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Abstract
Understanding the speaking style, such as the emotion of the in-
terlocutor’s speech, and responding with speech in an appropriate
style is a natural occurrence in human conversations. However,
technically, existing research on speech synthesis and speaking
style captioning typically proceeds independently. In this work,
an innovative framework, referred to as UniStyle, is proposed to
incorporate both the capabilities of speaking style captioning and
style-controllable speech synthesizing. Specifically, UniStyle con-
sists of a UniConnector and a style prompt-based speech generator.
The role of the UniConnector is to bridge the gap between different
modalities, namely speech audio and text descriptions. It enables
the generation of text descriptions with speech as input and the
creation of style representations from text descriptions for speech
synthesis with the speech generator. Besides, to overcome the is-
sue of data scarcity, we propose a two-stage and semi-supervised
training strategy, which reduces data requirements while boosting
performance. Extensive experiments conducted on open-source
corpora demonstrate that UniStyle achieves state-of-the-art per-
formance in speaking style captioning and synthesizes expressive
speech with various speaker timbres and speaking styles in a zero-
shot manner.

CCS Concepts
• Computing methodologies→ Natural language generation;
• Human-centered computing→ Human computer interaction
(HCI).
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1 Introduction
In human speech, speaking style effectively communicates paralin-
guistic elements, such as emotions, emphasis, and intentions [26].
During interactions, individuals typically understand the speaking
style of others and respond with speech in an appropriate style,
underscoring the crucial role of speaking style in conversations.
In this paper, we pioneer unified modeling for both speaking style
understanding and stylistic speech synthesizing.

Earlier work, whether in understanding speaking styles [2, 11] or
in synthesizing stylistic speech [1, 28], was conducted based on lim-
ited categories, such as several commonly used emotion categories.
For instance, Shirian et al. [34] focused on the emotion recogni-
tion task and achieved this task with a cross-entropy loss-based
classification framework. Correspondingly, in [1, 5], the explicit
emotion labels are used as input to control the style of synthe-
sized speech. While these methods can, to some extent, describe
or control speaking style, the diversity of speaking styles makes it
challenging for such style labels to represent the comprehensive
range of real speech styles effectively.

In contrast, natural language exhibits a rich expressive capacity,
providing a natural advantage in presenting complex and diverse
speech styles. Most recently, several efforts have been conducted
towards understanding speech styles using language [42, 43], i.e.,
generating style descriptions for speech, which task is commonly
known as speech style captioning. Yamauchi et al. [43] made a
groundbreaking advancement in the field of end-to-end generation
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of speaking styles. In their work, an automatic speaking style cap-
tioning model, named StyleCap, was proposed to generate speaking
captions using a large language model (LLM) with speech repre-
sentation as input. Compared to conventional classification-based
approaches, this speaking style captioning-based method demon-
strates notable advantages in the diversity of speaking style under-
standing, and it offers more dimensions for describing speaking
styles, such as variations in pitch and pace.

Similarly, natural language style descriptions have recently been
attempted for speech synthesis to control the style of synthesized
speech [10, 27, 30, 44]. Beyond single style label-based speech syn-
thesis, PromptTTS [10] proposes to use style descriptions to guide
the style expression of synthesized speech successfully across mul-
tiple dimensions, such as gender, pitch, pace, volume, and emotion.
Recently, PromptTTS 2 [22] introduces a diffusion-based variation
network to generate more consistent speech from text descriptions.
PromptStyle [27] leverages a cross-modal style encoder to extract
style representations from natural language text descriptions and
generates high-quality speech through a VITS [19] model. Intu-
itively, employing natural language descriptions to control speech
generation is a convenient and user-friendly way that offers precise
control over stylistic attributes.

Although notable progress has been made in speaking style cap-
tioning and text description-based speech synthesizing in their
respective tasks, it is regrettable that no work has yet unified these
two tasks to achieve a human-like ability that encompasses both un-
derstanding and expression. As a result, it remains an open question
whether these two tasks can mutually benefit and enhance each
other’s effectiveness despite the intuitive overlap in the information
they share.

To bridge this gap and investigate the potential benefits of unify-
ing speaking style captioning and text description-based speech syn-
thesis, we propose a unified model named UniStyle, which is a novel
framework designed to have the capability in both speaking style
captioning and stylistic speech synthesizing. Specifically, UniStyle
comprises a UniConnector and a style prompt-based speech gen-
erator. The UniConnector establishes speaking style alignment
between speech and text modalities, which extracts style repre-
sentations and generates style captions for input speech. With the
style representations, the style prompt-based speech generator syn-
thesizes expressive speech with a corresponding style expression.
Moreover, to address the challenge of data scarcity, we propose
a two-stage and semi-supervised training strategy. This strategy
optimally leverages both description-labeled and unlabeled data,
which exposes UniStyle to large-scale corpora, thus effectively im-
proving the overall performance. Our approach is validated through
extensive experiments on the open-source TextrolSpeech [15] and
Libriheavy [17] corpora. Results demonstrate UniStyle’s superior ca-
pability in speaking style captioning and stylistic speech synthesis.
Audio samples are available at https://zxf-icpc.github.io/UniStyle/.

