented reasoning
and task-adapted MLLMs grounded in phenotype descriptors and MoA ontologies to generate structured,
interpretable outputs. Together, this agentic system supports scalable and interoperable phenotypic analysis,
enabling cross-study generalization and providing actionable insights for assay prioritization and iteration,
thereby accelerating hypothesis generation and improving decision-making in phenotypic drug discovery.

2 METHOD

2.1 DATASET

We employed three open-access Cell Painting datasets, consisting of approximately 1.9 million pairs:
BBBCO021 (Caie et al., 2010), CPJUMP1 (Chandrasekaran et al., 2024), and RxRx3 (Fay et al., 2023),
encompassing diverse compound-induced phenotypes. Each image-context pair comprises a microscopy
image and its associated experimental context (e.g., cell lines, experimental treatment conditions) We cu-
rated compounds to ensure traceable MoA labels across datasets. For each collection, we matched SMILES
representations of the perturbing chemical compounds to ChEMBL, retrieved their targets and MoAs, and
retained only compounds with publicly resolvable MoA names. A summary of the curated multi-dataset
setting is provided in Table[I] More details about dataset backgrounds are provided in Appendix [C|

Table 1: Summary of datasets used in this study

Dataset Cell line Channel Compound Concentration Time Image Pair
BBBC021 MCF-7 (p5S3 WT) 3 34 Variable 8-point half-log 24 h 144,411
CPJUMP1 U208, A549 5 62 5.0 M 24h,48h 562,687
RXRX3 HUVEC 6 380 Fixed 8-point half-log ~20h 1,265,984

2.2 MOLECULAR DRUG ENCODING

Several established approaches map compound perturbations to vector representations, enabling alignment
with image embeddings and facilitating multimodal learning (Winter et al., 2019; [Wu et al., [2025). For
instance, SMILES-based (e.g., ChemBERTa) and graph-based models learn molecular embeddings from
structure, often using RDKit for preprocessing. Alternatively, one can compute continuous molecular de-
scriptor embeddings (e.g., physicochemical and topological descriptors), formalized as a parameterized fea-
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ture extractor: daesc(z; P) = [f1 (z; P1), fa (23 P) ..., fa (2; Py)] € RY, where z is an input molecular
representation (e.g., SMILES strings or molecular graphs), and each f;(x; P;) extracts a specific property,
forming a d-dimensional real-valued feature vector. In contrast, binary fingerprint embeddings that encode
the presence/absence of substructures (e.g., Morgan/circular, MACCS, or path-based fingerprints) (Bento
et al., 2020) ¢g, : M — {0, 1}4 or N¢, yield binary or count-based encoding over the molecular space M.

2.3 CP-CLIP: REPROCESSING

To harmonize Cell Painting images across datasets with varying resolution and signal quality, we defined a
channel-wise preprocessing step: P : R7oxWo — REXW ‘applied independently to each fluorescence chan-
nel. This includes Contrast Limited Adaptive Histogram Equalization (CLAHE), random Laplacian sharpen-
ing, and gamma correction, yielding enhanced images I = P(I). Enhanced single-channel images are then
cropped into 512 x 512 patches and stacked, yielding input tiles z, € R>12X512XC_ For each perturbation
tile z,, a corresponding control tile z. € R312X512XC jg independently sampled from a matching control
set € (xp), which share all experimental contexts (e.g., plate, cell line, channel) with z,,, except for the per-
turbation compound. That is z. ~ U (€2 (x,)). The final image branch input is formed by concatenating the
grayscale perturbation and control tiles along the channel dimension, & = concat (z,, z.) € R?12X512x2,
This paired design encourages the model to learn the contrasts between treated and untreated states.

Molecular descriptors are projected via a fixed dimensional mapping fuese : X — R?, where each feature
dimension corresponds to a predefined physicochemical or topological property (See Appendix [D). Let
U = fdesc(T) € R? denote the raw descriptor vector for compound z € X'. To ensure numerical stability and
comparability across compounds, dimensions containing undefined values (e.g., NaNs or Infs) are removed,
and z-score normalization is applied independently to each feature dimension ¥; = “—.

i

To account for the compound-specific dosing scheme, each molecule is represented by a normalized
dosing pair[pmax, $(C)], where ppax denotes the molecular mass-normalized maximum concentration (in
mg/mL), and s(C) is the log-scaled dose step index corresponding to a given concentration. Let M € R+ ¢
denote the molecular weight (in Da or g/mol), and Ciax € R the nominal maximum concentration (in
1M). So, the molecular maximum mass concentration is given by:

M[Da] ) Cmax [MM]

max L) := 3 1
Pmax[mg/mL] TG (1)
where the denominator 10° reflects the conversion from M and Da to mg/mL. While for each titration
point C € {C1,...,Cs}, a pseudo-step index is computed on a log scale to reflect dilution ratios:
1 Cmax) — 1 C
s(C) = 9810 (Cinax) = 10810(C) Alog =0.5 )

Alog ’

where the denominator 0.5 corresponds to the log-fold change between adjacent titration levels in a 2-fold
serial dilution protocol. A detailed derivation is provided in Appendix [E]

For observation time, let ¢ € R>( denote time in days. Temporal normalization rescales ¢ into the unit
interval via: ¢t = ﬁ, with Ti,x = 112. The 112-day (16-week) window reflects the FDA’s stopping
rule, adopted by Watkins et al.| (2022) in their pharmacoeconomic analysis. These representations ensure
that the input space remains consistent across compounds with varying dosing schemes and time-points.

2.4 CP-CLIP: CONTEXT-AWARE TOKEN PROJECTION

Our contrastive framework uses a structured text encoder tailored to the metadata obtained from drug screen-
ing experiments (Figure[I] bottom). Each experiment is represented as a prompt-like sequence composed of
cell culture, imaging, and drug compound perturbation conditions. To accommodate structured context and
consistent representations of perturbing compounds, we introduced field-specific placeholder tokens (i.e.
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Figure 1: Ilustration of the CP-agent (top) and CP-CLIP (bottom J
<CMPD>, <CONC>, <TIME>) for compound descriptors Zempa = ¢desc (z; P) € R*, normalized concen-

tration Zeone = [Pmax, S(C)] € R2, and normalized time zjm. = ¢ € R. The spec1a1 placeholder tokens
are directly inserted into the text sequence and treated as atomic units. Their embeddings are dynamically

computed via field-specific Multilayer Perceptron (MLP) trunks f, : RY — RP:
Cempd = fempd (Zempa) € RP
€cone = foone (Zconc) € R” (3
etime = fiime (Zime) € R”

where fempd, feone, and fime are lightweight MLP trunks encoding compound identity, concentration, and
time-point used in place of the placeholders. The resulting text input is a hybrid sequence:

X:[CLS,tl,tg,..., €cmpd 5--+5 €Econc y---5 Etime ,] (4)
S~ S~~~ ~—~
<CMPD> <CONC> <TIME>

This hybrid sequence, combining standard subword embeddings ¢; € RP with structured embeddings
e, € RP from field-specific MLPs, is fed into the text Transformer to produce final text representation.
Implementation details are in Appendix [F} By replacing placeholder tokens with learned embeddings, the
model fuses continuous metadata with discrete language tokens in a shared embedding space. The text en-
coder thus captures both experimental signals and linguistic coherence, enabling better semantic alignment.

2.5 CP-AGENT WORKFLOW

CP-Agent adopts a modular, memory-augmented architecture that connects perception, tooling, and anal-
ysis into a single-pass pipeline (Figure [T} top). Given user-provided Cell Painting images, a lightweight
memory retriever powered by CP-CLIP fetches the most probable experimental context (i.e., cell line, fluo-
rescence channels, imaging settings, chemical perturbations). Once the experimental context is retrieved, the
pipeline proceeds to visual analysis. Rather than relying on vision backbones that produce holistic, biolog-
ically opaque embeddings, we extract handcrafted single-cell morphological features. These interpretable
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Figure 2: Automated cell-phenotype assessment pipeline of CP-Agent.

representations are processed by a modular, MLLM-driven agent architecture, where the MLLM serves as a
policy layer that dynamically routes tasks to interchangeable tools and integrates their outputs.

We instantiate this concept on fluorescence Cell Painting data via a specialized CP-Agent workflow (Fig-
ure [2)), which comprises the following steps:

CPContext Agent Given paired Cell Painting images (control vs. perturbation) acquired under matched
conditions, the CPContext Agent employs a pre-trained CP-CLIP retriever to obtain experimental context
from a curated knowledge base. Simultaneously, it harmonizes metadata via controlled-vocabulary tagging
and channel labeling to generate standardized descriptors. Retrieved context is routed both (A) as a context
bundle to FeatRank Agent, ReportGen Agent, and (B) as metadata keywords to the CellFeat Agent.
ChannelSeg Agent Given Cell Painting images, the ChannelSeg Agent performs nuclei instance segmen-
tation on DNA-stained channels and whole-cell segmentation on non-DNA channels (e.g., RNA, Actin,
ER, etc.). It outputs channel-specific instance masks, which are passed to the CellFeat Agent.

CellFeat Agent Given Cell Painting images, corresponding masks, and harmonized metadata, the CellFeat
Agent extracts per-cell morphological, intensity, texture, granularity, neighborhood, and occupancy fea-
tures using a configured CellProfiler pipeline (Appendix [H). Output is routed both (A) as extracted feature
items to the FeatRank Agent for mechanism-aware selection, and (B) as channel-wise single-cell feature
matrices to the StatSynth Agent for statistical evidence synthesis.

FeatRank Agent Given extracted feature items and experimental context, the FeatRank Agent scores and
ranks features by their likelihood of being influenced by the perturbation. It generates confidence-weighted
rationales to support prioritization. Output is routed as a prioritized feature list with explanations to the
StatSynth Agent.

StatSynth Agent Given the prioritized feature list, full feature matrices, and experiment-level context,
the StatSynth Agent computes per-feature statistical evidence between control and perturbation conditions
based on the prioritized features. It summarizes distribution shifts, effect sizes, confidence intervals, and
statistical significance. Outputs are routed as statistical summaries and interpretations to the ReportGen
Agent for final report composition.

ReportGen Agent Given statistical summaries, prioritized features, visual exemplars, and experimental
context, the ReportGen Agent composes an integrated interpretation of the perturbation’s biological im-
pact. It identifies key morphological shifts and evaluates their consistency with expected cellular responses



Under review as a conference paper at ICLR 2026

to infer plausible mechanisms. The resulting report summarizes these findings, provides follow-up rec-
ommendations and visualizations, and is delivered to the users for downstream access.

The agent tool stack integrates both classical and learning-based components. For segmentation, we fine-
tuned VISTA-2D |He et al.| for 20 epochs using diverse augmentation strategies to mitigate optics-induced
batch effects. The model generates channel-specific masks that enable biologically consistent segmentation
across diverse imaging conditions. More details regarding dataset preparation and training of the segmenta-
tion model are provided in Appendix [J] The StarSynth Agent is tasked with reasoning over high-dimensional
single-cell morphological data (typically 30-300 cells per image), which is impractical for direct LLM ap-
plication due to length constraints and noise (Fang et al.l |2024). Instead, we curate agentic tools that (i)
aggregate summary statistics for key features, and (ii) quantify distribution shifts between control and per-
turbed samples. These compact, interpretable summaries support reliable LLM-based reasoning. Detailed
procedures for this step are provided in Appendix

3 EXPERIMENTS AND RESULTS

Table 2: Model performance on classification tasks
Model Cell line Channel ‘ Perturbation Compound

‘F]indokalner Racecadotril AZM-475271 Misoprostol Trazodone Orantinib Rufinamide Lumiracoxib BIRB-796 Methoxsalen Macro-avg

il (GG 025 0.143 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
Grok-4 0448 0228 | 0215 0.174 0.0 0.0 0410 0.9 0034 0.0 0.0 00 0.102
GPT5 0377 0439 | 0059 0.168 0.0 0.0 0353 0.0 00 00 0.0 00 0.074
Claude-4-Sonnet 0450 0.198 0.0 0.00 0.0 0.057 00 0.0 00 0.0 0211 0.0 0.027
Gemini-2.5-Pro 0526 0.628 0.0 0.0 0.0 0.0 0.0 0.023 0.0 0.0 0.045 0.0 0.007
CLIP VIT-B/16 1000 0955 | 0776 0.680 0.661 0216 0629 0447 0500 0.600 0.575 0.642 0.657
SigLIP-VIT-B/16 1000 0925 | 0734 0471 0515 0.826 0291 0638 0395 0272 0.604 0.400 0.514
CP-CLIP SigLIP-VIT-BI6 500 934 | 0685 0.442 0485 0.776 0351 0860 0255 0.186 0.660 0.620 0532
(descriptor)
CP-CLIP VIT-B/16 1000 0991 0.839 0.862 0.891 0875 0913 0914 0894 0.840 0971 0.875 0.887
(fingerprint)
CP-CLIP VITB/16 1000 0882 | 0907 0.869 0.857 0.942 0848 0940 0884 0.854 0932 0922 0.89
(descriptor)
CP-CLIP VIT-L/16 1000 0849 | 0928 0.880 0.896 0.846 0843 0929 0911 0819 0915 0.941 0.891

(descriptor)

Table 3: Unseen drugs similarity score

Model Regorafenib Sacubitril Buparlisib  Dexamethasone ~ Nimodipine AZ258 Nilotinib MG-132 Average
CLIP ViT-B/16 0.207+0.082  0.2058 £0.104 0.289+0.046  0.3601£0.049  0.377+0.039 0.328+0.069 0.174+0.080 0.346+0.072  0.286
SigLIP ViT-B/16 0.038+0.082  0.095+0.000 0.129+0.073 0.146 + 0.001 0.183+0.067  0.090+0.186 —0.055+0.103 0.143+0.101  0.096

CP-CLIP SigLIP-ViT-B/16
(descriptor)
CP-CLIP ViT-B/16
(fingerprint)
CP-CLIP ViT-B/16
(descriptor)
CP-CLIP ViT-L/16
(descriptor)

0.378 £0.077  0.420+0.193  0.323 +0.102 0.503 £ 0.130 0.515+0.075 0.488+0.115 0.303+0.000 0.380+0.114 0.414
0.297 £0.093  0.222+0.072 0.375+0.053 0.468 =+ 0.052 0.461+0.046  0.429+0.120 0.210+0.109  0.420+0.081  0.360
0.432+0.008  0.412+0.094  0.396+0.043 0.503 £0.073 0.469+0.032  0.468+0.104 0.324+0.085 0.448+0.081  0.432

0.455 +0.115 0.445+0.135 0.408 £0.053 0.530+0.072 0.523 £o0.032 0.448+0.106 0.295+0.080 0.448 +o0.077 0.444

To assess the effectiveness of CP-Agent, we isolated and evaluated its core components before measuring
end-to-end reporting quality: (a) CP-CLIP (context-aware retrieval and alignment): we evaluate its accuracy
on in-distribution classification (seen-drug) and generalization (unseen-drug matching), ablations against
MLLM baselines and CLIP variants; (b) Vision embedding structure: we evaluate whether CP-CLIP em-
beddings encode chemically grounded, dose- and MoA-dependent morphology; (c) Statistical synthesis and
reporting: whether compact summaries enable robust comparisons between control and perturbation in the
generated report. Finally, we assessed the effectiveness of full CP-Agent reports via expert review.

