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Abstract

This paper investigates the quantification of
controversy in online discussions, focusing on
social media platforms, notably Twitter. Em-
phasizing the prevalence of echo chambers,
where users are exposed to opinions aligned
with their own, we propose a novel approach
leveraging Large Language Models (LLM) and
Graph Neural Networks (GNN). Our method-
ology integrates both structural and textual in-
formation in social networks to provide a nu-
anced understanding of controversy. Contribu-
tions include a theoretical model for quantify-
ing controversy based on the expected prob-
ability of user participation in controversial
topics. We introduce an empirical estimation
method using a GNN-based model. Unlike ex-
isting approaches focused on structural polar-
ity, our model captures the rich textual con-
tent. Empirical evaluations on Twitter topics
demonstrate the effectiveness of our method-
ology, outperforming variant methods using
only textual or structural information, as well
as state-of-the-arts methods. In conclusion,
we introduce an innovative approach to con-
troversy quantification, emphasizing user par-
ticipation within social networks.

1 Introduction

Internet and social media have today replaced
in many ways discussion and debates in society.
People interacting on local or international topics
come from different communities, countries, eth-
nicities, etc. By discussing their point-of-views,
sharing content, or embracing some other user ar-
guments, they participate in public debates and po-
tentially controversial topics. Controversy repre-
sents a prolonged public disagreement on a topic
or event (Hessel and Lee, 2019). With the in-
creased use of social media, controversial top-
ics are widely discussed, especially on social me-
dia like Twitter, where it is easy to share about
specific events (hashtags) or to endorse someone

(retweet). The presence of the phenomenon of
echo-chambers ! indirectly helps to build strong
communities around a single topic/event, such as
the pros and cons of mandatory vaccination for the
COVID-19 vaccine, only taking into account argu-
ments from their perspective.

The rise of deep neural networks enables us
to investigate more deeply large amounts of data,
such as large graphs and texts. Large Language
Models (LLM) based on the attention mechanism
and the transformer’s architecture, such as BERT,
enable us to represent texts regarding the con-
text. Graph Neural Networks (GNN) are com-
monly used to work with deep neural networks on
unstructured data, for different tasks like node or
graph classification.

In this paper, we quantify controversy on topics
from the perspective of user polarization around
communities with diverse viewpoints and opinions
within social networks.

Contributions. Most approaches focus on po-
larity, ignoring the information contained in the
texts published by users. We propose a user-
based approach to quantify controversy, using
both structural and textual information through
GNN layers, resulting from the three contributions:

* Controversy quantification. We propose a
theoretical model to quantify the controversy
according to the users. This score is based on
the expected probability of a user participat-
ing in a controversial topic.

* Empirical estimation of the quantification
score. We propose a method for estimating
this score empirically. We estimate the condi-
tional probabilities of users participating in a
controversial topic. We show that minimizing
the loss function of this estimator is equiva-
lent to optimizing our score. To estimate this

"Environment where a person only encounters informa-
tion or opinions that reinforce their own opinions.



probability for each user, we propose a model
based on GNNs, exploiting both textual and
structural information of the graph.

* Results and analysis. We establish an evalu-
ation protocol to compare our different mod-
els. We compare our model with some of
their variants using only textual or structural
information and show that it achieves the best
performance. Then, by comparing the quan-
tification scores with the literature on topics
from Twitter, we show that our approach per-
forms better.

The paper is organized as follows: after a state-
of-the-art in Section 2, Section 3 presents the theo-
retical modeling of our Twitter controversy quan-
tification score and a method for empirically es-
timating this score. Section 4 presents the exper-
imental setup and Section 5 sets out our experi-
ments and the results, before closing in section 6.

