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Abstract

Recently, the incredible progress of large lan-001
guage models (LLMs) has ignited the spark of002
task automation, which decomposes the com-003
plex tasks described by user instructions into004
sub-tasks, and invokes external tools to execute005
them, and plays a central role in autonomous006
agents. However, there lacks a systematic and007
standardized benchmark to foster the develop-008
ment of LLMs in task automation. To this end,009
we introduce TASKBENCH to evaluate the capa-010
bility of LLMs in task automation. Specifically,011
task automation can be formulated into three012
critical stages: task decomposition, tool invo-013
cation, and parameter prediction to fulfill user014
intent. This complexity makes data collection015
and evaluation more challenging compared to016
common NLP tasks. To generate high-quality017
evaluation datasets, we introduce Tool Graph018
to represent the decomposed tasks in user in-019
tent, and adopt Back-Instruct to simulate user020
instruction and annotations. Furthermore, we021
propose TASKEVAL to evaluate the capability022
of LLMs from different aspects, including task023
decomposition, tool invocation, and parameter024
prediction. Our experimental findings reveal025
that TASKBENCH effectively measures LLMs’026
task automation proficiency. Benefiting from027
the mixture of automated data construction and028
human verification, TASKBENCH ensures high029
consistency with human evaluation, establish-030
ing it as a reliable and comprehensive bench-031
mark for LLM-based agents.032

1 Introduction033

Due to the recent advances of large language mod-034

els (LLMs) (Brown et al., 2020; Ouyang et al.,035

2022; Team et al., 2023; OpenAI, 2023; Touvron036

et al., 2023a; Anil et al., 2023), LLM-empowered037

autonomous agents (Gravitas, 2023; Shen et al.,038

2023; Nakajima, 2023; Liang et al., 2023; Park039

et al., 2023; Lin et al., 2023; Wang et al., 2023a;040

Yao et al., 2023) have unveiled remarkable poten-041

tial towards artificial general intelligence and be-042

come a new rising trend in the realm of AI research. 043

Generally, within the realm of LLM-empowered 044

autonomous agents, task automation is considered 045

as the most important component, which aims to 046

leverage LLMs to autonomously analyze user in- 047

structions and accomplish their objectives. Conse- 048

quently, many researchers attempt to delve deeper 049

into LLM to enable more intelligent task automa- 050

tion (Hong et al., 2023; Patil et al., 2023a; Li 051

et al., 2023b; Park et al., 2023; Wang et al., 2023a; 052

Sumers et al., 2023; Wang et al., 2024). However, 053

it is worth noting that a critical challenge in ad- 054

vancing this area is the lack of a systematic and 055

standardized benchmark to thoroughly evaluate the 056

capability of LLMs in automating tasks. Therefore, 057

creating such a benchmark to facilitate research in 058

this area has become an urgent need. 059

Nevertheless, it is non-trivial to build such a 060

benchmark for task automation since its setting is 061

closer to real-world scenarios that makes the collec- 062

tion of evaluation data and the design of evaluation 063

metrics more challenging than conventional NLP 064

tasks. Figure 1 illustrates a simple example to out- 065

line the pipeline of task automation, and we can 066

have these observations: 067

• In contrast to conventional NLP tasks, the pro- 068

cedure to fulfill task automation usually requires 069

multiple stages (e.g., task decomposition, tool 070

invocation, and parameter prediction of tools). 071

This indicates that we need to take all of these 072

elements into consideration when building bench- 073

mark datasets and evaluation metrics; 074

• Specifically, implementing task automation ne- 075

cessitates considering diverse real-world scenar- 076

ios, leading to potentially complex user instruc- 077

tions involving multiple interdependent sub-tasks. 078

Sometimes, tasks may require advanced func- 079

tions beyond language, thus demanding external 080

tools. These complexities highlight the challenge 081

in constructing benchmarks; 082
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I have a text file ("demo.doc") with a video URL and a script 
("script.txt") for a voiceover. I need to download the video, 
extract the audio, add the voiceover to the video using the 
provided script, and finally combine the extracted audio 
with an additional audio file ("new.wav").

Step 1: Extract the video URL from "demo.doc".
Step 2: Download the video using the extracted URL.
Step 3: Extract the audio from the downloaded video.

Step 4: Add a voiceover "script.txt" to the downloaded video.
Step 5: Combine the extracted audio with "new.wav".

Figure 1: LLM-based task automation and our TASKBENCH evaluation. Task automation implies that LLM-
based agents use task decomposition, tool invocation, and parameter prediction to autonomously complete tasks.
The evaluation process unfolds as follows: 1) Given a user request, the large language model carries out task
decomposition and predicts the tool invocation graph; 2) TASKBENCH assesses the capability of LLMs in task
decomposition based on the decomposed subtasks; 3) For the predicted tool invocation graph, TASKBENCH
evaluates the accuracy of the tool nodes, edges, and parameters.

• Furthermore, effective task automation with083

LLMs involves identifying various elements such084

as decomposed tasks, invoked tools, and their pa-085

rameters. These also compel us to devise more086

advanced evaluation metrics tailored to assess the087

performance of LLMs in these dimensions.088

Therefore, in light of these observations, we089

found that the majority of existing benchmarks090

fall short of adequately showcasing the full po-091

tential of LLMs in autonomous task comple-092

tion. For example, conventional benchmarks like093

GLUE (Wang et al., 2019b) or SuperGLUE (Wang094

et al., 2019a), encompass a lot of specific tasks to095

evaluate the capability of LLMs in a single sce-096

nario, while cannot well reflect the versatility of097

task automation. Some other researchers attempted098

to advocate for more rigorous benchmarks (e.g.,099

MMLU (Hendrycks et al., 2021), GSM8K (Cobbe100

et al., 2021), AGIEval (Zhong et al., 2023)) by in-101

volving more general scenarios (e.g., exams). But102

all of them can only reflect the capability of lan-103

guage skills, and are not able to manifest the capa-104

bility of LLMs in task automation. Besides, how to105

conduct the evaluation for task automation is still a106

troublesome problem. Thus, our goal is to develop107

a benchmark with suitable evaluation metrics to108

more effectively assess LLMs in task automation.109

To this end, we present TASKBENCH to bench-110

mark the capability of LLMs in the realm of task au-111

tomation. Specifically, as aforementioned, the data 112

collection for task automation requires us to con- 113

sider different sophisticated settings, which makes 114

it more challenging. However, just as shown in 115

Figure 1, compared with directly simulating user 116

requests, LLMs usually need to parse tasks for au- 117

tomation, and these parsed tasks (i.e., decomposed 118

tasks, invoked tools, and parameters) are easier to 119

collect and construct. Therefore, we raise a simple 120

idea: is it possible to synthesize user instruction 121

based on the expected parsed tasks? 122

To fulfill this, we first present the concept of Tool 123

Graph (TG), which gathers diverse tools to address 124

specific tasks. In TG, tools are connected if they 125

depend on each other, forming a graph structure 126

that represents tool interactions. To mimic user 127

instructions, we randomly select a sub-graph from 128

TG that mirrors the desired tasks in a user instruc- 129

tion, employing a back-instruct strategy to generate 130

the final instruction. Our method incorporates three 131

subgraph sampling structures: nodes, chains, and 132

directed acyclic graphs (DAG), to create complex 133

and varied user requests. Additionally, we incor- 134

porate a self-critic mechanism to improve dataset 135

quality by ensuring consistency. To ensure diver- 136

sity, we generate data across three domains (e.g., 137

Hugging Face (Wolf et al., 2019), multimedia, and 138

daily life), creating our TASKBENCH benchmark 139

to assess LLMs in task automation. 140

After building the dataset, another challenge is 141

2



how to effectively and quantitatively evaluate the142

capability of LLMs in task automation. We note143

that the primary steps of LLMs in automating tasks144

include task decomposition, tool invocation, and pa-145

rameter prediction. Therefore, we further propose146

an evaluation system, called TASKEVAL, which en-147

compasses a series of metrics to provide objective148

evaluations to measure the capability of LLMs in149

task decomposition, tool invocation, and predicting150

the parameters of tools. Moreover, we also conduct151

human evaluation to prove the consistency of our152

evaluation with human assessment. Overall, the153

contributions of our paper can be summarized as:154

• We introduce TASKBENCH, a new benchmark to155

support the development of LLM in task automa-156

tion, which comprises a novel data generation to157

address the data deficiency in this area;158

• We further present TASKEVAL to effectively and159

quantitatively evaluate the capability of LLMs160

in automating tasks from different aspects, in-161

cluding task decomposition, tool invocation, and162

parameter predictions;163

• The experimental results on different LLMs and164

additional dataset analysis demonstrate that our165

proposed TASKBENCH can effectively reflect the166

capability of LLMs in multiple dimensions with167

the support of TASKEVAL and show high corre-168

lations with human evaluation.169

2 TaskBench Dataset170

In this section, we introduce the construction of171

TASKBENCH, the benchmark meticulously de-172

signed to facilitate the development of LLMs in173

task automation. Specifically, unlike previous174

methods which use collection or instruction meth-175

ods, TASKBENCH can consider the complex rela-176

tionships among multiple tasks to simulate more177

practical and complex user instruction. Figure 2178

illustrates the entire process of our method to build179

the datasets. More details will be introduced in the180

following subsections.181

2.1 Preliminary182

Task automation aims to fulfill complex user in-183

structions in real-world scenarios. In this setting,184

the user instructions could encompass multiple sub-185

tasks, and the execution of each sub-task can be186

completed by invoking a tool (Schick et al., 2023).187

Besides, there could also remain some temporal188

or resource dependencies among these sub-tasks.189

Therefore, we think that each user instruction can 190

be represented as a combination of tools with con- 191

nections like graph structure, just as shown in Fig- 192

ure 1. Consequently, we introduce the concept of 193

the Tool Graph (TG), which will be used in our 194

benchmark construction. The tool graph can be 195

viewed as a structured representation that centers 196

on tools with their dependency. Here, we assume 197

a tool as t and denote a TG as G = {T,D}, where 198

T = {t1, t2, . . . , tn} represents the collection of 199

tools, and D is a collection of {(ta, tb)} that means 200

tool ta exhibits a dependency on tool tb. To some 201

extent, the tool graph offers a novel approach to or- 202

ganizing tools, capturing the relationships between 203

different tools more effectively than traditional tax- 204

onomy trees. In the next subsection, we will in- 205

troduce how to build a tool graph and utilize it to 206

formulate our benchmark. 207

2.2 Dataset Construction 208

To accomplish user intent, LLMs usually adopt a 209

stepwise process (e.g., task decomposition→tool 210

invocation→parameter prediction) to analyze the 211

user request and convert it into multiple executable 212

tasks. Therefore, it is essential to construct the 213

dataset and allow LLMs to evaluate their automa- 214

tion capability in the above process. 215

To ensure the generated user instructions accu- 216

rately reflect the expected tasks and dependencies, 217

we employ a back-instruct strategy for data simu- 218

lation, summarized in three main steps: 1) Collect 219

a repository of tools and construct a tool graph G 220

representing the tools and their dependencies; 2) 221

Sample a sub-graph from G to capture a specific 222

structure; 3) Use LLMs to generate user instruc- 223

tions based on the sampled tool sub-graph through 224

back-instruct. Further details are provided below. 225

2.2.1 Tool Graph Construction 226

Building a tool graph requires us to collect many 227

standalone tools from different sources. When com- 228

bining different tools together, the dependencies 229

among tools could be diverse, encompassing re- 230

source dependencies, temporal dependencies, envi- 231

ronment dependencies, and so on. In our research, 232

we mainly investigate two of them: resource and 233

temporal dependencies. For the former one, it 234

means the two tools can have a connection if the 235

input type of tool ta can match the output type of 236

tool tb. For the latter one, we devise tool graphs 237

that highlight temporal dependencies, allowing any 238

two tools to be linked to illustrate their order. In 239
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this work, we choose three scenarios to build the240