3.1 MODEL VARIANTS AND MLLM BASELINES

To contextualize the performance of our proposed model, we compared it against several leading MLLMs.
Specifically, we included Grok-4 (xAl, [2025), GPT-5 (OpenAll 2025), Claude-4-Sonnet (Anthropic, [2025)),
and Gemini-2.5-Pro (Google DeepMind, |2025), which have demonstrated strong performance across a range
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of general-purpose multimodal benchmarks. To adapt these models to our domain-specific tasks, we imple-
mented a two-stage prompting pipeline. First, the models were prompted to curate background knowledge.
Then, they were asked to answer multiple-choice questions about experimental conditions based on the back-
ground knowledge, paired control and perturbation images, and masked textual prompts. Full experimental
details are provided in the Appendix

Alongside these MLLMs, we benchmarked multiple variants of our contrastive learning framework, CP-
CLIP, which extends the CLIP architecture by integrating structured experimental context into training. As
a baseline, we used the original CLIP model based on the ViT-B/16 vision backbone, retrained on natural
language text aligned with Cell Painting images. All CP-CLIP variants enhance this setup by injecting
serialized numerical metadata, as detailed in Section 2.4] We evaluated CP-CLIP variants that differ in
compound encoding and loss function (See Appendix [G), including: (i) a descriptor-based model used
continuous molecular descriptors, and (ii) a fingerprint-based model used binary fingerprints. We also tested
a SigLIP variant that uses a sigmoid-based pairwise contrastive objective (Zhai et al.l [2023). To assess
the impact of vision model capacity on performance, we tested a CP-CLIP variant with ViT-L/16 vision
backbone.
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Figure 3: CP-CLIP captures pharmacologically meaningful morphology.
3.2 TASK I: SEEN-DRUG CLASSIFICATION

To benchmark in-distribution performance, we designed classification tasks across three categories: cell
line, fluorescence channel and compound. In each task, one attribute is masked in the prompt, and model
selected the most similar candidate prompt based on image embeddings. For compound classification, 10
compounds were randomly sampled to form a balanced multi-class setting. The same protocol was ap-
plied to other tasks. Table 2] summarizes the results. Among all general-purpose MLLMs, Gemini-2.5-Pro
achieved the best performance on the cell line and channel prediction tasks (F1: 0.526 and 0.628). However,
on compound classification, performance dropped sharply: All models fell below random baseline, except
for Grok-4, which slightly exceeded it. Confusion matrices (Appendix revealed near-zero F1 scores,
indicating systematic failure in identifying perturbing chemical compounds and limited generalization of
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current MLLMs. In contrast, CP-CLIP consistently outperformed both the baseline CLIP and all MLLMs
across tasks. Descriptor-based models slightly outperformed fingerprint-based ones on compound classifi-
cation (F1: 0.891 vs. 0.887), indicating that continuous encodings provide richer chemical contexts. Scaling
the vision encoder from ViT-B/16 to ViT-L/16 yielded no significant gain (F1: 0.896 vs. 0.891), indicating
that a lightweight backbone suffices when paired with strong chemical priors.

3.3 TASK II: UNSEEN-DRUG MATCHING

To evaluate generalization, we performed zero-shot prompt—image matching on held-out compounds by
computing cosine similarity between image and prompt embeddings (Table [3)). The baseline CLIP model
(ViT-B/16) yielded low alignment on unseen drugs (avg. similarity = 0.286), while CP-CLIP (descrip-
tor, ViT-B/16) achieved 0.432, a 14.6% absolute increase. Descriptor-based models also outperformed
fingerprint-based ones (0.432 vs. 0.360), indicating that continuous encodings capture more relevant chemi-
cal contexts. Scaling the vision encoder from ViT-B/16 to ViT-L/16 further improved performance to 0.444,
suggesting enhanced robustness to morphological variation. To provide a comparative reference, we also
evaluated similarity on seen drugs (Appendix [). Notably, performance on unseen drugs remained close,
indicating strong generalization. Specifically, descriptor-based ViT-B/16 and ViT-L/16 models achieved
0.549/0.432 and 0.561/0.444 on seen/unseen drugs, suggesting that CP-CLIP captures mechanism-relevant
biology, rather than memorizing labels. This zero-shot capability supports practical applications such as
MoA hypothesis generation, hit prioritization, and generalization to novel perturbation contexts.

3.4 VISION EMBEDDING ANALYSES

Figure[3p-b shows UMAP projections of embeddings from CP-CLIP ViT-B/16 (descriptor). The UMAP pro-
jection reveals clustering by MoA, indicating the learned representation encodes pharmacologically mean-
ingful morphology beyond compound identity. Figure[3c shows concentration-related patterns for four drugs
selected from the BBBCO021 and RxRx3 datasets. CP-CLIP embeddings exhibited clear dose-response tra-
jectories, reflecting concentration-dependent morphological change. In particular, the sharp dose-responses
observed for Anisomycin and Bryostatin are consistent with previous reports (Cranston et al.| (1982); Mar-
shall et al.| (2002). In contrast, drugs with minimal morphological impacts show flatter trends across dosage.
More examples and a detailed explanation of this schematic are provided in the Appendix [K]

3.5 CP-AGENT REPORTS

We present three case studies from different datasets to demonstrate CP-Agent generated reports (Figure [):
(i)Example 1 (BBBC021, MCF7 + Taxol): Taxol induces a clear cyfoskeletal phenotype by stabilizing mi-
crotubules and arresting mitosis (Kiwanuka et al., 2022). CP-Agent detected the localized changes in tubulin
texture and correctly linked them to microtubule stabilization and mitotic arrest, demonstrating its ability to
recognize canonical, visually prominent phenotypes. (ii) Example 2 (CPJUMP, A549 + Sorbinil): Sorbinil is
an aldose reductase inhibitor that produces a subtle and uncertain phenotype (Zietek et al, 2025). CP-Agent
detected modest shifts (e.g., smoother RNA texture, reduced granularity), and suggested potential stress
granule suppression. Meanwhile, it also flagged ambiguity and suggested further validation, illustrating its
ability to reason under uncertainty. (iii) Example 3 (RxRx3, HUVEC + BGT226): BGT226 is a PI3K/mTOR
inhibitor, leading to a multi-compartment phenotype affecting organelles, cell shape, and density (Kampa-
Schittenhelm et al., 2013). By integrating mitochondrial texture, cell area, and density changes, CP-Agent
inferred PI3K/mTOR inhibition, showcasing its capacity to synthesize complex morphological cues into
mechanistic insights. Together, these cases show that CP-Agent adapts to diverse biological contexts, rang-
ing from clear to ambiguous phenotypes, and generates biologically grounded summaries. Additional ex-
amples and reasoning details are provided in Appendix [0]

We conducted an expert survey to assess whether LLM-based CP-Agent produces accurate and well-
reasoned screening reports. Four LLMs (mentioned in Section each generated reports for ten con-
trol-perturbation image pairs. Experts (N = 12), ranging from PhD students to professors in pharmacology
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Figure 4: Summary reports generated from CP-Agent.

or related fields, rated 40 reports (10 pairs x 4 models) on a 1-7 scale across ten criteria from Wagqas et al.
(2025)), covering language quality and reasoning quality. Full criteria definitions and examples are provided
in Appendix[P] As shown in Figure[T6] most metrics received high scores across models. CP-Agent powered
by GPT-5 showed the strongest overall reasoning performance, followed closely by Gemini-2.5-Pro.

4 DISCUSSION AND CONCLUSION

We present CP-Agent, a context-aware multimodal reasoning framework for interpretable analysis of Cell
Painting drug responses. Its core, CP-CLIP, aligns imaging data with experimental context, enhanced by nu-
merically grounded token injection. This yields strong generalization and outperforms baselines on multiple
classification tasks. CP-Agent separates and coordinates perception, retrieval, analysis, and reporting into
specialized agents (i.e.,CPContext, ChannelSeg, CellFeat, FeatRank, StatSynth, ReportGen). This enables
an evidence-first workflow where CP-Agent converts high-dimensional morphological features, together
with the experimental context, into compact, calibrated summaries that an MLLM synthesizes into inter-
pretable narratives. Hence, CP-Agent allows end-to-end biological interpretability. Users can trace predicted
mechanisms back to corresponding morphological features—from images to masks, features, statistics, and
final explanations. Unlike histology tasks, where many agent-based pipelines can perform well without train-
ing by using a well-designed chain-of-thought with off-the-shelf MLLMs, our results show that zero-shot
prompting for Cell Painting datasets consistently underperforms, and biologically grounded supervision is
essential for meaningful reasoning. CP-Agent also generalizes to various imaging modalities such as quan-
titative phase imaging (QPI), digital holographic microscopy, and brightfield time-lapse imaging (Lo et al.|
2024; S1u et al., 2023; Zhang et al., [2023} [Lee et al.,|2025) and integrates flexibly with tools like ilastik, Fiji,
and Icy. Overall, it establishes a new paradigm for combining MLLMs with mechanistically grounded anal-
ysis, offering a foundation for next-generation Al systems in phenotypic drug discovery. Looking forward,
the modular agentic architecture of CP-Agent could flexibly be extended for experimental planning (e.g.,
dose strategy refinement), multi-omics fusion, as well as causal priors for counterfactual reasoning.
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A USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (e.g., GPT-4) for non-substantive assistance during manuscript preparation.
Specifically, LLMs were used to improve writing clarity, grammar, and phrasing, but not for generating
scientific content or experimental design. All technical contributions, experiments, and interpretations were
conceived and conducted by the authors.

The authors take full responsibility for the content of the manuscript, including any text generatedor pol-
ished by the LLM. We have ensured that the [LM-generated text adheres to ethical guidelinesand does not
contribute to plagiarism or scientific misconduct.

B PRELIMINARIES AND BACKGROUND

B.1 HIGH-CONTENT IMAGING

High-content imaging (HCI) leverages automated microscopy and quantitative morphology to profile com-
pound effects. Cell Painting stains multiple cellular components and extracts hundreds of single-cell fea-
tures, producing high-dimensional representations that enable cross-perturbation comparisons, including
compound clustering, target and pathway inference, and prediction of unannotated mechanisms (Bray et al.|
20165 |Odje et al.,2024).

B.2 MULTIDIMENSIONAL EXPERIMENTAL DESIGN IN CELL PAINTING ASSAYS

Drug screening with Cell Painting involves diverse experimental factors that strongly shape cell morphol-
ogy. (Overview of high-content imaging (HCI) can be referred to Appendix [B.T). Key sources of variability
include the cell line (Lejal et al.l 2025)), culture medium |Harkness et al| (2019)), incubation environment,
and drug administration, each capable of inducing substantial morphological shifts. Drug libraries typically
contain hundreds of thousands of molecules (Huggins et al., 2011 [Liu et al.,|2025a), with concentrations
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sampled using half-logarithmic dilution series to capture dose—response characteristics across orders of mag-
nitude (Choy et al., 2021} Miyajima et al.l [2025). Meanwhile, temporal variables staging further increase
complexity, as different observation time points can capture different call phases of treatment response,
revealing both immediate and progressive morphological changes (Beesabathuni et al., [2025] |Lejal et al.|
2025)). The interplay of experimental variables defines a high-dimensional space which condition combina-
tions yield diverse morphological phenotypes.

B.3 MLLM AGENTS FOR BIOINFORMATICS

Large language models (LLMs) are demonstrating growing potential across diverse domains of bioinformat-
ics, with applications ranging from gene expression analysis (Liu et al., |2024a)) and drug discovery (Averly
et al., [2025) to pathology image interpretation (Lu et al., [2024), spatial transcriptomics (Wang et al., [2024),
and gene perturbation studies. Because datasets in these fields are often high-dimensional, recent efforts
have increasingly turned to multimodal large language models (MLLMs), which integrate visual features
from images with prior textual knowledge. Leveraging logical inference strategies such as deduction, induc-
tion, abduction, and analogy, MLLMs can support existing pipelines and facilitate novel scientific insights.

More recently, an emerging paradigm has focused on deploying MLLMs as autonomous or semi-
autonomous agents to execute complex bioinformatics workflows (Yiyao et al., 2025} [Su et al.} 2025). Such
agents integrate heterogeneous tools and interact through natural language, enabling biological data anal-
ysis guided by human instructions. While early studies highlight the promise of MLLM-driven agents in
augmenting traditional pipelines, their scope has largely been limited to direct perception and recognition
tasks. They remain insufficient for deeper understanding of complex biological processes and for generating
novel hypotheses. Addressing this gap, we introduce CL-CLIP, a multi-agent system that extends beyond
the visual capacities of current state-of-the-art MLLMs to capture subtle pharmacological features, provide
interpretable analysis, and facilitate hypothesis generation in pharmacological research.

B.4 CONTRASTIVE LEARNING

Contrastive learning is a self-supervised paradigm that learns representations by pulling semantically related
pairs closer and pushing unrelated pairs apart in a shared embedding space (Hu et al., [2024a). In biol-
ogy, contrastive learning has underpinned several applications, such as single-cell multi-omics integration
(scRNA-seq and scATAC-seq) (Liu et al.l 2025b), protein function prediction for classify enzyme activ-
ities (Yang et al., |2024), drug-target interaction prediction through protein-compound embedding (Singh
et al.| |2023). CLIP exemplifies the dual-encoder contrastive paradigm for multi-modal learning, it trains
an image encoder and a text encoder so that matched image—text pairs have high cosine similarity while
mismatched pairs are pushed apart. By scaling to large, CLIP can produce transferable embeddings that
generalize across tasks.

C DATASET BACKGROUNDS

BBBCO021 profiles MCF-7 cells treated with 38 reference drugs covering 12 mechanisms of action, imaged
across up to eight half-log doses and three channels (DNA, S-tubulin, actin) (Caie et al.,[2010). CPJUMP1
includes 301 small molecules (46 controls) perturbed in U20S and A549 cells, imaged in five channels
(DNA; mitochondria; actin/Golgi/plasma membrane; nucleoli and cytoplasmic RNA; endoplasmic reticu-
lum) (Chandrasekaran et al., |[2024). RxRx3 assays HUVECs with 1,674 bioactive compounds across eight
concentrations and six fluorescence channels to capture dose-response phenotypes (Fay et al.,[2023).
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D DETAILED RDKIT2D FEATURE OVERVIEW

Table 4: Categorized RDKit2D Descriptors Used in This Study (174 descriptors)

Feature Category

Descriptors

Topological and Complexity De-
scriptors

Basic Physicochemical Properties

Atom and Bond Counts

Ring Structure Descriptors

Electrotopological State (EState)
Descriptors

VSA (Van der Waals Surface Area)
Descriptors

Fingerprint Density Descriptors

Fragment-Based Functional Group
Descriptors

Drug-Likeness Score

BalabanJ, BertzCT, ChiO, ChiOn, ChiOv, Chil, Chiln, Chilv, Chi2n, Chi2v,
Chi3n, Chi3v, Chi4n, Chi4v, Ipc, Kappal, Kappa2, Kappa3

MolWt, ExactMolWt, HeavyAtomMolWt, = MolLogP, MolMR,
LabuteASA, TPSA

HeavyAtomCount, NumValenceElectrons, NumRotatableBonds,
NumHAcceptors, NumHDonors, NHOHCount, NOCount,
NumHeteroatoms, FractionCSP3

RingCount, NumAromaticRings, NumSaturatedRings, NumAliphati-

cRings, NumAromaticCarbocycles, NumAromaticHeterocycles, NumSat-
uratedCarbocycles, NumSaturatedHeterocycles, NumAliphaticCarbocy-
cles, NumAliphaticHeterocycles
MaxEStatelndex, MinEStateIndex,
tateIndex

EState_VSA1-11, PEOE_VSA1-14, SMR_VSA1-10, SlogP_VSAI1-12,
VSA_EStatel1-10

FpDensityMorgan1, FpDensityMorgan2, FpDensityMorgan3

fr_A1_.COO, fr_Al_.OH, fr_Al_.OH_noTert, fr_ArN, fr_Ar_.COO, fr_Ar_N,
fr Ar NH, fr Ar_.OH, fr.COO, fr.CO0O2, fr.C_.O, fr.C_O_noCOO,
fr HOCCN, fr_Imine, fr NHO, fr NH1, fr NH2, fr Ndealkylationl,
fr_Ndealkylation2, fr_Nhpyrrole, fr_.SH, fr_aldehyde, fr_alkyl carbamate,

MaxAbsEStateIndex, MinAbsES-

fr_alkyl_halide, fr_allylic.oxid, fr.amide, fr_amidine, fr_aniline,
fr_aryl_methyl, fr_azo, fr_benzene, fr bicyclic, fr_dihydropyridine,
fr_epoxide, fr_ester, fr_ether, fr_furan, fr_halogen, fr_hdrzine,

fr_imidazole, fr_imide, fr_ketone, fr_ketone_Topliss, fr_lactone, fr_methoxy,
fr_morpholine, fr_nitrile, fr_nitro, fr_nitro_arom, fr_nitro_arom_nonortho,
fr_para_hydroxylation, fr_phenol, fr_phenol_noOrthoHbond, fr_phos_acid,
fr_phos_ester, fr_piperdine, fr_piperzine, fr_priamide, fr_pyridine, fr_sulfide,
fr_sulfonamd, fr_sulfone, fr_thiazole, fr_thiophene, fr_unbrch_alkane,
fr_urea

ged

E LoOG-DOSE INDEXING FOR SERIAL DILUTION

To represent compound concentrations on a consistent and model-friendly scale, we transform raw con-
centrations into log-scaled step values. This transformation is based on the assumption that concentrations
follow a serial dilution protocol in logarithmic space.

