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Abstract
The table reasoning task, crucial for efficient001
data acquisition, aims to answer questions002
based on the given table. Recently, reason-003
ing large language models (RLLMs) with Long004
Chain-of-Thought (Long CoT) significantly en-005
hance reasoning capabilities, leading to bril-006
liant performance on table reasoning. However,007
Long CoT suffers from high cost for training008
and exhibits low reliability due to table content009
hallucinations. Therefore, we propose Row-010
of-Thought (ROT), which performs iteratively011
row-wise table traversal, allowing for reasoning012
extension and reflection-based refinement at013
each traversal. Scaling reasoning length by row-014
wise traversal and leveraging reflection capa-015
bilities of LLMs, ROT is training-free. The se-016
quential traversal encourages greater attention017
to the table, thus reducing hallucinations. Ex-018
periments show that ROT, using non-reasoning019
models, outperforms RLLMs by an average020
of 4.3%, and achieves state-of-the-art results021
on WikiTableQuestions and TableBench with022
comparable models, proving its effectiveness.023
Also, ROT outperforms Long CoT with fewer024
reasoning tokens, indicating higher efficiency1.025

1 Introduction026

Table reasoning is an important task where the in-027

put consists of a question and the table, and the028

output is the answer based on the table (Jin et al.,029

2022; Zhang et al., 2025d). Tables typically com-030

prise multiple rows, with each row containing sev-031

eral information-dense cells (Ruan et al., 2024).032

Automated table reasoning attracts considerable033

research interest due to its potential to extract valu-034

able information from tables, thus accelerating data035

acquisition (Badaro et al., 2023; Lu et al., 2025).036

Recent advancements in reasoning large lan-037

guage models (RLLMs) have significantly en-038

hanced reasoning capabilities utilizing Long Chain-039

of-Thought (Long CoT), including table reasoning040

1Our code and data will be released upon acceptance.

Question
what is the number of 1st place finishes across all events?

Table
Date Competition Placing Rider …
10.31 2008–09 World Cup 1 Victoria Pendleton
10.31 2008–09 World Cup 2 Jason Kenny …
11.01 2008–09 World Cup 1 Jason Kenny

…

(b) RoT Output
To find the …
1. 10.31: 1st, so that's one.
2. 10.31: 2nd, not 1st, skip.
…
Now, let me re-examine …
I count a total of 17 first-place.
Answer: 17

Higher Reliability

Lower Cost

(a) training

(a) Long CoT Output
Alright, so I need to figure out …
…
Jason Kenny did not get 1st in 
2008-09 World Cup, but got 2nd. 
So, excluding riders with Placing 
2, that's 14 riders with Placing 1. 
Answer: 14

(b) training-free

Figure 1: Compared with (a) Long CoT, (b) ROT neces-
sitates no training, exhibits lower costs, and enhances
reliability by mitigating hallucination via sequentially
row-wise table traversal.

capabilities (Li et al., 2025b; Qian et al., 2025). 041

This improvement stems from Long CoT, which se- 042

quentially scales the length of CoT, engages in self- 043

reflection, and explores diverse reasoning paths, in 044

contrast to the shallow and direct reasoning of Short 045

CoT (Chen et al., 2025; Yeo et al., 2025). However, 046

Long CoT exhibits two limitations in table reason- 047

ing, as illustrated in Figure 1 (a): (i) High Cost: 048

Achieving Long CoT capabilities for improved ta- 049

ble reasoning capabilities necessitates high-quality 050

data, leading to substantial training expenses (Qian 051

et al., 2025; Jiang et al., 2024a). (ii) Low Reli- 052

ability: As the output reasoning chains lengthen, 053

models are prone to losing relevant tabular infor- 054

mation from the input, resulting in hallucinations 055

of the tabular content (Zhang et al., 2023; Liu et al., 056

2025a,b; Kumar et al., 2025). 057

Therefore, we propose Row-of-Thought (ROT), 058
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Your task is to think step by step by traversing the given table 
to solve the question. 
Note that: 
1. You must traverse the table row by row iteratively.
2. Represent your answer with: Answer: <Your Answer>.
Here is an example:
…
Based on the above example, you need to traverse the table 
below and answer the question.

Date   | Competition              | Placing  | Rider                      | …
-------  |---------------------------  |----------- |------------------------- | …
10.31 | 2008–09 World Cup | 1           | Victoria Pendleton | …
10.31 | 2008–09 World Cup | 2           | Jason Kenny          | …
11.01 | 2008–09 World Cup | 1           | Jason Kenny          | …
11.02 | 2008–09 World Cup | 1           | Ross Edgar            | …
…

Question:
what is the number of 1st place finishes across all events?