datasets for our benchmark:241

Hugging Face Hugging Face (Wolf et al., 2019)242

provides a wide variety of AI models to cover mas-243

sive tasks across language, vision, audio, video,244

and so on. Each task defined by Hugging Face245

can be viewed as a tool to address a specific task.246

Specifically, each tool in Hugging Face has deter-247

mined the type of its input and output. Hence, if248

tool ta and tb have a connection, the input type of249

ta should match the output type of tb. Guided by250

this principle, we constructed Hugging Face’s tool251

graph, comprising 23 tools and 225 edges.252

Multimedia In contrast to the Hugging Face253

tools, which are tailored for AI tasks, the multi-254

media tools is broader in scope. It provides more255

user-centric tools like file downloader, video editor,256

and so on. The policy for tool connections is the257

same as the Hugging Face domain. Finally, we258

could construct a tool graph over multimedia tools259

with 40 nodes and 449 edges.260

Daily Life APIs Sometimes, we also need some261

daily life services, including web search, shopping,262

and etc. Hence, these daily life APIs can also be263

considered as tools for specific tasks. However, it is264

worth noting that the type of dependencies among265

these APIs is predominantly temporal. Therefore,266

two daily life APIs have a successive order if they267

are connected. In this scenario, we can build a tool268

graph with 40 nodes and 1,560 edges.269

We present more details about these TGs on dif-270

ferent domains in Appendix A.10.271

2.2.2 Sampling on Tool Graph272

From the constructed TG, we can sample a sub-273

graph that maintains the dependencies among sam-274

pled tools. Following the setting of HuggingGPT,275

we categorize the sub-structure of a TG into three276

types: node, chain, and directed acyclic graph277

(DAG) each representing a specific pattern of tool278

invocation. 1) Node refers to the use of a single279

tool for straightforward tasks; 2) Chain denotes280

sequential tool usage, where tasks require step-by-281

step execution with multiple tools; 3) DAG illus-282

trates complex tool interactions, that a tool may283

depend on several others or affect multiple subse-284

quent tools, underscoring intricate dependencies.285

By sampling from these substructures, we can286

emulate a variety of valid tool invocation pat-287

terns for user instruction. We represent the288

tool subgraph in G as Gs = {Ts, Ds}, where 289

Ts = {ts1, ts2, . . . , tsk} with k < n and Ds = 290

{(tsa, tsb)}, such that tsa and tsb belong to Ts. The 291

sampling of the tool graph can be described as: 292

Sample(G,mode, size) → Gs, (1) 293

where the mode specifies the sampling mode (e.g., 294

Node, Chain, DAG), and the size indicates the num- 295

ber of tools. These factors determine the topologi- 296

cal nature and magnitude of the tool sub-graph in 297

user instructions, respectively. 298

2.2.3 Back-Instruct 299

Next, based on the sampled sub-graph Gs, we use 300

LLMs to synthesize user instructions. We term 301

this process BACK-INSTRUCT, which can consid- 302

ered as a data engine to convert the sampled tools 303

into user instruction. Specifically, given a sampled 304

subgraph Gs, we formulate the following BACK- 305

INSTRUCT procedure, empowering LLMs to pro- 306

duce the corresponding instructions I: 307

BackInstruct1(Gs = (Ts, Ds)) → I. (2) 308

Here, the sampled sub-graph Gs can instruct LLMs 309

to generate user requests covering these related sub- 310

tasks, and further with their dependencies. Such a 311

strategy ensures the complexity and quality of the 312

generated data. 313

Specifically, we note that sampled sub-graphs 314

can only provide information on tool invocation 315

skeletons, lacking the critical parameters for tool 316

execution. Therefore, based on the generated in- 317

struction I in Eqn. 2, we let the LLM to populate 318

the parameters for the tool subgraphs and generate 319

the final tool invocation graph Ḡ along with the 320

corresponding task decomposition steps P : 321

BackInstruct2(Gs = (Ts, Ds), I) → {P, Ḡ}. (3) 322

After that, we introduce a self-critic mechanism 323

to check and filter out the generated instruction 324

to guarantee quality. Here, we offer two variants: 325

LLM-based and rule-based. The former aims to 326

use LLM to check the alignments between the gen- 327

erated data and the sampled tool sub-graph. While 328

the latter uses straightforward rules to determine 329

the alignment between the tool graphs in created 330

data and the sampled tool graphs. Here, we use the 331

nodes and edges of the sampled graph to determine 332

the consistency. Figure 2 illustrates each step of 333

our data engine to simulate user instructions. 334
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Toolboxes I have a text file ("demo.doc") with a video URL and a script 
("script.txt") for a voiceover. I need to download the video, 
extract the audio, add the voiceover to the video using the 
provided script, and finally combine the extracted audio 
with an additional audio file ("new.wav").
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Video Voiceover
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Node Chain DAG

Step 1: Extract the video URL from "demo.doc".
Step 2: Download the video using the extracted URL.
Step 3: Extract the audio from the downloaded video.

Step 4: Add a voiceover to the downloaded video using "script.txt".
Step 5: Combine the extracted audio with "new.wav".

Figure 2: Construction of the TASKBENCH: First, we convert the toolbox into a tool graph by linking tools based on
their dependencies (either resource or temporal dependencies). Subsequently, we sample diverse subgraphs from
the tool graph, which may be single nodes, chains, or directed acyclic graphs. Utilizing the sampled tool subgraphs,
we “Back-Instruct" LLM to inversely craft user instructions, task steps, and tool invocation graphs. Furthermore, we
use critics to evaluate the consistency of the generated tool invocation graphs with the sampled tool subgraphs.

Based on the above steps, we build TASKBENCH335

across three domains, which use GPT-4 as the data336

engine. The ratio of different modes (i.e., Node,337

Chain, DAG) is set as 3 : 7 : 8 for sampling and338

the ratio for the number of different tools is set as339

{0.1, 0.2, 0.3, 0.2, 0.1, 0.05, 0.025, 0.025, 0.025}.340

More detailed designs about our data engine341

and the statistics of the constructed datasets are342

provided in the Appendix A.8.343

2.3 Evaluation of the Dataset Quality344

To demonstrate the quality of TASKBENCH345

datasets, we conducted in-depth human evaluations346

based on generated samples. Additionally, we con-347

duct a case study and error analysis on the con-348

structed datasets. Please refer to Appendix A.3 and349

Appendix A.4 for more details.350

Evaluation Metrics To evaluate the quality of351

datasets created by Back-Instruct, we developed352

three metrics for our evaluation criteria, each metric353

is scored from 1 to 5:354

• Naturalness: This metric measures the reason-355

ableness of the instructions, focusing on the typi-356

cality of tool dependencies and their relevance to357

actual user needs.358

• Complexity: This metric assesses the complex-359

ity of the instructions, taking into account aspects360

like the depth of the task, the number of tools in-361

volved, and the interactions between these tools.362

• Alignment: This metric measures how well the363

tool invocation graphs align with the instructions,364

specifically whether the graphs effectively fulfill 365

the user’s requests. 366

Evaluation Results During the human evalua- 367

tion, we randomly selected 50 samples from our 368

TASKBENCH and invited three domain experts to 369

assess the quality of these samples. We provide 370

canonical samples for these experts to calibrate 371

their criteria during the annotations, and calculate 372

an average score of all experts’ ratings as the final 373

results. To ensure a fair and unbiased evaluation, 374

all samples will be anonymized. We compared our 375

Back-Instruct method against two baselines: 376

• Back-Instruct (Ours): involves sampling tool 377

subgraphs, back-translating them into instruc- 378

tions, and then refining the tool invocation graph. 379

• Back-Instruct w/o edges: This variant of our 380

method removes the edges between tools in the 381

sampled subgraphs, focusing solely on the tools 382

themselves in the generation process. 383

• Self-Instruct: (Wang et al., 2023b) This method 384

uses GPT-4 to autonomously select tools based 385

on manually labeled demonstrations and tool de- 386

scriptions, subsequently generating instructions 387

and tool invocation graphs. 388

The results of our evaluation are detailed in Ta- 389

ble 1. Our analysis revealed that all methods (Self- 390

Instruct or Back-Instruct) can guarantee the align- 391

ment (A). However, our method, Back-Instruct, 392
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Methods N↑ C↑ A↑ Overall↑

Back-Instruct 3.89 4.01 3.66 3.85
- w/o edges 3.44 3.27 3.62 3.44

Self-Instruct 2.18 2.01 3.64 2.61

Table 1: Human evaluation (rating from 1 to 5) on sam-
ples constructed by different methods. Average score
rating from three human experts.

scored highest in Naturalness (N ) and Complex-393

ity (C). We attribute these superiorities to the re-394

alistic resource or temporal dependencies in the395

sampled tool subgraphs, which allow us to gener-396

ate more natural instructions in complex scenarios397

(e.g., multi-tools utilization).398

3 TaskEval399

We could collect ample samples (i.e., synthetic user400

instructions) with annotations (i.e., sampled tool401

sub-graph) to evaluate the capability of LLMs in402

automating tasks. Here, we introduce TASKEVAL,403

which encompasses a series of evaluation metrics to404

measure LLMs in multiple dimensions, including405

task decomposition, tool invocation, and parame-406

ter prediction. To simulate the process of LLMs407

in automating tasks, we adopt a standard prompt408

for each LLM, which enables it to first disassem-409

ble user requests into multiple sub-tasks (i.e., task410

decomposition), and then predict tool invocations411

with their parameters and task dependencies to gen-412

erate a tool invocation graph. Based on the built413

datasets and the standard inference process, we de-414

sign pertinent metrics to evaluate three stages (i.e.,415

task decomposition, tool invocation, and parameter416

predictions) in task automation. Here, we choose417

the GPT family (Brown et al., 2020; Ouyang et al.,418

2022; OpenAI, 2023) and open-source LLMs (Tou-419

vron et al., 2023a; Chiang et al., 2023; Rozière420

et al., 2023; Xu et al., 2023; Yang et al., 2023)421

as our main evaluation. Please see the Appendix422

A.7 for full evaluations of other open-source LLMs423

(Team, 2023a; Li et al., 2023a; Team, 2023b).424

3.1 Task Decomposition425

Task decomposition is a pivotal component of426

task automation. By decomposing user instruc-427

tion into a sequence of executable sub-tasks, the428

autonomous agent can more effectively fulfill user429

intent. During the task decomposition, each step430

will generate textual descriptions. Here, we use431

three subjective metrics to measure the quality in432

analyzing sub-tasks: Rouge-1 (R1), Rouge-2 (R2), 433

and BertScore F1 (BsF) (Zhang et al., 2019). The 434

results are reported in Table 12. We observe that the 435

GPT-4 model significantly outperforms the open- 436

source LLM model in task decomposition, achiev- 437

ing approximately 20%+ higher than others in 438

Rouge-1/2. Moreover, we find that codellama-13b 439

achieves the closest performance to the GPT fam- 440

ily. We attribute the substantial code pre-training 441

endowing it with a higher-level task decomposition 442

capability compared to other LLMs. 443

3.2 Tool Invocation 444

The graph of tool invocation can be viewed as a 445

concrete representation of task steps in user instruc- 446

tion, specifying the appropriate tool for each step. 447

To orchestrate external tools effectively, the tool 448

invocation graph should provide these pieces of 449

information: 1) the dependency between tools to 450

guarantee the order of executable sub-tasks; 2) the 451

parameters that tools require. Therefore, it is nec- 452

essary for us to measure the capability of LLMs in 453

these aspects. Here, we first evaluate the predicted 454

graph structure to measure the capability of LLMs 455

in this subsection. 456

In a tool invocation graph, we denote the nodes 457

as tools and the edge as the dependency between 458

two tools. Therefore, we can evaluate the nodes 459

and edges to measure the capability of LLMs in 460

tool invocation. Here, we crafted two distinct met- 461

rics: Node F1 (n-F1) for node prediction and Edge 462

F1 (e-F1) for edge prediction. We also introduced 463

the Normalized Edit Distance (NED) metric for 464

chain structure, quantifying the adjustments needed 465

to correct predictions. The results are detailed in 466

Table 2 revealing that predicting edges in the tool 467

invocation graph is more challenging than predict- 468

ing nodes, with an F1 score difference of about 30% 469

across all LLMs. Furthermore, we also observe that 470

tasks with varying structures pose different chal- 471

lenges for LLMs. For instance, on simple node 472

structures, open-source LLMs match the perfor- 473

mance of gpt-3.5-turbo and text-davinci-003, but 474

lag behind on more complex tasks. Overall, these 475

designed metrics can effectively help us to better 476

measure the capability of LLMs in task automation. 477

3.3 Parameter Prediction 478

We further divide the evaluation of the tool param- 479

eter prediction as twofold. The first metric is Pa- 480

rameter Name F1 (t-F1) to evaluate the capability 481

of LLMs in predicting the parameter of the tools. 482
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TOOL INVOCATION - Tool invocation graph prediction.