Let Chhax € Rs denote the nominal maximum concentration for a compound, and let C' € R+ be any
intermediate concentration point. In a standard protocol with logarithmic dilution spacing, each dose is
reduced by a fixed factor per step. This can be expressed as:

—k-A1l
Ck = C(max -10 og’

k=0,1,2,... (5)
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where Alog > 0 is the logarithmic step size (in base 10. For example, Alog = 0.5 corresponds to a
3.16-fold dilution between adjacent doses, since 107%% ~ 0.3162.

To recover the step index s(C') corresponding to any concentration C, we invert the above relation:

C = Cmax . 10—5(0)-A10g
= log,(C) =1ogo (Crmax) — s(C) - Alog

(6)
o logyg (Cinax) — 10%10(0)
= s(C) = Alog
Thus, the log-scaled step transformation is defined as:
1 max -1
5(C) = 10810 (Cmn) ~10810(C) 10— 5 (7

Alog

This representation maps concentrations to a normalized step index in log space, which is more suitable for
modeling, especially in contexts where concentration-response relationships are approximately log-linear.

F CONTEXT-AWARE TOKEN PROJECTION MODULES

Algorithm 1 CP-CLIP: Context-Aware Token Projection Modules

1: function ENCODEIMAGE(Zimg)

2 fimg — V(-rimg)

3: return normalize( fimg)

4: end function

5: function ENCODETEXT(Z, ¢, t, €)
6: X < TokenEmbedding(x )

7: if <CONC> in x then
8.

: X [<CONC>] « conc_mlp(c) > c € R%, conc_mlp : R? — R¥ — RY
9: end if
10: if <TIME> in x then
11: X[<TIME>] « time_mlp(t) >t € RY, time_mlp : R! — R — RY
12: end if
13: if <CMPD> in x then
14: X [<CMPD>] « compound_mlp(e) > e € R%mw, compound_mlp : R%m — Rén — R9
15: end if

16: X < X + PosEmb(X)
17: fixe = T(X)

18: return normalize( fi)
19: end function

G TRAINING LOSSES

We train the alignment with a symmetric CLIP-style contrastive objective. Specifically, we employ the
InfoNCE loss, which encourages matched image-text pairs to have high similarity while contrasting them
against all other mismatched pairs in the batch:

LinfoNCE = % i\’: [KCE (Sfil),yk) +lcE (S,g(i,)7yk>] ()
k=1
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Here, F; = [fV, ., f"T e RV and F, = [fV, ..., f™]T € RV*? are the batch of normalized
image and text embeddings. The similarity matrices are computed as S;_,; = s - FZ-FtT € RNXN_ The
ground-truth labels y;, € {0,1,..., N — 1} indicate the correct matching pair for each sample in the batch.

Lci(+, +) denotes the standard cross-entropy between the similarity scores and the target labels.

In our experiments, we additionally compare InfoNCE loss with an alternative loss recently proposed in
SigLIP, which simplifies the contrastive objective by directly operate joint embeddings in a shared represen-
tation space.

N .
»CSigLIP = N ZZ —logo (ykj © S <fi(k)7ft(j)>) 9

k=1 j=1

Here, s is a learnable temperature parameter. To isolate the effect of the loss function from the model
architecture, we apply both loss types within our CP-CLIP framework for a fair comparison.

H CELLPROFILER PIPELINE

For all DNA channels, we extracted per-cell features using the workflow described in Table [5] This
pipeline is specifically optimized for nuclear segmentation and feature extraction, using modules that mea-
sure grayscale features like shape, texture, and granularity. These features are particularly suitable for DNA
stains. For all non-DNA channels (such as Actin, Tubulin, etc.), we applied a consistent pipeline template
described in [§] This workflow is tailored to cytoplasmic or filamentous structures, which differ in spatial
organization and image characteristics compared to nuclei.

Some feature modules differ between the two workflows, particularly in how certain parameters are config-
ured. For example, texture features were computed at different spatial scales: for DNA, we used smaller
scales (e.g., 3, 5, 7) to capture fine-grained nuclear texture, while for non-DNA channels, larger scales (e.g.,
5, 10, 15) were used to capture broader cytoskeletal patterns. Similarly, granularity features and shape de-
scriptors such as Zernike moments were customized to reflect the typical size and morphology of structures
in each channel. These differences in pipeline configuration ensure that the measurements are biologically
meaningful and adapted to the unique characteristics of each fluorescence channel.
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Table 5: CellProfiler pipeline modules and measured features for DNA channel.

Module Key Settings / Notes Measured Features
1. Images Load images; filter by: isimage, —

exclude folders with regex
2. Metadata Extract metadata from filename and Plate,Well, Site,

3. NamesAndTypes

4. Groups
5. MeasureImageAreaOccupied
6. MeasureObjectNeighbors

7. MeasureObjectNeighbors

8. MeasureObjectSizeShape

9. MeasureTexture

10. MeasureGranularity

11. ExportToSpreadsheet

folder using regex patterns

Assign names: DNA (grayscale),
nuclei_mask (objects); match rules:

file contains "DNA", file
contains "nuclei"
Grouping disabled

Measure area of nuclei objects

Measure neighbors of nuclei within
10 pixels
Measure neighbors of nuclei within
50 pixels

Measure nuclei; include Zernike
moments and advanced features

Texture of DNA in nuclei; scales: 3,
5, 7; levels: 256; mode: both image
and object

Granularity of DNA in nuclei; radius
= 8, spectrum range = 4

Export all features with metadata;
output file: DATA . csv with prefix
Expt_-

ChannelNumber, Date

Image names: DNA, mask; Object
names: nuclei, Nucleus

AreaOccupied_nuclei

Neighbors_10px_Count,
Neighbors_10px_PercentTouching

Neighbors_50px_Count,
Neighbors_50px_PercentTouching

Shape: Area, Perimeter,
Solidity,FormFactor, etc.;
Zernike: Zernike_0_0 to
Zernike_9_9

Texture features per scale:
Contrast, Entropy,
Correlation, etc.

Granularity_1--4_DNA_in_nuclei

All per-object and per-image features
above, including per-image
mean/median/std
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Table 6: CellProfiler pipeline modules and measured features for Actin channel.

Module

Key Settings / Notes

Measured Features

1. Images
2. Metadata

3. NamesAndTypes

4. Groups
5. MeasurelmageAreaOccupied
6. MeasureObjectNeighbors

7. MeasureObjectNeighbors

8. MeasureObjectSizeShape

9. MeasureTexture

10. MeasureGranularity

Export all features with metadata;
output file: DATA.csv

Load images; filter by: isimage,
exclude folders with regex

Extract metadata from filename and
folder using regex patterns

Assign names: Actin (grayscale),
cell mask (objects);

Match rules: file contains
"Actin", file contains
"cell"

Grouping disabled
Measure area of cell objects

Measure neighbors of ce11 within 10
pixels

Measure neighbors of ce11 within 50
pixels

Measure cell; include Zernike
moments and advanced features

Texture of Actin in cell; scales: 3,
5, 7; levels: 256

Granularity of Actin in cell; radius
= 8§, spectrum range = 4

All per-object and per-image features
above, including per-image
mean/median/std

Plate,Well, Site,
ChannelNumber, Date

Image names: DNA, mask
Object names: nuclei, Nucleus

AreaOccupied Cell
Neighbors_10px_Count,
Neighbors_10px_
PercentTouching
Neighbors_50px_Count,
Neighbors_50px_
PercentTouching

Shape: Area, Perimeter,
Solidity, FormFactor,
MaxFeretDiameter,
EquivalentDiameter, etc.
Zernike: Zernike_0_0 to
Zernike_9_9

Texture features per scale:
Contrast, Correlation,
Entropy, SumEntropy,
DifferenceEntropy,
InfoMeasl, InfoMeas?2
Granularity_1--4_
Actin_in_cell

11. ExportToSpreadsheet

I SIMILARITY PERFORMANCE ON SEEN DRUG COMPOUNDS

Table 7: Similarity Performance on Seen Drug Compounds

Model Flindokalner ~ Racecadotril ~ AZM475271  Misoprostol Trazodone Orantinib Rufinamide  lumiracoxib BIRB-796 Methoxsalen

CLIP ViT-B/16 0.486+£0.049  0.528£0.009  0.496+0.032  0.437+0.051  0.499+0.036  0.427+0.044  0.500£0.030 0.433+0.042 0.422+0.041  0.440+0.036
SigLIP ViT-B/16 0.308 +0.088  0.323+0.075  0.209+0.080 0.329+0.077 0.214+0.074 0.322+0.083 0.222+0.068 0.211+0.063 0.2407+0.086 0.314+0.073
CP7CL1(Z€S;§:‘I.‘,I;;XPB/16 0.538+£0.066  0.539+0.057  0.456+0.040 0.531+0.052 0.448+0.039  0.545+0.046 0.452+0.042 0.448+0.040 0.479+0.059  0.525+0.051
CP-(_%E;Z;{;S/M 0.592+0.050  0.598+0.036  0.510+0.045 0.599+0.043 0.510+0.042 0.602+0.040 0.510£0.036 0.499+0.049 0.516+0.036  0.581+0.051
CP-(CdI;SIfng;})S/m 0.590+0.052  0.594+0.037 0.510+0.047  0.595+£0.047 0.504+0.046 0.596+0.042 0.511+0.044 0.497+0.049 0.525+0.031 0.573+0.057
CP_(ZI;X[S;B;L)‘“() 0.608 +0.057 0.620+0.043 0.511+0.060 0.626+0.039 0.503 +0.053 0.626+0.043 0.509+£0.057 0.496+0.060 0.513+0.050 0.599 +0.064
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Table 8: Seen drugs similarity averaged score

CP-CLIP CP-CLIP CP-CLIP CP-CLIP
CLIP ViT-B/16 SigLIP ViT-B/16 SigLIP-ViT-B/16 ViT-B/16 ViT-B/16 ViT-L/16
(descriptor) (fingerprint) (descriptor) (descriptor)
0.467 0.269 0.496 0.552 0.549 0.561

J VISTA-2D FINE-TUNE

The original VISTA2D model does not consistently achieve accurate segmentation across all fluorescent
channels, especially when applied to diverse cell painting datasets. To address this limitation, we fine-tuned
the segmentation model using the Cell Painting dataset. Figures below illustrate representative instance
segmentation results across different channels and datasets (BBBC021, RxRx1, and CPJUMP, respectively),
demonstrating improved mask quality and channel-specific accuracy. Three standard instance segmentation
metrics are used to evaluate the fine-tuned model’s instance mask quality on 500 test data, with improvements
shown in Table[9]:

o Intersection over Union (IoU) The IoU evaluates the overlap between a predicted instance PP and ground

truth instance label T POT)
n
IoU(P,T) = 10
oUPT) = 5o (10)

Where |P N T is number of pixels in the intersection of P and T

o Aggregated Jaccard Index (AJI): The AJI generalizes IoU to an entire image containing multiple in-
stances. It is the ratio of the total number of overlapping pixels between matched ground truth and prediction
pairs, to the total number of pixels in their union plus the pixels in all unmatched predicted instances, and
can be formulated as:

i1 | TN Prgy|

Z?:l ‘Ti U Pﬂ(i)‘ + ZjeU |Pj|
Where 7(¢) the index mapping that assigns predicted instances align with ground truth instances. U is the
set of unmatched predicted instances.

AJI(P,T) =

an

¢ Panoptic Quality (PQ): PQ is a metric that jointly evaluates segmentation quality and recognition quality
in instance segmentation. It reflects both how accurately the matched segments overlap (IoU) and how well
all instances are detected (accounting for false positives and false negatives). PQ rewards correct segmenta-
tions while penalizing missing or spurious predictions. PQ can be formulated as:

1 M|
PQ(P,T) = — IoU(p, t) x
( ) Z ( ) |M| + % ‘,Punmatched I + % |71-mmatched |

IMi
(p,t)eM
Detection Quality (DQ)

12)

Segmentation Quality (SQ)

Where M is the number of ground truth pairs, Pynmatched 18 Unmatched predicted instances (False Positives),
Tunmatched 1S unmatched ground truth instances (False Negatives).

Table 9: Instance Mask Evaluation Metrics
VISTA-2d IoU AJI PQ

before fine tune 0.272 0.290 0.151
after fine tune 0.824 0.791 0.682
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Input Image Fine-tuned VISTA Ground Truth

DNA

Mito

ER

CPJUMP

RNA

AGP

Figure 5: Segmentation performance comparison on CP-JUMP dataset across different imaging channels.
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Input Image VISTA Fine-tuned VISTA Ground Truth

DNA

Mito

RNA

RXRX3

Actin

AGP

ER

Figure 6: Segmentation performance comparison on RXRX3 dataset across different imaging channels.
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Input Image VISTA Fine-tuned VISTA Ground Truth

BBBCO021

Tubulin

Figure 7: Segmentation performance comparison on BBBC021 dataset across different imaging channels.

K DOSE RESPONSE EXAMPLES

To further illustrate the diversity of dose-response behaviors captured by CP-CLIP embeddings, Figure K]
shows additional examples from two datasets: BBBC021 and RxRx3 since only the two datasets designed
dose scheme based experiments. For each compound, we compute the cosine distance between image em-
beddings at different concentration levels, focusing on perturbation effects within individual imaging chan-
nels.