To answer the question, I need to count the number of 1st place 
finishes across all events. 

Let me go through each row one by one.
1. 10.31, Victoria Pendleton: 1st place, so that's one.
2. 10.31, Jason Kenny: 2nd place, not 1st, so skip.
3. 11.01, Jason Kenny: 1st place, so that's two.
4. 11.02, Ross Edgar: 1st place, so that's three.
…

After going through all the rows, I counted a total of 17 first-place 
finishes.
Now, let me re-examine the rows to see if I missed any events.
* 10.31, Victoria Pendleton got 1st place, so that's one.
* 10.31, Jason Kenny got 2nd place not 1st, so so I'll skip this.
* 11.01, Jason Kenny got 1st place, so that's two.
* 11.02, Ross Edgar got 1st place, so that's three.
…

Answer: 17

Input Output

Figure 2: The overview of ROT with the input and output of the example. The instruction is highlighted with blue
and the iterative row-wise table traversal process is highlighted with green.

a novel method that enhances table reasoning by059

guiding the model to perform iteratively row-wise060

traversal reasoning, as illustrated in Figure 1 (b).061

Row-wise traversal refers to the reasoning process062

where it considers information from a single row063

at each step to update intermediate results. In the064

iterative process, after each traversal, the model can065

either extend its reasoning or reflect on prior steps066

and initiate a new traversal accordingly. ROT alle-067

viates two limitations of Long CoT: (i) Low Cost:068

Since ROT sequentially scales the reasoning length069

by row-wise traversals and the self-reflection capa-070

bilities are equipped in LLMs (Gu et al., 2025; AI071

et al., 2025), ROT is training-free and can be imple-072

mented with non-reasoning large language models073

(non-RLLMs) through prompting. (ii) High Reli-074

ability: By prompting the sequential traversal of075

all rows, ROT directs greater attention to tabular076

information thoroughly, thereby mitigating halluci-077

nation (Shi et al., 2024a; Chuang et al., 2024).078

To demonstrate the effectiveness of ROT, we079

conduct experiments on WikiTableQuestions (Pa-080

supat and Liang, 2015), HiTab (Cheng et al., 2022),081

and TableBench (Wu et al., 2024). Compared to082

Long CoT on RLLMs, ROT achieves an average083

improvement of 4.3% with non-RLLMs without084

training, validating its effectiveness. Furthermore,085

ROT can also enhance the performance of RLLMs086

with an average improvement of 2.4%, mitigat-087

ing their table content hallucination. Additionally,088

ROT achieves state-of-the-art (SOTA) results on089

WikiTableQuestions and TableBench with compa-090

rable models, and yields competitive results on091

HiTab. Analysis experiments reveal that ROT with092

non-RLLMs outperforms Long CoT with fewer 093

reasoning tokens, showing higher efficiency. 094

Our contributions are as follows: 095

1. We propose ROT, which achieves lower cost 096

without training and higher reliability compared 097

to Long CoT. 098

2. ROT on non-RLLMs outperforms Long CoT on 099

RLLMs by an average of 4.3% and achieves 100

SOTA results among comparable models on 101

WikiTableQuestions and TableBench, proving 102

its effectiveness. 103

3. ROT with non-RLLMs outperforms Long CoT 104

using fewer reasoning tokens, highlighting its 105

higher efficiency. 106

2 ROT 107

To mitigate the limitations of High Cost and Low 108

Reliability in Long CoT, we propose ROT. As illus- 109

trated in Figure 2, ROT enhances table reasoning 110

capabilities by iterative row-wise traversals. The 111

complete prompts are available in Appendix A.1. 112

2.1 Overview 113

Given an instruction I , a question Q, a table U com- 114

posed of M rows and N columns, and in-context 115

demonstrations D, the model outputs a step-by-step 116

reasoning process that iteratively traverses the table 117

in the sequential row order until the final answer is 118

derived. Formally, R;A = F(I,Q, U,D), where 119

F is the LLM, and R;A denotes the concatenation 120

of the reasoning process R and the answer A. We 121

represent the table in Markdown format, following 122

previous works (Wang et al., 2024; Zhang et al., 123

2024b; Yu et al., 2025). We now introduce the two 124
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key factors in the reasoning process R in ROT.125

