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Abstract

This paper investigates the quantification of001
controversy in online discussions, focusing on002
social media platforms, notably Twitter. Em-003
phasizing the prevalence of echo chambers,004
where users are exposed to opinions aligned005
with their own, we propose a novel approach006
leveraging Large Language Models (LLM) and007
Graph Neural Networks (GNN). Our method-008
ology integrates both structural and textual in-009
formation in social networks to provide a nu-010
anced understanding of controversy. Contribu-011
tions include a theoretical model for quantify-012
ing controversy based on the expected prob-013
ability of user participation in controversial014
topics. We introduce an empirical estimation015
method using a GNN-based model. Unlike ex-016
isting approaches focused on structural polar-017
ity, our model captures the rich textual con-018
tent. Empirical evaluations on Twitter topics019
demonstrate the effectiveness of our method-020
ology, outperforming variant methods using021
only textual or structural information, as well022
as state-of-the-arts methods. In conclusion,023
we introduce an innovative approach to con-024
troversy quantification, emphasizing user par-025
ticipation within social networks.026

1 Introduction027

Internet and social media have today replaced028

in many ways discussion and debates in society.029

People interacting on local or international topics030

come from different communities, countries, eth-031

nicities, etc. By discussing their point-of-views,032

sharing content, or embracing some other user ar-033

guments, they participate in public debates and po-034

tentially controversial topics. Controversy repre-035

sents a prolonged public disagreement on a topic036

or event (Hessel and Lee, 2019). With the in-037

creased use of social media, controversial top-038

ics are widely discussed, especially on social me-039

dia like Twitter, where it is easy to share about040

specific events (hashtags) or to endorse someone041

(retweet). The presence of the phenomenon of 042

echo-chambers 1 indirectly helps to build strong 043

communities around a single topic/event, such as 044

the pros and cons of mandatory vaccination for the 045

COVID-19 vaccine, only taking into account argu- 046

ments from their perspective. 047

The rise of deep neural networks enables us 048

to investigate more deeply large amounts of data, 049

such as large graphs and texts. Large Language 050

Models (LLM) based on the attention mechanism 051

and the transformer’s architecture, such as BERT, 052

enable us to represent texts regarding the con- 053

text. Graph Neural Networks (GNN) are com- 054

monly used to work with deep neural networks on 055

unstructured data, for different tasks like node or 056

graph classification. 057

In this paper, we quantify controversy on topics 058

from the perspective of user polarization around 059

communities with diverse viewpoints and opinions 060

within social networks. 061

Contributions. Most approaches focus on po- 062

larity, ignoring the information contained in the 063

texts published by users. We propose a user- 064

based approach to quantify controversy, using 065

both structural and textual information through 066

GNN layers, resulting from the three contributions: 067

• Controversy quantification. We propose a 068

theoretical model to quantify the controversy 069

according to the users. This score is based on 070

the expected probability of a user participat- 071

ing in a controversial topic. 072

• Empirical estimation of the quantification 073

score. We propose a method for estimating 074

this score empirically. We estimate the condi- 075

tional probabilities of users participating in a 076

controversial topic. We show that minimizing 077

the loss function of this estimator is equiva- 078

lent to optimizing our score. To estimate this 079

1Environment where a person only encounters informa-
tion or opinions that reinforce their own opinions.
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probability for each user, we propose a model080