2 Related Work

Controversy work is mainly concerned with de-
tection and quantification. Controversy detection
on social media aims to guess if a topic is contro-
versial or not. Most of the proposed approaches
exploit a user interactions graph (i.e. retweet
graph) (Garimella et al., 2018; Mendoza et al.,
2020; Hessel and Lee, 2019). Such a graph is par-
titioned into two disjoint classes C' and C, each
one representing users supporting the same opin-
ion on a given topic. Well-separated classes char-
acterize controversial topics. Some recent ap-
proaches consider controversy detection as a graph
classification problem (Zhong et al., 2020). They
exploit Graph Neural Networks and Natural Lan-
guage Processing techniques to classify the whole
graph as controversial or not.

Controversy quantification, which is our pur-
pose in this paper, aims to measure to what ex-
tent a topic is controversial. Different methods
have been suggested. Random Walk Controversy
(RW () is introduced in (Garimella et al., 2018)
and works on classes C' and C'. It aims to capture
how likely a random user of a class is to be ex-
posed to the content of the most connected users of
the opposite class. Some adaptations of the RW C
metric were proposed in (Emamgholizadeh et al.,
2020) and (Darwish, 2019) to take into account
useful information that could be present in user
nodes (i.e. influencer or not, used hashtags, etc.).

Considering that a force-directed embedding
technique (Jacomy et al., 2014) fosters a clear
separation of partitions of a graph (modularity),
the two-dimensional embedding of user nodes of
classes C' and C are exploited to define the Em-
bedding Controversy score (E'C') (Garimella et al.,
2018). EC is based on the average embedded dis-
tance among pairs of user nodes in C' (respectively
C), and the average embedded distance among
pairs of nodes across C' and C. Controversial (re-
spectively non-controversial) topics tend to have
an EC score close to 1 (respectively 0). (Guerra
et al., 2013) consider that the modularity polariza-
tion metric is not necessarily sufficient, since non-
polarized graphs may also be divided into two dis-
joints classes. A community boundary-based po-
larization metric is proposed, which characterizes
polarized communities by a low concentration of
high-degree nodes along the boundary.

Inspired by the electric dipole moment,
(Morales et al., 2015) consider that perfect con-
troversy can be characterized by the fact that the
classes C' and C are of the same size and with
opposite opinions. A dipole controversy measure
is then proposed, it defines the controversy level
as a function of the difference in size between C
and C, and the distance between the opinions of
the two classes (i.e. the gravity centers). A model
is defined to estimate the opinion distributions
of users of both classes. (Zarate and Feuerstein,
2020) proposed a vocabulary-based controversy
measure that adapts the dipole measure by re-
placing the opinions of both classes with their
respective vocabularies used by users.

These controversy quantification methods work
on graph partitions to define metrics. In this pa-
per, we quantify controversy by focusing on users
instead of communities. We base our quantifica-
tion method on the Probabilistic Theory of Pat-
tern Recognition (Xu et al., 2019). We con-
sider that a perfect controversial (respectively non-
controversial) topic corresponds to a graph for
which we can predict without error that any of
its subgraphs is controversial (respectively non-
controversial). The controversy level is then quan-
tified as the error when predicting the controversy
label of a selected subgraph centered on a random
user. To the best of our knowledge, our work is
the first work that exploits conditional probability
of subgraphs belonging to controversial topics for
the need for controversy quantification.



3 Method

3.1 Controversy quantification

We propose a theoretical score for quantifying
controversy based on user subgraphs. Given G a
random graph and L a random label, we denote
their realizations by g and [. The graph and the
labels will be indexed as g; and /; when neces-
sary. Let [P be the true unknown joint distribution
of G,L ((G,L) ~ P) which can be decomposed
into u, the marginal law of GG, and 7 the condi-
tional probability of L given the observation of a
graph (Devroye et al., 2013):

n(g) =P(L =1|G = g) ¢))

The equation 1 corresponds to the true proba-
bility that a graph is controversial (I, = 1) condi-
tionally on the observation of the graph (G = g).
We sometimes call 7 the posterior, as opposed to
the prior which represents the frequency of labels.
Again, 1 is an unknown quantity that we gener-
ally aim at estimating when minimizing a cross-
entropy in deep learning.