2.2 Traversal126

We first detail the traversal reasoning adopt-127

ing the row as the traversal unit in ROT.128

Specifically, the model assesses the relevance129

of information within the current row and in-130

fers intermediate results according to the ques-131

tion and prior inference. Formally, Ri;Ai =132

Ri,1;Ai,1, Ri,2;Ai,2, ..., Ri,M ;Ai,M . Ri repre-133

sents the reasoning process of the i-th traversal,134

and Ai is the result obtained in the i-th traversal.135

Ri,j denotes the reasoning over the j-th row of the136

table during the i-th traversal, and Ai,j is the corre-137

sponding intermediate result. ROT leverages the in-138

herent structural features of tables by decomposing139

the problem-solving into fine-grained, step-by-step140

reasoning, with each step corresponding to a row.141

By accumulating the intermediate results Ai,j from142

each row, we obtain the result Ai after one traver-143

sal. The row-wise traversal not only brings the144

reasoning length scaling but also mitigates halluci-145

nation by forcing the model to attend to the entire146

table content. We also discuss comparisons with147

adopting other traversal units and ROT in §3.4.5.148

2.3 Iteration149

The iteration process allows the model to continue150

reasoning after a traversal, which is necessary for151

multi-hop questions that cannot be answered in a152

single traversal. Also, the model can choose to153

reflect on the previous reasoning after a traversal154

and subsequently revisit the table based on the re-155

flection until the final answer is obtained. Formally,156

the iterative reasoning process can be represented157

as R;A = R1;A1, R2;A2, ..., RT ;AT , where T158

is the total number of traversals. Rather than pre-159

defining T in the prompt, the model dynamically160

decides to terminate inference when the final an-161

swer has been obtained. We provide a detailed162

analysis of the iterative table traversals in §3.4.2.163

We also provide case study for iterative traversals164

in Appendix C.2.165

3 Experiments166

3.1 Experimental Setup167

Dataset ROT is evaluated on three widely used168

table reasoning datasets: WikiTableQuestions (Pa-169

supat and Liang, 2015), HiTab (Cheng et al., 2022),170

and TableBench (Wu et al., 2024), following pre-171

vious works (Jiang et al., 2024b; Cao, 2025; Li172

et al., 2025a). WikiTableQuestions is a mainstream 173

table-based question answering dataset. HiTab fo- 174

cuses on hierarchical tables, challenging models 175

to comprehend complex structural relationships. 176

TableBench presents a challenging benchmark cov- 177

ering diverse question types and topics. 178

Models (i) For non-RLLMs, we utilize 179

Llama3.1-8B-Instruct (Llama3.1-8B), Llama3.3- 180

70B-Instruct (Llama3.3-70B) (Dubey et al., 2024), 181

Qwen2.5-7B-Instruct (Qwen2.5-7B), and Qwen2.5- 182

32B-Instruct (Qwen2.5-32B) (Yang et al., 2024a). 183

(ii) For RLLMs, we employ the corresponding- 184

sized DeepSeek-R1-Distill-Llama-8B (R1- 185

Llama-8B), DeepSeek-R1-Distill-Llama-70B 186

(R1-Llama-70B), DeepSeek-R1-Distill-Qwen-7B 187

(R1-Qwen-7B), and DeepSeek-R1-Distill-Qwen- 188

32B (R1-Qwen-32B) (Guo et al., 2025). We 189

exclude Qwen2.5-Math-7B, which is the base 190

model of R1-Qwen-7B, due to its primary focus on 191

solving mathematical tasks, resulting in suboptimal 192

performance on the table reasoning task (Yang 193

et al., 2024b). 194

Metric For WikiTableQuestions and HiTab, we 195

adopt accuracy as the evaluation metric, following 196

prior works (Pasupat and Liang, 2015; Cheng et al., 197

2022). Accuracy measures the ability of models 198

to generate answers that exactly match the gold 199

answers. For TableBench, we use Rouge-L (Lin, 200

2004), consistent with the previous research (Wu 201

et al., 2024). Rouge-L evaluates the quality of 202

generated answers based on the longest common 203

subsequence, considering both precision and recall. 204

Baselines ROT employs the one-shot and zero- 205

shot prompts to enable non-RLLMs and RLLMs 206

to perform iterative row-wise traversals, respec- 207

tively (prompts in Appendix A.1). We do not use 208

demonstrations for RLLMs due to the performance 209

degradation using the few-shot prompt observed in 210

Appendix B.1 (Guo et al., 2025; Zheng et al., 2025). 211

We compare ROT with the following methods: 212

• Short CoT: We prompt non-RLLMs to engage in 213

step-by-step reasoning with the one-shot prompt, 214

which uses the same demonstration as ROT. 215

• Long CoT: We utilize the zero-shot prompt for 216

RLLMs. 217

• Previous table reasoning works: We compare 218

ROT with existing table reasoning methods with 219

comparable models. 220
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Model Method WikiTQ HiTab TableBench