based on GNNs, exploiting both textual and081

structural information of the graph.082

• Results and analysis. We establish an evalu-083

ation protocol to compare our different mod-084

els. We compare our model with some of085

their variants using only textual or structural086

information and show that it achieves the best087

performance. Then, by comparing the quan-088

tification scores with the literature on topics089

from Twitter, we show that our approach per-090

forms better.091

The paper is organized as follows: after a state-092

of-the-art in Section 2, Section 3 presents the theo-093

retical modeling of our Twitter controversy quan-094

tification score and a method for empirically es-095

timating this score. Section 4 presents the exper-096

imental setup and Section 5 sets out our experi-097

ments and the results, before closing in section 6.098

2 Related Work099

Controversy work is mainly concerned with de-100

tection and quantification. Controversy detection101

on social media aims to guess if a topic is contro-102

versial or not. Most of the proposed approaches103

exploit a user interactions graph (i.e. retweet104

graph) (Garimella et al., 2018; Mendoza et al.,105

2020; Hessel and Lee, 2019). Such a graph is par-106

titioned into two disjoint classes C and C̄, each107

one representing users supporting the same opin-108

ion on a given topic. Well-separated classes char-109

acterize controversial topics. Some recent ap-110

proaches consider controversy detection as a graph111

classification problem (Zhong et al., 2020). They112

exploit Graph Neural Networks and Natural Lan-113

guage Processing techniques to classify the whole114

graph as controversial or not.115

Controversy quantification, which is our pur-116

pose in this paper, aims to measure to what ex-117

tent a topic is controversial. Different methods118

have been suggested. Random Walk Controversy119

(RWC) is introduced in (Garimella et al., 2018)120

and works on classes C and C̄. It aims to capture121

how likely a random user of a class is to be ex-122

posed to the content of the most connected users of123

the opposite class. Some adaptations of the RWC124

metric were proposed in (Emamgholizadeh et al.,125

2020) and (Darwish, 2019) to take into account126

useful information that could be present in user127

nodes (i.e. influencer or not, used hashtags, etc.).128

Considering that a force-directed embedding 129

technique (Jacomy et al., 2014) fosters a clear 130

separation of partitions of a graph (modularity), 131

the two-dimensional embedding of user nodes of 132

classes C and C̄ are exploited to define the Em- 133

bedding Controversy score (EC) (Garimella et al., 134

2018). EC is based on the average embedded dis- 135

tance among pairs of user nodes in C (respectively 136

C̄), and the average embedded distance among 137

pairs of nodes across C and C̄. Controversial (re- 138

spectively non-controversial) topics tend to have 139

an EC score close to 1 (respectively 0). (Guerra 140

et al., 2013) consider that the modularity polariza- 141

tion metric is not necessarily sufficient, since non- 142

polarized graphs may also be divided into two dis- 143

joints classes. A community boundary-based po- 144

larization metric is proposed, which characterizes 145

polarized communities by a low concentration of 146

high-degree nodes along the boundary. 147

Inspired by the electric dipole moment, 148

(Morales et al., 2015) consider that perfect con- 149

troversy can be characterized by the fact that the 150

classes C and C̄ are of the same size and with 151

opposite opinions. A dipole controversy measure 152

is then proposed, it defines the controversy level 153

as a function of the difference in size between C 154

and C̄, and the distance between the opinions of 155

the two classes (i.e. the gravity centers). A model 156

is defined to estimate the opinion distributions 157

of users of both classes. (Zarate and Feuerstein, 158

2020) proposed a vocabulary-based controversy 159

measure that adapts the dipole measure by re- 160

placing the opinions of both classes with their 161

respective vocabularies used by users. 162

These controversy quantification methods work 163

on graph partitions to define metrics. In this pa- 164

per, we quantify controversy by focusing on users 165

instead of communities. We base our quantifica- 166

tion method on the Probabilistic Theory of Pat- 167

tern Recognition (Xu et al., 2019). We con- 168

sider that a perfect controversial (respectively non- 169

controversial) topic corresponds to a graph for 170

which we can predict without error that any of 171

its subgraphs is controversial (respectively non- 172

controversial). The controversy level is then quan- 173

tified as the error when predicting the controversy 174

label of a selected subgraph centered on a random 175

user. To the best of our knowledge, our work is 176

the first work that exploits conditional probability 177

of subgraphs belonging to controversial topics for 178

the need for controversy quantification. 179
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3 Method180