The key contributions of our work are summarized as follows:

• We introduce UniStyle, a pioneering framework that es-
tablishes a cross-modal speaking style alignment, enabling
seamless integration of speaking style captioning and stylis-
tic speech synthesis.

• We propose a novel two-stage and semi-supervised train-
ing strategy that reduces data requirements while boosting
performance.

• Our approach achieves state-of-the-art performance in speak-
ing style captioning and equips zero-shot TTS with speaking
style control, allowing for expressive speech synthesis with
various speaker timbres and speaking styles.

2 Related Work
2.1 Speaking Style Captioning
Speaking styles encompass various aspects, including tone, pitch,
rhythm, and emotional expressiveness [15]. Speaking style caption-
ing aims to capture these nuanced features from speech, presenting
a significant challenge due to their subtle and context-dependent
nature [43]. Conventional approaches focus on classifying and rec-
ognizing predefined categories from speech signals [14], typically
involving three key components: feature extraction, projection,
and classification. Thanks to innovative model architectures, large
training corpora, and various loss functions, significant advance-
ments have been achieved in such classification and recognition
tasks [2, 9, 11, 29].

However, the complexity and diversity of speaking styles inher-
ent in human speech often render categorization into predefined
classes insufficient. Recently, there has been a growing interest
in utilizing natural language to describe speaking style in speech.
Notably, StyleCap [43] utilizesWavLM [6] for speech feature extrac-
tion and trains a mapping network to extract style-related vectors,
which are then input into LLaMA [37] to generate detailed speaking
style descriptions. Besides, SECap [42] leverages HuBERT [12] for
speech feature extraction and employs Q-Former as the Bridge-Net
to provide LLaMA with emotion-related speech features. SECap
further enhances the captioning capability through diverse instruc-
tions and generates precise speech emotion captions.

2.2 Stylistic Speech Synthesis
Stylistic speech synthesis addresses the fundamental challenge of
TTS, which involves mapping text input to diverse speech outputs
with various speaking styles. Mainstream research in this area can
be broadly categorized into categorical label-based TTS [1, 20, 28,
48] and reference speech-based TTS [21, 24, 35, 46]. Categorical
label-based methods rely on a predefined set of auxiliary categorical
labels to represent individual styles. However, the discrete nature
of categorical labels often results in over-averaged stylistic expres-
sions, limiting the diversity and naturalness of synthetic speech.
In contrast, reference speech-based methods utilize a reference en-
coder to model various expressive styles from reference speech.
While reference speech-based methods offer more flexibility and
diversity, the learned style representations lack interpretability, and
selecting an appropriate reference speech can be challenging for
arbitrary input texts. [45, 47].

A compromise approach has emerged recently, allowing user-
friendly control of speaking style in synthetic speech through text
descriptions [10, 22, 27, 30, 39, 44]. For instance, PromptTTS [10]
proposes to use a style description from five different factors (i.e.,
gender, pitch, speaking speed, volume, and emotion) to guide the
style expression for the generated speech. Additionally, PromptTTS

https://zxf-icpc.github.io/UniStyle/


UniStyle: Unified Style Modeling for Speaking Style Captioning and Stylistic Speech Synthesis MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

UniConnector

Speech Generator

Synthetic Speech

Text Sequence

Acoustic Prompt

S
x

Speech

Learnable Queries

Text Description

Speaking Style Caption

Feeling sorrowful and powerless, accompanied by a sense of profound 
pessimism.

Feeling sad and helpless, with a very 
pessimistic mood.

Figure 1: Overview of the proposed UniStyle.

2 [22] introduces a diffusion-based variation network, which cap-
tures voice variability and produces speech more consistent with
text descriptions. InstructTTS [44] synthesizes stylistic speech
through a three-stage training approach to capture semantic in-
formation from natural language style descriptions. Furthermore,
PromptStyle [27] leverages a cross-modal style encoder to extract
style representations from natural language text descriptions. These
representations are then integrated into an improved VITS [19]
model for stylistic speech synthesis. Adopting natural language text
descriptions for style control represents a promising direction for
the future development of controllable TTS systems, which offer
user-friendliness, generalizability, and interpretability.

3 Approach
3.1 Framework Overview
UniStyle aims to have both the ability to generate style captions
from speech input and the capability to synthesize speech with
the style described by text descriptions. To achieve this goal, bridg-
ing the gap between text description and speech plays a crucial
role. As depicted in Figure 1, within the proposed UniStyle frame-
work, a module designed to handle multi-modal input, referred to
as UniConnector, assumes this role. To be specific, UniConnector
utilizes learnable queries to obtain style information from different
modalities, including speech and text, through joint optimization
of several objectives. This style information can be directly used
by UniConnector to generate textual speaking style captions. Ad-
ditionally, the style features obtained by UniConnector can serve
as the style prompt to assist the speech generator in synthesizing
speech with the corresponding style.

In the following sections, we begin by introducing the proposed
style prompt-based speech generator, assuming that we have al-
ready obtained the style feature 𝑆 from UniConnector. Then, we
will delve into the detailed structure of UniConnector, discussing
how it handles speech style captioning, as well as the process of
creating style features based on text descriptions.