LLM
Node Chain DAG Overall

n-F1 ↑ n-F1↑ e-F1 ↑ NED ↓ n-F1↑ e-F1 ↑ n-F1↑ e-F1 ↑
H

ug
gi

ng
Fa

ce
To

ol
s

gpt-4 84.34 80.79 55.73 39.70 82.86 56.39 81.54 54.70
gemini-pro 77.46 76.12 45.51 43.10 79.05 49.36 76.62 43.50
claude-2 69.83 80.67 48.11 40.03 84.52 53.40 79.00 43.51
gpt-3.5-turbo 56.91 72.63 39.92 46.52 73.79 38.55 69.49 33.36
text-davinci-003 40.71 66.05 36.04 48.57 64.64 34.19 59.38 29.37

codellama-13b 43.68 55.65 17.80 62.23 52.87 13.19 53.16 14.64
nous-hermes-13b 58.66 52.39 9.01 62.48 51.99 6.33 53.62 8.29
vicuna-13b-v1.5 51.74 50.37 8.40 66.83 52.46 9.06 50.82 7.28
llama-2-13b-chat 43.59 49.87 8.22 64.99 49.60 9.11 48.47 7.30
wizardlm-13b 54.69 54.50 2.22 60.55 52.93 0.92 54.40 2.05

M
ul

tim
ed

ia
To

ol
s

gpt-4 97.13 89.70 69.29 28.93 92.32 71.64 90.90 69.27
gemini-pro 73.61 82.65 55.50 35.62 85.29 57.80 81.54 52.07
claude-2 66.16 83.95 59.22 33.41 82.98 54.28 80.94 53.01
text-davinci-003 59.15 76.87 50.79 38.54 79.00 50.69 73.97 45.81
gpt-3.5-turbo 53.55 76.81 50.30 39.05 78.65 49.52 72.83 44.02

codellama-13b 43.70 66.89 28.77 46.35 68.68 28.79 62.78 24.61
vicuna-13b-v1.5 66.64 59.18 16.49 54.17 61.40 13.95 60.61 14.78
nous-hermes-13b 60.58 58.53 9.47 56.02 59.39 9.57 58.97 8.90
wizardlm-13b 55.13 50.57 4.92 58.46 49.38 5.52 51.24 4.82
llama-2-13b-chat 38.02 45.14 1.62 65.29 45.95 2.11 43.87 1.63

D
ai

ly
L

ife
A

PI
s

gpt-4 95.97 97.06 83.47 38.69 96.41 42.01 96.91 80.53
claude-2 79.57 95.36 80.68 39.93 93.85 41.04 93.52 75.31
gemini-pro 76.15 92.79 64.58 41.64 89.68 28.42 90.75 59.45
gpt-3.5-turbo 52.18 90.80 70.66 43.50 86.94 30.85 85.37 60.67
text-davinci-003 68.49 82.15 60.12 47.14 76.81 24.54 80.42 54.90

codellama-13b 89.75 87.80 65.92 44.42 83.61 27.47 87.73 63.16
wizardlm-13b 92.27 65.74 14.51 55.80 63.80 9.20 69.34 14.18
vicuna-13b-v1.5 90.59 73.74 13.24 51.43 67.92 5.62 75.67 12.48
nous-hermes-13b 92.50 71.17 3.55 53.47 70.65 2.86 73.45 3.50
llama-2-13b-chat 34.11 57.61 20.13 67.06 56.18 8.42 55.77 17.02

Table 2: Evaluation for tool invocation. Node F1 (n-F1) and Edge F1 (e-F1) for node and edge prediction. For
nodes, a prediction is deemed positive if the predicted node’s ID aligns with any of the ground-truth node labels.
For edges, both the source and target nodes of a predicted edge must correspond exactly. Normalized Edit Distance
(NED) measures the normalized number of operations required to correct the prediction for chain structure.

Another one is the Parameter Name & Value F1483

(v-F1) to measure both the parameter and its value.484

The results can be found in Table 3. We found485

that the precise prediction of parameters can de-486

termine the successful execution of tools, and the487

precise prediction of both parameters and values488

can guarantee the correctness of the tool invocation.489

Besides, we found that GPT-4 can significantly out-490

perform open-source LLMs, which achieve v-F1491

scores of 60.86%, 72.31%, and 71.14% across the492

three domains. These results also highlight the493

limitations of current open-source LLMs in task494

automation, and which parts should be enhanced.495

3.4 Analysis496

Factors Contributing to Task Automation Per-497

formance Our analysis identifies two primary498

factors impacting the performance of LLMs in task499

automation: 1) Reasoning Capabilities: The abil-500

ity to solve complex problems and reason effec- 501

tively varies across LLMs, significantly impacting 502

task automation. For instance, the GPT series ex- 503

hibits superior reasoning in mathematical and cod- 504

ing tasks, reflecting advanced task planning and 505

tool utilization skills. 2) Instruction Following: 506

Models fine-tuned for instruction following, like 507

Vicuna-13b and WizardLLM-13b, outperform the 508

baseline Llama-2-13b. Notably, WizardLLM-13b 509

surpasses Vicuna-13b due to its more sophisticated 510

instruction fine-tuning, highlighting the importance 511

of precise instruction adherence. 512

Intrinsic Differences in LLMs in Performing 513

Task Automation Our findings suggest that: 1) 514

Code Pre-training: Models with extensive code 515

pre-training, such as Code-Llama, surpass other 516

LLMs in task automation. Our data shows an av- 517

erage improvement of 4.45% in tool prediction 518
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TOOL PARAMETER PREDICTION - Predicts parameters for the tool execution.

LLM
Node Chain DAG Overall

t-F1↑ v-F1↑ t-F1 ↑ v-F1↑ t-F1 ↑ v-F1↑ t-F1 ↑ v-F1↑
H

ug
gi

ng
Fa

ce
To

ol
s

gpt-4 80.05 74.10 76.66 58.15 78.24 60.03 77.31 60.86
gemini-pro 67.63 56.54 66.60 46.35 70.41 50.56 67.12 48.54
claude-2 48.07 32.14 66.35 45.57 68.59 48.19 63.00 43.08
text-davinci-003 38.51 27.43 56.90 38.76 57.03 38.90 52.53 36.04
gpt-3.5-turbo 37.70 19.81 60.96 41.15 61.33 42.89 55.88 36.32

codellama-13b 20.09 12.58 36.40 21.31 33.43 20.48 32.06 18.87
nous-hermes-13b 46.38 31.06 35.55 13.81 33.06 13.69 37.51 17.66
wizardlm-13b 43.97 25.90 37.34 12.48 38.43 13.79 38.76 15.35
llama-2-13b-chat 29.80 20.54 32.14 13.57 32.16 15.23 31.61 15.38
vicuna-13b-v1.5 25.71 13.11 28.99 11.14 30.04 13.60 28.34 11.85

M
ul

tim
ed

ia
To

ol
s

gpt-4 95.64 87.12 85.60 69.83 87.57 72.79 87.06 72.31
gemini-pro 62.21 50.48 72.99 55.21 76.13 58.79 71.67 54.82
claude-2 53.81 24.02 75.60 58.12 72.41 52.43 71.63 51.58
gpt-3.5-turbo 44.94 11.96 70.53 47.76 71.82 47.95 65.91 40.80
text-davinci-003 60.30 20.78 69.91 44.76 71.91 45.76 68.48 40.70

codellama-13b 32.01 16.10 52.30 32.51 53.08 33.79 48.19 29.13
vicuna-13b-v1.5 52.72 35.55 39.31 21.00 40.05 21.40 41.62 23.62
nous-hermes-13b 50.11 37.80 41.98 17.89 43.99 20.04 43.60 21.69
wizardlm-13b 49.79 33.59 36.88 14.87 36.61 18.68 39.10 18.74
llama-2-13b-chat 28.49 17.01 30.26 9.66 31.00 11.35 29.99 11.32

D
ai

ly
L

ife
A

PI
s

gpt-4 95.83 76.21 97.23 70.67 95.95 69.65 97.02 71.14
claude-2 78.12 59.43 94.72 65.30 91.83 66.39 92.71 64.72
gemini-pro 69.88 45.41 91.66 57.93 88.50 53.91 88.95 56.22
gpt-3.5-turbo 43.81 28.77 89.21 61.11 83.88 56.13 81.97 55.66
text-davinci-003 61.68 45.53 80.68 54.54 76.51 51.91 78.37 53.40

codellama-13b 86.34 71.20 84.31 61.51 80.42 60.18 84.26 62.38
vicuna-13b-v1.5 83.63 67.71 61.80 44.54 57.14 41.72 64.27 47.31
nous-hermes-13b 79.69 63.29 62.64 45.32 63.26 45.74 64.47 47.22
wizardlm-13b 89.27 72.96 50.68 36.48 49.03 35.75 55.00 40.53
llama-2-13b-chat 10.39 7.32 38.89 25.37 36.43 23.40 35.11 22.94

Table 3: Evaluation for parameter prediction of tools. t-F1 evaluate the pair of (task, parameter name), v-F1 evaluate
the triple of (task, parameter name, parameter value).

and 12.76% in parameter prediction across vari-519

ous domains, underscoring the necessity of struc-520

tured text for connecting automation stages. 2)521

Alignment: Models employing human alignment522

techniques (e.g., the GPT series with RLHF) show523

enhanced task automation capabilities compared524

to their open-source counterparts, indicating that525

RLHF promotes more generalized reasoning skills526

and mitigates instruction-specific overfitting.527

3.5 Consistency with Human Evaluation528

To ensure the reliability of TASKBENCH, we fur-529

ther investigate their consistency (Kendall’s τ and530

Spearman’s ρ) with human evaluations. From Ta-531

ble 9, we find that the average values for Kendall’s532

τ and Spearman’s ρ are 0.89 and 0.78, respectively.533

This indicates a very positive correlation between534

human evaluation and our TASKBENCH, which535

further validates the effectiveness of our proposed536

benchmark for task automation.537

4 Conclusion 538

In this paper, we introduce TASKBENCH, a bench- 539

mark to evaluate LLMs for task automation. We 540

outline three key stages: task decomposition, tool 541

invocation, and tool parameter prediction, which 542

are essential for measuring LLMs’ task automa- 543

tion efficiency. To create evaluation datasets, we 544

introduce Tool Graph and design Back-Instruct to 545

generate user instructions from sampled tool sub- 546

graphs. We also introduce TASKEVAL to system- 547

atically evaluating LLMs across these stages. Our 548

results show that TASKBENCH effectively mea- 549

sures LLMs’ task automation capabilities. We fur- 550

ther explore factors influencing LLM automation 551

performance, offering insights for improvement. 552

Moreover, with human verification, TASKBENCH 553

guarantees dataset quality and alignment with hu- 554

man assessments, making it a trustworthy and com- 555

prehensive benchmark for LLM-based agents. 556
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Limitations557

First, the Back-Instruct method, which is based on558

the Tool Graph, only simulates static user instruc-559

tions. TASKBENCH does not cover user requests560

requiring dynamic execution based on feedback561

from the environment. To accommodate such in-562

teractions, we need to transition from a static Tool563

Graph to a dynamic one. Second, although the qual-564

ity of our dataset is ensured through human verifi-565

cation, it still lacks in terms of the naturalness and566

alignment of user instructions. This necessitates567

fine-tuning the constructed tool graph to guarantee568

that the dependencies between tools are logical and569

clear. It also calls for an improvement in the sam-570

pling process to eliminate irrational tool subgraphs,571

thereby ensuring the quality of the sampled tool572

subgraphs. Lastly, the current dataset construction573

still involves human participation; our subsequent574

aim is to boost the automation of both dataset con-575

struction and quality evaluation to minimize the576

reliance on human effort.577
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We acknowledge that all authors are informed579

about and adhere to the ACL Code of Ethics and580

the Code of Conduct.581
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A Appendix835