3.1 Controversy quantification181

We propose a theoretical score for quantifying182

controversy based on user subgraphs. Given G a183

random graph and L a random label, we denote184

their realizations by g and l. The graph and the185

labels will be indexed as gi and li when neces-186

sary. Let P be the true unknown joint distribution187

of G,L ((G,L) ∼ P) which can be decomposed188

into µ, the marginal law of G, and η the condi-189

tional probability of L given the observation of a190

graph (Devroye et al., 2013):191

η(g) = P(L = 1|G = g) (1)192

The equation 1 corresponds to the true proba-193

bility that a graph is controversial (L = 1) condi-194

tionally on the observation of the graph (G = g).195

We sometimes call η the posterior, as opposed to196

the prior which represents the frequency of labels.197

Again, η is an unknown quantity that we gener-198

ally aim at estimating when minimizing a cross-199

entropy in deep learning.200

Our controversy quantification score is related201

to the features used in the user graph. Thus, if any202

part of the graph necessarily implies controversy,203

then the quantification score should be high. On204

the other hand, if only certain parts of the graph205

indicate that the subject is controversial, then the206

score should be low. Finally, if the graph is not in-207

herently linked to a controversial subject, the cor-208

responding score is expected to approximate zero.209

Let g(k)u ⊆ g be a subgraph of g centered on user210

u and including up to k levels of neighbors. The211

true conditional probability that the subgraph g
(k)
u212

is associated with a controversial subject is given213

by equation 2.214

η
(
g(k)u

)
= P

(
L = 1|G = g(k)u

)
(2)215

Hence, η
(
g
(0)
u

)
represents the probability that216

the content published by user u is associated with217

a controversial subject, independently of any inter-218

action. In contrast, η
(
g
(∞)
u

)
represents the prob-219

ability that the subject is controversial when the220

entire graph is analyzed. We expect the latter to221

be close to 1 if controversial, or 0 if not contro-222

versial, even if the absence of contextual elements223

can sometimes limit the certainty of the prediction.224

Note that the latter remains a quantity that depends225

on η, the unknown posterior.226

We now define in equation 3 the quantification 227

score CQS (“Controversy Quantification Score”): 228

CQS(g, k) = Eu∼U(g)

[
η
(
g(k)u

)]
(3) 229

This score corresponds to the expectation that a 230

user chosen uniformly in the graph will be associ- 231

ated with a controversial topic, looking only at k 232

neighborhood levels. The only unknown quantity 233

in equation 3 is the true conditional probability η, 234

which must be estimated. 235

3.2 Consistent loss functions with CQS 236

In this section, we show that loss functions such as 237

cross-entropy are consistent with our CQS score 238

estimation. Minimizing a consistent loss function 239

minimizes the estimation error of CQS. 240

We define ℓ : [0, 1] → R+ as a binary loss func- 241

tion. The argument is the probability estimation of 242

the true label. η is the true conditional probability 243

and η̂ its estimation. The risk associated with ℓ is 244

given in 4. 245

Lℓ(η̂, η) = ηℓ (η̂) + (1− η)ℓ (1− η̂) (4) 246

If ℓ(s) = − log(s), then we obtain the binary 247

cross entropy. 248

Definition 1. (Strictly) Proper loss (Lorieul, 249

2020) A loss ℓ : [0, 1] → R+ is considered proper 250

if its infimum (largest minorant) is reached by η: 251

Lℓ(η, η) = inf
s∈[0,1]

Lℓ(s, η) 252

And strictly proper if η is the unique minimizer. 253

Definition 2. µ-strongly proper loss (Lorieul, 254

2020) a loss ℓ : {0, 1}×[0, 1] → R+ is µ-strongly 255

proper if: 256

Lℓ(η̂, η)− Lℓ(η, η) ≥
µ

2
|η̂ − η|21 257

The regret is the gap between our risk and its 258

optimal value: 259

Regℓ(η̂;x) = Lℓ(η̂(x), η(x))− Lℓ(η(x), η(x)) 260

The following proposition shows that a strongly 261

proper loss function is consistent with our score 262

if the graphs are generated according to a specific 263

procedure shown in 5: 264

G ∼ µ

u ∼ U(G)
(5) 265
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Graphs g(k)u are built from this procedure, µ being266

the marginal law of graphs.267

Proposition 1. Any strongly proper loss func-268

tion ℓ is consistent with CQS if it is minimized for269

graph generation.270

EG

[
Eu∼U(G)

[
Regℓ

(
η̂; g(k)u

)]]
→ 0 ⇒271

272

EG

[
|ĈQS(G, k)− CQS(G, k)|

]
→ 0273

If the former term converges to 0, then so does274

the error in estimating our score. We can gener-275

alize the previous theorem by taking a random k276

according to a probability distribution. If the re-277

gret tends towards 0 for a random k, then so does278

the estimation error. We define µ1 as the marginal279

probability distribution of k and µ2 as the marginal280

probability distribution of the graphs:281

k ∼ µ1

g ∼ µ2

u ∼ U(g)