3.2 Style Prompt-based Speech Generator
Inspired by the impressive performance and widespread usage of
VALL-E [40], an LM-based TTS model, we adopt a similar structure
for the design of the speech generator with an additional style

prompt. This allows for style-controllable speech synthesis via
either reference speech or text descriptions.

In the vanilla VALL-E, the speech audio is discretized by a speech
codec [7], so that a typical language model can be used to model
these discrete tokens based on input texts. Specifically, the speech
codec employs a convolutional encoder-decoder model with resid-
ual vector quantization (RVQ). The encoder discretizes the speech
into acoustic tokens 𝐴𝑇 ∗𝑛 , where 𝑇 denotes the frame number and
𝑛 represents the number of codebooks. The speech codec decoder
reconstructs the waveform from acoustic tokens. VALL-E regards
zero-shot TTS as a conditional codec language modeling task, train-
ing neural language models to generate target acoustic tokens 𝐴
conditioned on a phoneme sequence 𝑥 and an acoustic prompt 𝐴𝑝

with the optimization objective of max 𝑝 (𝐴|𝑥,𝐴𝑝 ). Considering the
hierarchical structure of acoustic tokens, VALL-E designs autore-
gressive (AR) and non-autoregressive (NAR) conditional language
models to predict these tokens hierarchically. The AR language
model follows a decoder-only transformer architecture and pre-
dicts the first-layer acoustic token𝐴:,1 conditioned on text sequence
𝑥 and acoustic prompts 𝐴𝑝

:,1, which can be formulated as

𝑝 (𝐴:,1 |𝑥,𝐴𝑝

:,1;𝜃𝐴𝑅) =
𝑇∏
𝑡=0

𝑝 (𝐴𝑡,1 |𝐴<𝑡,1, 𝑥, 𝐴
𝑝

:,1;𝜃𝐴𝑅) . (1)

The NAR language model maintains the same structure as the AR
language model, predicting the subsequent layer acoustic tokens
𝐴:,2:𝑛 based on the first-layer acoustic tokens 𝐴:,1, text sequence 𝑥 ,
and acoustic prompts 𝐴𝑝 , which is expressed as

𝑝 (𝐴:,2:𝑛 |𝑥,𝐴𝑝 ;𝜃𝑁𝐴𝑅) =
𝑛∏
𝑖=2

𝑝 (𝐴:,𝑖 |𝐴:,<𝑖 , 𝑥, 𝐴
𝑝 ;𝜃𝑁𝐴𝑅) (2)

However, the use of short, fixed-length acoustic prompts, typi-
cally around 3 seconds, poses challenges in conveying a comprehen-
sive speaking style. Different from this method, which relies solely
on acoustic prompts, we introduce an additional style prompt to the
speech generator. This approach aims to provide more comprehen-
sive style-related information and simultaneously enables control
through text descriptions with the support of the proposed UniCon-
nector. Specifically, assuming that we have already obtained the
style embedding 𝑆 from UniConnector, the formulation of modeling
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the codec from the first layer can be described as follows:

𝑝 (𝐴:,1 |𝑆, 𝑥,𝐴𝑝

:,1;𝜃𝐴𝑅) =
𝑇∏
𝑡=0

𝑝 (𝐴𝑡,1 |𝐴<𝑡,1, 𝑆, 𝑥, 𝐴
𝑝

:,1;𝜃𝐴𝑅) . (3)

For the NAR component, given that the main style-related informa-
tion is modeled by the ARmodel, we do not include the style prompt
in this part. Instead, we use the same NAR modeling approach as
employed in VALL-E.

3.3 Multi-modal UniConnector
In the UniStyle framework, the UniConnector is designed to bridge
the gap between speech and text modalities, enabling the extrac-
tion of style representations and the generation of speaking style
captions from text inputs and speech inputs, respectively. Inspired
by the Q-former’s method [23] for handling cross-modal tasks,
the UniConnector employs learnable queries to facilitate various
tasks by selectively attending to different information. As shown
in Figure 2, the learnable queries interact with input speech us-
ing cross-attention. Here, the input speech is presented with the
representations extracted by a pre-trained self-supervised learning
model called WavLM [6]. The interaction between the learnable
queries and text input is achieved by a shared self-attention block, in
which the specific attention spans are managed using various atten-
tion masks to achieve different purposes, i.e., speech-text matching
(STM), speech-text contrastive learning (STC), and speaking style
captioning (SSC).

Specifically, STM judges whether the input speech and text de-
scriptions are stylistically consistent by integrating information
from both modalities. For this purpose, the learnable queries need
to obtain information from the input text and then integrate it with
the speech modality via cross-attention. Therefore, the attention
mechanism for STM is bidirectional, which implies that the STM
mask does not actually employ a masking operation. In practice,
the style embedding obtained under the STM mask goes through a
binary linear classifier to determine whether the current speech-
text pair is matched or not. The corresponding binary classification
loss for the optimization is denoted by L𝑆𝑇𝑀 .