A.1 Related Works836

Large language models (ChatGPT (Ouyang et al.,837

2022), GPT-4 (OpenAI, 2023), LLAMA (Touvron838

et al., 2023a,b), Bard (Anil et al., 2023)) have839

drawn the development of autonomous agents (e.g.,840

AutoGPT (Gravitas, 2023), HuggingGPT (Shen841

et al., 2023), BabyAGI (Nakajima, 2023)). These842

applications can be considered as a form of task843

automation, which uses LLMs as the controller to844

analyze user instructions and search for the most845

suitable solution (e.g., external models) to obtain846

answers. Despite these advances in this area, it847

still lacks a systematic and standardized benchmark848

to measure the capability of LLMs in automation849

tasks. Traditional benchmarks like GLUE (Wang850

et al., 2019b) or SuperGLUE (Wang et al., 2019a)851

can only evaluate the capability of pre-trained mod-852

els in a single task. To further explore the ca-853

pability of LLMs, some benchmarks (AlpacaE-854

val (Li et al., 2023c), AGIEval (Zhong et al., 2023),855

GSM8K (Cobbe et al., 2021), MMLU (Hendrycks856

et al., 2021) and etc) are introduced to explore857

the capability of LLMs in solving problems, but858

they can only manifest the language skills and859

are inadequate to test the capability in automat-860

ing tasks. Recently, some works attempted to in-861

troduce some benchmarks to facilitate the devel-862

opment of this area. For example, APIBench is863

proposed by Gorilla (Patil et al., 2023b) which864

uses self-instruct (Wang et al., 2023b) to gener-865

ate data from API calls. ToolAlpaca (Tang et al.,866

2023), ToolQA (Zhuang et al., 2023) and Tool-867

Bench (Qin et al., 2023a,b) respectively introduce868

different benchmarks from the perspective of tool869

utilization. Besides, AgentBench (Liu et al., 2023)870

is a benchmark to explore the capability of LLMs871

in different environments, which is another impor-872

tant part of autonomous agents. In this paper, we873

focus on multiple dimensions (e.g., task decompo-874

sition, tool invocation, and parameter prediction) to875

build a multifaceted benchmark, including dataset876

and evaluation, to comprehensively evaluate the877

capability of LLMs in task automation.878

A.2 Discussion with related works879

We also note that there are some concurrent works880

(e.g., ToolBench, APIBench, etc) to investigate881

this area. Therefore, we also conducted an in-882

depth discussion to analyze the differences between883

TASKBENCH and these works. Generally, we sum-884

marize these differences from the perspectives of 885

datasets and evaluations: 886

Datasets Currently, all of these works will adopt 887

a self-instruct strategy to generate instructions to 888

simulate complex user instructions, which requires 889

planning, tool utilization, and etc. However, most 890

of them still lack the annotations of ground truth, 891

and only rely on human evaluation to check the 892

quality of LLM generations. Some works like Tool- 893

Bench additionally use a depth-first search-based 894

decision tree to search a solution path annotation. 895

But such a strategy will also bring some new is- 896

sues like costs and hallucination or bias in annota- 897

tions. Compared with them, due to the design of 898

the Tool Graph, TASKBENCH can guarantee the 899

ground truth and demonstrate these advantages: 900

• Efficiency: Our method requires only one API 901

call to generate a complete sample (creating in- 902

structions, generating a tool invocation graph, 903

and checking). In contrast, ToolLLM requires 904

one API call to generate instructions and an av- 905

erage of four inference steps during DFS for an- 906

notation. Additionally, ToolLLM uses few-shot 907

learning, which consumes more tokens than our 908

zero-shot approach. 909

• Higher Quality of Instructions: Our tool graph 910

includes potential tool invocation relationships 911

(resource and temporal dependencies). Based 912

on the tool graph, the instructions generated by 913

ChatGPT are more in line with actual human 914

behavior. As we demonstrated in Appendix A.3, 915

the generation based on a tool graph with edges 916

significantly improves Naturalness, Complexity, 917

and Alignment compared to generation without 918

edges. 919

• Stability: ToolLLM’s instruction generation 920

might not cover all sampled instructions based 921

on the API set. Our method not only covers all 922

sampled tools but also strictly follows the depen- 923

dency between tools. We can control instruction 924

generation through the sampling process, such as 925

the number of tools and the topology of the tool 926

graph. 927

• Reliable Annotations: In ToolLLM, instruction 928

generation, and tool invocation annotation are in- 929

dependent processes. However, in our approach, 930

the sampled tool graph can directly be utilized as 931

the final annotations for the assessment. Hence, 932
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our Back-Instruct can directly generate instruc-933

tions with better alignments to the annotations934

and does not need to generate answers anymore.935

Besides, we also utilize the consistency between936

the sampled tool graph and the generated tool937

invocation graph to further filter out low-quality938

annotations, ensuring high-quality tool graph an-939

notations.940

Evaluation During the evaluation, most of them941

usually use human evaluation to measure the ca-942

pability of LLMs, which requires massive human943

labor. Some works follow the AlpacaEval setting944

to measure the capability of LLMs in tool utiliza-945

tion. Compared with these settings, Our evaluation946

is composed of both subjective and objective evalu-947

ations, which also encompasses multiple aspects,948

including task decomposition, tool prediction, and949

parameter prediction. For each aspect, we have950

developed multiple well-designed metrics to assess951

the different capabilities required for task automa-952

tion. Besides, we also conduct human evaluations953

to investigate the performance of different LLMs954

and demonstrate the correlations with the subjec-955

tive evaluation metrics.956

A.3 Case Study of Back-Instruct957

We draw some cases to intuitively show the dif-958

ferences between Back-Instruct, Back-Instruct w/o959

edges and Self-Instruct (Wang et al., 2023b), as960

shown in Table 5. From these examples, we ob-961

serve that our Back-Instruct can generate examples962

with more comprehensive and interconnected tool963

usage, reflecting higher naturalness and complexity964

in instruction generation.965

A.4 Error Analysis966

A.4.1 Statistics about TASKBENCH967

A.4.2 Error Analysis on TASKBENCH Dataset968

Despite the advanced instruction generation and969

labeling capabilities of gpt-4, we admit that it is970

challenging to guarantee the correctness of all gen-971

erated samples. To better understand our dataset972

and assess its accuracy, we conduct human evalua-973

tions to provide a thorough error analysis. Here, we974

first randomly sampled 148 samples, and our label-975

ing team identified 18 error samples (nearly 12%)976

from the sampled data. We attribute these incorrect977

samples to five distinct error categories. Typical978

examples and the proportions for each category are979

shown in Table 6 and Figure 3:980

Incomplete instructions

11.8%
Impractical instructions

17.6%

Mismatched parameter types

23.5%

Incorrect parameter value

17.6%

Incorrect Tool Dependency

29.4%

Error Types Distribution (Total: 17/148)

Figure 3: Error Analysis on TASKBENCH

• Incorrect Instructions: 981

– Incomplete instructions: This error occurs 982

when the instructions lack the necessary details 983

or resources for successful completion. 984

– Impractical instructions: The instructions 985

could be irrational or impossible to execute 986

with the capabilities of current tools. 987

• Parameter Errors: 988

– Mismatched parameter types: This error 989

occurs when the parameters provided do not 990

match the expected types for the used tool. 991

– Incorrect parameter value: This error is evi- 992

dent when the values provided for the parame- 993

ters are incorrect or not suitable for the task. 994

• Incorrect Tool Dependency: This error type 995

refers to the incorrect linking or sequencing of 996

tools required for a task. 997

Based on these observed errors, we conclude 998

that it is necessary to build a more elaborate 999

prompt (e.g., more detailed tool-use specification 1000

and demonstrations) to describe tool parameters 1001

and tool dependencies when generating the tool 1002

invocation graph. Besides, we will also introduce 1003

more high-quality criteria to continuously improve 1004

our dataset in addition to our rule-based and LLM- 1005

based critics. 1006

A.4.3 Error Analysis of Different LLMs in 1007

Predicting Tool Invocation Graph 1008

We analyze the failures in predicting the tool in- 1009

vocation graph that occur during task automation 1010

inference. These failures can be categorized into 1011

three main groups: incorrect tool names, incorrect 1012

tool dependencies, and mismatched tool parame- 1013

ters. For our analysis, we randomly selected 50 1014

predictions, and the distribution of each error type 1015
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Statistic Hugging Face Tools Multimedia Tools Daily Life APIs

# Nodes of Tool Graph 23 40 40
# Links of Tool Graph 225 449 1,560

# Avg. Nodes 3.47 3.68 3.82
# Avg. Links 2.46 2.68 2.8
# Samples 12,217 8,904 7,150
- Node / Chain / DAG 3,270 / 4,302 / 4,645 2,117 / 3,145 / 3,642 1,277 / 2,716 / 3,157

Avg. Request Length 41.21 39.15 38.64
- Node / Chain / DAG 28.42 / 45.72 / 46.04 24.71 / 43.55 / 43.73 12.36 / 44.49 / 44.23

se
lf

-
cr

iti
c Both critics 8,456 (69.22%) 6,281 (70.54%) 5,432 (75.97%)

LLM-based critic 9,042 (74.01%) 6,959 (78.16%) 5,694 (79.63%)
Rule-based critic 10,289 (84.22%) 7,363 (82.69%) 6,271 (87.70%)

Human Verification 7,546 (61.76%) 5,584 (62.71%) 4,320 (60.42%)

Table 4: Statistics for the TASKBENCH. We report the number of nodes and links of the tool graphs. “# Avg. Nodes”
and “# Avg. Links” stands for the average number of nodes and links involved in one sample. We also report the
sample number and average request length for the datasets.

across different LLMs is detailed in Table 7. We1016

observed that:1017

• gpt-4 demonstrates the fewest errors in all cate-1018

gories, indicating a higher accuracy in predicting1019

the tool invocation graph.1020

• gpt-3.5-turbo and code-llama-13b show a pro-1021

gressively higher number of errors. Notably, the1022

‘Incorrect Tool Dependency’ is the most com-1023

mon across all models, highlighting the challenge1024

LLMs face in predicting accurate parameters for1025

tools.1026

Further, we present specific cases in Table 8 to1027

elucidate the nature of prediction errors in these1028

LLMs. Given the following example, gpt-4 cor-1029

rectly interpreted the task in the given example,1030

underscoring its advanced task automation capa-1031

bilities. Conversely, gpt-3.5-turbo and code-llama-1032

13b omitted a critical tool (‘Audio Downloader’),1033

resulting in a ‘Missing Required Tool’ error. Addi-1034

tionally, code-llama-13b encountered compounded1035

errors, including ‘Tool Parameter Error’ and ‘Incor-1036

rect Tool Dependency’.1037

Instruction:1038

I need an audio file downloaded1039

from 'https ://www.example.com/1040

example.wav ', then please reduce1041

the background noise and apply a1042

reverb effect according to my1043

instruction 'reverb 50\% '.1044

Finally , combine it with the1045

audio file 'example.wav '.1046

Gold tool invocation graph:1047

"task_nodes ": [1048

{"task": "Audio Downloader", " 1049

arguments ": ["https ://www.example 1050

.com/example.wav"]}, 1051

{"task": "Audio Noise Reduction", 1052

"arguments ": ["<node -0>"]}, 1053

{"task": "Audio Effects", " 1054

arguments ": ["<node -1>", "reverb 1055

50%"]} , 1056

{"task": "Audio Splicer", " 1057

arguments ": ["<node -2>", "example 1058

.wav "]}] 1059

A.5 Metrics for Ranking Consistency 1060

To compute the consistency of two rankings where 1061

the number of observations is n, we introduce 1062

two correlation coefficients: Spearman’s ρ and 1063

Kendall’s τ . In our work, they refer to the hu- 1064

man and TASKBENCH rankings of large language 1065

models in terms of task automation capabilities. 1066

Spearman’s ρ measures the strength and direc- 1067

tion of the rank association between two variables. 1068

To calculate Spearman’s ρ, start by assigning ranks 1069

to each observation in both sets of data. For any 1070

tied values, assign the average rank. Next, compute 1071

the difference in ranks between the two datasets for 1072

each observation, and then square these differences. 1073

The coefficient is calculated as follow: 1074

ρ = 1− 6q

n (n2 − 1)
(4) 1075

where q indicates the sum of squared rank differ- 1076

ences and n indicates the total number of elements. 1077

Kendall’s τ is calculated based on the consis- 1078

tency and inconsistency of pairs between two rank- 1079
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Figure 4: Performance in the few-shot setting for the
Daily Life APIs domain. R-L for task decomposition;
n-F1 for tool invocation; and v-F1 for parameter predic-
tion.