282

We present in section 3.3 a method to empiri-283

cally estimate this quantification score.284

3.3 Empirical estimation of the conditional285

probabilities286

After defining the score CQS(g, k) theoretically287

in equation 3, we establish a method for estimat-288

ing this score empirically. To this end, we com-289

pute the conditional probabilities η(g(k)u ) from the290

k-level subgraphs of each user u. Figure 1 shows291

the various stages in the process of computing this292

probability η and estimating our controversy quan-293

tification score.294

Firstly, the user retweet graph is created from295

the tweets retrieved related to the topics. The296

graph is then fed into our GNN-based model, to297

predict the user’s participation in a controversial298

topic. Secondly, this model, combining both the299

structural properties of the retweet graph and the300

textual information published by users in their301

original tweets, is presented.302

3.3.1 Graph building303

We consider retweets as user endorsement. From304

all tweets and retweets belonging to a topic, a user305

retweet graph G is created, representing the topic306

discussion on Twitter. Nodes represent users, and307

two users ui and uj are related by an edge if one308

has retweeted the other at least once. The graph309

is undirected. Each user is represented by his 310

tweets on the subject concerned. As social net- 311

works are known for their low density, after creat- 312

ing the graph, we only keep users and edges from 313

the biggest connected component, as we want to 314

propagate information through the graph. 315

More formally, a topic t is represented as a 316

graph G = (U , E , X) where U = {u1, u2, ..., un} 317

denotes the user nodes and E = {(ui, uj)}1≤i,j≤n 318

denotes the edges of the graph. A node represents 319

a user, and an edge between two nodes exists if 320

there is at least one interaction between the cor- 321

responding users. The set X represents node fea- 322

tures, represented by tweets for each user. 323

3.3.2 Predicting user participation in a 324

controversial topic 325

Figure 1 step a) Each tweet is represented by a 326

vector using the BERT language model (Devlin 327

et al., 2019). The output of the last layer of the 328

BERT model is used as the representation vector 329

for each tweet. Tweets representations are then 330

aggregated by user, as indicated in figure 1 by 331

the AGG block. Tweets representations are re- 332

fined as the model is trained, implying the refin- 333

ing of the textual representation of users after the 334

aggregation block. Users who have not posted 335

any tweets are assigned an empty tweet by de- 336

fault, with its corresponding vector representation. 337

User input representations are gathered in the ma- 338

trix X ∈ Rn×d, with n the number of nodes and d 339

the dimension of the vectors. 340

Figure 1 step b) From the user-embedded rep- 341

resentation of its tweets, the model learns new 342

node representations from the structural represen- 343

tation of the graph, using graph convolutional net- 344

works with multiple layers. These convolutional 345

layers enable the integration of node features and 346

local neighborhood information, and effectively 347

learn expressive node representations that capture 348

both local and global graph structure, enabling 349

downstream tasks such as node classification. Two 350

different GNN approaches are tested, based on the 351

spatial theory, with different characteristics. 352

1. Inductive representation learning on large 353

graphs. GRAPHSAGE (Hamilton et al., 2017) 354

uses neighborhood sampling and aggrega- 355

tion to generate informative node embed- 356

dings from local neighbors. Compared to the 357

classic spatial theory of convolutional lay- 358

ers (Xu et al., 2019), GRAPHSAGE uses node 359
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Figure 1: Overview of the different steps in our approach to quantifying controversy. The textual representation of
users is refined by learning new representations in the model. The output of the last GNN layer is an estimation of
the probability of a user participating in a controversial topic.

sampling to keep the computational footprint360

of each batch fixed. Each layer l follows361

the equation 6 to create new node represen-362

tations.363

h
(l)
u = σ

(
W (l) . CONC

(
h
(l−1)
u , AGGR({h(l−1)

v , ∀v ∈ N(u)})
))

(6)364

GRAPHSAGE first performs neighborhood365

sampling. Given a target node u, the method366

randomly samples a fixed-size set of its367

neighbors, gathered in set N(u). This sam-368

pling process is repeated for each node in369

the graph, allowing efficient computation on370

large-scale graphs. W (l) is the weight ma-371

trix optimized at layer l. Embeddings of372

the sampled neighbor nodes are then aggre-373

gated (AGGR) using the mean-aggregator to374

have an average embedded representation of375

neighbors. Finally, this average embedded376

representation of neighbors is concatenated377

with the target node v representation at the378

layer l − 1, and fed to a classic perceptron379

combined with an activation function σ. The380

output represents the embedding of the target381

user u at the layer l.382

2. Attention for node representation.383

GAT (Velickovic et al., 2018) creates384

new node representations in graph-structured385

data by leveraging attention mechanisms.386

Self-attention mechanism is introduced387

to assign different attention weights be-388

tween users in the graph. By learning389

the importance of each user’s neighbors,390

GAT focuses on the most relevant users391

during representation learning. weights392

are computed using a shared attention 393

mechanism across all nodes. For each user 394

u, the model learns attention coefficients 395

au,v = ATT (W
(l)
atth

(l−1)
u , W

(l)
atth

(l−1)
v ) 396

between the target input user u representa- 397

tion (h(l−1)
u ) and every neighbor (including 398

himself) v ∈ Ñ(v) representation ((h(l−1)
v ) 399

from the previous layer l − 1. The function 400

ATT represents a classical single-layer 401

neural network and W
(l)
att the attention weight 402

matrix at layer l. These weights are then 403

normalized using a softmax function, 404

shown by equation 7. 405

αuv = softmax(auv) =
exp(auv)∑

w∈Ñ(u)
exp(euw)