Our controversy quantification score is related
to the features used in the user graph. Thus, if any
part of the graph necessarily implies controversy,
then the quantification score should be high. On
the other hand, if only certain parts of the graph
indicate that the subject is controversial, then the
score should be low. Finally, if the graph is not in-
herently linked to a controversial subject, the cor-
responding score is expected to approximate zero.
Let gi(tk) C g be a subgraph of g centered on user
u and including up to k levels of neighbors. The
true conditional probability that the subgraph gq(Lk)
is associated with a controversial subject is given
by equation 2.

7 (95/“)) =P (L = 1|G = gff“)) )

Hence, 1 <g§“)

) represents the probability that
the content published by user u is associated with

a controversial subject, independently of any inter-
action. In contrast, n (gﬁf”)) represents the prob-
ability that the subject is controversial when the
entire graph is analyzed. We expect the latter to
be close to 1 if controversial, or O if not contro-
versial, even if the absence of contextual elements
can sometimes limit the certainty of the prediction.
Note that the latter remains a quantity that depends
on 7, the unknown posterior.

We now define in equation 3 the quantification
score C'Q.S (“Controversy Quantification Score”):

CQS(g,k) = Eyeigy) [n (gL“)} 3)

This score corresponds to the expectation that a
user chosen uniformly in the graph will be associ-
ated with a controversial topic, looking only at k
neighborhood levels. The only unknown quantity
in equation 3 is the true conditional probability 7,
which must be estimated.

3.2 Consistent loss functions with CQS

In this section, we show that loss functions such as
cross-entropy are consistent with our C'Q.S score
estimation. Minimizing a consistent loss function
minimizes the estimation error of C'Q)S.

We define £ : [0,1] — R as a binary loss func-
tion. The argument is the probability estimation of
the true label. 7 is the true conditional probability
and 7 its estimation. The risk associated with ¢ is
given in 4.

Lo(hsm) =nl(H)+L—-—m)t(1-9) @

If {(s) = —log(s), then we obtain the binary
Cross entropy.

Definition 1. (Strictly) Proper loss (Lorieul,
2020) A loss ¢ : [0,1] — R™ is considered proper
if its infimum (largest minorant) is reached by n:

Lo(n,n) = i%fu Lo(s,m)

sE|
And strictly proper if 0 is the unique minimizer.
Definition 2. p-strongly proper loss (Lorieul,
2020) aloss ¢ : {0,1} x[0,1] — RT is u-strongly
proper if:

Lo(h,m) — Le(n,m) > i
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The regret is the gap between our risk and its
optimal value:

Reg,(1; 2) = Lo(i)(x), n(x)) = Le(n(x),n(x))

The following proposition shows that a strongly
proper loss function is consistent with our score
if the graphs are generated according to a specific
procedure shown in 5:

G~

u ~U(G) ©)



Graphs gl(tk) are built from this procedure, 1 being

the marginal law of graphs.

Proposition 1. Any strongly proper loss func-
tion £ is consistent with CQS if it is minimized for
graph generation.

Eq [EWU(G) [Rege (77; 95”)” — 0=

Ec [|(TQ\S(G, k) — CQS(G, k)@ =0

If the former term converges to 0, then so does
the error in estimating our score. We can gener-
alize the previous theorem by taking a random k&
according to a probability distribution. If the re-
gret tends towards O for a random k, then so does
the estimation error. We define y; as the marginal
probability distribution of k and po as the marginal
probability distribution of the graphs:

]{TN/Ll
g~ p2
u~U(g)

We present in section 3.3 a method to empiri-
cally estimate this quantification score.

3.3 Empirical estimation of the conditional
probabilities

After defining the score CQS(g, k) theoretically
in equation 3, we establish a method for estimat-
ing this score empirically. To this end, we com-
pute the conditional probabilities 7( g&k)) from the
k-level subgraphs of each user u. Figure 1 shows
the various stages in the process of computing this
probability n and estimating our controversy quan-
tification score.

Firstly, the user retweet graph is created from
the tweets retrieved related to the topics. The
graph is then fed into our GNN-based model, to
predict the user’s participation in a controversial
topic. Secondly, this model, combining both the
structural properties of the retweet graph and the
textual information published by users in their
original tweets, is presented.

