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Abstract  
Recent advancements in large language models (LLMs) have achieved remarkable breakthroughs in natural language processing and 

artificial intelligence 1 . However, current LLMs rely on cumulative context, which poses structural limitations. This approach often 
results in inefficient utilization of computational resources and diminished coherence and adaptability in extended interactions. This 
study proposes an innovative framework that eliminates cumulative context and introduces the concepts of “memory” and 
“retrieval” to establish “momentarily reconstructed minimal contexts.”

 

In this framework, memory refers to the external storage of past interactions exactly as they occurred in a database. This raw data 
serves as a persistent repository that can be retrieved as needed. Retrieval is the process of selectively accessing relevant stored 
memory to dynamically reconstruct short-term, localized contexts tailored to specific queries or tasks. This aligns with retrieval-

augmented generation methods 2 3  but differs by emphasizing dynamic context reconstruction rather than cumulative accretion.   

The proposed approach also highlights the potential of memory to function as an interface for external knowledge. By linking 
memory with domain-specific knowledge, it becomes possible to integrate expert knowledge dynamically into the reconstructed 

context at every moment, facilitating knowledge-intensive tasks 2 . This enables LLMs to produce not only general responses but also 
highly specialized and contextually accurate outputs, significantly enhancing their performance in diverse domains.

 

This study explores the design principles and implementation strategies of this memory-based system and empirically demonstrates 
its efficacy in improving both performance and efficiency when integrated into LLM architectures. By leveraging memory to 
incorporate external knowledge dynamically, this research offers a novel paradigm for LLM design, advancing AI models that emulate 
human memory systems while unlocking new possibilities for external data integration.
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Philosophical Motivation: A Wittgensteinian Perspective  
Ludwig Wittgenstein’s well-known proposition that “The world is the totality of facts, not of things” provides a philosophical lens through 
which we can interpret the proposed framework. This statement suggests that knowledge and meaning emerge not merely from the 
accumulation of discrete entities (things), but rather from how these entities form meaningful facts within a context. In our approach, 
the concept of momentarily reconstructed minimal contexts resonates with this perspective:

1. From Accumulation of Tokens to Meaningful Facts:
Traditional LLM architectures often accumulate all previously seen tokens, treating past information as a static and 
undifferentiated mass. By contrast, our method views the retrieval and reconstruction of context as the dynamic selection of 
relevant facts. Instead of continuously expanding a context window with every token (thing), we extract only those pieces of 
information that form coherent, meaningful facts pertinent to the current query. This shift mirrors Wittgenstein’s distinction 
between raw data (things) and facts—structured, contextually significant information.

2. Language as Contextual Meaning: The Language Game Analogy:
Wittgenstein’s notion of “language games” highlights that meanings arise from use within specific contexts and activities. 
Similarly, our reconstructed context adapts to the evolving conversational “rules” at each query turn. By always including the 
most recent memory and selectively retrieving relevant past pieces, we ensure that the model’s output emerges from the 
interplay of contextually grounded facts, much like participants in a language game continually adjust their understanding based 
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on evolving conversational norms.

3. Dynamic Knowledge Formation:
Under Wittgenstein’s philosophy, meaning is not a fixed property of words or sentences; it is constituted by their usage within 
contexts. Our retrieval-based framework treats knowledge not as a static repository of tokens, but as a dynamic process of fact 
selection and contextual integration. Every momentary reconstruction of context is an act of meaning-making, aligning with the 
Wittgensteinian view that the significance of information depends on its role in a particular language game.

By drawing on Wittgenstein’s philosophical insights, we frame our technical contributions within a broader intellectual context: the 
proposed system does not merely optimize for efficiency or coherence, but also reflects a deeper understanding of how meaning and 
relevance emerge from the dynamic interplay of facts rather than the mere accumulation of tokens.

 

Limitations of Cumulative Context in Attention Mechanisms  
In traditional cumulative context models, the attention mechanism distributes weights across all input tokens, leading to:

Weight dilution: As the input length  increases, important recent tokens receive smaller attention weights due to 
normalization.