(7) 406

These attention coefficients are then used in 407

the propagation function of the convolution 408

layer, as shown by equation 8. GAT employs 409

multiple attention heads to capture different 410

aspects of the graph structure and interac- 411

tions. Each attention head k independently 412

computes attention coefficients and generates 413

a weighted sum of neighbor features. The 414

outputs of attention heads are concatenated to 415

generate the embedding of the target user u at 416

the layer l, as shown in 8. 417

hlu =∥Kk=1 σ

( ∑
v∈Ñ(u)

αk
uvWkh(l−1)

v

)
(8) 418

These two methods present the advantage of be- 419

ing inductive, with predicting capabilities of nodes 420

from unseen graphs. As spatial methods, only the 421

local neighborhoods of nodes are needed to com- 422
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pute new representations and not the full graph, re-423

ducing the computational and memory costs. The424

last graph convolutional layer will be used in both425

models to classify the user node as belonging to a426

controversial topic or not, using softmax as the427

activation function. Note that for the first layer428

l = 0, the input features of users correspond to the429

textual representation X of users.430

With our η̂ estimator defined, we estimate for431

each user u the probability of their participation in432

a controversial topic and empirically estimate the433

quantification score by averaging probabilities.434

4 Experiments435

In this section, we present the experiments carried436

out to evaluate our approach and the dataset used.437

4.1 Dataset438

We use the Twitter dataset provided by Zarate439

and Feuerstein (2020), retrieved from the Twitter440

API 2, composed of 30 topics from 2019 to 2020.441

Fifteen of these topics are controversial and fif-442

teen are not non-controversial. Each topic has443

been manually labeled using multiple sources such444

as mainstream media. Non-controversial top-445

ics are represented by soft news such as enter-446

tainment or dramatic events with no controversy,447

whereas controversial topics are focused on polit-448

ical events (especially election and justice cases).449

To retrieve multiple controversial datasets, some450

of them represent the same event, but at different451

times. Each topic contains tweets being retrieved452

from hashtags or keywords from the correspond-453

ing event 3. We only keep original tweets at least454

retweeted once, and users who have been tweeting455

or retweeting at least once (involved in the debate).456

4.2 Evaluation protocol457

To train and test our model, the dataset is divided458

into two balanced sets (train and test). The train-459

ing set Gtrain contains 20 subjects (10 from each460

label), and the test set Gtest contains 10 subjects461

(5 from each label). To avoid biasing our analysis462

and overfitting the model, we ensure that the con-463

troversial subjects are separated by time period are464

part of the same (training or test) set.465

As presented in section 3.1, we define a met-466

ric to test and compare our approaches. We create467

several test subsets according to the value of k. For468

2https://developer.twitter.com/en/docs/twitter-api
3Statistics of the dataset are available in the appendices