3.3.1 Graph building

We consider retweets as user endorsement. From
all tweets and retweets belonging to a topic, a user
retweet graph G is created, representing the topic
discussion on Twitter. Nodes represent users, and
two users u; and u; are related by an edge if one
has retweeted the other at least once. The graph

is undirected. Each user is represented by his
tweets on the subject concerned. As social net-
works are known for their low density, after creat-
ing the graph, we only keep users and edges from
the biggest connected component, as we want to
propagate information through the graph.

More formally, a topic ¢ is represented as a
graph G = (U, &, X) where U = {uy, ug, ..., upn}
denotes the user nodes and £ = {(u;, u;)}i<ij<n
denotes the edges of the graph. A node represents
a user, and an edge between two nodes exists if
there is at least one interaction between the cor-
responding users. The set X represents node fea-
tures, represented by tweets for each user.

3.3.2 Predicting user participation in a
controversial topic

Figure 1 step a) Each tweet is represented by a
vector using the BERT language model (Devlin
et al., 2019). The output of the last layer of the
BERT model is used as the representation vector
for each tweet. Tweets representations are then
aggregated by user, as indicated in figure 1 by
the AGG block. Tweets representations are re-
fined as the model is trained, implying the refin-
ing of the textual representation of users after the
aggregation block. Users who have not posted
any tweets are assigned an empty tweet by de-
fault, with its corresponding vector representation.
User input representations are gathered in the ma-
trix X € R™*?, with n the number of nodes and d
the dimension of the vectors.

Figure 1 step b) From the user-embedded rep-
resentation of its tweets, the model learns new
node representations from the structural represen-
tation of the graph, using graph convolutional net-
works with multiple layers. These convolutional
layers enable the integration of node features and
local neighborhood information, and effectively
learn expressive node representations that capture
both local and global graph structure, enabling
downstream tasks such as node classification. Two
different GNN approaches are tested, based on the
spatial theory, with different characteristics.

1. Inductive representation learning on large
graphs. GRAPHSAGE (Hamilton et al., 2017)
uses neighborhood sampling and aggrega-
tion to generate informative node embed-
dings from local neighbors. Compared to the
classic spatial theory of convolutional lay-
ers (Xu et al., 2019), GRAPHSAGE uses node
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Figure 1: Overview of the different steps in our approach to quantifying controversy. The textual representation of
users is refined by learning new representations in the model. The output of the last GNN layer is an estimation of
the probability of a user participating in a controversial topic.

sampling to keep the computational footprint
of each batch fixed. Each layer [ follows
the equation 6 to create new node represen-
tations.

hd :a( W CONc(h” Y AGGR({REY, v e/\/(u>}))>

(6)
GRAPHSAGE first performs neighborhood
sampling. Given a target node u, the method
randomly samples a fixed-size set of its
neighbors, gathered in set /\/(u). This sam-
pling process is repeated for each node in
the graph, allowing efficient computation on
large-scale graphs. W is the weight ma-
trix optimized at layer /. Embeddings of
the sampled neighbor nodes are then aggre-
gated (AGG R) using the mean-aggregator to
have an average embedded representation of
neighbors. Finally, this average embedded
representation of neighbors is concatenated
with the target node v representation at the
layer [ — 1, and fed to a classic perceptron
combined with an activation function o. The
output represents the embedding of the target
user u at the layer /.