ings. For both rankings, we will consider all possi-1080

ble pairs of items in them. For each pair of items,1081

if the relative position is correct in both rankings,1082

then we call this a “consistent pair”. If the relative1083

position is wrong, then we call this an “inconsistent1084

pair”.1085

τ =
m− k

n(n− 1)/2
(5)1086

where m represents the number of consistent (con-1087

cordant) pairs and k represents the number of in-1088

consistent (discordant) pairs.1089

Ranking Consistency Between TASKBENCH1090

and Human Evaluation We report the above1091

metrics of TASKBENCH to investigate the consis-1092

tency with human evaluations. The results are1093

shown in Table 9. We find that the average val-1094

ues for Kendall’s τ and Spearman’s ρ are 0.891095

and 0.78, respectively. This indicates a very pos-1096

itive correlation between human evaluation and1097

our TASKBENCH, which further validates the ef-1098

fectiveness of our proposed framework for dataset1099

construction.1100

A.6 Analysis with Different Settings1101

A.6.1 Different Number of Tools1102

The greater the number of tool nodes the tool1103

graphs contain, the more challenging it is for LLM1104

to perform task automation. To make a clear un-1105

derstanding of the correlation between the number1106

of nodes in the tool graph and the performance of1107

LLMs in task automation, we conduct a detailed1108

statistical analysis in Table 10. This analysis in-1109

cludes various metrics such as node-wise F1, node1110

set accuracy, edge-wise F1, edge set accuracy, and1111

graph accuracy, which measure the exact-match1112

accuracy of the node set, edge set, and the entire 1113

graph, respectively. 1114

From Table 10, we observed that as the num- 1115

ber of tools in the tool graphs increases, there is a 1116

clear downward trend in various performance met- 1117

rics such as node set accuracy, edge set accuracy, 1118

and graph accuracy. This trend confirms that tool 1119

graphs with a higher number of tools present more 1120

complex challenges for LLMs in task automation. 1121

Specifically, the result shows a significant drop 1122

in performance metrics when moving from sim- 1123

pler graphs (1-2 tools) to more complex ones (3 1124

or more tools). For instance, while single-node 1125

graphs achieve a high graph accuracy of 96.16%, 1126

this metric falls to 39.31% for graphs with 6 tools 1127

and further decreases to 25.00% for 8-node graphs. 1128

This correlation between the number of tools and 1129

the difficulty of the test cases can be attributed to 1130

the increased complexity in understanding and pro- 1131

cessing more extensive and intricate links between 1132

tools. As the number of tools grows, LLMs must 1133

handle a larger set of possible dependencies, which 1134

significantly challenges their predictive and ana- 1135

lytical capabilities. The results from this analysis 1136

underline the importance of continuous advance- 1137

ments in LLM capabilities to keep pace with the 1138

increasing complexity of tasks in various domains. 1139

A.6.2 Few-shot Setting 1140

In-context learning is a crucial capability for LLMs, 1141

that can improve the performance of LLMs by pro- 1142

viding a few examples. In TASKBENCH, we also 1143

provide a fixed number of demonstrations in the de- 1144

signed prompt to advance the capability of LLMs in 1145

automation. Therefore, we also investigate the ef- 1146

fect of the number of demonstrations in our setting. 1147

The results are reported in Table 11 and Figure 4. 1148

We can find that as the number of demonstrations 1149

increases, it can receive significant improvements 1150

of LLMs at different dimensions (e.g., task decom- 1151

position, tool invocation, and parameter prediction). 1152

For example, codellama-13b with a 2-shot setting 1153

can obtain 20.78% and 21.82% improvements to 1154

the zero-shot setting in n-F1 and v-F1. These re- 1155

sults underscore the effect of the demonstrations in 1156

improving LLMs for task automation. 1157

A.7 Detail Comparison of various LLMs 1158

We present the performance of more open-source 1159

large language models (Team, 2023a; Li et al., 1160

2023a; Team, 2023b) on TASKBENCH. The perfor- 1161

mance metrics for task decomposition, tool invoca- 1162
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tion, and parameter prediction are shown in Table1163

12, Table 13, and Table 14, respectively.1164

A.8 Details about Back-Instruct and1165

TASKBENCH1166

Table 4 reports the statistical information of the tool1167

graph and our constructed TASKBENCH datasets1168

across three domains. Notably, it is evident that1169

the two critics we introduced play a crucial role in1170

improving data quality. The rule-based and LLM-1171

based critics respectively filter out an average of1172

15.13% and 22.73% of the samples. In addition,1173

we invited human experts to revise and filter the1174

data. And finally, we obtained 61.76%, 62.71%,1175

and 60.42% of the aligned samples for the three1176

datasets, respectively.1177

We utilize the following prompt template for1178

the “Back-Instruct" Data Engine. Each sample is1179

generated through a single prompting. We assign1180

“instruction”, “tool invocation graph”, and “self-1181

critics” to specific fields in the prompt, and then1182

populate the relevant fields to complete the data1183

generation in a single prompt.1184

Given a tool graph where tools serve as1185
nodes and invoking chains between tools1186
act as edges , the following tools (nodes1187
) are available with their respective1188
descriptions and input/output types:1189
{NODES}1190

1191
These tools can be connected as follows ,1192
where the directed edges represent1193

invoking chains between tools:1194
{EDGES}1195

1196
Based on the above tool graph , please1197
skillfully generate the corresponding1198
task steps , user request , and tool1199
invoking graph.1200

1201
Requirements:1202
1. The generated user request should be1203
clear , self -contained (with user -1204
specified text , image , video , audio , and1205
content included within the request)1206

and practical (designed to help users1207
solve a tangible problem). The task1208
steps must strictly adhere to the tool1209
graph (nodes and edges) and be1210
reasonable. The tool invoking graph must1211
align with both the task steps and the1212

provided tool graph.1213
2. The user request should be1214
decomposable into task steps that the1215
tool invoking graph can solve.1216
3. Each task step must correspond to a1217
tool node in both the tool graph and the1218
tool invoking graph. The number of task1219
steps must equal the number of nodes.1220

Each tool node can only be used once.1221
4. If the user request requires image/1222
audio/video resources , use files named '1223

example .[jpg/mp4/wav/png]'. 1224
5. The dependencies among task steps 1225
must be consistent with the edges of 1226
both the tool graph and the tool 1227
invoking graph. 1228

1229
Now , please generate your result (with 1230
random seed {seed}) in a strict JSON 1231
format: 1232

1233
{ 1234
"task_steps ": [step description for one 1235
or more steps], 1236
"user_request ": "your high -quality and 1237
self -contained synthesized request", 1238
"invoking_graph ": { 1239

"nodes": [ 1240
{ 1241

"id": "tool name", 1242
"input": [either user - 1243
specified text or resource 1244
file 'example .[jpg/mp4/wav/ 1245
png]' from the user request , 1246
or the name of the 1247

dependent tool whose output 1248
this node requires] 1249

} 1250
], 1251
"links": [{" source ": "tool name i", 1252
"target ": "tool name j"}] 1253
}, 1254

"check_by_teacher ": "This field is 1255
filled by your strict and well -trained 1256
teacher , minor mistakes are complete 1257
intolerable to him. He evaluated whether 1258
your synthesized user request , tool 1259

invoking graph are valid and whether 1260
they are aligned with the given tool 1261
graph (strictly checked step by step 1262
according to the above requirements). 1263
Some comments from him place here (start 1264
with 'Let me check your result step by 1265

step , and evaluate the 'Executable ' and 1266
'Correct ' of the tool invoking graph ( 1267
Executable means that the tool invoking 1268
graph executed successfully , regardless 1269
of alignment with the given tool graph. 1270
While Correct implies that the tool 1271
invoking graph are not only 'Executable ' 1272
but also strictly consistent (with 1273

strictly same nodes and same edges) with 1274
the given tool graph). After carefully 1275

evaluating , found some mistakes:' and 1276
end with a conclusion: 'Conclusion: 1277
Executable: no/yes , Correct: no/yes '.) 1278
}: 1279

A.9 Prompt for Inference 1280

For a fair and standardized evaluation, we provide 1281

prompt templates for inference. 1282

# Tools List # 1283
FOR tool in {tool_list }: 1284

{tool["id"]: {tool[" description "]}} 1285
Parameters: {tool[" parameter "]} 1286

END FOR 1287
1288

# GOAL #: 1289
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Based on the above tools , I want you to1290
generate task steps and a task graph (1291
tool invocation graph , including nodes1292
and edges) to address the # USER REQUEST1293
#. The format must be in strict JSON1294

format , like:1295
{1296

"task_steps ": [step description for1297
one or more steps],1298
"task_nodes ": [{1299

"task": "tool name must be from1300
# TOOL LIST #", "1301
arguments ": [a concise list of1302
arguments for the tool. This can1303
be original text , a user -1304

mentioned filename , or the tag1305
'<node -j>' (starting from 0) to1306
refer to the output of the j-th1307
node.]1308
}]1309

"task_links ": [{" source ": "task name1310
i", "target ": "task name j"}],1311

}.1312
1313

# REQUIREMENTS #:1314
1. The generated task steps and task1315
nodes must resolve the given user1316
request # USER REQUEST # perfectly. Task1317
names must be selected from # TASK LIST1318
#.1319

2. The task steps should align strictly1320
with the task nodes , and the number of1321
task steps should be the same as the1322
task nodes.1323
3. The dependencies among task steps1324
should be consistent with the argument1325
dependencies of the task nodes.1326
4. The tool arguments should align with1327
the parameter field of # TASK LIST #.1328

1329
# EXAMPLE #:1330
FOR demo IN {demos}:1331
# USER REQUEST #:1332
{demo[" user_request "]}1333
# RESULT #:1334
{(demo[" result "])}1335
END FOR1336

1337
# USER REQUEST #:1338
{{ user_request }}1339
Now , please generate your result in1340
strict JSON format:1341
# RESULT #:1342

A.10 Tools in the Tool Graph1343

We show some of the tools used in the construc-1344

tion of the tool graph, including the tool name,1345

tool description and parameters of the tool. In the1346

Daily Life APIs domain, we resorted to manual1347

construction because of the scarcity of publicly1348

available APIs. We crafted 40 APIs tailored to1349

common daily life activities such as shopping, edu-1350

cation, and travel. Our focus is solely on producing1351

the API documentation without implementing the1352

actual functionality. Some of the tools on the Hug-1353

ging Face tools, Multimedia tools and Daily Life 1354

APIs domains are shown in Table 15, Table 16, and 1355

Table 17, respectively. 1356

In order to visualize the complete tool graph we 1357

constructed, we take the Multimedia domain as 1358

an example to render the tool graph with resource 1359

dependencies. As shown in Figure 6, nodes in the 1360

graph denote tools, and directed edges indicate that 1361

the output type of the source tool matches the input 1362

type of the target tool. 1363
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Image Downloader

Video Downloader

Audio Downloader

Text Downloader

Text Search

Image Search

Image Search (by Image)

URL Extractor

Video Search

Text-to-Image

Text-to-Video

Text-to-Audio

Image-to-Text

Audio-to-Text

Video-to-Text

Audio Noise Reduction

Audio Effects

Audio Splicer

Voice Changer
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Text Grammar CheckerText Simplifier

Text Expander

Keyword Extractor
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Image-to-Video

Video-to-Audio
Video-to-Image

Image Stitcher

Image Colorizer
Image Style Transfer

Video Stabilizer
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Figure 5: Constructed tool graph with resource dependencies on the Multimedia Tools domain.
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Token Classification

Translation

Summarization

Question Answering

Conversational
Text Generation

Sentence Similarity

Tabular Classification

Object Detection

Image Classification

Image-to-Image

Image-to-Text

Text-to-Image

Text-to-Video

Visual Question Answering

Document Question Answering

Image Segmentation

Depth Estimation Text-to-Speech

Automatic Speech Recognition

Audio-to-Audio

Audio Classification

Image Editing

Figure 6: Constructed tool graph with resource dependencies on the Hugging Face Tools domain.
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Table 5: Comparative analysis of Back-Instruct, Back-Instruct w/o edges, and Self-Instruct.