one subset, we randomly take 5000 users, from 469

a random topic selected from Gtest. From those 470

users, we create their corresponding subgraph g
(k)
u 471

centered on them, containing all neighbors at k 472

level. In theory, we define a true level k, at which 473

a user participates in a controversial subject. How- 474

ever, this k value is difficult to choose without 475

sociological and philosophical knowledge of the 476

controversy. Therefore, we compare model per- 477

formances at different levels of k, using the cross- 478

entropy function as our metric. 479

4.3 Baseline 480

We define two baseline models using different 481

types of features as input. 482

• “GRAPHDEGREE” uses the same methodology 483

as our approach, with 2 GAT layers, but it 484

uses only structural information. Instead of 485

textual features as input, we use the degree of 486

the node as user features. 487

• “TEXTBERT” is based on a BERT model and 488

uses only the user’s tweets to predict partic- 489

ipation in a controversial topic. The BERT 490

model is fine-tuned using the original tweets, 491

labeled controversial or not, according to 492

the topic label. Each user has a collec- 493

tion of tweets and retweets. We treat tweets 494

and retweets equivalently. The final user’s 495

prediction corresponds to the average pre- 496

dicted probability of each of his tweets (and 497

retweets) belonging to a controversial topic. 498

5 Results 499

We evaluate our approach by varying various 500

characteristics and parameters. To obtain the tweet 501

representations, we add a layer of dimension 768 502

to the BERT output. To reduce computing and 503

time costs, the weights of this additional layer only 504

are updated during the training phase. The MEAN 505

aggregator is used to represent users based on their 506

tweets. Finally, concerning the GNN layers, we 507

test the two methods presented in section 3.3.2 508

(GAT and GRAPHSAGE) respectively with 1, 2 509

and 3 convolution layers of dimensions 192, to 510

compare local and global representation of users. 511

These models are recalled in table 1 as follows 512

: “GNNMODEL_AGGREGATOR_NBSLAYERS”). 513

The models in this study were trained using a 514

learning rate of 1 × 10−3, a weight decay of 515

0.05, and a batch size of 64. The models under- 516

went training for a maximum of 300 epochs, with 517
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Average cross-entropy
Sampling training full training

TEXTBERT 23.176
GRAPHDEGREE 0.748 0.693

GAT_MEAN_1 0.686 0.529
GAT_MEAN_2 0.621 0.751
GAT_MEAN_3 0.523 1.616

GRAPHSAGE_MEAN_1 0.504 2.170
GRAPHSAGE_MEAN_2 0.478 1.630
GRAPHSAGE_MEAN_3 0.485 7.447

Table 1: Comparison of performance for user predic-
tion, evaluated by averaging the cross-entropy loss on
subgraphs g

(k)
u for k between 0 and 5. The Sampling

training process takes a fixed number of random users
at each epoch, while the full training process takes ev-
ery user when optimizing the loss function.

early termination implemented if the loss function518

fails to exhibit improvement within the initial 100519

epochs. We used ADAM as the optimizer of the520

cross-entropy loss function.521

5.1 Predicting user participation in a522

controversial topic523

Table 1 summarizes the average loss scores for524

subgraphs g(k)u with k ranging from 0 to 5. These525

subgraphs collectively account for a substantial526

dataset of 30 000 samples. Our objective is to as-527

sess the performance of different models in esti-528

mating a user’s probability of participating in a529

controversial topic. To this end, we compare our530

models against a baseline. The results demonstrate531

the effectiveness of our proposed models. Across532

all values of k within the specified range, our mod-533

els consistently outperform the baseline. These534

findings are consistent with our hypothesis that a535

combination of both structural and textual infor-536

mation is crucial for capturing meaningful features537

in the context of user participation in controversial538

topics. These results show that training models539

with a few samples selected, by randomly pick-540

ing a fixed number of users from which to build541

our subgraphs, at each epoch, regularizes and en-542

ables most of our models to better performs. This543

enables methods based on GRAPHSAGE to gen-544

eralize more effectively from training data. No-545

tably, among our models, GRAPHSAGE_MEAN_2546

emerges as the top-performing model, achieving547

an average loss value of 0.478. Our results sug-548

gest that this model excels in capturing the intri-549

cate interplay of user behavior and content char-550

acteristics in such scenarios. From this point, all551

future analyses will consider models trained using552

the sampling training process. 553

Figure 2: Loss variation across models for different k
values. Note that the TEXTBERT baseline model is not
included in the report, as its performances are signifi-
cantly elevated in comparison to other values.

In figure 2, we explore how model performance 554

evolves concerning the parameter k, which repre- 555

sents the number of neighbor levels considered. 556

Notably, we observe that the estimation task is 557

challenging when k = 0, highlighting the inherent 558

complexity of accurately predicting user partici- 559

pation in controversial topics with only local user 560

information. As we move to higher values of k, 561

particularly when k = 1, we witness a substantial 562

improvement in performance across all models. 563

This suggests that considering immediate neigh- 564

bors in the graph significantly enhances the accu- 565

racy of predictions. Moreover, it is interesting to 566

note that the loss values appear to stabilize from 567

k = 1 onward, indicating that the added bene- 568

fit of expanding the graph to include further steps 569

is limited. The model GAT_MEAN_3 consistently 570

outperforms other models for all values of k be- 571

yond k = 1. However, it faces specific challenges 572

when k = 0. The reason behind this performance 573

gap may lie in the model’s reliance on attention 574

weights computed over neighbors. In cases where 575

the user u is isolated within the graph g
(0)
u , this re- 576

liance becomes challenging and may explain the 577

observed difficulties in estimation accuracy. 578

5.2 Controversy Quantification 579

As demonstrated in Section 3.2, the model that 580

best estimates the probability of a user’s participa- 581

tion in a controversial topic is also the one obtain- 582

ing the best quantification score. Using equation 3, 583

we compute our quantification score CQS for the 584

ten topics included in Gtest, with η̂ represented by 585

our top-performing model, GAT_MEAN_2. 586
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Quantification scores ROC-AUC

Baseline rwc_score 0.76
dipole_score 0.8

CQS
GRAPHDEGREE 0.84

TEXTBERT 0.92
GRAPHSAGE_MEAN_2 1.0

Table 2: Comparison of the area under the ROC curve
for scores computed from estimators, using different
features. The ROC-AUC are computed based on scores
estimated for the topics included in the test set Gtest.