. Attention for node representation.
GAT (Velickovic et al., 2018) creates
new node representations in graph-structured
data by leveraging attention mechanisms.
Self-attention mechanism is introduced
to assign different attention weights be-
tween users in the graph. By learning
the importance of each user’s neighbors,
GAT focuses on the most relevant users
during representation learning.  weights

are computed using a shared attention
mechanism across all nodes. For each user
the model learns attention coefficients
Qo = ATT(Wgh™, Wihy ™)
between the target input user u representa-
tion (th 71)) and every neighbor (including
himself) v € N(v) representation ((hq(,l_l))
from the previous layer [ — 1. The function
ATT represents a classical single-layer

u,

neural network and WCEQ the attention weight
matrix at layer [. These weights are then
normalized using a softmax function,
shown by equation 7.

exp(auv)

Qv = Softmax(a =
w d () Zweﬁf(u) exp(eyw)

(N
These attention coefficients are then used in
the propagation function of the convolution
layer, as shown by equation 8. GAT employs
multiple attention heads to capture different
aspects of the graph structure and interac-
tions. Each attention head k independently
computes attention coefficients and generates
a weighted sum of neighbor features. The
outputs of attention heads are concatenated to
generate the embedding of the target user v at
the layer [, as shown in 8.
>> ®)

Bl = ( > ok, Wkl
veN(w)

These two methods present the advantage of be-
ing inductive, with predicting capabilities of nodes
from unseen graphs. As spatial methods, only the
local neighborhoods of nodes are needed to com-



pute new representations and not the full graph, re-
ducing the computational and memory costs. The
last graph convolutional layer will be used in both
models to classify the user node as belonging to a
controversial topic or not, using softmax as the
activation function. Note that for the first layer
I = 0, the input features of users correspond to the
textual representation X of users.

With our 7 estimator defined, we estimate for
each user u the probability of their participation in
a controversial topic and empirically estimate the
quantification score by averaging probabilities.

4 Experiments

In this section, we present the experiments carried
out to evaluate our approach and the dataset used.

4.1 Dataset

We use the Twitter dataset provided by Zarate
and Feuerstein (2020), retrieved from the Twitter
API 2, composed of 30 topics from 2019 to 2020.

Fifteen of these topics are controversial and fif-
teen are not non-controversial. Each topic has
been manually labeled using multiple sources such
as mainstream media. Non-controversial top-
ics are represented by soft news such as enter-
tainment or dramatic events with no controversy,
whereas controversial topics are focused on polit-
ical events (especially election and justice cases).
To retrieve multiple controversial datasets, some
of them represent the same event, but at different
times. Each topic contains tweets being retrieved
from hashtags or keywords from the correspond-
ing event >. We only keep original tweets at least
retweeted once, and users who have been tweeting
or retweeting at least once (involved in the debate).

4.2 Evaluation protocol

To train and test our model, the dataset is divided
into two balanced sets (train and test). The train-
ing set Gain contains 20 subjects (10 from each
label), and the test set G contains 10 subjects
(5 from each label). To avoid biasing our analysis
and overfitting the model, we ensure that the con-
troversial subjects are separated by time period are
part of the same (training or test) set.

As presented in section 3.1, we define a met-
ric to test and compare our approaches. We create
several test subsets according to the value of k. For

“https://developer.twitter.com/en/docs/twitter-api
3Statistics of the dataset are available in the appendices

one subset, we randomly take 5000 users, from
a random topic selected from G, From those
users, we create their corresponding subgraph gl(bk)
centered on them, containing all neighbors at &
level. In theory, we define a true level &, at which
a user participates in a controversial subject. How-
ever, this k& value is difficult to choose without
sociological and philosophical knowledge of the
controversy. Therefore, we compare model per-
formances at different levels of k, using the cross-

entropy function as our metric.

4.3 Baseline

We define two baseline models using different
types of features as input.

* “GRAPHpgcree’ Uses the same methodology
as our approach, with 2 GAT layers, but it
uses only structural information. Instead of
textual features as input, we use the degree of
the node as user features.

e “TEXTgerr 1S based on a BERT model and
uses only the user’s tweets to predict partic-
ipation in a controversial topic. The BERT
model is fine-tuned using the original tweets,
labeled controversial or not, according to
the topic label. Each user has a collec-
tion of tweets and retweets. We treat tweets
and retweets equivalently. The final user’s
prediction corresponds to the average pre-
dicted probability of each of his tweets (and
retweets) belonging to a controversial topic.