The purpose of STC is to enhance the connectivity between dif-
ferent modal features from a global feature perspective, thereby
aligning the style features from text descriptions with the style em-
beddings of speech within a unified space. This enables the retrieval
of the most suitable speech from the database through nearest-
neighbor searches based on style text descriptions, thereby facili-
tating the acquisition of speaking style embeddings 𝑆 for speech
synthesis. To this end, style embedding obtained by the learnable
queries should only access speech input rather than the text descrip-
tion. Therefore, the STC mask restricts queries and text embeddings
to only attend to themselves, preventing them from accessing the
other modality. In practice, we calculate the pairwise similarity
between the learnable query-based style embedding and the text-
based global feature, typically the embedding of the token [CLS] as
that in the BERT [8], and optimize the highest similarity of positive
pairs against those of negative pairs, and the corresponding loss is
denoted by L𝑆𝑇𝐶 .

As for the style caption generation, we treat it as an AR genera-
tion task so that during the inference stage, text descriptions can

Self Attention

SSC Mask

Learnable Queries

STM Mask

Text Description

Cross Attention

Feed Forward Feed Forward

STC Mask

CLS Embedding Predicted Caption LogitsStyle Embedding

STM Loss STC Loss SSC Loss

x N

Speech

WavLM

Projection Projection Projection

Embedding Layer

Figure 2: Model architecture of the UniConnector.

be progressively generated based on previous information. To this
end, following the image-grounded text generation method in [23],
a causal self-attention mask, here referred to as SSC mask, is used
to control query-text interaction. With the SSC attention mask, the
queries can only attend to themselves, while textual token embed-
ding in the current time can only access historical text embeddings
but all information from queries. The training loss L𝑆𝑆𝐶 for SSC is
a cross-entropy loss for a typical text generation task.

3.4 Two-stage and Semi-supervised Training
Strategy

To address the challenge of data scarcity, we propose a two-stage
and semi-supervised training strategy. We leverage two types of
data: a description-labeled corpus 𝐷𝑙 containing instances in the
format of <text, speech, text description> and an unlabeled corpus
𝐷𝑢 comprising instances in the format of <text, speech>.

In the first stage, we pre-train each component of UniStyle sepa-
rately. The UniConnector is trained on 𝐷𝑙 with the following loss
function:

L𝑎𝑙𝑖𝑔𝑛 = L𝑆𝑇𝐶 + L𝑆𝑇𝑀 + L𝑆𝑆𝐶 , (4)

where L𝑆𝑇𝐶 , L𝑆𝑇𝑀 , L𝑆𝑆𝐶 represent the loss of speech-text con-
trastive learning, speech-text matching, and speaking style caption-
ing, respectively. Simultaneously, we pre-trained vanilla VALL-E
on 𝐷𝑢 as the initiation of the speech generator with the original
loss L𝐿𝑀 , which calculates the cross-entropy (CE) loss between
predicted and ground-truth acoustic tokens. In the second stage,
we employ a semi-supervised strategy to fine-tune UniStyle using
𝐷𝑙 and 𝐷𝑢 . The finetuning objective is formulated as follows.

L𝑓 𝑡 =
∑︁
𝑑∈𝐷𝑙

L𝑎𝑙𝑖𝑔𝑛 +
∑︁

𝑑∈𝐷𝑙∪𝐷𝑢

𝜆𝐿𝑀L𝐿𝑀 , (5)
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Table 1: The corpus used to train each model. ‘*’ means the corpus is used in the second stage during fine-tuning.

Corpus StyleCap SECap PromptStyle Salle SC VALL-E Vec-Tok Speech UniStyle-P UniStyle UniStyle-L

TextrolSpeech [15] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ * ✓ *
Libriheavy [17] ✓ ✓ ✓ ✓ ✓ *

where 𝜆𝐿𝑀 is the weight of L𝐿𝑀 . During the second stage, the
parameters of the speech speech generator are frozen.

4 Experimental Setup
4.1 Dataset
We perform experiments on two open-source corpora. The Tex-
trolSpeech [15] corpus comprises 330 hours of English speech data
and 236,220 pairs of style prompts in natural text descriptions, each
associated with corresponding speech samples and five style fac-
tors, including gender, pitch, speaking speed, volume, and emotion.
The Libriheavy [17] corpus, a large-scale ASR corpus, consists of
50,000 hours of read English speech derived from LibriVox. Libri-
heavy is a labelled version of Librilight [16] with fully formatted
text transcripts. We resample all recordings to 16k Hz.

4.2 Implement Details
Following Q-Former [23], the query number is set to 32. We initial-
ize the UniConnector with pre-trained weights from the BERT-base
model [8], with the cross-attention layers and feed-forward for
learnable queries being randomly initialized. We use a pre-trained
WavLM-Large model1 as the frozen speech encoder. Regarding the
speech generator, we employ AudioDec [41] as the speech codec
and use the libritts v1 model2 to extract speech tokens. The AR and
NAR language models follow the same transformer architecture
with 12 layers, 16 attention heads, an embedding dimension of 1024,
a feed-forward layer dimension of 4096, and a dropout rate of 0.1.
In inference, the length of the acoustic prompt is set to 3 seconds.