Llama3.1-8B (Dubey et al., 2024) Short CoT 57.9 46.5 31.5
ROT 63.6 (+2.7) 56.6 (+10.1) 35.7 (+4.2)

R1-Llama-8B (Guo et al., 2025) Long CoT 62.7 49.7 34.9
ROT 63.7 (+1.0) 50.9 (+1.2) 35.4 (+0.5)

Llama3.3-70B (Dubey et al., 2024) Short CoT 72.7 66.9 38.2
ROT 78.7 (+6.0) 72.4 (+5.5) 44.8 (+6.6)

R1-Llama-70B (Guo et al., 2025) Long CoT 76.2 67.4 40.4
ROT 78.3 (+2.1) 68.6 (+1.2) 42.8 (+2.4)

Qwen2.5-7B (Yang et al., 2024a) Short CoT 52.2 54.7 30.9
ROT 61.7 (+9.5) 58.9 (+4.2) 34.9 (+4.0)

R1-Qwen-7B (Guo et al., 2025) Long CoT 53.3 50.2 34.2
ROT 57.1 (+3.8) 51.2 (+1.0) 35.6 (+1.4)

Qwen2.5-32B (Yang et al., 2024a) Short CoT 69.2 70.3 35.9
ROT 75.6 (+6.4) 76.6 (+6.3) 40.4 (+4.5)

R1-Qwen-32B (Guo et al., 2025) Long CoT 69.6 70.8 38.0
ROT 76.9 (+7.3) 73.5 (+2.7) 42.0 (+4.0)

Table 1: Performance comparison between ROT and baselines, where WikiTQ and HiTab use accuracy as the
evaluation metric and TableBench uses Rouge-L. WikiTQ refers to WikiTableQuestions. For each dataset, the
highest performing result among models of the same scale is bolded. Performance gain compared to baselines is
highlighted with (green).

Dataset Previous SOTA ROT

WikiTQ 78.0 (Cao, 2025) 78.7
HiTab 79.1 (Jiang et al., 2024b) 76.7
TableBench 43.9 (Wu et al., 2024) 44.8

Table 2: Performance comparison between ROT and
SOTA methods with similar scale models.

3.2 Main Results221

Table 1 presents a comparison between ROT and222

baselines using different models across datasets.223

ROT, using non-RLLMs consistently and signifi-224

cantly outperforms Long CoT with RLLMs, achiev-225

ing an average improvement of 4.3%, demonstrat-226

ing its effectiveness. Furthermore, ROT yields an227

average increase of 2.4% in the performance of228

RLLMs, indicating its effectiveness in mitigating229

the limitations of Long CoT. We also observe that:230

ROT outperforms baselines consistently. ROT231

surpasses Long CoT primarily because it enforces232

the row-wise traversals, alleviating hallucinations233

in Long CoT (Zhang et al., 2023; Shi et al.,234

2024a; Liu et al., 2025b). Compared to Short235

CoT, ROT achieves superior performance through236

fine-grained, row-wise reasoning, thereby reducing237

the complexity of individual reasoning steps and238

minimizing the risk of overlooking relevant details239

(Snell et al., 2024; Wang et al., 2024).240

We also compare ROT with SOTA methods on241

three datasets, as shown in Table 2. Due to space 242

constraints, detailed comparisons with prior works 243

are provided in Appendix B.2. ROT gets SOTA 244

results on WikiTQ and TableBench and is compara- 245

ble with the SOTA method on HiTab, highlighting 246

its effectiveness. The comparable performance on 247

HiTab can be attributed to the fact that ROT does 248

not incorporate specific enhancements for hierar- 249

chical tables, unlike previous methods (Zhao et al., 250

2023; Jiang et al., 2024b; Li et al., 2025a). 251

ROT improves performance across varying mod- 252

els. ROT significantly enhances the table reason- 253

ing capabilities of various non-RLLMs and RLLMs 254

without training. ROT with RLLMs does not out- 255

perform ROT with non-RLLMs consistently be- 256

cause, while we mitigate hallucination in Long 257

CoT, they exhibit problems such as overthinking, 258

which are less pronounced in non-RLLMs (Yin 259

et al., 2025; Zeng et al., 2025). Additionally, R1- 260

Qwen-7B does not outperform Qwen2.5-7B on 261

HiTab, as its base model, Qwen2.5-Math-7B, is 262

optimized for mathematical reasoning, unlike the 263

general base models of others (Yang et al., 2024b). 264

3.3 Ablation Experiments 265

To demonstrate the effectiveness of ROT, we con- 266

duct ablation experiments on three datasets, as 267

shown in Table 3. The prompts used in the ablation 268

experiments are provided in Appendix A.2. 269
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Scale Model Method WikiTQ HiTab TableBench