Method Tools Instruction Tool Invocation Graph

Back-Instruct

" sampled_nodes " : [ { " i d
" : " Audio − to −Image " } ,
{" i d " : " Image C o l o r i z e r
" } , {" i d " : " Image
S t i t c h e r " } , {" i d " : "
Image S t y l e T r a n s f e r " } ,

{" i d " : " Image − to − Text
" } ] ,
" s a m p l e d _ l i n k s " : [ { "
s o u r c e " : " Image S t y l e
T r a n s f e r " , " t a r g e t " : "
Image S t i t c h e r " } , {"
s o u r c e " : " Audio − to −
Image " , " t a r g e t " : "
Image C o l o r i z e r " } , {"
s o u r c e " : " Image
C o l o r i z e r " , " t a r g e t " : "
Image S t y l e T r a n s f e r " } ]

I have an image
(example.jpg) with

some text on it and an
audio file

(example.wav). I’d like
you to extract the text

from the image,
generate a visual

representation of the
audio file, colorize this
visual representation
using the colors from

the original image,
apply the visual style of
the colorized image to

the visual
representation of the

audio, and finally, stitch
these two images

together to create a
panorama or collage.

{" nodes " : [ { " i d " : " Audio − to −
Image " , " i n p u t " : [ " example . wav
" ] } , {" i d " : " Image C o l o r i z e r " ,
" i n p u t " : [ " Audio − to −Image " ] } ,
{" i d " : " Image S t i t c h e r " , " i n p u t
" : [ " example . j p g " , " Image S t y l e

T r a n s f e r " ] } , {" i d " : " Image
S t y l e T r a n s f e r " , " i n p u t " : [ "
Image C o l o r i z e r " , " Audio − to −
Image " ] } , {" i d " : " Image − to − Text
" , " i n p u t " : [ " example . j p g " ] } ] ,
" l i n k s " : [ { " s o u r c e " : " Audio − to −
Image " , " t a r g e t " : " Image
C o l o r i z e r " } , {" s o u r c e " : " Image
C o l o r i z e r " , " t a r g e t " : " Image
S t y l e T r a n s f e r " } , {" s o u r c e " : "
Image S t y l e T r a n s f e r " , " t a r g e t
" : " Image S t i t c h e r " } ] }

Back-Instruct
w/o edges

" sampled_nodes " : [ { " i d
" : " Audio − to −Image " } ,
{" i d " : " Image C o l o r i z e r
" } , {" i d " : " Image
S t i t c h e r " } , {" i d " : "
Image S t y l e T r a n s f e r " } ,

{" i d " : " Image − to − Text
" } ]

I would like to create a
stylized collage from
’example.jpg’ and the

sound of the
’example.wav’ file. The

visual style should be
inspired by the similar

image search result.
The collage should be
colorized, and I would
like any text in the final
image to be extracted.

{" nodes " : [ { " i d " : " Audio − to −
Image " , " i n p u t " : [ " example . wav
" ] } , {" i d " : " Image C o l o r i z e r " ,
" i n p u t " : [ " Image S t y l e T r a n s f e r
" ] } , {" i d " : " Image Se a rc h ( by
Image ) " , " i n p u t " : [ " example . j p g
" ] } , {" i d " : " Image S t i t c h e r " , "
i n p u t " : [ " Audio − to −Image " , "
example . j p g " ] } , {" i d " : " Image
S t y l e T r a n s f e r " , " i n p u t " : [ "
Image S t i t c h e r " , " Image S ea r ch
( by Image ) " ] } , {" i d " : " Image − to
− Text " , " i n p u t " : [ " Image
C o l o r i z e r " ] } ] , " l i n k s " : [ { "
s o u r c e " : " Audio − to −Image " , "
t a r g e t " : " Image S t i t c h e r " } , {"
s o u r c e " : " Image C o l o r i z e r " , "
t a r g e t " : " Image − to − Text " } , {"
s o u r c e " : " Image S ea rc h ( by
Image ) " , " t a r g e t " : " Image S t y l e

T r a n s f e r " } , {" s o u r c e " : " Image
S t i t c h e r " , " t a r g e t " : " Image
S t y l e T r a n s f e r " } , {" s o u r c e " : "
Image S t y l e T r a n s f e r " , " t a r g e t
" : " Image C o l o r i z e r " } ] }

Self-Instruct

" sampled_nodes " : [ { " i d
" : " Audio − to −Image " } ,
{" i d " : " Image C o l o r i z e r
" } , {" i d " : " Image
S t i t c h e r " } , {" i d " : "
Image S t y l e T r a n s f e r " } ,

{" i d " : " Image − to − Text
" } ]

I have a black and
white image of an old

newspaper
(example.jpg) and I

want to colorize it first,
then apply the style of a

modern newspaper
(example.png) to it, and
finally extract the text

from the stylized image.

{" nodes " : [ { " i d " : " Image
C o l o r i z e r " , " i n p u t " : [ " example .
j p g " ] } , {" i d " : " Image S t y l e
T r a n s f e r " , " i n p u t " : [ " Image
C o l o r i z e r " , " example . png " ] } , {"
i d " : " Image − to − Text " , " i n p u t " :
[ " Image S t y l e T r a n s f e r " ] } ] , "
l i n k s " : [ { " s o u r c e " : " Image
C o l o r i z e r " , " t a r g e t " : " Image
S t y l e T r a n s f e r " } , {" s o u r c e " : "
Image S t y l e T r a n s f e r " , " t a r g e t
" : " Image − to − Text " } ] }
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Error Type Example

Incomplete instructions I have a long text and I would like to get a summarized version of it, then
generate an image that represents the main idea of the summarized text.

Impractical instructions I have a text: ’This training vid is amazing! Speed it up by 1.5x please!’.
Analyze the sentiment, expand it, find the video URL and adjust the video speed.

Mismatched parameter
types

I want to find articles related to climate change and analyze their sentiment.
Please translate non-English articles to English.

{" task_nodes ": [{" task": "Text Search", "arguments ":
[" climate change "]}, {"task": "Text Sentiment

Analysis", "arguments ": ["<node -0>"]}, {"task": "
Text Translator", "arguments ": ["<node -1>"]}], "
task_links ": [{" source ": "Text Search", "target ": "
Text Sentiment Analysis"}, {" source ": "Text
Sentiment Analysis", "target ": "Text Translator "}]}

Incorrect parameter
value

I have two audio files from online lectures at the following URLs: ’exam-
ple1.wav’ and ’example2.wav’. I want them combined into a single audio file,
transcribe the speech into text, and check the text for grammatical errors.

{" task_nodes ": [{" task": "Audio Downloader", "
arguments ": [" example1.wav", "example2.wav"]}, {"
task": "Audio Splicer", "arguments ": ["<node -0>"]},
{"task": "Audio -to-Text", "arguments ": ["<node
-1>"]}, {"task": "Text Grammar Checker", "arguments
": ["<node -2>"]}], "task_links ": [{" source ": "Audio
Downloader", "target ": "Audio Splicer"}, {" source ":
"Audio Splicer", "target ": "Audio -to-Text"}, {"
source ": "Audio -to-Text", "target ": "Text Grammar
Checker "}]}

Incorrect Tool
Dependency

I want to create a more engaging version of this short text: ’Join us for a fun-filled
evening!’ and find some videos related to its sentiment.

{" task_nodes ": [{" task": "Article Spinner", "
arguments ": ["<node -2>"]}, {"task": "Text Expander",
"arguments ": ["Join us for a fun -filled evening

!"]}, {"task": "Text Sentiment Analysis", "arguments
": ["<node -1>"]}, {"task": "Video Search", "
arguments ": ["<node -2>"]}], "task_links ": [{" source
": "Text Expander", "target ": "Text Sentiment
Analysis"}, {" source ": "Text Sentiment Analysis", "
target ": "Article Spinner"}, {" source ": "Text
Sentiment Analysis", "target ": "Video Search "}]}

Table 6: Error Analysis on TASKBENCH.

Required Tool Missing Tool Dependency Error Tool Parameter Error

gpt-4 0 2 3
gpt-3.5-turbo 2 8 11
code-llama-13b 4 9 13

Table 7: Error Distribution in Different LLMs.
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LLM Predicted Tool Invocation Graph Error Type

gpt-4

{" task_nodes ": [{" task": "Audio
Downloader", "arguments ": ["https ://
www.example.com/example.wav"]}, {"
task": "Audio Noise Reduction", "
arguments ": ["<node -0>"]}, {"task":
"Audio Effects", "arguments ": ["<
node -1>", "reverb 50%"]} , {"task": "
Audio Splicer", "arguments ": ["<node
-2>", "example.wav "]}]}

None

gpt-3.5-turbo

{" task_nodes ": [{" task": "Audio
Noise Reduction", "arguments ": [""
https ://www.example.com/example.wav
""]}, {"task": "Audio Effects", "
arguments ": ["<node -0>", "reverb
50%"]} , {"task": "Audio Splicer", "
arguments ": ["<node -1>", "example.
wav "]}]}

Missing Required Tool

code-llama-13b

{" task_nodes ": [{" task": "Audio
Noise Reduction", "arguments ": ["
example.wav"]}, {"task": "Audio
Effects", "arguments ": ["<node -0>",
"reverb 50%"]} , {"task": "Audio
Splicer", "arguments ": ["<node -1>",
"<node -0 >"]}]}

Missing Required Tool
Tool Parameter Error
Incorrect Tool Dependency

Table 8: Case Study of Prediction Errors in LLMs.

Correlation Metric Hugging Face Tools Multimedia Tools Daily Life APIs Average

Kendall’s τ 0.89 0.83 0.94 0.89
Spearman’s ρ 0.78 0.62 0.93 0.78

Table 9: Alignment of TASKBENCH with human evaluation. Kendall’s τ alculates the proportion of aligned pairs,
while Spearman’s ρ measures the correlation between the ranks of elements.