In the first stage of training, the UniConnector is pre-trained up
to 64k steps on 2 NVIDIA A100 80GB GPUs with a batch size of 160
for each GPU. The speech generator is pre-trained on 8 NVIDIA
A6000 48GB GPUs, with a batch size of 6 for each GPU, for 400k
steps. We utilize the original optimizers from vanilla Q-Former and
VALL-E to optimize each model. In the second stage, we fine-tune
UniStyle on 8 NVIDIA A6000 48GB GPUs, with a batch size of 4
per GPU for 300k steps. We modify the data loader to ensure that
each mini-batch contains 2 samples with text descriptions and the
loss weight 𝜆𝐿𝑀 is set to 0.5. The models are optimized using the
AdamW optimizer, with the learning rate warmed up for the first
50,000 updates to a peak of 1𝑒−4, followed by linear decay.

During inference, as there are tens of millions of speech utter-
ances in the database, we introduce vector quantization (VQ) to
filter out reference speech with expressions of similar style and
accelerate the retrieval process. We conduct the k-means algorithm
on style embeddings to obtain 8192 clusters. The style embeddings
in the center of clusters form a core subset of style expressions. The
[CLS] embedding of the input text description retrieves the most
suitable style embeddings from the core subset.

1https://huggingface.co/microsoft/wavlm-large
2https://github.com/facebookresearch/AudioDec

4.3 Comparison Systems
To assess the performance of UniStyle, we implement the following
systems. As those comparison systems have different requirements
for corpora, the training corpora for each system are listed in Ta-
ble 1.

• StyleCap [43]: An end-to-end method for generating speak-
ing style prompts from speech. StyleCap utilizes WavLM
to extract speech features and trains a mapping network to
extract style-related vectors, which are then fed into LLaMA
to generate speaking style descriptions.

• SECap [42]: A framework that generates high-quality style
captions. It usesHuBERT to extract speech features, Q-Former
as the Bridge-Net, and LLaMA as the text decoder to produce
coherent style captions.

• PromptStyle [27]: A VITS model that controls speaking
styles through text descriptions. PromptStyle employs a
cross-modal style encoder to extract style representations
from text descriptions. We replace the speaker ID in Prompt-
Style with a pre-trained speaker encoder, Resemblyzer3, to
support zero-shot TTS.

• Salle [15]: A modified VALL-E model that controls speaking
styles through text descriptions. Salle directly prepends text
descriptions to the input sequence in the AR language model
of VALL-E.

• SC VALL-E [18]: A modified VALL-E model that controls
speaking styles through reference speech. SC VALL-E incor-
porates style tokens and designs a style network in the NAR
language model of VALL-E.

• Vec-Tok Speech [49]: A large-scale speech generationmodel
that controls speaking styles through reference speech. It
utilizes a style and speaker prompt to provide style expres-
sion for the LM and speaker identity for the codec decoder,
respectively.

• UniStyle-P: The proposed UniConnector and speech gener-
ator of UniStyle, which are pre-trained, respectively.

• UniStyle: The proposed framework uses the two-stage train-
ing strategy, with fine-tuning conducted on the Textrol-
Speech corpus in the second stage.

• UniStyle-L: The proposed framework employs the two-
stage and semi-supervised training strategy, with fine-tuning
conducted on the TextrolSpeech and Libriheavy corpora in
the second stage.

4.4 Evaluation Metrics
To evaluate the performance of speaking style captioning, we adopt
the following metrics commonly used in natural language gener-
ation tasks. BLEU@4 [33] measures the n-gram overlap between

3https://github.com/resemble-ai/Resemblyzer

https://huggingface.co/microsoft/wavlm-large
https://github.com/facebookresearch/AudioDec
https://github.com/resemble-ai/Resemblyzer
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generated and annotated captions. METEOR [3] evaluates the over-
all quality of generated captions by considering precision, recall,
and alignment between generated and reference captions. ROUGE-
L [25] computes the longest common subsequence between gener-
ated and reference captions. CIDEr [38] measures the consensus
between generated and reference captions, considering both n-gram
overlap and semantic similarity. We adopt sacrebleu4 to calculate
BLEU@4, pycocoevalcap5 to calculate ROUGE-L and CIDEr, and
NTLK6 to calculate METEOR.

We employ subjective and objective evaluations to assess the
performance of stylistic speech synthesis. For subjective evaluation,
we conduct two types of human perceptual rating experiments.
A total of twenty-one volunteers participate in these experiments.
MeanOpinion Score (MOS) is used to evaluate the naturalness of the
synthetic speech. Similarity Mean Opinion Score (SMOS) is adopted
to evaluate synthetic speech based on style similarity and speaker
similarity. The rating criteria are as follows: bad = 1, poor = 2, fair
= 3, good = 4, great = 5, with 0.5-point increments. For objective
evaluation, we employ an Automatic Speech Recognition (ASR)
model to transcribe the generated speech and calculate the Word
Error Rate (WER) to assess the robustness of each model. The ASR
model7 is a CTC-based Hubert, pre-trained on Librilight and fine-
tuned on the 960-hour training set of LibriSpeech. In addition, we
employ a pre-trained speaker verification model, WavLM-TDCNN8,
to assess speaker similarity (SSIM) between generated samples and
acoustic prompt. Moreover, we employ two pitch-related metrics
for style similarity: Root Mean Squared Error (RMSE) and Pearson
correlation (Corr) [4]. These two metrics are widely applied to
evaluate prosody similarity. Since the sequences are not aligned,
we perform Dynamic Time Warping to align the sequences before
comparison.