Noise amplification: Irrelevant or outdated tokens add unnecessary noise to the attention computation 1 .  

 

Attention Mechanism in Cumulative Context  

The attention mechanism can be expressed as:

 

Where:

: Query vector

: Key vector

: Value vector

: Dimension of the key vector

 

For an input sequence , the attention weight  for each token  is:

 

Where:

: The attention weight for token .

: Query vector.

: Key vector for token .

: Total number of tokens in the input sequence.

 

As  grows larger:

The denominator increases, causing weight dilution, where even important tokens have diminished weights.

Outdated or irrelevant tokens contribute to noise amplification in the attention calculation.

 

Retrieval-Based Context Reconstruction  



Retrieval-based approaches dynamically reconstruct the input context  with a subset of relevant tokens , reducing the effective 

input length  . Such approaches relate to retrieval-augmented generation methods 2 3 . The attention weight in this 
reduced context is:

  

 

Key advantages:

Weight concentration: Smaller  increases the attention weight for critical tokens.

Noise reduction: Irrelevant tokens are excluded, improving focus and coherence.

 

Computational Efficiency  

The computational cost of the attention mechanism is proportional to the square of the input length:

Cumulative context: 

Retrieval-based context: , where 

 

Attention Focus and Entropy Analysis  

Understanding Attention Focus  

In attention mechanisms, the focus on specific tokens is determined by the distribution of attention weights . These weights are 
calculated as:

 

Where:

: The attention weight for token .

: Query vector.

: Key vector for token .

: Total number of tokens in the input sequence.

The focus of attention is more effective when the weights are concentrated on relevant tokens. However, in cumulative context, the 
number of tokens  grows larger, which can dilute attention weights and reduce focus.

 

Measuring Attention Focus with Entropy  

Entropy is a statistical measure that quantifies the dispersion of a probability distribution. In the context of attention, entropy can be 
used to measure how evenly attention weights  are distributed:

 

Where:

: Entropy of the attention weights.

: Attention weight for token .

 

Interpretation:  



1. High Entropy:

Indicates that attention weights are spread out across many tokens.

This often occurs in cumulative context, where irrelevant or outdated tokens are included.

2. Low Entropy:

Indicates that attention weights are concentrated on fewer, more relevant tokens.

This is desirable and more achievable in reconstructed context.

 

Comparing Cumulative and Reconstructed Contexts  

1. Cumulative Context:  

In cumulative context, the input size  increases as more tokens are accumulated. This leads to:

Higher entropy  as attention weights are distributed over a larger set of tokens.

Decreased focus on critical information, which can dilute model performance.

2. Reconstructed Context:  

In reconstructed context, only the most relevant tokens  are retained. This results in:

Lower entropy  as attention weights are concentrated on a smaller set of meaningful tokens.

Enhanced focus, improving both computational efficiency and output quality.

 

Quantitative Comparison  

Entropy values for the two contexts can be summarized as:

 

This indicates that reconstructed context enables a more efficient and effective attention mechanism, concentrating computational 
resources on relevant information.

 

Conclusion  

By analyzing entropy, we demonstrate that retrieval-based context reconstruction reduces the dispersion of attention weights, leading 
to:

Greater focus on relevant tokens.

Improved computational efficiency.

Higher overall performance of the model.

This supports the argument that attention mechanisms operate more efficiently in reconstructed contexts compared to cumulative 
contexts.

 

Reconstructed Context: Definition and Construction  
The reconstructed context is a dynamically selected subset of memory, designed to enhance the efficiency and relevance of attention 
mechanisms in large language models (LLMs). Additionally, to maintain conversational coherence, the most recent memory is always 
included as an exception, ensuring the model retains immediate context for seamless responses, reflecting natural turn-taking in 

conversation 4 . The construction of the reconstructed context involves the following steps:  

 

1. Memory Retrieval Using HNSW and BM25  



Memory retrieval involves identifying the most relevant past interactions or knowledge from the memory store. Two techniques are 
employed:

HNSW (Hierarchical Navigable Small World Graph):

Used for fast approximate nearest neighbor search 5 6 .   