The x-axis denotes concentration step pairs relative to the first experimental dose. Because different datasets
use either fixed or variable half-log concentration series, we normalize the comparisons by indexing each
dose level (e.g., 1 for the lowest concentration, 8 for the highest). A label such as ”1-2" indicates the cosine
distance between embeddings at concentration step 1 and step 2. For example, if the lowest concentration is
0.0001 uM and a half-log step is used, then: step 1 is 0.0001 puM, step 2 is 0.000316 uM, step8 is O uM. The
cosine distance is computed between embeddings z; and z; at two different doses ¢ and j, where

Z;Zj
12l |12
The y-axis reflects this cosine distance, providing a quantitative measure of morphological difference be-
tween two concentrations. A rising trend along the x-axis indicates increasing morphological divergence

from the baseline as concentration increases, which indicating a hallmark of a dose-dependent phenotype.
Sharp trajectories are observed for drugs such as Alsterpaullone, Camptothecin, Cisplatin, Emetine, Mitox-

dij =1 (13)
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antrone, Acetophenazine, Buclizine, and Thiothixene, which are also consistent with their known mecha-
nisms. In contrast, compounds such as Eszopiclone and Methsuximide produce more stable embeddings
across doses, suggesting limited morphological response. These visualizations provide additional support
for the claim that CP-CLIP embeddings can sensitively capture dose-dependent morphological variation

across diverse chemical perturbations.
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Figure 8: Dose-response consistency across compounds in BBBC021 and RxRx3 datasets, measured by

Alsterpaullone

0.1
1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8

1
1-11-21-3 1-4 1-5 1-6 1-7 1-8

Concentration step pair

Lactacystin

—_—

1-1 12 1-3 1-4 1-5 1-6 1-7 1-8
Concentration step pair

Acetophenazine

1-1 1213 1-4 1-5 1-6 1-7 1-8
Concentration step pair

Eszopiclone

M

Concentration step pair

—— Actin
—e— DNA
—e— Tubulin

—e— Actin
—e— DNA
~e— Tubulin

—— AGP
—e— Actin
—o— DNA
ER
Mito
—e— RNA

—— AGP
—e— Actin
—e— DNA

Mito
—o— RNA

Cosine Distance Cosine Distance Cosine Distance

Cosine Distance

e
©

Camptothecin

o
®

o o
5 2

o
o

\

[
S

o
©

o
o

1
1-1 1-21-3 1-4 1-5 1-6 1-7 1-8

o
®

o o
> <

e
o

)

o
FS

e 9o
[

o

°S 2 © o ° o o
S o 32 o o I &

o

© o o o o
= @ o 3 8

Ll
N

0.1
111213 1-4 1-5 1-6 1-7 1-8

Concentration step pair

Emetine

1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8

Concentration step pair

Buclizine

11 1-21-3 1-4 15 1-6 1-7 1-8
Concentration step pair

Methsuximide

P ———

Concentration step pair

—e— Actin
—e— DNA
~o— Tubulin

—— Actin
—e— DNA
~e— Tubulin

—— AGP
—— Act
—e— DNA

Mito
—o— RNA

Cosine Distance

Cosine Distance

Cosine Distance

Cosine Distance

Cisplatin
08
0.7
0.6
05 —— Actin
—e— DNA
04 —o— Tubulin
03
0.2
0.1
1-1 1213 1-4 1-5 1-6 1-7 1-8
Concentration step pair
Mitoxantrone
08
0.7
06
05 —— Actin
—o— DNA
04 —o— Tubulin
0.3
0.2
0.1
1-1 12 13 1-4 1-5 16 1-7 1-8
Concentration step pair
Thiothixene
08
07
06
05
0.4
03
0.2
0.1
1-1 1-21-3 1-4 1-5 1-6 1-7 1-8
Concentration step pair
Garenoxacin
08
0.7
06
—— AGP
—— At
0.5 . — DZA
04 M o
—— RNA
03
0.2

1
1-1 1213 1-4 1-5 1-6 1-7 1-8

Concentration step pair

cosine distance between CP-CLIP embeddings at different concentration step pairs.

25



Under review as a conference paper at ICLR 2026

L STATISTICAL EVIDENCE SYNTHESIZER EQUATIONS

Table 10: Summary of statistical parameters for image

Parameter Name Expression Variable Description

n_control |al a: Number of cells from the control group
n_perturb D] b: Number of cells from the perturbation group

Table 11: Summary of statistical parameters for each feature metric and their definitions

Parameter Name Expression Variable Description

median_control median(a) median: Median of a

median_perturb median(b) median: Median of b

mad_control median(Ja — median(a)|) MAD: Median absolute deviation of a
mad_perturb median(|b — median(b)|) MAD: Median absolute deviation of b
pl0_control Q(0.10) Q. (p): p-th quantile of control group a
p25_control Q.(0.25) Same as above

p50_control Q4(0.50) Same as above

p75_control Q.(0.75) Same as above

p90_control Q.(0.90) Same as above

plO_perturb Qy(0.10) Q»(p): p-th quantile of perturbation group b
p25_perturb Q(0.25) Same as above

p50_perturb Q1(0.50) Same as above

p75perturb Q5(0.75) Same as above

p90_perturb Q5(0.90) Same as above

deltamedian median(b) — median(a)  Difference in medians between groups
bootstrap.ci_lower Cliow Lower bound of bootstrap confidence interval
bootstrap_ciupper Cly Upper bound of bootstrap confidence interval
cliffs_delta d d: Cliff’s delta effect size

p-value D p: Statistical significance from hypothesis test

The lower and upper bounds of the bootstrap confidence interval, denoted as Cljq,, and Cl,,,, estimate
the confidence interval of the median difference between control and perturbed sample using the bootstrap
resampling method. Specifically, 1000 rounds of bootstrap sampling are performed. It can be computed as:

Cliow = Percentile 5 5 ({6;'}) o
Clyp = Percentile g7.5 ({0;}) ()

Let §; denote the median difference obtained in the i-th round of bootstrap resampling, the collection {4; }
represents the set of median differences obtained from /V rounds of bootstrap resampling.

Cliff’s delta is a nonparametric effect size that quantifies the magnitude of difference between two distribu-
tions. It is computed as:

Ny Ny

d:mZZ[H(xpyj)—ﬂ(rmyj)] (16)

i=1 j=1
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Where z; denotes the i-th sample from the control group, and y; denotes the j-th sample perturbation (or
treatment) group. The indicator function I(-) returns 1 if the condition inside the brackets is true, and 0
otherwise. Cliff’s delta, which quantifies the degree of difference between the two groups. Its value ranges
from —1 to 1, where d = 0 indicates no difference, d = 1 indicates the control group has a much bigger
value.

The p-value corresponds to the result of a two-sided Mann—Whitney U test. It helps assess whether the
observed difference could be explained by random variation, under the assumption that the null hypothesis
is true. The p-value is computed as:

— NaTp

p=2-[1-0 | | ——2—— (17)

nany(na+ny+1)

Where U is the Mann—Whitney U statistic, and n4, n are the sample sizes of the two groups being compared.
The term ®(-) denotes the cumulative distribution function (CDF) of the standard normal distribution. The
numerator measures the deviation of the observed U value from its expected value under the null hypothesis.
This standardization transforms the U statistic into a z-score, which is then used to compute the two-tailed
p-value. A small p-value indicates that the observed difference in distributions is unlikely to have occurred
by chance.

M MLLMS BASELINE DETAILS

M.1 METHODS

To evaluate the reasoning capability of current mainstream MLLMs on the Cell Painting dataset, we test four
API-accessible models: Grok-4, GPT-5, Claude-4-Sonnet, and Gemini-2.5-Pro. The experimental workflow
consists of two stages. First, each MLLM performs background knowledge curation as a single preliminary
task. The curated information is then used as context for zero-shot VQA across three tasks: the cell line task,
the channel task, and the perturbation compound task. During background knowledge curation, the decoding
parameters are set to temperature = 0.7 and top-p = 0.95, whereas for VQA they are set to temperature = 1
and top-p = 1 to ensure response stability. All MLLMs are prompted with the same structured instructions
specifying the evaluation criteria. In the VQA stage, the models receive both control and perturbation images
together with masked textual descriptions. Their task is to select the correct answer from multiple-choice
options that include the ground-truth label and to provide both a confidence estimate and a concise rationale.
An example prompt is shown below.
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M.2 PROMPTS

Task: Cell Line

Background Information Curation
You are a knowledgeable biological research assistant specializing in Cell Painting-based phenotypic profiling.
Goal:
curate background knowledge that helps analyze Cell Painting experiments with control and perturbation images from {Cell Painting Gallery}.
Scope:
Candidate cell lines: {A549, MCF7, U20S, HUVEC}.
Available imaging channels (subset may appear per sample): {DNA, RNA, ER, Mito, Actin, AGP}.
Your responsibilities:
For each candidate cell line, provide a concise dossier including:
Canonical morphology (cell shape/size, adhesion/spreading, colony patterns, proliferation tendencies).
Nuclear features (heterogeneity, nucleoli prominence) and cytoplasmic texture under fluorescence microscopy.
Channel-anchored cues in Cell Painting (what is typically observable in DNA/RNA/Actin/Tubulin/ER/Mito; note if a channel is not informative).
Robust cues that tend to persist across many perturbations vs cues that are sensitive to dose, time, confluency, or imaging settings.
Typical culture conditions (media, supplements) that may influence morphology.
Cross-line comparison:
Key discriminative features that help distinguish the listed cell lines from one another (summarize differences succinctly).
A compact “Core vs Line-specific” visual observation checklist that standardizes what to look for across samples.
Confounders and limitations:
Common technical and biological confounders (plate/batch effects, illumination, magnification, confluency/overgrowth, serum %, dose/time, channel availability).
Fields that may trivially identify the line (e.g., specific media names); mark these as “identity-revealing” variables.
Guidelines to down-weight or ignore cues when required channels are missing.
Output requirements:
Be accurate, concise, and avoid redundancy or speculation; if information is uncertain, state “unknown”.
Provide two parts: (A) a short, structured narrative; and (B) a machine-readable JSON block following the schema below.

Task: Cell Line Task: Cell Line

System Instruction for VQA User Input Template for VQA

You are a biomedical imaging expert with deep knowledge of Cell TASK:

Painting assays. Predict the masked cell line.
EXPERIMENT_DESCRIPTION:

You will receive: {masked_text}

(1) two microscopy images: Image A = control, Image B = BACKGROUND_KNOWLEDGE_JSON:
perturbation of the same experiment, {background}

(2) an experiment description with one attribute masked (the cell line), CANDIDATE_CELL_LINES:

(3) structured background knowledge in JSON describing candidate A549, MCF7, U20S, HUVEC
cell lines, their canonical morphology, channel-specific cues, and ATTACHED_IMAGES:
discriminative features. Image A: Control

Image B: Perturbation
Your task: OUTPUT_JSON_SCHEMA:
infer the most likely cell line for the masked attribute by comparing {
Image A and Image B with the background knowledge. "task": "cell_line_prediction",

Be conservative: if evidence is weak or ambiguous, distribute "pred": "<one of [A549, MCF7, U20S, HUVEC]>",
probability mass across candidates rather than guessing with "probs": {{ "A549": float, "MCF7": float, "U20S": float,
overconfidence. "HUVEC": float} },

Return only a JSON response matching the required schema. "confidence": float, // equals probs[pred]
"rationale_S0w": "<describe the key control vs perturb
differences and why they match the predicted line>"
}

Now answer in JSON only.
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Task: Channel

Background Information Curation

You are a knowledgeable biological research assistant specializing in Cell Painting-based phenotypic profiling.
Goal:

Curate background knowledge that helps analyze Cell Painting experiments with control and perturbation images from {Cell Painting Gallery}.
Scope:

Candidate channels: {DNA, RNA, ER, Mito, Actin, AGP}.

Available cell lines (subset may appear per sample): {DNA, RNA, ER, Mito, Actin, AGP}.
Your responsibilities:

Channel dossiers (for each channel in {candidate_channels}):

What the stain labels biologically (structure/process) and expected subcellular localization.

Canonical appearance in fluorescence images: texture/topology (e.g., nuclear-dominant, nucleoli visibility; filamentous networks; perinuclear reticulum; punctate
tubular organelles; membrane/Golgi patterns).

Distinctive cues vs. look-alikes (how to tell this channel apart from visually similar ones and why confusion occurs).

Robust vs. sensitive cues: which patterns persist across cell types/perturbations and which change with dose/time, confluency, or imaging settings.

Quality/artefact considerations: saturation, bleed-through, non-uniform illumination, focus blur; recommended pre-processing (e.g., background normalization,
flat-fielding, gentle contrast enhancement).
Cross-channel comparison:

A concise table of discriminative features (e.g., “nuclear_dominant”, “filamentous_cytoskeleton”, “perinuclear_reticulum”, “mitochondrial_punctate_network”,
“cortical_actin_band_or_stress_fibers”, “golgi_perinuclear_crescent_or_membrane_outline”) with each channel’s typical strength (0-1).

Common confusion pairs (e.g., RNA vs DNA in nucleoli; Actin vs Tubulin filaments; ER vs Mito near the nucleus) and how to resolve them.
Confounders & identity leakage:

Technical confounders: batch/plate effects, illumination non-uniformity, focus, magnification, bit-depth, camera gain.

Biological confounders: confluency/overgrowth, cell-cycle stage, apoptosis/necrosis.

Identity-revealing metadata to avoid relying on (e.g., file names or embedded channel tags).

Scoring heuristics for downstream use:

Propose a small set of boolean/evidence checks (see keys below) and a lightweight decision rubric (if/then rules or weights) to combine them into per-channel
likelihoods.

Include an “Unknown/ambiguous” fallback when evidence is insufficient.
Output requirements:

Be accurate, concise, and avoid redundancy or speculation; if information is uncertain, state “unknown”.

Provide two parts: (A) a short, structured narrative; and (B) a machine-readable JSON block following the schema below.

Task: Cell Line Task: Cell Line
System Instruction for VQA User Input Template for VQA
You are a biomedical imaging expert with deep knowledge of Cell TASK:
Painting assays. Predict the masked image channel.
EXPERIMENT_DESCRIPTION:
You will receive: {masked_text}
(1) two microscopy images: Image A = control, Image B = BACKGROUND_KNOWLEDGE_JSON:
perturbation of the same experiment, {background}
(2) an experiment description with one attribute masked (the image CANDIDATE_CHANNELS:
channel), AGP, Actin, DNA, ER, Mito, RNA, Tubulin
(3) structured background knowledge in JSON describing visual ATTACHED_IMAGES:
fingerprints of each Cell Painting channel (AGP, Actin, DNA, ER, Image A: Control
Mito, RNA, Tubulin). Image B: Perturbation
OUTPUT_JSON_SCHEMA:
Your task: {
infer the most likely image channel for the masked attribute by "task": "image_channel_prediction",
comparing Image A and Image B with the background knowledge. "pred": "<one of [AGP, Actin, DNA, ER, Mito, RNA, Tubulin]>",
Be calibrated: if evidence is weak or conflicting, distribute probability "probs": { "AGP": float, "Actin": float, "DNA": float, "ER": float,
mass over candidates rather than overconfident guessing. "Mito": float, "RNA": float, "Tubulin": float},
Return only a JSON response matching the required schema. "confidence": float,
"rationale": "<key intrinsic staining cues observed>"
}
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Task: Perturbation Compound

Background Information Curation
You are a knowledgeable biological research assistant specializing in Cell Painting-based phenotypic profiling.
Goal:

Curate background knowledge that helps analyze Cell Painting experiments with control and perturbation images from {Cell Painting Gallery}.
Scope:

Candidate compounds: {flindokalner, racecadotril, azm475271, misoprostol, trazodone, orantinib, rufinamide, lumiracoxib, birb-796, methoxsalen}.
Your responsibilities:

Compound dossiers (for each compound in {{acetohexamide, azm475271, esomeprazole, flindokalner, letrozole, misoprostol, nimodipine, orantinib, sacubitril,
trazodone} }):

Mechanism of action (MoA; write "unknown" if unclear) and primary targets (with confidence: high/medium/low).

Expected morphological phenotype when comparing control — perturbation, using channel-agnostic language (e.g., cell size/spread, rounding/contraction,
filamentous/bundled patterns, stress-fiber loss, nuclear size/heterogeneity, micronuclei, nucleoli prominence, cytoplasmic granularity, vacuoles, mitotic-arrest-like
patterns, changes in population density).

Robust vs sensitive cues: which patterns persist across cell types/conditions; which are sensitive to dose, time, confluency, imaging conditions.