5 Results

We evaluate our approach by varying various
characteristics and parameters. To obtain the tweet
representations, we add a layer of dimension 768
to the BERT output. To reduce computing and
time costs, the weights of this additional layer only
are updated during the training phase. The MEAN
aggregator is used to represent users based on their
tweets. Finally, concerning the GNN layers, we
test the two methods presented in section 3.3.2
(GAT and GRAPHSAGE) respectively with 1, 2
and 3 convolution layers of dimensions 192, to
compare local and global representation of users.
These models are recalled in table 1 as follows

“GNNMODEL_AGGREGATOR_NBSLAYERS”).
The models in this study were trained using a
learning rate of 1 x 1073, a weight decay of
0.05, and a batch size of 64. The models under-
went training for a maximum of 300 epochs, with



Average cross-entropy
Sampling training  full training

TEXTggrT 23.176
GRAPHpEGREE 0.748 0.693
GAT_MEAN_1 0.686 0.529
GAT_MEAN_2 0.621 0.751
GAT_MEAN_3 0.523 1.616

GRAPHSAGE_MEAN_1 0.504 2.170
GRAPHSAGE_MEAN_?2 0.478 1.630
GRAPHSAGE_MEAN_3 0.485 7.447

Table 1: Comparison of performance for user predic-

tion, evaluated by averaging the cross-entropy loss on

subgraphs gif“) for k between 0 and 5. The Sampling

training process takes a fixed number of random users
at each epoch, while the full training process takes ev-
ery user when optimizing the loss function.

early termination implemented if the loss function
fails to exhibit improvement within the initial 100
epochs. We used ADAM as the optimizer of the
cross-entropy loss function.

5.1 Predicting user participation in a
controversial topic

Table 1 summarizes the average loss scores for
subgraphs g&k) with k ranging from O to 5. These
subgraphs collectively account for a substantial
dataset of 30000 samples. Our objective is to as-
sess the performance of different models in esti-
mating a user’s probability of participating in a
controversial topic. To this end, we compare our
models against a baseline. The results demonstrate
the effectiveness of our proposed models. Across
all values of k£ within the specified range, our mod-
els consistently outperform the baseline. These
findings are consistent with our hypothesis that a
combination of both structural and textual infor-
mation is crucial for capturing meaningful features
in the context of user participation in controversial
topics. These results show that training models
with a few samples selected, by randomly pick-
ing a fixed number of users from which to build
our subgraphs, at each epoch, regularizes and en-
ables most of our models to better performs. This
enables methods based on GRAPHSAGE to gen-
eralize more effectively from training data. No-
tably, among our models, GRAPHSAGE_MEAN_2
emerges as the top-performing model, achieving
an average loss value of 0.478. Our results sug-
gest that this model excels in capturing the intri-
cate interplay of user behavior and content char-
acteristics in such scenarios. From this point, all
future analyses will consider models trained using

the sampling training process.
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Figure 2: Loss variation across models for different k
values. Note that the TEXTygrr baseline model is not
included in the report, as its performances are signifi-
cantly elevated in comparison to other values.

In figure 2, we explore how model performance
evolves concerning the parameter k, which repre-
sents the number of neighbor levels considered.
Notably, we observe that the estimation task is
challenging when k = 0, highlighting the inherent
complexity of accurately predicting user partici-
pation in controversial topics with only local user
information. As we move to higher values of k,
particularly when k& = 1, we witness a substantial
improvement in performance across all models.
This suggests that considering immediate neigh-
bors in the graph significantly enhances the accu-
racy of predictions. Moreover, it is interesting to
note that the loss values appear to stabilize from
k = 1 onward, indicating that the added bene-
fit of expanding the graph to include further steps
is limited. The model GAT_MEAN_3 consistently
outperforms other models for all values of k be-
yond k£ = 1. However, it faces specific challenges
when k£ = 0. The reason behind this performance
gap may lie in the model’s reliance on attention
weights computed over neighbors. In cases where
the user w is isolated within the graph g&o), this re-
liance becomes challenging and may explain the
observed difficulties in estimation accuracy.