Identifies relevant embeddings based on semantic similarity.

BM25:

A traditional lexical matching algorithm, scoring relevance based on term frequency and inverse document frequency 7 .  

We will discuss how to integrate BM25 and HNSW in a separate section.

 

2. Inclusion of the Most Recent Memory  

To ensure conversational continuity, the most recent memory  is always included, regardless of its relevance score to reflect 

the fundamental nature of human dialogue and turn-taking 4 . This guarantees that the model can seamlessly reference the 
immediate prior interaction.

 

This design choice is motivated by the fundamental nature of human dialogue. In human-to-human interactions, the meaning and 
coherence of an ongoing conversation heavily rely on the most recent exchange. Ignoring or omitting the immediately preceding 
statement disrupts the natural flow of communication, causing confusion and a sense of incongruity. By contrast, ensuring that the 
most recent turn is consistently preserved mirrors the innate human tendency to continuously build upon the latest conversational 
cues.

From a cognitive perspective, humans instinctively reference the last utterance to maintain topic continuity and contextual relevance. 
This habitual pattern is so ingrained that any deviation—such as responding without regard to the previous speaker’s last contribution
—strikes us as awkward and artificial. In other words, retaining the most recent memory at all times ensures a smoother, more 
natural interaction. It guarantees that the model’s responses remain anchored in the evolving discourse, thereby enhancing both the 
realism and coherence of extended conversations.

 

3. Top-K Selection  

From the retrieved memory, we select the top  items based on their relevance scores, excluding  since it is already 
guaranteed to be included:

 

 

4. Context Length Restriction  

The reconstructed context is subject to the model's maximum context length . Memory items are truncated if their combined 
length exceeds this limit, prioritizing:

1. The most recent memory .

2. Relevant memory items  in descending order of relevance.

 

 

5. Time-Ordered Sorting  

After truncating items to fit within , the remaining memory items, including , are sorted in chronological order. This 
ensures logical flow and temporal coherence.

 



Final Definition  

The reconstructed context is formally defined as:

 

 

Advantages of Reconstructed Context with Recent Memory  
1. Relevance: Ensures that the model focuses on the most pertinent information by leveraging advanced retrieval algorithms.

2. Continuity: Guarantees seamless conversational flow by always including the most recent memory 4 .  

3. Efficiency: Avoids exceeding the model's maximum context length, reducing computational overhead.

4. Temporal Coherence: Chronological sorting enhances the logical sequence of information.

By incorporating the most recent memory as an exception, this framework ensures conversational continuity while maintaining the 
benefits of relevance, efficiency, and coherence.

 

Hybrid Retrieval Strategy: BM25 + HNSW  

BM25 Formula and Characteristics  

BM25 is a classic keyword-based scoring function 7  widely used in information retrieval. It leverages term frequency, inverse 
document frequency, and document length normalization to produce a stable and interpretable relevance score.

 

BM25 Scoring Function:

 

Strengths: Stable recall, clear interpretability, and strong keyword matching.

Limitations: Lacks semantic understanding or synonym recognition.

 

Cosine Similarity and HNSW  

Cosine similarity measures the angle between embedding vectors, enabling semantic matching beyond exact keywords. Given two 
vectors  and :

 

This focuses on the direction rather than magnitude, making it suitable for comparing embeddings where length scales may differ.

HNSW (Hierarchical Navigable Small World) graphs facilitate efficient approximate nearest neighbor (ANN) searches 5  in high-
dimensional embedding spaces. HNSW provides semantic-rich retrieval, uncovering conceptually related documents missed by 
keyword-only methods. However, it may suffer from unstable recall due to approximation and is sensitive to parameters. Combining 

BM25 with HNSW merges stable lexical recall with semantic depth 3 6 .