Next, we investigate whether our score provides587

a good separation between controversial and non-588

controversial topics. To do so, we evaluate, us-589

ing the ROC-AUC score, the ability of the scores590

to distinguish between classes by measuring the591

area under the ROC curve. We also visually ana-592

lyze the kernel density estimation of the distribu-593

tion’s density based on the topic labels for each594

score. Furthermore, we compare our score with595

two controversial polarization scores (Garimella596

et al., 2018): the rwc_score based on random597

walk sampling and the dipole_score based on the598

distribution and alignment of electrical charges599

(nodes) in a molecule (graph). Additionally, we600

compare our score CQS with two other estimators601

η̂, which only use structural or textual characteris-602

tics: GRAPHDEGREE and TEXTBERT.603

CQS (GRAPHSAGE_MEAN_2) CQS (TEXT_BERT) 

dipôle_scorerwc_score

Figure 3: Diagram of kernel density estimations
based on topic labels for each of the quantification
scores. The blue curve depicts the distribution of non-
controversial topics (NC), whereas the orange curve il-
lustrates controversial topics (C). The more distinct the
distributions, the better the quantification quality.

Table 2 compiles the ROC-AUC for604

all scores. CQS, with η̂ represented by605

GRAPHSAGE_MEAN_2, achieves better re-606

sults than scores based solely on structure or607

tweets, or than literature scores. CQS provides 608

additional insights on how to distinguish between 609

topics. In figure 3, it can be observed that our ap- 610

proach shows fewer overlaps between the curves 611

of controversial and non-controversial topics, 612

compared to other estimators. The distribution 613

curves based on topic labels are centered and 614

spread around the average score 4 (x = 0.5) for 615

CQS with GRAPHSAGE_MEAN_2 as estimator. 616

These results demonstrate the proper distribution 617

of subjects during the quantification phase. 618

6 Conclusion 619

This scientific paper introduces a theoretical 620

method for quantifying controversy based on user 621

participation, presenting an innovative approach to 622

estimate controversy scores through a graph neu- 623

ral network (GNN) that incorporates both struc- 624

tural and textual information. The results of our 625

study demonstrate the efficacy of our proposed 626

model, particularly when employing a sampling 627

training process, which consistently outperforms 628

our baseline in predicting the probability of user 629

participation in controversial topics. Moreover, 630

our approach surpasses existing state-of-the-art 631

quantification scores, which predominantly rely 632

on the structural polarity of controversial Retweet 633

graphs (Garimella et al., 2018). This suggests 634

the robustness and versatility of our GNN-based 635

methodology in capturing the nuanced dynamics 636

of controversy within online topics. 637

In considering avenues for improvement, 638

one perspective involves the calibration of our 639

model (Ghoshal and Tucker, 2022). Neural net- 640

works are prone to challenges in outputting ac- 641

curate probabilities during label predictions. Ad- 642

dressing this aspect could enhance the precision of 643

our controversy quantification model (Kull et al., 644

2019). Another promising perspective for future 645

research lies in the augmentation and training of 646

our data on a more extensive set of graphs span- 647

ning various fields. This broader dataset would 648

ensure the coverage of a diverse array of topics 649

during training, potentially enhancing the general- 650

izability and applicability of our model across dif- 651

ferent domains. By incorporating these perspec- 652

tives, our proposed methodology could be further 653

refined and adapted to better address the evolving 654

landscape of online controversy detection. 655

4CQS ranges from 0 to 1. 0 indicates no controversy,
whereas 1 shows high controversy.
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Limitations656