# tool nodes supports node set accuracy edge set accuracy graph accuracy

1 (single) 2,059 96.16 - 96.16
2 278 86.33 84.53 84.53
3 1,313 67.93 60.70 60.39
4 1,280 64.29 75.62 54.37
5 731 54.03 70.53 41.58
6 290 50.34 39.31 39.31
7 151 49.66 36.42 36.42
8 60 35.00 25.00 25.00
9 55 38.18 21.81 21.81

10 64 39.06 31.25 31.25

overall 6,281 73.52 67.55 67.25

Table 10: Task automation performance with different number of tools on GPT-4
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Shot LLM R-L ↑ n-F1 ↑ e-F1 ↑ t-F1 ↑ v-F1 ↑

0-shot

gpt-4 79.27 97.23 34.52 97.11 72.05
gpt-3.5-turbo 48.72 86.45 51.77 83.85 56.34
text-davinci-003 55.28 82.13 50.75 80.63 54.83

codellama-13b 59.05 71.55 36.57 63.04 44.21
wizardlm-13b 40.58 65.39 20.87 55.96 38.56
vicuna-13b-v1.5 48.34 68.32 26.73 51.47 35.71
nous-hermes-13b 36.58 50.44 13.96 36.32 25.07

1-shot

gpt-4 83.60 97.78 50.56 97.82 71.28
gpt-3.5-turbo 76.16 90.87 51.14 90.18 62.31
text-davinci-003 81.52 95.08 72.00 94.73 65.52

codellama-13b 84.91 87.21 54.89 83.71 61.76
vicuna-13b-v1.5 75.52 73.96 11.17 62.39 45.81
nous-hermes-13b 73.04 72.69 2.76 63.77 46.48
wizardlm-13b 75.96 67.93 12.26 53.59 39.08

2-shot

gpt-4 91.69 98.02 52.49 97.94 75.15
gpt-3.5-turbo 89.07 96.03 39.72 95.28 69.04
text-davinci-003 90.18 96.59 72.37 96.19 69.29

codellama-13b 87.76 92.33 64.17 88.60 66.03
nous-hermes-13b 78.88 82.42 43.55 74.68 54.39
wizardlm-13b 80.20 79.25 33.51 70.69 52.20
vicuna-13b-v1.5 79.67 79.84 37.50 71.45 51.82

Table 11: Performance in the few-shot setting. Rouge-L (R-L) reflects the performance on task decomposition;
Node F1 (n-F1) and Edge F1 (e-F1) indicate the performance on tool invocation; and Parameter Name F1 (t-F1)
and Parameter Name & Value F1 (v-F1) indicate the performance on parameter prediction.

TASK DECOMPOSITION TASK - Step-by-step task decomposition

LLM
Hugging Face Tools Multimedia Tools Daily Life APIs

R1 ↑ R2 ↑ BsF ↑ R1 ↑ R2 ↑ BsF ↑ R1 ↑ R2 ↑ BsF ↑

gpt-4 52.42 30.38 90.12 60.84 40.08 91.19 85.07 72.36 96.91
gemini-pro 45.96 24.23 89.29 53.02 31.51 90.40 83.36 70.12 96.82
claude-2 44.21 21.12 88.71 48.85 23.59 89.22 82.26 69.88 96.64
text-davinci-003 36.68 17.61 87.03 49.23 27.97 89.21 68.27 50.30 93.59
gpt-3.5-turbo 42.99 21.58 88.47 49.66 28.51 89.54 58.53 39.90 91.29

codellama-13b 38.75 18.37 88.32 44.46 23.30 88.66 89.86 83.27 97.90
wizardlm-13b 34.47 15.38 87.38 35.87 17.55 87.29 82.02 72.43 96.36
vicuna-13b-v1.5 37.12 17.03 87.90 44.75 23.75 88.94 81.76 71.76 96.31
nous-hermes-13b 37.36 16.91 88.18 35.73 16.11 87.53 78.49 68.04 95.61
vicuna-33b-v1.3 33.52 14.75 86.73 31.27 13.37 86.17 54.96 39.71 91.40
codellama-7b 38.97 18.62 88.46 43.76 22.93 88.81 56.98 38.83 91.31
baichuan-13b-chat 19.93 5.97 83.85 20.41 3.77 83.31 49.43 27.25 88.32
llama-2-13b-chat 39.37 18.64 88.67 26.16 7.88 84.82 45.39 22.42 87.74
vicuna-7b-v1.5 27.17 10.02 85.61 39.46 19.83 88.53 40.26 21.19 87.27
mpt-7b-chat 33.21 12.73 87.23 30.94 11.90 86.08 44.54 20.98 87.17
llama-2-7b-chat 24.12 8.68 85.43 34.51 15.91 87.56 37.06 16.49 86.31
internlm-chat-7b 20.53 7.16 83.74 16.64 3.56 82.91 42.94 21.02 86.14
longchat-7b-v1.5 27.09 8.97 85.50 37.85 18.14 87.64 29.05 14.84 83.90

Table 12: Evaluation for task decomposition. The scores for Rouge-1 (R1), Rouge-2 (R2), and BertScore F1 (BsF)
for the generated step descriptions in comparison to the ground truth steps.
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TOOL INVOCATION TASK - Tool invocation graph prediction.

LLM
Node Chain DAG Overall

n-F1 ↑ n-F1↑ e-F1 ↑ NED ↓ n-F1↑ e-F1 ↑ n-F1↑ e-F1 ↑

H
ug

gi
ng

Fa
ce

To
ol

s

gpt-4 84.34 80.79 55.73 39.70 82.86 56.39 81.54 54.70
gemini-pro 77.46 76.12 45.51 43.10 79.05 49.36 76.62 43.50
claude-2 69.83 80.67 48.11 40.03 84.52 53.40 79.00 43.51
gpt-3.5-turbo 56.91 72.63 39.92 46.52 73.79 38.55 69.49 33.36
text-davinci-003 40.71 66.05 36.04 48.57 64.64 34.19 59.38 29.37

codellama-13b 43.68 55.65 17.80 62.23 52.87 13.19 53.16 14.64
baichuan-13b-chat 58.29 52.82 8.07 61.52 53.29 7.82 53.85 7.65
nous-hermes-13b 58.66 52.39 9.01 62.48 51.99 6.33 53.62 8.29
llama-2-13b-chat 43.59 49.87 8.22 64.99 49.60 9.11 48.47 7.30
vicuna-13b-v1.5 51.74 50.37 8.40 66.83 52.46 9.06 50.82 7.28
vicuna-33b-v1.3 42.73 43.39 5.80 71.95 45.09 5.61 43.40 4.82
codellama-7b 18.81 47.70 8.52 63.55 45.20 7.17 37.59 5.35
vicuna-7b-v1.5 36.20 44.79 3.24 69.40 43.94 2.00 42.87 2.76
wizardlm-13b 54.69 54.50 2.22 60.55 52.93 0.92 54.40 2.05
llama-2-7b-chat 14.89 32.61 0.71 81.01 31.47 1.38 27.30 0.74
internlm-chat-7b 33.98 22.86 0.81 85.69 22.01 1.22 24.39 0.83
longchat-7b-v1.5 44.97 49.11 0.52 65.74 48.41 1.04 48.18 0.56
mpt-7b-chat 15.68 22.24 0.08 88.34 21.00 0.45 20.86 0.12

M
ul

tim
ed

ia
To

ol
s

gpt-4 97.13 89.70 69.29 28.93 92.32 71.64 90.90 69.27
gemini-pro 73.61 82.65 55.50 35.62 85.29 57.80 81.54 52.07
claude-2 66.16 83.95 59.22 33.41 82.98 54.28 80.94 53.01
text-davinci-003 59.15 76.87 50.79 38.54 79.00 50.69 73.97 45.81
gpt-3.5-turbo 53.55 76.81 50.30 39.05 78.65 49.52 72.83 44.02

codellama-13b 43.70 66.89 28.77 46.35 68.68 28.79 62.78 24.61
codellama-7b 40.43 56.15 16.90 54.36 57.55 16.71 53.29 14.76
vicuna-13b-v1.5 66.64 59.18 16.49 54.17 61.40 13.95 60.61 14.78
nous-hermes-13b 60.58 58.53 9.47 56.02 59.39 9.57 58.97 8.90
wizardlm-13b 55.13 50.57 4.92 58.46 49.38 5.52 51.24 4.82
baichuan-13b-chat 45.59 41.96 4.95 64.28 42.05 8.46 42.51 5.19
longchat-7b-v1.5 43.54 42.72 4.25 67.09 44.83 5.30 43.08 3.95
vicuna-7b-v1.5 36.22 48.29 4.79 63.49 48.26 4.09 46.06 4.26
llama-2-13b-chat 38.02 45.14 1.62 65.29 45.95 2.11 43.87 1.63
llama-2-7b-chat 16.49 30.00 0.94 76.13 28.81 1.23 26.47 0.91
internlm-chat-7b 36.39 22.21 1.17 84.65 22.53 1.03 23.60 1.14
mpt-7b-chat 11.85 7.99 0.12 95.81 9.40 0.66 8.68 0.18
vicuna-33b-v1.3 27.53 2.89 0.02 97.56 1.82 0.00 6.40 0.01

D
ai

ly
L

ife
A

PI
s

gpt-4 95.97 97.06 83.47 38.69 96.41 42.01 96.91 80.53
claude-2 79.57 95.36 80.68 39.93 93.85 41.04 93.52 75.31
gemini-pro 76.15 92.79 64.58 41.64 89.68 28.42 90.75 59.45
gpt-3.5-turbo 52.18 90.80 70.66 43.50 86.94 30.85 85.37 60.67
text-davinci-003 68.49 82.15 60.12 47.14 76.81 24.54 80.42 54.90

codellama-13b 89.75 87.80 65.92 44.42 83.61 27.47 87.73 63.16
codellama-7b 40.19 62.00 31.11 59.14 58.19 13.35 59.33 27.23
llama-2-13b-chat 34.11 57.61 20.13 67.06 56.18 8.42 55.77 17.02
vicuna-33b-v1.3 30.25 57.34 19.72 62.65 49.13 8.52 52.49 16.37
vicuna-7b-v1.5 46.51 54.01 17.43 65.38 51.68 10.68 52.73 14.23
longchat-7b-v1.5 34.20 49.91 18.17 69.96 53.53 11.93 47.26 14.44
wizardlm-13b 92.27 65.74 14.51 55.80 63.80 9.20 69.34 14.18
vicuna-13b-v1.5 90.59 73.74 13.24 51.43 67.92 5.62 75.67 12.48
baichuan-13b-chat 52.50 52.60 11.59 69.27 52.08 6.53 52.55 10.61
internlm-chat-7b 33.08 29.28 7.06 86.26 22.22 3.62 29.14 6.63
llama-2-7b-chat 20.11 31.68 5.40 83.87 30.88 2.80 30.17 4.27
nous-hermes-13b 92.50 71.17 3.55 53.47 70.65 2.86 73.45 3.50
mpt-7b-chat 14.75 16.24 2.34 93.28 16.18 1.40 15.95 1.69

Table 13: Evaluation for tool invocation. n-F1 and e-F1 for node and edge prediction. NED measures the normalized
number of operations required to correct the prediction for chain structure.
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TOOL PARAMETER PREDICTION TASK - Predicts parameters for the tool execution.

LLM
Node Chain DAG Overall

t-F1↑ v-F1↑ t-F1 ↑ v-F1↑ t-F1 ↑ v-F1↑ t-F1 ↑ v-F1↑

H
ug

gi
ng

Fa
ce

To
ol

s

gpt-4 80.05 74.10 76.66 58.15 78.24 60.03 77.31 60.86
gemini-pro 67.63 56.54 66.60 46.35 70.41 50.56 67.12 48.54
claude-2 48.07 32.14 66.35 45.57 68.59 48.19 63.00 43.08
text-davinci-003 38.51 27.43 56.90 38.76 57.03 38.90 52.53 36.04
gpt-3.5-turbo 37.70 19.81 60.96 41.15 61.33 42.89 55.88 36.32

codellama-13b 20.09 12.58 36.40 21.31 33.43 20.48 32.06 18.87
nous-hermes-13b 46.38 31.06 35.55 13.81 33.06 13.69 37.51 17.66
wizardlm-13b 43.97 25.90 37.34 12.48 38.43 13.79 38.76 15.35
llama-2-13b-chat 29.80 20.54 32.14 13.57 32.16 15.23 31.61 15.38
baichuan-13b-chat 46.18 29.46 30.29 9.55 30.10 10.37 33.17 13.53
longchat-7b-v1.5 34.94 19.37 33.07 11.39 34.06 13.75 33.57 13.94
vicuna-13b-v1.5 25.71 13.11 28.99 11.14 30.04 13.60 28.34 11.85
vicuna-7b-v1.5 20.82 12.56 25.85 10.10 26.09 10.94 24.65 10.81
vicuna-33b-v1.3 20.75 11.89 23.23 9.28 23.97 10.89 22.71 10.07
codellama-7b 13.31 4.48 27.47 11.97 24.94 12.36 22.50 9.20
internlm-chat-7b 20.52 14.08 14.29 4.76 14.44 5.62 15.41 6.64
llama-2-7b-chat 7.61 2.46 15.53 2.81 15.42 4.15 13.05 2.79
mpt-7b-chat 6.30 1.72 10.80 1.84 10.35 2.08 9.61 1.83