Dose-time priors: typical effective concentration range (uM; log ranges allowed) and onset window (hours).

Common off-target/secondary phenotypes that may confound interpretation.

Likely confusions (compounds or MoA) and how to disambiguate using image-only cues.

Cross-compound comparison:

A concise table of discriminative features (e.g., “nuclear_dominant”, “filamentous_cytoskeleton”, “perinuclear_reticulum”, “mitochondrial_punctate_network”,
“cortical_actin_band_or_stress_fibers”, “golgi_perinuclear_crescent_or_membrane_outline™) with each channel’s typical strength (0-1).

Common confusion pairs (e.g., RNA vs DNA in nucleoli; Actin vs Tubulin filaments; ER vs Mito near the nucleus) and how to resolve them.

Confounders & identity leakage:

Technical confounders: batch/plate, illumination non-uniformity, focus blur, magnification, saturation, bleed-through.

Biological confounders: confluency/overgrowth, serum %, cell-cycle stage, apoptosis/necrosis.

Identity-revealing fields in text (drug names, synonyms, SMILES) should be documented but flagged as “not to be used as shortcuts”; prediction must rely on
image evidence.

Output requirements:
Be accurate, concise, and avoid redundancy or speculation; if information is uncertain, state “unknown”.
Provide two parts: (A) a short, structured narrative; and (B) a machine-readable JSON block following the schema below.

Task: Perturbation Compound Task: Perturbation Compound
System Instruction for VQA User Input Template for VQA
You are a biomedical imaging expert with deep knowledge of Cell TASK:
Painting assays. Predict the masked image compound.
EXPERIMENT_DESCRIPTION:
You will receive: {masked_text}
(1) two microscopy images: Image A = control, Image B = BACKGROUND_KNOWLEDGE_JSON:
perturbation of the same experiment, {background}
(2) an experiment description with one attribute masked (the image CANDIDATE_COMPOUNDS:
channel), acetohexamide, azm475271, esomeprazole, flindokalner, letrozole,
(3) structured background knowledge in JSON describing candidate misoprostol, nimodipine, orantinib, sacubitril, trazodone
compounds (their MoA/targets, expected image-only morphological ATTACHED_IMAGES:
signatures, and dose—time priors). Image A: Control
Image B: Perturbation
Your task: OUTPUT_JSON_SCHEMA:
infer the most likely image channel for the masked attribute by {
comparing Image A and Image B with the background knowledge. "task": "compound_prediction",
Be calibrated: if evidence is weak or conflicting, distribute probability "pred": "<one of [<candidate_compounds>]>",
mass over candidates rather than overconfident guessing. "probs": { "<compound 1>": float, "...": float},
Return only a JSON response matching the required schema. "confidence": float, // equals probs[pred]
"rationale": "<words; key A—B visual differences and how they support
the predicted compound>"
}
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Figure 11: Confusion matrix on perturbation compound task.

N CP-AGENT PROMPTS

The prompts guide the CP-Agent through a multi-step reasoning process to interpret morphological effects
of perturbations in Cell Painting data. Figure[I2]introduces two tasks: (1) a background curation step, where
the agent synthesizes prior biological knowledge about a compound’s mechanism of action (MoA) and pre-
dicts which CellProfiler feature classes are likely to be affected in a specific imaging channel, and (2) a
feature ranking task, where individual features are prioritized based on their relevance to the predicted mor-
phological response. Figure [I3] guides the CP-Agent to evaluate whether observed morphological changes
under a perturbation are consistent with the proposed mechanism of action (MoA). Using prior biological
knowledge and quantitative feature summaries, the agent assesses each feature’s directional change, links
it to the expected mechanism, and assigns confidence scores. The agent then provides an overall judgment
of mechanism plausibility, highlighting supporting or conflicting evidence. All prompts enforce structured
JSON outputs to ensure compatibility with automated downstream analysis and promote reproducibility.
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( Task: Report Generation

Background Information Curation
You are a biomedical research assistant with expertise in chemical biology and phenotypic profiling.
Task:
Given a chemical perturbation and a specific Cell Painting imaging channel, provide mechanistic insight and hypothesize expected
morphology changes specific to that cellular component.
Input:
- Perturbation condition (compound name, Cell Painting imaging channel, dose, time, etc.): {{ perturbation_condition }}
Your responsibilities:
- Mechanism summary: a 1-2 sentence description of the compound’s mechanism of action (MoA).
- Channel-relevant hypotheses: a list of morphology-level effects expected for the given cellular component (e.g., “Tubulin depolym-
erization lower microtubule texture”, “ER fragmentation granularity increase”) with reasoning focused on the selected channel.
- Likely impacted feature types: a list of CellProfiler feature types likely to change in this channel (e.g., "Texture_Tubulin", "Granu-
larity_Tubulin", "AreaShape").
Output format:
Return only JSON in the following format:
{
"mechanism_summary": "<short description>",
"morphology_hypotheses": ["<hypothesis 1>","<hypothesis 2>"],
"likely_feature_types": ["AreaShape", "Texture_Tubulin", "Granularity_Tubulin", "Neighbors", "Location", "Number"]

}

Notes:
- Focus all hypotheses and feature types on the specific imaging channel.
- If the compound is known to affect this structure, be specific. If the effect is indirect or uncertain, say so.
- Be biologically grounded but concise.

Task: Report Generation

Feature Ranking Template for VQA
feature_prediction_sys
You are a biomedical specialist in cell morphological features.
Follow instructions exactly. Remain grounded in the provided context.
Return JSON only, with no extra text.
feature_prediction_user
Task:
Given a Cell Painting perturbation experiment, predict which morphological features are most likely to be affected.
Inputs:
- Background biological knowledge (from prior curation step):
{{ background_curation_json }}
- Perturbation condition: {{ perturbation_condition }}
- Candidate CellProfiler feature names (i.e., the only allowed feature namespace): {{ feature_names_json }}
Your responsibilities:
- Select from the provided feature name list only.
- Predict which features are most likely to show morphological change under this perturbation.
- Ground your reasoning in both the known biological mechanism and expected morphological effects.
- If possible, relate features to biological structures (e.g., nuclear shape, texture, granularity, area, neighbor count, etc.).
- Be conservative: do not overclaim. If uncertain, assign lower confidence.
Output format:
Return only JSON in the following format:

"features_ranked": [

"name": "<feature_name from provided list>",
"rationale": "<1-2 sentence rationale grounded in A vs B visual differences and context>",
"confidence": <float between 0 and 1>
b
1,
"summary

}

n.on

<brief one-paragraph summary of key morphology differences observed in B relative to A>"

Figure 12: Prompt templates for background curation and feature ranking.
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,
Task: Report Generation

Feature Mechanism Consistency Template for VQA
feature_mechanism_consistency_sys:

You are a biomedical imaging and phenomics analyst specializing in Cell Painting assays.

Your primary evidence is quantitative feature summaries derived from curated CellProfiler outputs. Visual evidence may be referenced only if
explicitly provided as inputs.

Please output ONLY a valid JSON object without any explanation, markdown formatting, or extra text.
feature_mechanism_consistency_user:
Context:

- The perturbation condition provided below may be incorrect, noisy, or adversarial (e.g., a fake drug name).

- Prior biological knowledge about the perturbation is a SOFT prior only. You must verify it against quantitative evidence. If there is a mismatch,
you must say so.

- Evidence priority: (1) quantitative statistics, (2) visual evidence, (3) prior mechanism. Be conservative: if mechanism name/alias is not recognized
or could be confused (e.g., fake or uncommon), set plausibility low and avoid strong claims.
Inputs:

- Control image: A (DMSO)

- Perturbation image: B (perturbed)

- Perturbation condition: {{ perturbation_condition }}

- Background mechanism and morphology expectations (from prior knowledge): {{ background_curation_json } }

- Quantitative summary of features (based on population statistics): {{ summary_of_features_json }}
Your responsibilities:

- You are given two grayscale microscopy images: A = control (DMSO), B = perturbed.

- Compare expected from perturbation condition vs observed data from quantitative summary of features and visual evidence.

- For each feature in the summary, evaluate whether its change supports, contradicts, or is insufficient relative to the mechanism. Provide a
confidence score (0.0-1.0) for your judgment.

- You must evaluate **every feature** provided, even if not statistically significant. If evidence is weak (e.g., high q-value, CI crosses 0, or small
effect size), state that explicitly and assign low confidence.

- You may order features by significance, but do not skip any.

- Summarize the dominant morphology change and explain how the quantitative trends support or contradict expectations. If contradict, explain wh;
(e.g., incorrect mechanism, off-target, low dose/time, or similar phenotype to another class).

- Provide a concise overall assessment of whether the observed phenotype aligns with the prop:
conflicting features based on quantitative summary of features.
Output format:

Only return JSON. Do not include any non-JSON text, comments, or markdown.

d hani hiohlioh

ing key supporting or

"features_ranked": [

{
"name": "<feature_name from provided list>",
"direction": "<increaseldecreaselambiguous>",
"observed_evidence": "<1-2 sentences citing quantitative stats (delta/CI/Cliff's delta/q) and, if clear, visual differences. No claims beyond

provided evidence >",

"mechanism_link": "<why this feature's change would support/contradict the proposed mechanism; if unclear, state ambiguity.>",
"supports_proposed_mechanism": "<supportslcontradictslinsufficient>",
"support_confidence": <float between 0 and 1>

}

1.

"mechanism_consistency": "<supportslcontradictslinsufficient>",

"plausibility_score": "<float between 0 and 1 estimate of how credible the perturbation_condition is, based on the selected feature name and their
supporting scores for the proposed mechanism. Lower if conflicting >",

"morphology_summary": "<One concise paragraph summarizing the dominant morphological changes observed in Perturbed (B) vs Control (A),
based primarily on quantitative features. If visual evidence is available and clearly supports the trends (e.g., more fragmented mitochondria, loss of
structure), you may briefly mention it as secondary support>",

"overall_mechanism_assessment": """

Write 5 parts in order:
- Prelude: briefly state
a) what the image/condition is hypothesized to show (the proposed MoA or phenotype guess), and
b) what this will do next (eval 'y using quantitative features and mechanistic reasoning).
Example: “The specimen is hypothesized to reflect [proposed MoA/phenotype]. Below, I assess whether the observed morphology aligns with
this hypothesis using quantitative feature trends and a mechanistic linkage.”
- Mechanism verdict.
- Evidence summary.
- Mechanistic linkage sentence: explicitly link MoA cellular process expected morphologies observed features.
Use one of:
“Given the proposed MoA [MoA]. it is known to alter [process A] via [action], which should cause [outcome B]; this would present as [features
(observed: [metrics]).”
“If [MoA] perturbs [process A], it could plausibly produce [outcome B], aligning with [features] (observed: [metrics]); however, this is tentative|
due to [limitation].”
- Caveats and alternatives if have (1-2 ): note inconsi ies/limitations and suggest next checks (e.g., dose—response, time-course,
orthogonal markers, replicate expansion).
Do not claim causality beyond the provided evidence; keep wording falsifiable and bounded by data.

wn

\. b J

Figure 13: Prompt template for evaluating mechanism-feature consistency in Cell Painting data.
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O ADDITIONAL CASE STUDIES

O.1 ADDITIONAL CASE 1: TAXOL IN MCF7

Cell Painting Drug Experiment Brief — Taxol in MCF7 (Tubulin, 20X; 24 uM, 24 h)

1. Most Matched Experimental Context
« Cell line: MCF7 (human breast cancer)

2. Visual Overview: Control vs Perturbation Images

@ >

* Culture medium: RPMI 1640, 10% FBS, 1% GlutaMAX, 900 pg/mL G418

« Imaging: Tubulin channel, 20X objective
+ Compound: Taxol (24 uM, 24h)
* Mechanism of action: Microtubule stabilization

Control

3. Anticipated Feature Changes Based on Mechanism

« Expected effects of taxol (microtubule stabilizer):

- Relative to control, 24 uM taxol for 24 hours in MCF7 is expected to produce stabilized, thick microtubule bundles with perinuclear and cortical
enrichment and mitotic spindle/aster formations.
These changes reduce fine-scale heterogeneity while increasing large-scale order, leading to:

- | Entropy / contrast at large offsets

- 1 Angular second moment, correlation, homogeneity
- Scale-dependent granularity shifts (| fine scale, 1 mid-scale)

4. Key Feature Evidence from Data

AreaShape_Solidity

Direction: decrease

Observed evidence: Median decreased by -0.082 (CI [~

0.114, -0.055)); large effect (Cliff's & = 0.82); highly

significant (q = 6.27e-06).

Mechanism link: Microtubule stabilization can induce

mitotic arrest and cell shape irregularities, reducing

solidity via protrusions/aster-like structures.

Supports proposed mechanism: & Yes (0.9 confidence)
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Texture_Contrast_Tubulin_7_01_256

Direction: increase

Observed evidence: Median increased by +932 (CI [384,

1452)); strong effect (Cliff's & = -0.638); significant (q =

0.000412).

Mechanism link: Thick, bright bundles next to darker

cytoplasm increase local contrast, consistent with

microtubule stabilization.

Supports proposed mechanism:

confidence)
Texture_Contrast_Tubulin_7_01 256
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Key Evidence (Features with Large Effect Sizes):

Texture_Variance_Tubulin_5_01_256

Direction: increase

Observed evidence: Median increased by +1267 (Cl [615,
1599)); strong effect (Cliff's & = -0.627); significant (q =
0.000413).

Mechanism link: Stabilized, thick bundles and spindles
raise intensity variance within cells.
Supports proposed mechanism: & Yes (0.85 confidence)

Texture_Variance_Tubulin_5_01_256
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Texture_DifferenceEntropy_Tubulin_7_02_256
Direction: increase

Observed evidence: Median increased by +0.689 (CI
[0.186, 0.809)); large effect (Cliff's & = -0.672); significant
(g =0.000252).

Mechanism link: Bundling and spindle poles introduce

Texture_SumVariance_Tubulin_7_01_256

Direction: increase

Observed evidence: Median increased by +4228 (CI [1972,
5274]); strong effect (Cliff's & = -0.602); significant (q =
0.000610).

Mechanism link: Global variability across neighborhoods is
expected to rise with bundled microtubules and spindle
structures.

Supports proposed mechanism: & Yes (0.84 confidence)

Texture_SumVariance Tubulin_7_01 :
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Texture_InfoMeas1_Tubulin_7_03_256

Direction: decrease

Observed evidence: Median decreased by -0.049 (CI [~
0.076, -0.014]); moderate effect (Cliff's & = 0.468);
significant (q = 0.00981).

Mechanism link: Lower informational measure of
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can reflect stronger structured heterogeneity
from bundled fibers and asters.
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Perturbed cells are far fewer (16 vs 66) and show strong increases in Tubulin texture

1.Texture_Variance_Tubulin_5_01_256
1 Median by +1267
q =4.13e-04

Indicates increased intensity heterogeneity due to bundled

microtubules

2.Texture_SumVariance_Tubulin_7_01_256

1 Median by +4228

q = 6.10e-04

Suggests increased global variability in tubulin texture

3 .Texture_Contrast_Tubulin_7_01_256

1 Median by +932

q=4.12e-04

Reflects sharper contrast from bright bundles vs.
background

4 .Texture_DifferenceEntropy_Tubulin_7_02_256
1 Median by +0.689

variance, sum-variance, contrast, and difference-entropy, alongside a marked decrease
in cell solidity. These quantitative trends indicate more pronounced, bright microtubule
structures and irregular cell outlines, consistent with bundled/stabilized microtubules and
mitotic arrest phenotypes. Other texture and shape metrics show weak or non-significant
changes.