The main limitation of our work concerns the used657

dataset. Indeed, only 20 subjects are employed658

in the training dataset, rendering the sample size659

rather small. Several controversial topics are re-660

lated to the same main topic and only separated by661

different timeframes. It precludes our model from662

learning from more different patterns and there-663

fore reduces its generalization capability. Simi-664

larly, the test dataset comprises only 10 subjects.665

To mitigate this issue and enhance our model’s666

generalization, a fixed number of subgraphs are667

selected at each epoch during the training phase,668

facilitating better regularization of our models.669

The same protocol is followed during the model670

evaluation phase to improve the quality of our met-671

ric. Expanding the number of subjects (controver-672

sial or not) in our database, as well as the under-673

lying domains, would contribute to a more robust674

generalization of our model.675

Furthermore, the controversy quantification676

performed is static and corresponds to an im-677

age at a given moment. Unfortunately, if a user678

changes their opinion, this evolution would not679

be accounted for during the analyzed time frame.680

A temporal study of the evolution of contro-681

versy (Wang and Aste, 2022) would be necessary682

to address this limitation.683
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|ĈQS(G, k)− CQS(G, k)|

]
= EG

[
|Eu∼U(G)
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η̂(g(k)u )− η(g(k)u )

]
|
]

≤ EG

[
Eu∼U(G)

[
|η̂(g(k)u )− η(g(k)u )|

]]
≤
√

2

µ
EG

[
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]]
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Topic Timeframe # Tweets # Users (nodes) # Retweets (edges) Description
IMPEACHMENT-5-10 31oct–10nov, 2015 123 697 20 878 51 404 Roussef impeachment
MENCIONES-1-10ENERO 1–11jan, 2018 81 209 25 591 49 034 Macri’s mentions
MENCIONES-11-18MARZO 11–18mar, 2018 406 869 31 659 58 797 Macri’s mentions
MENCIONES-20-27MARZO 24–26mar, 2018 97 950 34 975 68 990 Macri’s mentions
MENCIONES-05-11ABRIL 5–10apr, 2018 220 460 63 358 144 600 Macri’s mentions
MENCIONES05-11MAYO 5–10may, 2018 267 283 63 030 146 217 Macri’s mentions
BOLSONARO27 27oct, 2018 120 162 45 629 88 160 Brazilian elections
BOLSONARO28 28oct, 2018 151 952 84 986 104 955 Brazilian elections
BOLSONARO30 30oct, 2018 174 565 73 399 130 599 Brazilian elections
KAVANAUGH06-08 8oct, 2018 157 721 71 933 123 055 Kavanaugh’s nomination
KAVANAUGH16 3oct, 2018 168 571 66 765 131 270 Kavanaugh’s nomination
KAVANAUGH02-05 5oct, 2018 181 202 74 834 145 476 Kavanaugh’s nomination
LULA_MORO_CHATS 10–11jun, 2019 199 423 66 462 143 318 Lula’s mentions during Moro chats news
LEADERSDEBATE 11–21nov, 2019 250 000 76 863 174 466 Candidates debate
PELOSI 6dec, 2019 252 000 95 558 209 044 Trump Impeachment
AREA51 3–13jul, 2019 178 220 107 460 156 481 Jokes about Area51
OTDIRECTO20E 13–20jan, 2020 148 061 25 436 95 321 Event of a Music TV program in Spain
VANDUMURUGANAJITH 23jun, 2019 167 434 8401 113 208 Ajith’s fans
NINTENDO 19–28may, 2019 166 145 94 255 105 793 Nintendo’s release
MESSICUMPLE 23–24jun, 2019 177 770 98 448 128 099 Messi’s birthday
WRESTLEMANIA 8apr, 2019 213 355 61 051 106 347 Wrestlemania event
KINGJACKSONDAY 24–27mar, 2019 142 240 39 838 107 298 popstar’s birthday
NOTREDAM 16apr, 2019 171 306 99 346 146 280 Notredam fire
THANKSGIVING 28nov, 2019 250 000 155 358 164 174 Thanksgiving day
HALSEY 7–8jun, 2019 237 501 98 008 204 149 Halsey’s concert
FELIZNATAL 25–26dec, 2019 305 879 193 989 212 893 Happy Christmas wishes
EXODEUX 7nov, 2019 179 908 37 384 135 579 EXO’s new album
BIGIL 21–22jun, 2019 205 557 25 830 171 322 Vijay’s birthday
CHAMPIONSASIA 24nov–1dec, 2019 221 925 68 754 145 829 Al-Hilal champion
SEUNGWOOBIRTHDAY 23dec, 2018 251 974 18 977 193 183 Segun Woo singer birthday

Table 3: Statistics on the dataset and graph for data retrieved from each different topic. The first 15 topics represent
controversial topics, whereas the last 15 represent non-controversial topics.
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