8B

Llama3.1
ROT 63.6 56.6 35.7

w/o Iteration 60.7 55.5 32.7
w/o Traversal 55.2 42.2 31.2

R1-Llama
ROT 63.7 50.9 35.4

w/o Iteration 56.6 48.9 31.5
w/o Traversal 46.8 36.8 25.7

Table 3: The ablation results of ROT campared with reasoning with one single table traversal (denoted as w/o
Iteration) and reasoning without table traversal (denoted as w/o Traversal). For each dataset, the highest performing
result with the same model is bolded.

66.0%

20.0%

14.0%

Hallucination
Misunderstanding

Locating

Figure 3: Long CoT underperforms ROT due to the
error types, with their distribution.

Effectiveness of Iteration To validate the effec-270

tiveness of iterative reasoning in ROT, we prompt271

the model to perform only a single table traver-272

sal. The results indicate a consistent performance273

decrease compared to ROT when iteration is re-274

moved, demonstrating that iterative traversal effec-275

tively aids the model in exploration and reflection.276

Also, a single traversal is insufficient to adequately277

address all table reasoning questions.278

Effectiveness of Traversal To demonstrate the279

importance of traversal in ROT, we prompt LLMs280

to iteratively reflect instead of iteratively travers-281

ing the table. The significant performance de-282

cline observed underscores that traversing the table,283

through scaling reasoning length and mitigating284

hallucinations of tabular content, effectively en-285

hances table reasoning.286

3.4 Analysis Experiments287

We primarily select Llama3.1-8B and R1-Llama-288

8B for subsequent analysis experiments due to their289

high reasoning efficiency and space limitations.290

3.4.1 Why ROT Outperforms Long CoT?291

To explore the superior performance of ROT over292

Long CoT, we conduct an error analysis on Wik-293

iTQ instances where ROT with Llama3.1-8B suc-294

ceeds while Long CoT with R1-Llama-8B fails. We295

also explore why ROT with RLLMs outperforms296

Long CoT in Appendix B.3. Figure 3 illustrates the297

68.3%

31.7%

Multi-Hop Reasoning

Reflection

Figure 4: The distribution of reasons for iterative traver-
sals in ROT on sampled 60 instances from three datasets.

identified error categories on sampled 50 instances, 298

which are detailed below. We provide the cases of 299

each error category in Appendix C.1. 300

(i) Hallucination refers to the model incorrectly 301

recalling tabular information, leading to inconsis- 302

tencies between the table input and the generated 303

reasoning, such as cross-row confusion and rele- 304

vant information omission. Long CoT suffers from 305

severe hallucinations, primarily due to the increas- 306

ing loss of tabular content as the reasoning chain 307

lengthens (Liu et al., 2025b). Conversely, ROT 308

performs row-wise traversals sequentially, guides 309

greater attention to the table content, which mit- 310

igates this issue (Yin et al., 2020; Badaro et al., 311

2023). (ii) Misunderstanding denotes the misinter- 312

pretation of the question, which is a common chal- 313

lenge for distilled models (Banerjee et al., 2024; 314

Yin et al., 2025). (iii) Locating refers to incorrectly 315

identifying the relevant table location for the given 316

question. Therefore, ROT demonstrates a higher 317

reliability compared to Long CoT. 318

3.4.2 How does the number of traversals 319

affect ROT? 320

To examine when ROT requires iterative traver- 321

sals, we randomly select 20 instances from each 322

dataset on Llama3.1-8B where ROT traverses the 323

table more than once and investigate the reasons, as 324

shown in Figure 4. We provide a detailed explana- 325

tion of the reasons below, with examples provided 326

in Appendix C.2. (i) Multi-Hop Reasoning: The 327
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Figure 5: The distribution of table traversal counts and the corresponding performance of ROT on three datasets
with Llama3.1-8B.