Overall_| )_linked_ y

The specimen is hypothesized to reflect microtubule stabilization by taxol leading to
bundled tubulin and mitotic arrest. Below, | assess whether the observed morphology
aligns with this hypothesis using quantitative feature trends and mechanistic linkage. The
quantitative phenotype supports microtubule stabilization.

Given the proposed MoA (mechanism of action) of microtubule stabilizers, it is known to
alter microtubule dynamics via suppression of depolymerization, which should cause
bundled, bright fibers and mitotic arrest; this would present as higher tubulin texture
variance/contrast and reduced cell solidity (observed: large positive shifts in variance/-
contrast/difference-entropy and a strong solidity decrease).

Caveats: Sample size in perturbed is small (n = 16), and several features are
non-significant; off-target effects or imaging differences cannot be excluded. Follow-up
with dose-response/time-course, mitotic markers (e.g., pH3), and replicate expansion is
recommended to strengthen the attribution.
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0.2 ADDITIONAL CASE 2: VINCRISTINE IN MCF7

Cell Painting Drug Experiment Brief — Vincristine in MCF7 (Tubulin, 20X; 24 uM, 24 h)

1. Most Matched Experimental Context 2. Visual Overview: Control vs Perturbation Images

« Cell line: MCF7 (human breast cancer)

* Culture medium: RPMI 1640, 10% FBS, 1% GlutaMAX, 900 ug/mL G418
« Imaging: Tubulin channel, 20X objective

« Compound: Vincristine (24 uM, 24h)

* Mechanism of action: Microtubule destabilizers

Control Perturbed

3. Anticipated Feature Changes Based on Mechanism
« Expected effects of vincristine (microtubule destabilizer):

Vincristine disrupts mif lles, leading to collapse, mitotic arrest, and morphological changes in treated cells.
+ Relative to control, vincristine treatment is expected to cause:

* Loss of microtubule structure and texture

« Cytoskeletal collapse resulting in more rounded, smaller cells

« Accumulation of cells in mitosis (increased cell number)
+ These changes are expected to manifest in Cell Painting features as:

- | Tubulin texture contrast and entropy (e.g., Texture_Contrast_Tubulin, Texture_Entropy_Tubulin)

- 1 Angular second moment (e.g., Texture_AngularSecondMoment_Tubulin) due to more uniform staining

- | Eccentricity, t FormFactor (more circular cells)

- | AreaShape_Area (due to mitotic rounding)

- 1 Number_Object_Number (mitotic arrest increases cell count)
- Scale-dependent granularity shifts in tubulin (e.g., Granularity_2_Tubulin)

4. Key Feature Evidence from Data

Texture_Contrast_3_01_256

Direction: increase

Observed evidence: Median increased by +459.3 (q =

2.15e-08, Cliff's delta = -0.83)
link: Mi

E ill leads to the
collapse of the fine filamentous network into bright, dense
aggregates (paracrystals) and dark, empty cytoplasmic
regions. This reorganization drastically increases the
contrast between adjacent pixels.

Supports proposed mechanism: & Yes (1.0 confidence)

£ p25.p75
— median

Feature Value

2001 Ty

Contol Perturb

Texture_AngularSecondMoment_3_01_256

Direction: decrease

Observed evidence: Median decreased by -0.00024 (q =
0.0156, Cliff's delta = 0.366)

Mechanism link: Reflects a loss of homogeneous
filamentous texture in control cells, replaced by
heterogeneous pattern of bright aggregates and dark
voids.

Supports proposed mechanism: & Yes (0.9 confidence)

0.0020
0.0015

00010 !

Feature Value

T |
I
00005 ==
Coneol Pertro
5. A and Conclusit

Key Evidence (Features with Large Effect Sizes):
1.Texture_Contrast_Tubulin_3_01_256

1 Median by +459.3

q = 2.156-08

Indicates increased local pixel intensity variation due to

tubulin network collapse and aggregation
2.Granularity_2_Tubulin

1 Median by +0.276

q=0.0156

Quantifies emergence of coarse texture patterns caused

Number_Object_Number

Direction: decrease

Observed evidence: Median decreased by -8.5 (q =
0.0156, Cliff's delta = 0.38)

Mechanism link: Vincristine is a cytotoxic agent that
induces mitotic arrest, often leading to apoptosis and
subsequent cell death. A reduction in cell count after 24
hours is a direct and expected consequence.

Supports proposed mechanism: & Yes (0.9 confidence)

Granularity_2
Direction: increase
Observed evidence: Median increased by +0.276 (q =
0.0156, Cliff's delta = -0.376)
Mechanism link: Feature quantifies emergence of coarser
textures. Depolymerization of fine microtubules and

into larger is with
increased granularity.
Supports proposed mechanism: @ Yes (0.9 confidence)

o = pasers e = st
— reion — e
e et 1 P00
so{[ —- o s [ el
: ! HE [
£ ' £10 —
H | | H
) = Fle [
_| os [ t
0a
Conet Perurs = et

AreaShape_FormFactor
Direction: increase

Observed evidence: Median increased by +0.689 (CI [0.186,
0.809)); large effect (Cliff's & = -0.672); significant (q =

AreaShape_Eccentricity

Direction: decrease

Observed evidence: Median decreased by -0.033 (q =
0.184) — not statistically significant

0.000252). Mechanism link: Complementary to FormFactor; also
Mechanism link: Bundling and spindle poles introduce indicates cell rounding due to cytoskeletal collapse.
intensity di elevating d t Supports proposed mechanism: & Yes (0.5
py; compatible with stabilized microtubules. confidence)
Supports proposed mechanism: & supports (0.82
confidence)
075 = p25p75 = p25p75
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Control Perturb Control Perturb

Morphology_summary

The dominant morphological change is a profound disruption of the tubulin cytoskeleton. Quantita-
tively, this is captured by a highly significant increase in Texture_Contrast_Tubulin and Granulari-
ty_2_Tubulin, reflecting the collapse of the filamentous network into coarse, bright aggregates. This
cytoskeletal failure is consistent with the observed (though not statistically significant) trends
toward a more rounded cell shape, indicated by an increase in AreaShape_FormFactor.
Furthermore, the treatment induced significant cytotoxicity, evidenced by a marked decrease in the
Number_Object_Number.

Overall_mechanism_linked_summary

The specimen is hypothesized to reflect microtubule destabilization induced by vincristine. Below,
| assess whether the observed morphology aligns with this hypothesis using quantitative feature
trends and a mechanistic linkage.

by tubulin depoly ion and aggreg
3.Texture_AngularSecondMoment_Tubu-
lin_3_01_256

| Median by -0.00024

q=0.0156

Reflects loss of homogeneous filamentous texture,

consistent with microtubule disruption
4.Number_Object_Number

| Median by -8.5

q=0.0156

Indicates reduced cell count, consistent with mitotic

arrest and vincristine-induced cytotoxicity

The observed phenotype strongly supports the proposed mechanism of action.

The most significant changes are in tubulin texture, with a massive increase in Texture_Con-
trast_Tubulin (delta_median: +459.3) and a decrease in hc ity (Texture_Ang! ond-
Moment_Tubulin), indicating tubulin aggregation. This is accc ied by a signifi in
cell number (Number_Object_Number), suggesting cytotoxicity.

Given the proposed MoA of microtubule destabilization, vincristine is known to alter tubulin
polymerization by preventing microtubule formation, which should cause cytoskeletal collapse and
mitotic arrest; this would present as a loss of filamentous structures, formation of tubulin
aggregates, and cell rounding, aligning with the observed increases in tubulin contrast and
granularity (observed: q < 0.02 for texture features).

While the textural and cytotoxicity evidence is definitive, the expected changes in cell shape did
not reach statistical significance, which could be due to insufficient statistical power or population
heterogeneity.

it
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0.3 ADDITIONAL CASE 3: SORBINIL IN A549

Cell Painting Drug Experiment Brief — Sorbinil in A549 (RNA, 20X; 48uM, 48h)

1. Most Matched Experimental Context

« Cell line: A549

* Culture medium: 2% FBS in DMEM medium

« Imaging: RNA channel, 20X objective

+ Compound: Sorbinil (48 uM, 48h)

+ Mechanism of action: Aldose Reductase Inhibitor

2. Visual Overview: Control vs Perturbation Images

3. Anticipated Feature Changes Based on Mechanism

« Expected effects of sorbinil (aldose reductase inhibitor under oxidative/osmotic stress):
Sorbinil is expected to perturb RNA organization through redox/osmotic stress, leading to nucleolar compaction, cytoplasmic RNA puncta formation,
and perinuclear RNA redistribution.
« Relative to control, sorbinil treatment is expected to cause:

« Increased RNA texture heterogeneity
« Formation of stress granule—like puncta

« Redistribution of RNA to nucleoli and perinuclear zones

« These changes are expected to manifest in Cell Painting features as:
- 1 RNA texture entropy (e.g., Texture_Entropy_RNA_5_02_256, Texture_Entropy_RNA_7_02_256)
- 1 RNA texture contrast (e.g., Texture_Contrast RNA_5_02_256, Texture_Contrast_ RNA_7_02_256)
- 1 Local intensity variability (e.g., Texture_DifferenceEntropy_RNA_5_02_256, Texture_DifferenceVariance_RNA_5_02_256)
- 1 Texture variance and sum variance (e.g., Texture_Variance_RNA_5_02_256, Texture_SumVariance_RNA_5_02_256)

- 1 Mid- to coarse-scale granularity (e.g., Granularity_

4. Key Feature Evidence from Data

Texture_Entropy_5_02_256

Direction: decrease

Observed evidence: Median decreased by -3.782 (Cl [-5.094,
~2.506]); large effect (Cliff’s & = 0.782); q = 9.55e-08
Mechanism link: Lower entropy indicates more uniform/ordered
RNA signal, consistent with nucleolar compaction or
consolidation under redox/osmotic stress from aldose
reductase inhibition.

2_RNA, Granularity_3_RNA, Granularity_4_RNA)

Texture_Entropy_7_02_256
Direction: decrease

Observed evidence: Median decreased by ~3.655 (CI [~
5.041, ~2.486); large effect (Cliff's 5 = 0.781); q = 9.55e~

0!

Mechanism link: Reduced large-scale entropy aligns with
more homogeneous RNA distribution and potential
nucleolar consolidation expected with nucleolar stress.
Supports proposed mechanism: & Yes (0.91 confidence)

Perturbed |

Texture_nverseDifferenceMoment_5_02_256
Direction: increase

Observed evidence: Median increased by +0.293 (CI
[0.176, 0.430)); strong effect (Cliff’s & = ~0.708); q = 1.23e~
06

Mechanism link: Higher homogeneity (IDM) suggests
smoother/less varied RNA texture, compatible with
condensed nucleolar signal and reduced diffuse RNA.
Supports proposed mechanism: € Yes (0.88 confidence)

Supports proposed mechanism: € Yes (0.92 confidence)
12— = 25
== = Pt
o o = e
K
te
H |
e T
Contrl ety

Texture_DifferenceVariance_5_02_256
Direction: increase

Observed evidence: Median increased by +5.27e-04 (Cl [1.50e

-04, 1.12e-03)); moderate effect (Cliff's & = -0.473); q =
.0021

Mechanism link: Increased difference variance can reflect

sharper boundaries or localized foci; this is consistent with
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Granularity_3_RNA

Direction: decrease

Observed evidence: Median decreased by -0.176 (CI [~

0.406, 0.051)); small-moderate effect (Cliff's = 0.317); q =
23

perturt

Texture_DifferenceEntropy_5_02_256
Direction: decrease

Observed evidence: Median decreased by -1.046 (CI [—1 781,
-0.290]); moderate effect (Cliff's & = 0.435); q = 0.00
Mechanism link: Lower difference entropy indicates more
predictable gray-level differences, consistent with RNA signal

Mechanism link: A decrease in mid-scale granularity could
reflect smoother RNA texture or wnsohdauon into

formation of distinct nucleolar/cytoplasmic RNA foci under consolidation/ordering during nucleolar stress. regions; di but
stress. Supports proposed mechanism: & Yes (0.68 confidence) marginal
Supports proposed mechanism: & Yes (0.70 confidence) Supports proposed mechanism: 1 Insufficient (0.45
= w0 = g contdenee)
=i o + | hedian Granularity_2_RNA
10990 0 10-p90 Direction: decrease
300 - £MAD £ = A Observed evidence: Median decreased by -0.140 (Cl [~
2 ooz e 0.325, 0.064]); smalleffect (Ciifs 5 = 0.288); q = o 0774
H 3 ism link: Reduced small
o ‘ & i: indicate loss of fine RNA puncta, which only par\lally malches
L_,_< expectations.
o] === | ) Supports proposed mechanism: 1 Insufficient (0.38
Control Perturb Contre! Ferturd confidence)
5. ism A and C

Key Evidence (Features with Large Effect Sizes):
1.Texture_Entropy_RNA_5_02_256

| Median by -3.782

q = 9.55e-08

Indicates increased RNA ordering and reduced
intensity heterogeneity
2.Texture_Entropy_RNA_7_02_256

| Median by -3.655

q =9.55e-08

Reflects large-scale RNA homogenization,
consistent with nucleolar consolidation
3.Texture_InverseDifferenceMoment_R-
NA_5_02_256

1 Median by +0.293

q=1.230-06

of RNA texture
4.Texture_| D:fferenceVanance RNA_5_02_256
1 Median by +5.27e-04

q=0.0021

Indicates sharper local gray-level differences,
compatible with nucleolar foci
5.Texture_DifferenceEntropy_RNA_5_02_256
| Median by -1.046

q =0.00464

& Yy
The perturbed condition exhibits markedly reduced RNA texture entropy and increased homogeneity (higher
inverse difference moment), indicating a more ordered RNA distribution.
Difference-variance and difference-entropy metrics suggest sharper but more predictable local gray-level
relationships, compatible with consolidation of RNA signal into structured subnuclear regions and a reduction of
diffuse nucleoplasmic RNA. Granularity measures trend downward at small-to-mid scales but are statistically
marginal, implying limited evidence for increased cytoplasmic puncta.Overall, the dominant change is smoother,
more ordered RNA texture consistent with nucleolar compaction or consolidation.
Overall_mechanism_linked_summary
The specimen is hypothesized to reflect aldose reductase inhibition by sorbinil causing redox/osmotic stress with
nucleolar/RNA processing alterations. Below, | assess whether the observed morphology aligns with this
hypothesis using quantitative feature trends and mechanistic linkage.
Mechanism verdict: The observed RNA texture changes are broadly consistent with the proposed mechanism.
Evidence summary: Texture_Entropy_RNA (5 and 7 px) decreases strongly (A = -3.7, q = 1e-7), and
Texture_InverseDifferenceMoment increases (A = +0.293, q = 1e-6), indicating higher homogeneity.
DifferenceEntropy decreases and DifferenceVariance increases (q < 0.005), supporting more ordered yet sharper
local structure. Granularity metrics show small, non-significant decreases; contrast changes are in the expected
direction but not significant.
If the proposed MoA aldose reductase inhibitor perturbs redox balance and osmotic stress, it could plausibly
produce nucleolar stress leading to compaction/consolidation of rRNA-rich regions and reduced diffuse
transcription; this would present as lower entropy and higher homogeneity in RNA texture (observed: strong
decreases in entropy and increases in IDM, with supporting difference-statistics).
Caveats and alternatives: Many granularity and contrast features are not significant, and direct evidence for
cytoplasmic stress-granule-like puncta is Iackmg Replicate expans:on dose—response and inclusion of
nucleolar/translation markers would help disambi nucleolar cor 1 from general transcriptional
downshift or imaging/segmentation artifacts.
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0.4 ADDITIONAL CASE 4: BGT226 IN HUVEC

Cell Painting Drug Experiment Brief — BGT226 in HUVEC (Mito, 10X; 20uM, 20h)

1. Most Matched Experimental Context
« Cell line: HUVEC

« Culture medium: EGM2 medium

« Imaging: Mito channel, 10X objective

« Compound: BGT226 (20 pM, 20h)

2. Visual Overview: Control vs Perturbation Images

Control

* Mechanism of action: Pl2-kinase Class | Inhibitor

3. Anticipated Feature Changes Based on Mechanism
« Expected effects of BGT226 (PI3K/mTOR inhibitor):
BGT226 treatment is expected to impair mitochondrial integrity through inhibition of PI3K/mTOR signaling, leading to mitochondrial fragmentation,
reduced mitochondrial mass, and cristae disruption.
« Relative to control, BGT226 treatment is expected to cause:

« Loss of mitochondrial area (due to reduced mass)

« Mitochondrial fragmentation and network disruption

« Changes in mitochondrial shape (less elongated, more circular)

« Altered cristae structure and internal texture

+ Modified spatial organization of mitochondrial objects
« These changes are expected to manifest in Cell Painting features as:

- | Mitochondrial area (e.g., AreaShape_Area)

Perturbed

- | Mitochondrial compactness and form factor (e.g., AreaShape_Compactness, AreaShape_FormFactor)

- | Eccentricity, | MajorAxisLength (e.g., AreaShape_Eccentricity, AreaShape_MajorAxisLength)

- 1 Granularity at medium scales (e.g., Granularity_3_Mito)
- 1 Texture contrast and entropy (e.g., Texture_Contrast_Mito_3_01_256, Texture_Entropy_Mito_3_01_256)

- | Solidity (e.g., AreaShape_Solidity)

- Changes in mitochondrial neighborhood structure (e.g., Neighbors_NumberOfNeighbors_10)

4. Key Feature Evidence from Data

Texture_Contrast_3_01_256

Direction: increase

Observed evidence: Strong increase from 151.2 to 247.6
(A=+96.4, CI: [58.9, 142.1], Cliff's 5 = ~0.57, q = 6.8e-08)
Mechanism link: PI3K/mTOR inhibition could disrupt
mitochondrial organization and cristae structure, leading to
increased heterogeneity and contrast in mitochondrial
staining patterns.