5.2 Controversy Quantification

As demonstrated in Section 3.2, the model that
best estimates the probability of a user’s participa-
tion in a controversial topic is also the one obtain-
ing the best quantification score. Using equation 3,
we compute our quantification score C'Q).S for the
ten topics included in G, With 7) represented by
our top-performing model, GAT_MEAN_2.



Quantification scores ROC-AUC

Baseline rwce_score 0.76
dipole_score 0.8

GRAPHpgGREE 0.84

CQS TEXTgErr 0.92
GRAPHSAGE_MEAN_2 1.0

Table 2: Comparison of the area under the ROC curve
for scores computed from estimators, using different
features. The ROC-AUC are computed based on scores
estimated for the topics included in the test set Gieg.

Next, we investigate whether our score provides
a good separation between controversial and non-
controversial topics. To do so, we evaluate, us-
ing the ROC-AUC score, the ability of the scores
to distinguish between classes by measuring the
area under the ROC curve. We also visually ana-
lyze the kernel density estimation of the distribu-
tion’s density based on the topic labels for each
score. Furthermore, we compare our score with
two controversial polarization scores (Garimella
et al., 2018): the rwc_score based on random
walk sampling and the dipole_score based on the
distribution and alignment of electrical charges
(nodes) in a molecule (graph). Additionally, we
compare our score C'Q).S with two other estimators
7, which only use structural or textual characteris-
tics: GRAPHpggree and TEXTgggt.
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Figure 3: Diagram of kernel density estimations
based on topic labels for each of the quantification
scores. The blue curve depicts the distribution of non-
controversial topics (NC), whereas the orange curve il-
lustrates controversial topics (C). The more distinct the
distributions, the better the quantification quality.

Table 2 compiles the ROC-AUC for
all scores. CQS, with 7 represented by
GRAPHSAGE_MEAN_2, achieves better re-

sults than scores based solely on structure or

tweets, or than literature scores. C'QQ.S provides
additional insights on how to distinguish between
topics. In figure 3, it can be observed that our ap-
proach shows fewer overlaps between the curves
of controversial and non-controversial topics,
compared to other estimators. The distribution
curves based on topic labels are centered and
spread around the average score 4 (z = 0.5) for
CQS with GRAPHSAGE_MEAN_2 as estimator.
These results demonstrate the proper distribution
of subjects during the quantification phase.

6 Conclusion

This scientific paper introduces a theoretical
method for quantifying controversy based on user
participation, presenting an innovative approach to
estimate controversy scores through a graph neu-
ral network (GNN) that incorporates both struc-
tural and textual information. The results of our
study demonstrate the efficacy of our proposed
model, particularly when employing a sampling
training process, which consistently outperforms
our baseline in predicting the probability of user
participation in controversial topics. Moreover,
our approach surpasses existing state-of-the-art
quantification scores, which predominantly rely
on the structural polarity of controversial Retweet
graphs (Garimella et al., 2018). This suggests
the robustness and versatility of our GNN-based
methodology in capturing the nuanced dynamics
of controversy within online topics.

In considering avenues for improvement,
one perspective involves the calibration of our
model (Ghoshal and Tucker, 2022). Neural net-
works are prone to challenges in outputting ac-
curate probabilities during label predictions. Ad-
dressing this aspect could enhance the precision of
our controversy quantification model (Kull et al.,
2019). Another promising perspective for future
research lies in the augmentation and training of
our data on a more extensive set of graphs span-
ning various fields. This broader dataset would
ensure the coverage of a diverse array of topics
during training, potentially enhancing the general-
izability and applicability of our model across dif-
ferent domains. By incorporating these perspec-
tives, our proposed methodology could be further
refined and adapted to better address the evolving
landscape of online controversy detection.

*CQS ranges from 0 to 1. 0 indicates no controversy,
whereas 1 shows high controversy.