M
ul

tim
ed

ia
To

ol
s

gpt-4 95.64 87.12 85.60 69.83 87.57 72.79 87.06 72.31
gemini-pro 62.21 50.48 72.99 55.21 76.13 58.79 71.67 54.82
claude-2 53.81 24.02 75.60 58.12 72.41 52.43 71.63 51.58
gpt-3.5-turbo 44.94 11.96 70.53 47.76 71.82 47.95 65.91 40.80
text-davinci-003 60.30 20.78 69.91 44.76 71.91 45.76 68.48 40.70

codellama-13b 32.01 16.10 52.30 32.51 53.08 33.79 48.19 29.13
codellama-7b 31.79 23.10 39.42 24.50 40.52 26.98 38.04 24.45
vicuna-13b-v1.5 52.72 35.55 39.31 21.00 40.05 21.40 41.62 23.62
nous-hermes-13b 50.11 37.80 41.98 17.89 43.99 20.04 43.60 21.69
wizardlm-13b 49.79 33.59 36.88 14.87 36.61 18.68 39.10 18.74
vicuna-7b-v1.5 28.79 17.79 29.73 12.48 31.38 14.12 29.72 13.74
longchat-7b-v1.5 31.06 21.12 26.97 11.07 28.43 14.16 27.89 13.41
baichuan-13b-chat 40.41 27.87 25.80 8.50 25.87 10.13 28.04 11.77
llama-2-13b-chat 28.49 17.01 30.26 9.66 31.00 11.35 29.99 11.32
internlm-chat-7b 24.01 16.04 12.45 4.81 13.21 5.54 13.75 6.09
llama-2-7b-chat 14.00 7.03 19.73 5.38 19.20 5.78 18.27 5.84
mpt-7b-chat 4.11 2.15 2.84 0.64 3.78 1.20 3.19 1.02
vicuna-33b-v1.3 9.51 4.71 0.90 0.16 0.37 0.12 2.47 1.09

D
ai

ly
L

ife
A

PI
s

gpt-4 95.83 76.21 97.23 70.67 95.95 69.65 97.02 71.14
claude-2 78.12 59.43 94.72 65.30 91.83 66.39 92.71 64.72
gemini-pro 69.88 45.41 91.66 57.93 88.50 53.91 88.95 56.22
gpt-3.5-turbo 43.81 28.77 89.21 61.11 83.88 56.13 81.97 55.66
text-davinci-003 61.68 45.53 80.68 54.54 76.51 51.91 78.37 53.40

codellama-13b 86.34 71.20 84.31 61.51 80.42 60.18 84.26 62.38
nous-hermes-13b 79.69 63.29 62.64 45.32 63.26 45.74 64.47 47.22
vicuna-13b-v1.5 83.63 67.71 61.80 44.54 57.14 41.72 64.27 47.31
wizardlm-13b 89.27 72.96 50.68 36.48 49.03 35.75 55.00 40.53
codellama-7b 31.62 21.16 56.33 37.20 52.56 33.46 52.99 34.81
vicuna-33b-v1.3 21.13 17.20 44.61 32.72 35.69 27.01 39.95 29.64
vicuna-7b-v1.5 27.71 19.81 38.25 25.82 37.16 24.65 36.30 24.67
baichuan-13b-chat 32.47 21.72 38.31 24.24 36.84 21.84 37.48 23.77
llama-2-13b-chat 10.39 7.32 38.89 25.37 36.43 23.40 35.11 22.94
longchat-7b-v1.5 14.99 12.11 28.37 19.60 31.25 22.22 25.73 18.18
internlm-chat-7b 18.67 15.22 19.56 13.50 14.48 10.80 19.21 13.48
llama-2-7b-chat 6.60 4.21 16.85 10.53 16.95 10.46 14.94 9.34
mpt-7b-chat 2.80 2.03 6.45 4.14 5.74 3.25 5.34 3.45

Table 14: Evaluation for tool parameter prediction. Parameter Name F1 (t-F1) evaluates (task, parameter name)
pairs, while v-F1 assesses (task, parameter name, parameter value) triples.
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Name Description Parameters

Translation Translation is the task of converting text from one language to
another. [’text’]

Summarization

Summarization is the task of producing a shorter version of a
document while preserving its important information. Some

models can extract text from the original input, while other models
can generate entirely new text.

[’text’]

Question
Answering

Question Answering models can retrieve the answer to a question
from a given text, which is useful for searching for an answer in a

document.
[’text’, ’text’]

Text Generation Generating text is the task of producing new text. These models
can, for example, fill in incomplete text or paraphrase. [’text’]

Object
Detection

Object Detection models allow users to identify objects of certain
defined classes. Object detection models receive an image as input
and output the images with bounding boxes and labels on detected

objects.

[’image’]

Image
Classification

Image classification is the task of assigning a label or class to an
entire image. Images are expected to have only one class for each

image. Image classification models take an image as input and
return a prediction about which class the image belongs to.

[’image’]

Image-to-
Image

Image-to-image is the task of transforming a source image to
match the characteristics of a target image or a target image

domain. Any image manipulation and enhancement is possible
with image to image models.

[’image’]

Image-to-Text
Image to text models output a text from a given image. Image

captioning or optical character recognition can be considered as
the most common applications of image to text.

[’image’]

Text-to-Image Generates images from input text. These models can be used to
generate images based on text prompts. [’text’]

Text-to-Video Generates videos from input text. These models can be used to
generate videos based on text prompts. [’text’]

Visual Question
Answering

Visual Question Answering is the task of answering questions
based on an image. [’image’, ’text’]

Image
Segmentation

Image Segmentation divides an image into segments where each
pixel in the image is mapped to an object. This task has multiple
variants such as instance segmentation, panoptic segmentation and

semantic segmentation.

[’image’]

Depth
Estimation

Depth estimation is the task of predicting depth of the objects
present in an image. [’image’]

Text-to-Speech

Text-to-Speech (TTS) is the task of generating natural sounding
speech given text input. TTS models can be extended to have a
single model that generates speech for multiple speakers and

multiple languages.

[’text’]

Automatic
Speech

Recognition

Automatic Speech Recognition (ASR), also known as Speech to
Text (STT), is the task of transcribing a given audio to text. It has

many applications, such as voice user interfaces.
[’audio’]

Audio-to-
Audio

Audio-to-Audio is a family of tasks in which the input is an audio
and the output is one or multiple generated audios. Some example

tasks are speech enhancement and source separation.
[’audio’]

Audio
Classification

Audio classification is the task of assigning a label or class to a
given audio. It can be used for recognizing which command a user

is giving or the emotion of a statement, as well as identifying a
speaker.

[’audio’]

Image Editing
Image editing is the task of modifying an image to match a given

text description. It can be used to modify the attributes of an
image, such as the color of an object or the background.

[’text’, ’image’]

Table 15: Hugging Face tools and their descriptions
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Name Description Parameters
Image

Downloader Downloads an image from a given URL. [’url’]

Video
Downloader Downloads a video from a given URL. [’url’]

Audio
Downloader Downloads an audio file from a given URL. [’url’]

Text
Downloader Downloads the text content from a given URL. [’url’]

Text Search Searches for a specific text or keyword on the internet. [’text’]
Image Search Searches for images on the internet based on a given query. [’text’]

URL Extractor Extracts URL from text [’text’]
Video Search Searches for videos on the internet based on a given query. [’text’]
Text-to-Video Generates a video based on a given text description. [’text’]
Text-to-Audio Generates an audio file based on a given text description. [’text’]

Image-to-Text Extracts text from an input image using Optical Character
Recognition (OCR). [’image’]

Audio-to-Text Transcribes speech from an audio file into text. [’audio’]
Video-to-Text Transcribes speech from a video file into text. [’video’]
Audio Noise
Reduction

Reduces background noise or unwanted sounds from a given audio
file. [’audio’]

Audio Effects Applies various audio effects to a given audio file according to
human instruction, such as reverb, chorus, or equalization. [’audio’, ’text’]

Audio Splicer Combines two audio files into a single output file. [’audio’, ’audio’]

Voice Changer Modifies the characteristics of a recorded voice according to
human instruction, such as tone, pitch, or gender. [’audio’, ’text’]

Text
Summarizer

Summarizes a given text into a shorter version while retaining the
main points. [’text’]

Text Translator Translates a given text from one language to english. [’text’]
Text Sentiment

Analysis
Analyzes the sentiment of a given text, identifying if it is positive,

negative, or neutral. [’text’]

Text Grammar
Checker

Checks a given text for grammatical errors and suggests
corrections. [’text’]

Text Simplifier Rewrites a given text in a simpler and more understandable
manner. [’text’]

Keyword
Extractor

Extracts the most important keywords and phrases from a given
text. [’text’]

Text
Paraphraser

Rewrites a given text using different words while maintaining its
original meaning. [’text’]

Topic
Generator Generates a list of relevant topics or ideas based on a given input. [’text’]

Audio-to-
Image

Generates an image that visually represents a given audio, such as
a waveform or spectrogram. [’audio’]

Video-to-
Audio Extracts the audio track from a given video file. [’video’]

Video-to-
Image Extracts a still image from a given video. [’video’]

Image Stitcher Stitches together two input images to create a panorama or collage. [’image’,
’image’]

Image
Colorizer

Adds color to a black and white input image using deep learning
techniques. [’image’]

Video Stabilizer Stabilizes a shaky input video to produce a smoother output video. [’video’]
Video Speed

Changer
Adjusts the playback speed of a given video according to human

instruction, either speeding it up or slowing it down. [’video’, ’text’]

Video Synchro-
nization

Synchronizes the timing of an existing voiceover or audio file with
the visuals of a given video. [’video’, ’audio’]

Table 16: Multimedia tools and their descriptions
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API Name API Description Parameter Names
get_news_for_topic Get the news for a specific topic [’topic’]

stock_operation Do a specific operation on a specific stock [’stock’, ’operation’]

book_flight Book a flight for a specific date, from a
specific location to a specific destination [’date’, ’from’, ’to’]

book_hotel Book a specific hotel for a specific date [’date’, ’name’]

book_car Book a car for a specific date, in a specific
location [’date’, ’location’]

online_shopping Buy a product from a specific website [’website’, ’product’]

send_email Send an email to a specific email address [’email_address’,
’content’]

send_sms Send an sms to a specific phone number [’phone_number’,
’content’]

share_by_social_network Share a specific content by a specific social
network

[’content’,
’social_network’]

book_restaurant Book a specific restaurant for a specific
date [’date’, ’name’]

search_by_engine Search a specific query by a specific search
engine [’query’, ’engine’]

apply_for_job Apply for a specific job [’job’]
see_doctor_online See a specific doctor for a specific disease [’disease’, ’doctor’]

consult_lawyer_online Consult a specific lawyer for a specific
legal issue [’issue’, ’lawyer’]

enroll_in_course Enroll in a specific course at a specific
university [’course’, ’university’]

buy_insurance Buy a specific insurance from a specific
insurance company

[’insurance’,
’company’]

online_banking Do a specific banking operation online at a
specific bank [’instruction’, ’bank’]

daily_bill_payment Pay a specific bill [’bill’]
sell_item_online Sell a specific item at a specific online store [’item’, ’store’]

do_tax_return Do the tax return for a specific year [’year’]
apply_for_passport Apply for a passport [’country’]
pay_for_credit_card Pay for a specific credit card [’credit_card’]

auto_housework_by_robot Let a robot do a housework by following a
specific instruction [’instruction’]

auto_driving_to_destination Let a car drive to a specific destination [’destination’]

deliver_package Deliver a specific package to a specific
destination

[’package’,
’destination’]

order_food_delivery Order a specific food to be delivered to a
specific location at a specific platform

[’food’, ’location’,
’platform’]

order_taxi Order a taxi to a specific location at a
specific platform [’location’, ’platform’]

play_music_by_title Play a specific music by a specific title [’title’]

Table 17: Daily Life APIs and their descriptions
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