5 Experimental Results
5.1 Automatic Speaking Style Captioning
We preserve a test set comprising 1,000 sample pairs containing
speech waveforms and corresponding descriptions to evaluate au-
tomatic speaking style captioning. The experimental results, pre-
sented in Table 2, highlight the consistent outperformance of the
proposed UniStyle family compared to the comparison models. No-
tably, StyleCap exhibits lower scores in BLEU@4, ROUGE-L, and
CIDEr metrics. This performance discrepancy is attributed to the
presence of style-irrelevant descriptive words in the output captions
of StyleCap. Additionally, StyleCap relies on a global embedding to
extract style-related features from speech, which limits its represen-
tation ability, particularly for complex speech inputs. In contrast,
SECap employs an instruction prompt to constrain LLaMA’s out-
put space, resulting in more accurate captions. Moreover, SECap
utilizes multiple queries to extract style information from speech,
enhancing the representational capacity and overall performance
compared to StyleCap.

4https://github.com/mjpost/sacrebleu
5https://pypi.org/project/pycocoevalcap/
6https://www.nltk.org/api/nltk.translate.meteor_score.html
7https://huggingface.co/facebook/hubert-large-ls960-ft
8https://github.com/microsoft/UniSpeech/tree/main/downstreams/speaker_
verification

Table 2: Experimental results on speaking style captioning.

Model BLEU@4 ↑ METEOR ↑ ROUGE-L ↑ CIDEr ↑

StyleCap [43] 30.8 0.161 0.151 0.051
SECap [42] 49.7 0.160 0.168 0.160
UniStyle-P 56.8 0.161 0.158 0.210
UniStyle 61.1 0.208 0.196 0.340
UniStyle-L 60.9 0.227 0.204 0.356

Among the models within the UniStyle family, UniStyle-P con-
sistently outperforms StyleCap in BLEU@4, ROUGE-L, and CIDEr
metrics, and surpasses SECap in BLEU@4, METEOR, and CIDEr
metrics. This indicates that the joint optimization of three tasks
in the first stage effectively establishes a speaking style alignment
between speech and text modalities. Furthermore, UniStyle exhibits
superior performance compared to StyleCap, SECap, and UniStyle-P
across all metrics by a significant margin, showing UniStyle can ac-
quire more precise style expression from speech. This underscores
the joint finetuning with the stylistic speech synthesis task in the
second stage benefits the speaking style captioning task, validating
the efficacy of the unified modeling of speaking style. Moreover,
UniStyle-L performs better than UniStyle in METEOR, ROUGE-L,
and CIDEr metrics, highlighting the beneficial impact of leverag-
ing a large-scale unlabeled corpus through the semi-supervised
training strategy.

5.2 Zero-shot Stylistic Speech Synthesis
We conduct subjective and objective experiments to evaluate each
comparison model. Specifically, we preserve 10 transcripts, 20 style
prompts (10 reference speech and 10 text descriptions), and 5 acous-
tic prompts as the test set.

Subjective evaluation. As presented in Table 3, UniStyle-L
achieves the best performance across all metrics, while most com-
parison models exhibit unbalanced performance. Notably, Prompt-
Style demonstrates low speaker similarity due to the limited capa-
bility of the pre-trained speaker encoder in zero-shot voice cloning.
Salle obtains low scores in naturalness and style similarity, po-
tentially due to text descriptions leaking into the synthetic speech
output, resulting in meaningless content in output speech. SC VALL-
E shows low style similarity, suggesting that incorporating a style
module in the NAR language model of VALL-E has minimal im-
pact on the final synthetic speech, as most apparent style factors,
such as speaking speed, are determined by the AR language model
of VALL-E. Vec-Tok Speech achieves balanced results; however,
UniStyle surpassed Vec-Tok Speech and other comparison models
by a remarkable margin. Notably, UniStyle equips the base zero-
shot TTS model UniStyle-P with the capability to control speak-
ing style through text descriptions or prompt speech, achieving
high style similarity with a slight sacrifice in speaker similarity.
Furthermore, UniStyle-L avoids this sacrifice and performs better,
indicating that the larger corpus in the second stage contributes
to better fine-tuning of UniStyle. These results suggest that the
UniStyle family can generate natural speech with various speaking
styles and speaker timbre in a zero-shot manner, showcasing its
effectiveness in expressive speech synthesis.

Objective evaluation. To comprehensively evaluate the perfor-
mance of zero-shot stylistic speech synthesis, we conduct objective

https://github.com/mjpost/sacrebleu
https://pypi.org/project/pycocoevalcap/
https://www.nltk.org/api/nltk.translate.meteor_score.html
https://huggingface.co/facebook/hubert-large-ls960-ft
https://github.com/microsoft/UniSpeech/tree/main/downstreams/speaker_verification
https://github.com/microsoft/UniSpeech/tree/main/downstreams/speaker_verification
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Table 3: Experimental results on zero-shot stylistic speech synthesis with 95% confidence interval. Style similarity-T compares
synthetic speech to text descriptions, while style similarity-S compares synthetic speech to prompt speech.