 

  

 

Instability in Embedding Models  

Beyond HNSW’s approximate nature, embedding models themselves can introduce unpredictability:

Different models or model versions may yield slightly varying embeddings for the same input.

Embeddings retrained on evolving corpora can shift semantic landscapes, making results less stable over time.

The complexity and “black-box” nature of embeddings mean small changes in vector space can disproportionately affect 
similarity rankings.



Such instability demands a hybrid and flexible approach.

 

Balancing BM25 and HNSW with Dynamic Weighting  

We combine BM25 and HNSW scores into a weighted sum:

 

Weights  and  are adjustable in real-time, allowing the system to respond to query characteristics, user preferences, or 
performance trends. For instance, increasing  stabilizes recall in uncertain conditions, while raising  emphasizes 
semantic richness.

 

Extensibility with Multiple Embedding Models  

This framework extends naturally to multiple embedding models:

 

Tailor retrieval to domains or languages by integrating specialized embeddings.

Dynamically adjust weights for each model, leveraging multiple semantic perspectives.

Scale and evolve the pipeline by adding or updating embedding models as needed.

 

Integrating Reciprocal Rank Fusion (RRF) for Score Aggregation  

In addition to using weighted sums, we can consider Reciprocal Rank Fusion (RRF) 8  as an alternative or complementary method for 
combining ranked lists produced by BM25, HNSW, and multiple embedding models. RRF is a simple yet effective ensemble method 
often used in Information Retrieval (IR) research.

 

Reciprocal Rank Fusion Formula:

 

: Number of ranking methods.

: Rank position of document  by the -th method.

: A small constant (e.g., 60 or 100) to dampen the influence of lower-ranked results.

 

Why RRF?

Robustness to Score Variations: RRF relies on rank positions, mitigating the impact of disparate score scales or instability in 
individual methods.

Simplicity and Effectiveness: RRF requires minimal tuning and often yields strong baseline fusion performance.

Flexible Integration: RRF can be applied as a final step or combined with weighted scoring, allowing the system to experiment 
with different fusion strategies.

By incorporating RRF, we add a rank-based aggregation layer that can further enhance stability and fairness across multiple retrieval 
methods and embedding models.

 

Expected Benefits  
1. Enhanced Coherence and Focus:

Anchoring responses in the most recent turn and filtering irrelevant history fosters more natural, human-like interactions.
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2. Stable, Semantically Enriched Results:

Combining BM25’s stable recall 7  with HNSW’s semantic depth 5  counters the unpredictability of embedding-based retrieval 6 , 
supported by adaptive weighting. Incorporating RRF further stabilizes final rankings by focusing on rank positions rather than raw 
scores.

   

3. Adaptive and Extensible:
Real-time weight adjustments, the ability to integrate multiple embedding models, and the option to apply RRF for final fusion 
empower the system to adapt dynamically to changing data, user needs, and domain-specific vocabularies.

4. Continuous Optimization:
Through iterative testing and monitoring, weight distributions, model combinations, and fusion strategies (weighted sums, 

RRF 8 ) can be refined over time for better performance.  

 

Conclusion  
Our unified memory-based context reconstruction framework offers a solution to the pitfalls of cumulative context usage in LLM 

interactions. By always including the most recent memory 4 , employing retrieval-based minimal context assembly 2 3 , blending 

BM25 7  with HNSW 5 , integrating multiple embedding models 6 , and considering RRF 8  for final fusion, we create a robust, versatile, 
and semantically enriched retrieval environment.

   

    

This adaptive strategy enhances efficiency, accuracy, and adaptability in LLM-driven conversational systems, resonating with deeper 

philosophical themes. It provides a strong foundation for future research in retrieval-augmented generation 2 3  and dynamic context 

management, capable of evolving alongside advancements in embeddings, ANN techniques, and natural language understanding 1 .
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