inherent complexity of certain questions demands328

iterative table traversals to derive the solution, par-329

ticularly when addressing cross-row dependencies.330

(ii) Reflection: The model reflects on its prior rea-331

soning upon completing a traversal and initiates332

new reasoning passes accordingly. This demon-333

strates that ROT with non-RLLMs equips the ca-334

pacities of extending reasoning and self-reflection335

on table reasoning.336

Additionally, to assess the impact of traversal337

count on performance, we report the distribution338

of table traversal counts and the corresponding per-339

formance when using Llama3.1-8B, as depicted in340

Figure 5. We observe that: (i) On the more chal-341

lenging TableBench dataset, ROT tends to perform342

more traversals as required. (ii) Increasing traversal343

counts correlate with a decrease in the performance344

of ROT, due to the inherent difficulty of questions345

necessitating iterative traversals and the potential346

for exceeding token limits during such processes.347

3.4.3 How does reasoning length affect table348

reasoning capabilities?349

To investigate the impact of reasoning length on350

table reasoning performance, we calculate the aver-351

age number of tokens used in correct and incorrect352

reasoning on WikiTQ, as shown in Figure 6. The353

results reveal that:354

(i) ROT with non-RLLM achieves improved ta-355

ble reasoning with fewer tokens compared to Long356

CoT, demonstrating its efficiency. ROT allows357

the model to dynamically determine the number358

of iterations and non-RLLMs are not specifically359

trained on Long CoT data, therefore, ROT mit-360

igates overthinking prevalent in Long CoT (Yin361

et al., 2025). Additionally, when using the same362

RLLM, ROT exhibits shorter incorrect reasoning363

compared to Long CoT, since ROT, by focusing364

Short CoT RoT w. non-RLLM Long CoT RoT w. RLLM
0

200

400

600

800

1000

Le
ng

th

108

484 510 535533

878
957

849

Correct Incorrect

Figure 6: Comparison of average reasoning lengths for
correct and incorrect inferences across three datasets on
WikiTQ with Llama3.1-8B (denoted as w. non-RLLM)
and R1-Llama-8B (denoted as w. RLLM).

more intently on the table, reduces model halluci- 365

nations regarding table content, thereby decreas- 366

ing the frequency of ineffective reflections, as dis- 367

cussed in Appendix B.3 (Shi et al., 2024a; Qin 368

et al., 2025). (ii) Using the same model, ROT 369

produces longer correct reasoning compared to its 370

corresponding CoT baseline. This is because the 371

row-wise table traversal enables more fine-grained 372

reasoning, leading to increased reasoning length 373

and improved performance (Qian et al., 2025). 374

3.4.4 How does ROT change with table size? 375

To evaluate the performance of ROT relative to 376

baselines across varying table sizes, we analyze the 377

performance of Llama3.1-8B and R1-Llama-8B 378

on tables of different sizes in WikiTQ, defined as 379

the product of the number of rows and columns 380

(Figure 7). The key observations are as follows: 381

(i) Overall, ROT outperforms the baselines across 382

table sizes. (ii) While exhibiting a general down- 383

ward trend, the performance of ROT demonstrates 384

relative stability with increasing table size. The 385

row-wise traversals could lead to exceeding the to- 386
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Figure 7: The comparison of the average performance
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ken limit when the number of rows becomes exces-387

sively large before a response is generated. Long388

CoT suffers from an increased number of reason-389

ing steps with larger tables, elevating the risk of390

hallucinating relevant information and surpassing391

token limits more significantly (Zeng et al., 2025;392

Sui et al., 2025). Short CoT, while less susceptible393

to token limit issues, could overlook relevant table394

information due to its coarser reasoning granular-395

ity and miss self-reflection reasoning (Snell et al.,396

2024; Zhang et al., 2025b).397

3.4.5 How does the traversal unit affect ROT?398

To investigate the effect of traversal units on ROT,399

we conduct experiments using rows, columns,400

and individual cells as traversal units across three401

datasets with Llama3.1-8B. Row-wise traversal is402

adopted as the default setting in the main experi-403

ments. The results indicate the following:404

(i) On WikiTQ and TableBench, row-wise traver-405

sal achieves the best performance. Compared to406

column-wise traversal, row-wise traversal better407

aligns with the attention mechanism, enabling more408

effective focus on all cells within the same row (Yin409
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Figure 9: Performance of ROT on WikiTQ with varying
numbers of demonstrations.