Supports proposed mechanism: £ Yes (0.8 confidence)

p25975
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p10-990
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Control Perturb

AreaShape_Area

Direction: increase

Observed evidence: Significant increase from 2179.5 to
3075.0 (A = +895.5, ClI: [510.5, 1335.0], Cliff's 5 = -0.52, q
=4.9e-07)

Mechanism link: PI3K/mTOR inhibition can cause cell cycle
arrest and stress-induced cell enlargement, consistent with
metabolic disruption and altered growth signaling.
Supports proposed mechanism: & Yes (0.7 confidence)
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Feature Value

Texture_Entropy_3_01_256

Direction: increase

Observed evidence: Increase from 7.10 to 7.74 (A = +0.63,
Cl: [0.36, 0.99], Cliff's & = -0.49, q = 9.7e-07)

Mechanism link: PI3K/mTOR inhibition can disrupt
mitochondrial organization and function, leading to more

s and dit i ial structures.

I
Supports % Yes (0.8
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Feature Value

Control

AreaShape_MajorAxisLength

Direction: increase

Observed evidence: Significant increase from 69.2 to
92.0 (A=+22.7, CI: [10.4, 29.8], Cliff's 5 = -0.56, q =
6.8e-08)

Mechanism link: PI3K/mTOR inhibition can induce cell
stress and alter cytoskeletal organization, potentially
causing cell elongation as part of stress response or
altered adhesion.

Supports

Yes (0

Feature Value

==

Control

Perturb

AreaShape_Compactness

Direction: increase

Observed evidence: Increase from 1.51 to 1.83 (A=
+0.33, CI: [0.18, 0.43], Cliff's 5 = -0.50, q = 8.9e-07)
Mechanism link: PI3K/mTOR inhibition can disrupt
cytoskeletal organization and cell adhesion, leading to
less compact, more irregular cell shapes.

Supports prop ism: © Yes (0.7

= p25p75

14| =—

Control

AreaShape_Solidity

Direction: decrease

Observed evidence: Decrease from 0.92 to 0.89 (A= -
0.03, Cl: [-0.08, -0.01], Cliff's 5 = 0.43, q = 2.0e-05)
Mechanism link: PI3K/mTOR inhibition can affect
cytoskeletal organization and cell adhesion, leading to less
solid cell shapes with more protrusions or irregularities.
Supports i Yes (0.6 i
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Neighbors_NumberOfNeighbors_10

Direction: decrease

Observed evidence: Decrease from 6.0 to 4.0 neighbors (A
=-2.0, Cl: [-2.0, -1.0], Cliff's 5 = 0.55, q = 6.8e-08)
Mechanism link: PISK/mTOR inhi n can reduce cell
proliferation and survival, leading to lower cell density and
fewer neighboring cells.
Supports proposed mechanism:

Yes (0.8 confidence)

p25.p75
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Perturb.

Feature Value

Control

AreaShape_FormFactor

Direction: decrease

Observed evidence: Decrease from 0.66 to 0.55 (A= -0.12,
ClI: [-0.15, -0.07], Cliff's & = 0.50, q = 8.9e-07)

Mechanism link: Consistent with compactness changes,
PI3BK/mTOR inhibition disrupts normal cell morphology,
making cells less circular and more irregular.

Supports proposed mechanism: € Yes (0.7 confidence)
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Granularity_3_Mito

Direction: decrease

Observed evidence: Weak decrease from 2.54 to 2.31 (A= -
0.24, CI: [-0.94, 0.19], Cliff's 5 = 0.16, q = 0.11)

Mechanism link: PI3K/mTOR inhibition might reduce
mitochondrial granularity through altered mitochondrial
biogenesis, but evidence is insufficient.

Supports proposed mechanism: 1 Insufficient (0.2
confidence)

AreaShape_Eccentricity

Direction: increase

Observed evidence: Weak increase from 0.78 to 0.80 (A =
+0.02, CI: [-0.02, 0.08], Cliff's 5 = -0.16, q = 0.11)
Mechanism link: Slight increase in eccentricity could relate to
cell elongation, but the effect is too weak to draw
conclusions.

Supports proposed mechanism: 1 Insufficient (0.2
confidence)
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Cell Painting Drug Experiment Brief — BGT226 in HUVEC (Mito, 10X; 20uM, 20h)

5. Mechanism Assessment and Conclusion

Key Evidence (Features with Large Effect Sizes):
1.Texture_Contrast_Mito_3_01_256

1 Median by +96.4

q = 6.8e-08

Indicates increased mitochondrial texture contrast, consistent
with cristae disruption and mitochondrial heterogeneity
2.Texture_Entropy_Mito_3_01_256

1 Median by +0.63

q=9.7e-07

Suggests increased mitochondrial texture disorder and
fragmentation

3.AreaShape_Area

1 Median by +895.5

q =4.9e-07

Reflects stress-induced cell enlargement

4. AreaShape_MajorAxisLength

1 Median by +22.7

q = 6.8e-08

Consistent with cell elongation under stress or cytoskeletal
remodeling

5.Neighbors_NumberOfNei . 10

| Median by -2.0

q = 6.8e-08

Indicates reduced cell density, possibly due to proliferation
arrest or cytotoxicity

Morphology_summary

The perturbed cells show a consistent pattern of stress-related morphological changes
including significantly increased cell size (area +41%), elongation (major axis +33%), and
reduced cell density (fewer neighbors). Mitochondrial organization appears disrupted with
increased texture contrast and entropy, suggesting fragmented or disorganized mitochondrial
networks. Cell shape becomes less compact and circular, with reduced solidity, indicating
cytoskeletal disruption and irregular morphology typical of metabolic stress. Overall, the
dominant change is smoother, more ordered RNA texture consistent with nucleolar

Overall_ _linked__ y

The specimen is hypothesized to reflect PI3K class | inhibition by BGT226, which should disrupt
cellular metabolism and survival pathways. Below, | assess whether the observed morphology
aligns with this hypothesis using quantitative feature trends and mechanistic reasoning. The
observed phenotype strongly supports the proposed PI3K/mTOR inhibition mechanism. Key
evidence includes significantly increased mitochondrial texture contrast and entropy (q<1e-06),
enlarged and elongated cells with irregular shapes, and reduced cell density. Given the proposed
MoA of PI3K class | inhibition, it is known to alter cellular metabolism and survival signaling via
disrupted PI3K/Akt/mTOR pathways, which should cause mitochondrial dysfunction, cell cycle
arrest, and cytoskeletal disruption; this would present as enlarged irregular cells with
disorganized mitochondria (observed: +64% texture contrast, +41% cell area, reduced form
factor). Two features showed insufficient evidence due to weak statistical significance, and
dose-response studies would help confirm the mechanism specificity and rule out general
cytotoxicity.
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O.5 ADDITIONAL CASE 5: AZ841 IN MCF7

Cell Painting Drug Experiment Brief — AZ841 in MCF7 (DNA, 20X; 24uM, 24h)

1. Most Matched Experimental Context

« Cell line: MCF7

« Culture medium: RPMI 1640, 10% FBS, 1% GlutaMAX, 900 pg/mL G418

« Imaging: DNA channel, 20X objective
« Compound: AZ841(24 M, 24h)

* Mechanism of action: Aurora Kinase Inhibitor

2. Visual Overview: Control vs Perturbation Images

Control

3. Anticipated Feature Changes Based on Mechanism
« Expected effects of Aurora kinase inhibition (e.g., AZ841, 24uM, 24h):

Aurora kinase inhib

Perturbed

n is expected to cause mitotic arrest, cytokinesis failure, and apoptotic fragmentation. This leads to a mixed nuclear phenotype

including small condensed mitotic nuclei, enlarged or multinucleated cells, and micronuclei or nuclear debris.
« Relative to control, Aurora kinase inhibitor treatment is expected to cause:
« Mitotic arrest with small, round, hyperintense chromatin
« Polyploidy and multinucleation due to cytokinesis failure
« Formation of micronuclei and nuclear fragmentation

« Irregular nuclear shapes and boundaries

« Increased chromatin heterogeneity and punctate signals
« Possible reduction in cell count and altered nuclear packing
« These changes are expected to manifest in Cell Painting features as:
- 1 Nuclear size and dispersion (e.g., AreaShape_Area, AreaShape_EquivalentDiameter, AreaShape_MaxFeretDiameter)
- 1 Shape irregularity and fragmentation (e.g., AreaShape_Eccentricity, AreaShape_Solidity, AreaShape_FormFactor, AreaShape_Perimeter,

AreaShape_EulerNumber)

- 1 Mid- and coarse-scale DNA granularity (e.g., Granularity_2_DNA, Granularity_3_DNA)

- 1 DNA texture heterogeneity and local variability (e.g., Texture_Contrast DNA_5_02_256, Texture_Entropy_DNA_5_02_256, Texture_Variance_D-
NA_5_02_256, Texture_SumVariance_DNA_5_02_256, Texture_DifferenceEntropy_DNA_5_02_256)

- | Texture smoothness / homogeneity (e.g., Texture_InverseDifferenceMoment_DNA_5_02_256, Texture_Correlation_DNA_5_02_256, Texture_An-
gularSecondMoment_DNA_5_02_256)

- | Object count (due to cell loss) (e.g., Number_Object_Number)

- 1 Neighbor contact due to clustering or enlarged nuclei (e.g., Neighbors_PercentTouching_50)

4. Key Feature Evidence from Data

Granularity_2
Direction: increase

Observed evidence: Median increased from 0.298 to 0.818
(& =+0.520; CI [0.431, 0.635)); very large effect (Cliff's d =

~0.931), q = 3.8e-18

Mechanism link: Aurora kinase inhibition can cause

in and

Granularity_3

Direction: increase

Observed evidence: Median increased from 0.246 to
0.926 (A = +0.680; CI [0.532, 0.778]); large effect (Cliff's
d=-0.796), q = 1.3e-13

AreaShape_MaxFeretDiameter

Direction: increase

Observed evidence: Median increased from 39.26 to 50.60
(A= +11.33; Cl [7.21, 14.65]); moderate effect (Cliff's d =
—0.612), q=2.1e-08

link: Larg I
nuclei from mitotic errors would increase coarse DNA

or
which would elevate DNA ity at

scales.

Supports proposed mechanism: & Yes (0.98 confidence)

Conrol Ferturs

AreaShape_Solidity
Direction: decrease

Supports proposed mechanism: & Yes (0.96 confidence)

ool pertars

AreaShape_FormFactor
Direction: decrease

link: i i ion can yield larger
nuclear extents, increasing maximum Feret diameter.
Supports proposed i Yes (0.90

e p2s.g75

Control perturs

AreaShape_Perimeter
Direction: increase

Observed evidence: Median increased from 114.15 to 152.02

Observed evidence: Median decreased from 0.973 to Observed evidence: Median decreased from 0.911 to 0.821

0.960 (A =-0.013; CI [-0.021, -0.006]); moderate effect

(Cliff's d = 0.582), q = 8.6e-08
Mechanism link: Irregular or lobulated

(A =-0.090; CI [-0.115, -0.069]); moderate effect (Cliff's d =

0.554), q = 3.16e-07

(A =+37.87; CI [17.78, 45.21]); moderate effect (Cliff's d =
—0.504), q = 3.55e-06
ism link: Enlarged and more complex nuclear

aggregates from cytokinesis failure lower solidity.

link: Nuclear i

or partial

expected with

contours from multinucleation/irregularity increase perimeter.

Supports proposed

Yes (0.84

Supports proposed mechanism: & Yes (0.88 confidence) reduce form factor (roundness).

Supports proposed  Yes (0.86
ase{— = s pas07s 1 =
== — ean — — edan ]
097 t iree o R R N ety 160
1 Lo 085 i . 4 ] — |-
056 | Hoc == H |
s fro !

Feature Value

093

Control

perturt

AreaShape_Area
Direction: increase

Observed evidence: Median increased from 955 to 1501 (A Observed evidence: Median increased from 34.87 to 43.72

2o
“ o0

065

Control Perturts
AreaShape_EquivalentDiameter

120

Control

=y

Texture_Variance_5_02_256

Direction: increase

= +546; CI [147, 726]); moderate effect (Cliff's d = —0.419), (A = +8.85; Cl [2.56, 11.58]); moderate effect (Cliff's d =

q=1.25e-04

Mechanism link: Polyploid or binucleated cells after

cytokinesis failure exhibit larger nuclear area.

-0.419), q = 1.25e-04

Mechanism link: Enlarged nuclei with higher ploidy raise

equivalent diameter.

% Yes (0.80

Direction: decrease
Observed evidence: Median decreased from 554.32 to 332.95
(A =-221.37; CI [-395.86, ~73.95]); moderate effect (Cliff's d
=0.400), q = 2.42e-04

ism link: Ct within mitotic or
abnormal nuclei can reduce local intensity variance at this
scale.