Limitations

The main limitation of our work concerns the used
dataset. Indeed, only 20 subjects are employed
in the training dataset, rendering the sample size
rather small. Several controversial topics are re-
lated to the same main topic and only separated by
different timeframes. It precludes our model from
learning from more different patterns and there-
fore reduces its generalization capability. Simi-
larly, the test dataset comprises only 10 subjects.
To mitigate this issue and enhance our model’s
generalization, a fixed number of subgraphs are
selected at each epoch during the training phase,
facilitating better regularization of our models.
The same protocol is followed during the model
evaluation phase to improve the quality of our met-
ric. Expanding the number of subjects (controver-
sial or not) in our database, as well as the under-
lying domains, would contribute to a more robust
generalization of our model.

Furthermore, the controversy quantification
performed is static and corresponds to an im-
age at a given moment. Unfortunately, if a user
changes their opinion, this evolution would not
be accounted for during the analyzed time frame.
A temporal study of the evolution of contro-
versy (Wang and Aste, 2022) would be necessary
to address this limitation.
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Topic Timeframe # Tweets  # Users (nodes) # Retweets (edges) Description
IMPEACHMENT-5-10 3loct=10nov, 2015 123697 20878 51404 Roussef impeachment
MENCIONES-1-10ENERO 1-11jan, 2018 81209 25591 49034 Macri’s mentions
MENCIONES-11-18MARZO  11-18mar, 2018 406869 31659 58797 Macri’s mentions
MENCIONES-20-27MARZO  24-26mar, 2018 97 950 34975 68 990 Macri’s mentions
MENCIONES-05-11ABRIL  5-10apr, 2018 220460 63358 144 600 Macri’s mentions
MENCIONES05-11MAYO 5-10may, 2018 267283 63030 146217 Macri’s mentions
BOLSONARO27 270oct, 2018 120162 45629 88160 Brazilian elections
BOLSONARO28 28oct, 2018 151952 84986 104 955 Brazilian elections
BOLSONARO30 300ct, 2018 174565 73399 130599 Brazilian elections
KAVANAUGHO06-08 8oct, 2018 157721 71933 123055 Kavanaugh’s nomination
KAVANAUGH16 3oct, 2018 168571 66765 131270 Kavanaugh’s nomination
KAVANAUGHO02-05 Soct, 2018 181202 74834 145476 Kavanaugh’s nomination
LULA_MORO_CHATS 10-11jun, 2019 199423 66462 143318 Lula’s mentions during Moro chats news
LEADERSDEBATE 11-21nov, 2019 250000 76863 174 466 Candidates debate
PELOSI 6dec, 2019 252000 95558 209 044 Trump Impeachment
AREAS1 3-13jul, 2019 178220 107460 156481 Jokes about Area51
OTDIRECTO20E 13-20jan, 2020 148061 25436 95321 Event of a Music TV program in Spain
VANDUMURUGANAJITH  23jun, 2019 167434 8401 113208 Ajith’s fans

NINTENDO 19-28may, 2019 166145 94255 105793 Nintendo’s release
MESSICUMPLE 23-24jun, 2019 177770 98448 128099 Messi’s birthday
WRESTLEMANIA 8apr, 2019 213355 61051 106 347 Wrestlemania event
KINGJACKSONDAY 24-27mar, 2019 142240 39838 107298 popstar’s birthday
NOTREDAM 16apr, 2019 171306 99 346 146 280 Notredam fire
THANKSGIVING 28nov, 2019 250000 155358 164174 Thanksgiving day
HALSEY 7-8jun, 2019 237501 98008 204149 Halsey’s concert
FELIZNATAL 25-26dec, 2019 305879 193989 212893 Happy Christmas wishes
EXODEUX Tnov, 2019 179908 37384 135579 EXO’s new album

BIGIL 21-22jun, 2019 205557 25830 171322 Vijay’s birthday
CHAMPIONSASIA 24nov—ldec, 2019 221925 68754 145829 Al-Hilal champion
SEUNGWOOBIRTHDAY 23dec, 2018 251974 18977 193183 Segun Woo singer birthday

Table 3: Statistics on the dataset and graph for data retrieved from each different topic. The first 15 topics represent

controversial topics, whereas the last 15 represent non-controversial topics.
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