et al., 2020; Liu et al., 2024a). Cell-wise traversal 410

resulted in a significant performance decrease, due 411

to its overly fine-grained reasoning granularity and 412

the presence of numerous irrelevant cells, which in- 413

troduce redundant reasoning steps and increase the 414

risk of error accumulation (Jin et al., 2024; Chen 415

et al., 2024; Patnaik et al., 2024). (ii) Column-wise 416

traversal yields superior performance on HiTab. In 417

HiTab, all tables include hierarchical row headers, 418

while hierarchical column headers are present in 419

93.1% of the tables, a relatively less frequent occur- 420

rence (Cheng et al., 2022). Consequently, each cell 421

in a row corresponds to hierarchical row headers. 422

During row-wise traversals, each cell should be 423

mapped to multiple row headers, whereas column- 424

wise traversals inherently incorporate header infor- 425

mation into each column, facilitating more effective 426

reasoning (Zhao et al., 2023). 427

3.4.6 How does the number of demonstrations 428

affect ROT? 429

To investigate the effect of the number of demon- 430

strations on ROT, we conduct experiments on Wik- 431

iTQ using Llama3.1-8B, as illustrated in Figure 9. 432

All demonstrations were sampled from the WikiTQ 433

training set. We observe that: (i) A substantial per- 434

formance gain is observed when transitioning from 435

zero-shot to one-shot prompting. This suggests that 436
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a single demonstration significantly aids the model437