Model Naturalness ↑ Speaker Similarity ↑ Style Similarity-T ↑ Style Similarity-S ↑ WER ↓ SSIM ↑ RMSE ↓ Corr ↑

PromptStyle [27] 3.70 ± 0.06 3.23 ± 0.07 3.65 ± 0.06 - 7.1 0.564 - -
Salle [15] 2.79 ± 0.15 3.71 ± 0.10 2.61 ± 0.07 - 26.2 0.688 - -
SC VALLE [18] 3.58 ± 0.08 3.74 ± 0.07 - 3.44 ± 0.08 8.7 0.663 38.5 0.60
Vec-Tok Speech [49] 3.83 ± 0.07 3.70 ± 0.06 - 3.78 ± 0.07 6.3 0.687 19.7 0.71
UniStyle-P 3.85 ± 0.10 3.87 ± 0.11 - - 6.6 0.708 - -
UniStyle 3.89 ± 0.12 3.81 ± 0.09 4.03 ± 0.07 3.94 ± 0.08 8.2 0.692 15.4 0.78
UniStyle-L 3.98 ± 0.08 3.88 ± 0.07 4.11 ± 0.06 3.99 ± 0.08 6.1 0.701 12.6 0.81

Table 4: Experimental results on the ablation study of different model components and training strategy.

Speaking style captioning Stylistic speech synthesis
Model BLEU@4 ↑ METEOR ↑ ROUGE-L ↑ CIDEr ↑ WER ↓ SSIM ↑ RMSE ↓ Corr ↑

UniStyle 61.1 0.208 0.196 0.340 8.2 0.692 15.4 0.78
w/o Pre-trained UniConnector 45.1 0.186 0.180 0.179 13.6 0.598 33.6 0.69
w/o UniConnector loss 1.53 0.018 0.015 0.001 8.3 0.691 50.7 0.53
w/ STM 1.74 0.028 0.021 4𝑒−4 8.4 0.688 30.2 0.67
w/ STC 0.00 0.003 0.004 5𝑒−5 9.5 0.674 22.4 0.72
w/ SSC 50.9 0.181 0.178 0.266 10.8 0.679 41.3 0.58

w/ Large UniConnector 52.2 0.187 0.194 0.374 8.3 0.699 14.8 0.77
w/ LoRA Speech Generator 36.0 0.183 0.184 0.276 15.6 0.504 55.4 0.51

tests to measure WER(%), SSIM, RMSE, and Corr. It is worth noting
that PromptStyle and Salle control the speaking style of synthetic
speech through text descriptions, not prompt speech; thus, their
RMSE and Corr metrics are unavailable. In terms of robustness,
UniStyle-L achieves the lowest WER, indicating the good intelli-
gibility of UniStyle-L. Conversely, Salle performs poorly in WER,
likely due to content leakage from text descriptions. Regarding
speaker similarity, UniStyle-P achieves the highest SSIM, while
UniStyle-L obtains a comparable SSIM. Considering the intricate
entanglement between speaker timbre and speaking style [31, 36],
it is reasonable to exhibit slightly lower speaker similarity when
adapting to a new speaking style. Regarding prosody similarity,
UniStyle-L achieves better RMSE and Corr than UniStyle and other
comparison models, demonstrating the effectiveness of the pro-
posed semi-supervised training strategy, where a larger corpus con-
tributes to better capturing and expressing speaking style. These
results confirm the observations from the subjective evaluation,
highlighting the superiority of the UniStyle family.

5.3 Ablation Study
We conduct an ablation study to assess the effectiveness of each
component and training strategy by evaluating their impact on
speaking style captioning and stylistic speech synthesis tasks. Ad-
ditionally, considering the significance of query embeddings in
UniStyle, we analyze the influence of different query numbers on
UniStyle’s performance.

Ablation study on model components and training strat-
egy. We perform ablation studies on UniStyle by individually re-
moving the pre-training of the UniConnector in the first stage and
the loss of the UniConnector in the second stage. Additionally, we
investigate the influence of model size by replacing BERT-base with
BERT-large as the initialization of the UniConnector. Furthermore,
we explore the effectiveness of the frozen strategy by applying a
LoRA finetuning strategy (r=8) [13] to speech generator.