Supports proposed mechanism: & Yes (0.82 confidence) Supports proposed

= p2sp75
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$10.090
—- zmi0

Control pertutb
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Cell Painting Drug Experiment Brief — AZ841 in MCF7 (DNA, 20X; 24uM, 24h)

4. Key Feature Evidence from Data

Texture_SumVariance_5_02_256

Direction: decrease

Observed evidence: Median decreased from 1610.47 to
905.63 (A = —704.85; CI [-1080.56, ~299.01]); moderate
effect (Cliff's d = 0.379), q = 4.77e-04

Mechanism link: Homogeneous chromatin masses or
segmented micronuclei can reduce sum variance.
Supports I Yes (0.62 i

= p2sprs
— medan
3000 p10-80

3500

fomi | i
S 2000

B0

o ==
500

5. Mechanism Assessment and Conclusion

Key Evidence (Features with Large Effect Sizes):
1.Granularity_2_DNA:

1 Median by +0.52, q = 3.8e—18

Strongest evidence for chromatin condensa-
tion/micronuclei

2.Granularity_3_DNA:

1 Median by +0.68, q = 1.3e-13

Further supports increased coarse chromatin
structure

3.AreaShape_MaxFere
EquivalentDiameter / Perimeter:
1 Indicates nuclear enlargement and irregular
boundaries

/Area/

Neighbors_PercentTouching_50

Direction: ambiguous

Observed evidence: Median 100% in both groups (A = 0.0;
CI[0.0, 0.0]); small effect (Cliff's d = 0.230), q = 0.00211
Mechanism link: No change; not informative.

Supports proposed mechanism: t Insufficient (0.20
confidence)

Texture_Contrast_5_02_256

Direction: decrease

Observed evidence: Median decreased from 565.82 to
359.52 (A = -206.30; Cl [-331.05, —48.55]); moderate
effect (Cliffs d = 0.338), q = 0.00196

Mechanism link: Chromatin condensation may reduce
contrast metrics; compatible with more uniform staining.
Supports proposed mechanism: & Yes (0.58 confidence)

1200 = p2sprs
— median
e P10p90
- xmp

800 ‘

== 1N

200

Feature Value

Control Perturb

Morphology_summary

The perturbed nuclei show strong increases in DNA granularity at multiple scales and larger, more irregular
nuclear shapes (higher area, equivalent diameter, perimeter; reduced solidity and form factor). Cell counts
per field trend lower. DNA texture metrics generally decrease in variance/contrast, suggesting more
compact or discretized chromatin. Together, these patterns are consistent with mitotic errors leading to
multinucleation/polyploidy and chromatin condensation. Overall, the dominant change is smoother, more
ordered RNA texture consistent with nucleolar compaction or consolidation.

Overall_ hanism_linked_:

The specimen is hypothesized to reflect aurora kinase inhibition causing mitotic disruption. Below, |
assess whether the observed morphology aligns with this hypothesis using quantitative feature trends and
mechanistic linkage.

Mechanism verdict: The quantitative phenotype is broadly consistent with aurora kinase inhibition.
Evidence summary: Strong increases in Granularity_2/3_DNA (deltas +0.52/+0.68; q < 1e-13) and
enlarged, more irregular nuclei (Area/Perimeter/MaxFeret up; Solidity/FormFactor down; q < 1e-04)

dominate. Texture metrics (Variance, SumVariance, Contrast) decrease with q < 0.002, while cell number
modestly drops with Cl touching 0. Non-informative features show no significant change.

Mechanistic linkage sentence: Given the proposed MoA aurora kinase inhibitors, it is known to alter
mitotic progression via inhibition of chromosome segregation/cytokinesis, which should cause mitotic
arrest and multinucleation/polyploidy; this would present as increased DNA granularity and larger,
irregular nuclei with potential micronuclei (observed: Granularity_2/3 up;
Area/EquivalentDiameter/Perimeter up; Solidity/FormFactor down).

Caveats and alternatives: Some texture changes are modest and several features are non-significant,
and we only have DNA channel at a single timepoint. Follow-up with multi-channel Cell Painting
(tubulin/actin), cell cycle profiling, and dose-response/time-course would strengthen mechanistic
attribution and distinguish from other mitotic poisons.

4.AreaShape_Solidity / FormFactor:

| Indicates nuclear fragmentation or lobulation
5.Texture metrics (Variance, SumVariance,
Contrast):

| Suggest reduced internal heterogeneity,
consistent with chromatin compaction

P REASONING EVALUATION CRITERIA

The survey is designed via Google Form, and can be accessed here: |https://docs.google.
com/forms/d/e/1FAIPQLSc_W2x6ro6huDANCTaOwc5IGvJ2PUXyvt2zMIKYI1I2npyi3w/
viewform?usp=header

To facilitate consistent and high-quality responses, we shared the following rubric and example list with par-
ticipated experts as initial guidance. This framework outlines key criteria for evaluating Language Qual-
ity and Reasoning Quality of model-generated explanations in biological tasks. The rubric emphasizes
five core aspects of language quality—including accuracy, relevance, coherence, depth, and conciseness,
as well as five reasoning quality metrics such as pattern recognition, stepwise reasoning, biological deduc-
tion, hypothesis formation, and mechanistic insight. Each criterion is paired with both positive and negative
examples to help clarify expectations and common pitfalls.
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P.1

LANGUAGE QUALITY CRITERIA

Language Quality Criteria

Excellent 7
Criteria PO Positive Examples Negative Examples
Example 1: “Eg5 inhibition leads to monopolar
spindle formation, a hallmark of mitotic arrest.”
:’;ﬁnmlnw . E;Ts ?;ﬁ?ms Explanation: Correctly links Eg5 inhibition to X Example: “Granularity in the
data an:gyl mecor?anism ' monopolar spindle formation and mitotic arrest, cytoplasm reflects chromatin
R TR, ArelaE, demonstrating mechanistic accuracy. Eom:ens:hoq (é\lj.lnng rr;lnoms.d .
descriptions Describes cell " . 2L Ll IR e L G 2 )
, Example 2: “KIF11, also known as Eg5, is occurs in the nucleus, not the
are correct; no | processes and ial f ion duri h This sh i t
factual errors. | drug mechanisms es‘ser_man or centrosome separation during cytoplasm. This shows incorrec
accurately. mitosis. terminology.
Explanation: Accurately identifies KIF11 as Eg5
and correctly explains its role in centrosome
separation.
2. Relevance Stays focused on
. Uiz 'mage'basm Example: “Texture changes are evaluated in X Example EG.FR EISERD
nocuse: (o TIZEIT S, the context of mitotic arrest, not other cell cycle Eommopeyisad Rl can st erapy
the core features, and stages.” * 4 and act on tyrosine kinase domains.”
kil hyp?thegls |esl! ng. Explanation: Stays on-topic by linking texture Expl;patlop: If th.e task is apnut Egb
TS iivoldsidiscussing features specifically to mitotic arrest i it Gl sy e
unrelated unrelated P! Y . irrelevant and off-topic.
content. pathways.
Example 1: “Because Eg5 inhibition blocks
bipolar spindle formation, the observed increase
ANCElarencs in DNA glranulanty |s“expected. :
- Explanation: Uses a “because — therefore
Logical flow, g;?;)ﬁasﬁ?:;m ztg::ﬁ::igloglcally connect mechanism to X Example “The cells look abnormal.
structured ST . Therefore, Eg5 inhibition is the cause.”
reasoning, and o v p 5 3 Explanation: Jumps to conclusion
natural ﬁ;:f;r;‘;:;i:nd .h Exanle = :Ne et :bs:we éncr?lased B without explaining intermediate steps
transitions. ’ chromatin granularity and reduced cell number. like spindle defects or mitotic arrest.
Given these findings, we hypothesize Eg5
inhibition as the likely mechanism, which aligns
with known spindle dysfunction phenotypes.”
Explanation: Well-structured progression from
observation to hypothesis and biological context.
Example 1: “Although increased granularity
may suggest mitotic arrest, it could also reflect
apoptosis; further staining is needed.”
4. Depth - q Explanation: Considers multiple hypotheses and -
Provides N N " X Example “The cells show
%o::rb;yond TR proposes validation, showing analytical depth. ) ST Ay A el
, reasoning, v o . number.”
::::L"e:: by | akemative @ E"T"TP"’ = ITo{conﬁrr:n rR [ Crery | Explanation: Only observes
e explanations, or granularity rf:us rzz‘tm't'r""ia"ﬁs" tllme— 3PS | phenomena without explaining their
validation Ok S LEECUCONEVOD significance or underlying cause.
mechanisms proposals. progression in real time.
or limitations. Explanation: Suggests a forward-looking
validation approach, demonstrating a deeper
level of reasoning.
X Example 1: “The texture of the
chromatin appears to be more
granular and also shows increased
Example 1: “Granularity 1, Entropy | — granularity in its texture.”
5 consistent with chromatin condensation under Explanation: Repetitive phrasing; the
g Eg5 inhibition.” same idea is stated twice.
?""e'""“s Expresses Explanation: Uses symbolic shorthand to
Ereperd] complete logic summarize findings clearly and effectively. X Example 2: “Due to the potential
efficient using minimal inhibition of Eg5, which is known to be
language; no words. Example 2: “Mitotic arrest inferred from related to spindle formation during
redundanlcy. monopolar spindles and chromatin compaction.” mitosis, the cells may possibly
Explanation: Omits unnecessary words yet experience something like a blockage
remains scientifically complete & precise. in mitotic progression.”
Explanation: Wordy, vague, and
redundant. Can be simplified to: “Eg5
inhibition likely caused mitotic arrest.”

Figure 14: Language quality criteria for evaluating CP-Agent generated Cell Painting reports.
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P.2 REASONING QUALITY CRITERIA

eria

6. Pattern
Recognition

Ability to identify
key visual
differences such
as cell morphology
or staining
patterns and link
them to biological
meaning.

Excellel
Performance

Connects visual
features with
plausible
mechanisms.

Reasoning Quality Criteria

¥ Positive Examples

Example 1: “Granular, compact chromatin
morphology is consistent with mitotic arrest.”
Explanation: Recognizes dense, granular chromatin
as a sign of mitotic arrest.

Example 2: “Reduced cell count and round,
compact nuclei are consistent with mitotic
accumulation and arrest.”

Explanation: Integrates multiple visual cues to explain
a biological state.

Negative Examples

X Example 1: “The cells look
mostly the same as normal.”
Explanation: Fails to recognize
evident morphological changes.

X Example 2: “The blurry area in
the cytoplasm might be the
nucleolus.”

Explanation: Confuses
cytoplasmic structure with nuclear
organelles, showing poor
structural understanding.

7. Algorithmic

Example 1: “Step 1: Check DNA granularity 1 —
Step 2: Consider mitotic arrest — Step 3: Confirm with

X Example 1: “This is clearly due
to Eg5 inhibition.”

Explanation: Suggests hypothesis and a concrete
method for testing it.

:i;ﬁ::::l:;g texture shift — Conclusion: EqS inhibition likely.” Explanation: Conclusion is stated
Thinking) Sl o 1: Follows a -style reasoning \év\:ti:(;lrl'tczuppamng steps or
- Systematic "observe — infer . XE -I 2: “Mavbe it
step-by-step — verify" logic o o ) LT L Y
1 s Example 2: “Metric: High DNA granularity + low apoptosis, but the chromatin is
reasoning from chain. ° ; ) POploss, }
visual features to hgtemgenerty — Hypnth‘ems: chlear compaction — ﬂgnse and a!so the gr_anulanty |5'
diagnostic Blulpglca\ context: Co_nSI'stle'nl v'\.uth metaphase arrest high. Egs_ls |nvc_)lved |n'sp|ndles.’
S T — Likely cause: Eg5 inhibition. Explanation: Disorganized
Explanation: Builds a multistep logic from feature to reasoning, lacks structured flow.
mechanism.
Example 1: “if Eg5 is inhibited, bipolar spindle X Example 1: “If Eg5 is inhibited,
formation is blocked — cells accumulate in mitosis — chromatin looks like this.”
8. Deductive Explains observed chromatin condenses.” Explanation: Skips required
R ing - e using Explanation: Demonstrates a clear biological cause- mechanistic reasoning steps; lacks
Uses known established effect chain from inhibition to phenotype. causality.
bgdolglcal flesiio mechanisms or - . X o A
predict specific canonical Example 2: “Apoptosis leads to nuclear Example 2: “Because mitosis is
outcomes. pathways. fragmentation and increased DNA texture complicated, maybe that's why the
heterogeneity. This would appear as irregular, chromatin looks dense.”
punctate chromatin staining.” Explanation: Vague and
Explanation: Applies known apoptosis features to unscientific language; lacks
interpret image data. specific mechanistic explanation.
9 Example 1:“Hypothesis: DNA granularity suggests
either mitotic arrest or apoptosis. Evidence: Low
9. Induction / Froposes Entropy + High Contrast — favors mitosis.”
Hypothesis Ao Explanation: Proposes alteratives and uses features | X Example 1:*This must be Eg5
Testing - Forms e to evaluate them. inhibition.”
hypotheses from w)g?ohs ey - Explanation: States a conclusion
observations and and'gdraws ' & Example 2:*Hypothesis: Granular chromatin — without forming or testing a
supports or refines reasoned mitotic arrest. hypothesis.
them with RIS To validate: Use PH3 staining to confirm mitotic
evidence. : accumulation.”

10. Mechanistic
Insight

Links visual
observations to
underlying
molecular or
cellular pathways.

Traces a causal
path from
molecular
intervention —
cellular
structure/function
— image features.

Example 1: “Eg5 inhibition prevents centrosome
separation, leading to monopolar spindles, which
induce checkpoint-mediated mitotic arrest.”
Explanation: Demonstrates a full causal chain from
drug action to phenotype.

Example 2: “Mitotic cells lose substrate adhesion
due to reorganization of cortical actin and detachment
from the ECM, resulting in rounded morphology in
imaging.”

Explanation: Explains how cytoskeletal changes
translate to visual cell shape.

X Example 1:*This must be
mitotic arrest because the nuclei
look dense.”

Explanation: Observation is not
linked to any molecular or cellular
mechanism; lacks causal
reasoning.

Figure 15: Reasoning quality criteria for evaluating CP-Agent generated Cell Painting reports.
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Q EXPERT RATINGS OF CP-AGENT GENERATED REPORTS ACROSS LANGUAGE
AND REASONING CRITERIA

Figure [T6] summarizes expert evaluations across ten rubric criteria, split into five language quality dimen-
sions (Figure[I6h) and five reasoning quality dimensions (Figure [I6p). On average, all four LLMs received
high ratings (mostly above 5.0 on a 7-point scale), indicating strong performance in generating biologically
grounded screening reports. Among the models, GPT-5 consistently achieved the highest scores across most
reasoning metrics—including pattern recognition, algorithmic reasoning, and mechanistic insight—while
also maintaining strong language quality. Gemini-2.5-Pro closely followed, particularly excelling in rele-
vance and coherence. Claude-Sonnet-4 underperformed slightly in mechanistic insight and inductive reason-
ing, indicating slightly weaker performance in higher-order biological inference. Grok-4 showed relatively
balanced language quality but lagged slightly in depth and coherence compared to top-performing models.
The bar chart (Figure [T6f) further illustrates per-metric mean scores, reinforcing the finding that reason-
ing dimensions pose a greater challenge than surface-level language quality, especially in tasks requiring
mechanistic interpretation and hypothesis generation.

(a) A. Language Quality Metrics (b) B. Reasoning Quality Metrics

—— Claude-Sonnet-4
~—— Gemini-2.5-Pro
—— GPT-5

—— Grok-4

Relevance Algorithmic Reasoning

Coherence Deductive

Accuracy Pattern Recognition

Depth Inductive

Conciseness Mechanistic Insights

(c)

LLM Evaluation by Metric

575
550
525
5.00
475
450
425
4.00-

Model
mmm Claude-Sonnet-4
Gemini-2.5-Pro
. GPT-5
. Grok-4

Mean Score

Figure 16: Expert evaluation of LLM-generated screening reports across language and reasoning di-
mensions.(a—b) Mean expert ratings (on a 7-point scale) for language and reasoning quality, based on ten
rubric-based evaluation criteria. (c) Bar chart summarizing per-metric mean scores across the four evaluated
models: Claude-Sonnet-4 (blue), Gemini-2.5-Pro (orange), GPT-5 (green), and Grok-4 (red).
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