The experimental results are shown in Table 4. Firstly, removing
the pre-trained UniConnector leads to a degradation in the per-
formance of speaking style captioning, which indicates that the
speaking style alignment established in the pre-training stage plays
a vital role in capturing precise style expressions. The performance
of stylistic speech synthesis also decreases, with WER and RMSE
increasing and SSIM and Corr deteriorating, suggesting that the
output query embeddings carried unnecessary information, such as
speaker timbre. Secondly, the absence of UniConnector loss in the
second stage exhibits a sharp decline in all metrics of speaking style
captioning, RMSE and Corr. These results indicate that the model
without UniConnector loss fails to accomplish the speaking style
captioning task and guide speaking style during speech generation.
Furthermore, SSC loss mainly contributes to speaking style caption-
ing. UniStyle with STC loss exhibits better RSME and Corr than
with STM or SSC loss, suggesting contrastive learning effectively
builds a coarse-grained alignment between twomodalities. UniStyle
fails in speaking style captioning only with STM loss but generates
speech with better WER and SSIM, indicating STM loss is beneficial
for model stability. Third, when we take the BERT-large as the ini-
tiation of the UniConnector, the overall performance is comparable
to that using the BERT-base, indicating that the UniConnector ini-
tialized with the BERT-base in UniStyle is sufficient for capturing
speaking style. Finally, when employing a LoRA finetuning strat-
egy on speech generator in the second stage, the performance of
speaking style captioning and stylistic speech synthesis decreases.
We find that the output captions become inaccurate, and output
speech becomes inconsistent with unstable intelligibility, prosody,
and speaker timbre. This observation suggests that finetuning the
speech generator, even with few parameters, is not beneficial to
UniStyle. Another plausible explanation for this phenomenon could
be that the limited dataset is insufficient for effectively finetuning
the speech generator.
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Ablation study on the query number. Given the significance
of the query number in UniConnector, we investigate the impact
of 8, 16, 32, and 64 queries on the performance of UniStyle. As
illustrated in Figure 3, the changing trend of different metrics in
speaking style captioning remains consistent when varying the
query number, which shows that too-small and too-large query
numbers are unsuitable for speaking style captioning. Specifically,
when the query number increases, the performance gradually im-
proves because few queries can not model speaking style well due
to the limited trainable model parameters. The performance peaks
at a query number of 32 and then declines, which we speculate the
model with more queries requires a more extensive training corpus.
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Figure 3: The impact of different query numbers on speaking
style captioning.

We further examine the influence of different query numbers
on stylistic speech synthesis. As depicted in Figure 4, the tendency
differs from that observed in speaking style captioning. Specifi-
cally, UniStyle with 16 queries achieves a slightly better WER and
Corr but worse SSIM and RMSE than UniStyle with 32 queries.
Conversely, when the query number is set to 8 or 64, UniStyle ex-
hibits poor performance, consistent with the findings in speaking
style captioning. Overall, the evaluations of speaking style caption-
ing and stylistic speech synthesis emphasize the essential role of
the query number in UniStyle, with 32 queries yielding the best
performance.

6 Discussion and Limitation
We evaluate the effectiveness of UniStyle from the perspective of
attribute control. We calculate the classification accuracy for each
attribute of synthetic speech. Specifically, we adopt digital signal
processing tools9 to extract pitch, speaking speed, and volume
and recognize the category (low/normal/high) according to the
statistical range in TextrolSpeech. We use an open-source model10
to identify gender. For speech emotion recognition, we use another
open-source model11 of emotion2vec [32] and finetune it on the
emotion subset of TextrolSpeech.
9https://github.com/JeremyCCHsu/Python-Wrapper-for-World-Vocoder
10https://github.com/karthikbhamidipati/multi-task-speech-classification
11https://github.com/ddlBoJack/emotion2vec

8 16 32 64

8

9

10

11
WER

8 16 32 64
0.670

0.675

0.680

0.685

0.690

SSIM

8 16 32 64
15

20

25

30

35

RMSE

8 16 32 64

0.65

0.70

0.75

Corr

Figure 4: The impact of different query numbers on stylistic
speech synthesis.

Table 5: The classification accuracy (%) of synthetic speech of
UniStyle and ground-truth speech on the attribute control.

Gender ↑ Pitch ↑ Speaking Speed ↑ Volume ↑ Emotion ↑

GT 99.6 100.0 100.0 100.0 80.6
PromptStyle 50.2 71.3 69.4 77.4 62.8
Salle 47.1 58.2 63.5 67.1 45.9
UniStyle 45.4 86.1 91.2 90.4 74.7

Table 5 shows that UniStyle can synthesize speech with reason-
able accuracy across all attributes except gender compared to the
ground-truth speech. Notably, the accuracy of gender identifica-
tion is very low. This discrepancy can be attributed to the fact that
gender is highly correlated with speaker timbre, which is primarily
determined by the acoustic prompt rather than the style prompt
during speech generation. In the context of zero-shot TTS, where
the synthetic speaker timbre aligns closely with that of the acoustic
prompt, such a phenomenon is both expected and reasonable. These
findings further underscore the capability of UniStyle to modulate
speaking styles under the condition of zero-shot voice cloning.

7 Conclusion
This paper proposes UniStyle, a novel framework that unifies speak-
ing style captioning and text description-based speech synthesis.
Specifically, we introduce a UniConnector to bridge the gap between
text and speech modalities, which extracts style representations
and generates style captions from speech inputs. Leveraging the
style representations, we introduce a style prompt-based speech
generator that synthesizes stylistic speech. Furthermore, We pro-
pose a novel two-stage and semi-supervised training strategy that
reduces data requirements while boosting performance. Extensive
experiments on the open-source corpora demonstrate that UniStyle
achieves state-of-the-art performance in speaking style caption-
ing and generates natural speech with various speaking styles and
speaker timbre in a zero-shot manner.

https://github.com/JeremyCCHsu/Python-Wrapper-for-World-Vocoder
https://github.com/karthikbhamidipati/multi-task-speech-classification
https://github.com/ddlBoJack/emotion2vec
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