in comprehending the instruction and replicating438

the reasoning process for iterative row-wise table439

traversals, thus improving table reasoning capabili-440

ties. (ii) With a further increase in the number of441

demonstrations, performance initially improves but442

subsequently declines. A limited number of demon-443

strations is sufficient for the model to understand444

the instructions and learn the reasoning patterns.445

Additional demonstrations contribute little new in-446

formation and may constrain the reasoning paths447

(Lin et al., 2024; Wan et al., 2025; Zheng et al.,448

2025). The one-shot prompt is chosen for our main449

experiments, balancing competitive performance450

with excellent inference efficiency.451

4 Related Works452

4.1 Table Reasoning453

The table reasoning task, which aims to answer user454

queries through inference over tabular data, is ex-455

tensively applied in data-intensive domains such as456

finance and research (Jin et al., 2022; Zhang et al.,457

2025d). Leveraging large language models (LLMs)458

has emerged as a prevalent method for table rea-459

soning (Chen, 2023; Lu et al., 2025). To enhance460

the table reasoning capability, researchers propose461

to collect or augment tabular data for fine-tuning462

(Zhang et al., 2024a, 2025c; Su et al., 2024). How-463

ever, the resource demands and potential reduction464

in generalization (Deng and Mihalcea, 2025) moti-465

vate training-free methods. Some methods focus on466

question decomposition to mitigate reasoning com-467

plexity (Ye et al., 2023; Wu and Feng, 2024; Jiang468

et al., 2024c). For instance, TID (Yang et al., 2025)469

extracts triples from the question and transforms470

them into sub-questions for comprehensive decom-471

position. Another direction involves the integration472

of programs or tools to facilitate reasoning (Jiang473

et al., 2023; Shi et al., 2024b; Zhang et al., 2024c),474

exemplified by MACT (Zhou et al., 2025), which475

employs a planning agent and a coding agent to476

select appropriate actions and tools for reasoning.477

Recent advancements in RLLMs demonstrate478

that the integration of Long CoT significantly im-479

proves their reasoning abilities, including table rea-480

soning (Chen et al., 2025; Qian et al., 2025). How-481

ever, Long Long CoT suffers from significant tab-482

ular content hallucination (Zeng et al., 2025). To483

address this, we propose an iteratively row-wise484

traversal method, which mitigates hallucination by485

forcing the model to focus on tabular content.486

4.2 Long CoT 487

RLLMs, such as OpenAI O1 (OpenAI et al., 2024) 488

and DeepSeek R1 (Guo et al., 2025), significantly 489

improve reasoning capabilities by incorporating 490

Long CoT with scaling reasoning length and itera- 491

tive exploration and reflection, leading to consistent 492

performance gains across diverse tasks (Snell et al., 493

2024; Aggarwal and Welleck, 2025). RLLMs are 494

typically derived from base LLMs through super- 495

vised fine-tuning (SFT) or reinforcement learning 496

(RL) (Chen et al., 2025; Chu et al., 2025). SFT 497

aims to replicate sophisticated reasoning patterns 498

from human-annotated or distilled data (Trung 499

et al., 2024; Wen et al., 2025). For instance, 500

s1 (Muennighoff et al., 2025) and LIMO (Ye et al., 501

2025) enhance their reasoning abilities through 502

SFT by collecting 1, 000 and 817 high-quality train- 503

ing instances with meticulously labeled rationales, 504

respectively. RL further refines reasoning abilities 505

through self-learning and preference optimization 506

(Liu et al., 2024b; Xu et al., 2025). For exam- 507

ple, Zhang et al. (2025a) proposes a Process-based 508

Self-Rewarding paradigm, which fine-tunes models 509

using synthesized step-wise preference data. 510

However, previous works require high-quality 511

data and exhibit significantly high cost (Jiang et al., 512

2024a; Qin et al., 2024). Given that table reasoning 513

tasks involve structured evidence, we propose ROT 514

that enhances the table reasoning capabilities of 515

non-reasoning LLMs without training. 516

5 Conclusion 517

Considering the limitations of Long CoT on the 518

table reasoning task, we focus on enhancing table 519

reasoning capabilities with low cost and high re- 520

liability. Specifically, we propose a training-free 521

method, ROT, which prompts the model to perform 522

iterative row-wise traversal reasoning until the fi- 523

nal answer is obtained. Experiments show that 524

ROT, using non-RLLMs, outperforms Long CoT 525

with RLLMs, achieving an average improvement 526

of 4.3%, demonstrating the effectiveness of ROT. 527

Additionally, ROT with RLLMs brings an average 528

improvement of 2.4% compared with Long CoT, 529

leading to higher reliability. Furthermore, ROT at- 530

tains SOTA performance on WikiTableQuestions 531

and TableBench among comparable models, vali- 532

dating its effectiveness. Analysis experiments in- 533

dicate that ROT with non-RLLMs achieves better 534

performance than Long CoT with fewer reasoning 535

tokens, showing its higher efficiency. 536
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Limitations537

(i) We do not conduct experiments on multi-turn538

table question answering datasets. We will explore539

the effectiveness of ROT on such datasets in fu-540

ture work. (ii) Our experiments are exclusively541

performed on English datasets. We leave exper-542

imentation with ROT on different languages for543

future research.544

Ethics Statement545

All models used in this paper are publicly available,546

and our utilization of them strictly complies with547

their respective licenses and terms of use.548
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A Prompts974

A.1 Demonstrations of ROT975

The instructions for ROT are shown in Figure 2,976

so in this section, we present demonstrations used977

across three datasets in Table 4. We select the978

same demonstration from the WikiTQ training set979

for both WikiTQ and TableBench, as the tables in980

these two datasets are flat. Our primary goal is to981

help the model understand the process of row-wise982

table traversals through the demonstration. In con-983

trast, the tables in HiTab are hierarchical. Due to984

this distinct structure, we select the demonstration985

from the HiTab training set to better facilitate the986

understanding of the table structure.987

A.2 Prompts for ablation experiments988

We show the prompts used in ablation experiments989

in Table 5. In the ablation study, the demonstra-990

tions used are consistent with those in the main991

experiments, with the corresponding iterative and992

traversal processes removed from the reasoning993

process.994

B Additional Experiments995

B.1 Long CoT with few-shot prompt996

In this subsection, we present the performance of997

Long CoT using few-shot prompts with R1-Llama-998

8B, as shown in Table 6. It can be observed that,999

across three datasets, the performance of Long CoT1000

significantly declines compared to the zero-shot1001

setting. Therefore, in the main experiments, we1002

employ zero-shot prompts.1003

B.2 Comparison with previous methods1004

In this subsection, we present a comparison of ROT1005

with previous works, as shown in Table 7, Table 8,1006

and Table 9. ROT achieves state-of-the-art perfor-1007

mance on WikiTQ and TableBench, and performs1008

comparably to prior methods on HiTab, demonstrat-1009

ing its effectiveness. ROT surpasses prior methods1010

by optimizing the table reasoning process through1011

detailed, iterative exploration and reflection.1012

Notably, Table-Critic (Yu et al., 2025) introduces1013

a multi-agent system for table reasoning, compris-1014

ing a Judge to identify errors, a Critic to analyze1015

these identified errors, a Refiner to rectify them,1016

and a Curator to aggregate critic knowledge for1017

enhanced critique quality. ROT surpasses Table-1018

Critic using the same LLM, demonstrating not only1019

effective reflection on previous reasoning but also1020

60.0%

28.0%

12.0%

Hallucination
Locating

Over-Reflection

Figure 10: Long CoT underperforms ROT with RLLMs
due to the error types, with their distribution.

sequential scaling through row-wise traversal, lead- 1021

ing to improved table reasoning capabilities. 1022

B.3 Why ROT with RLLMs outperforms 1023

Long CoT? 1024

To analyze specifically why ROT with RLLMs out- 1025

performs Long CoT, we randomly select instances 1026

from WikiTQ where ROT using R1-Llama-8B pro- 1027

vided the correct answer, but Long CoT using R1- 1028

Llama-8B failed. We manually analyze the reasons 1029

for these discrepancies, with the distribution shown 1030

in Figure 10. Among them, Hallucination and Lo- 1031

cating are as described in §3.4.1. Over-Reflection 1032

refers to cases where the reflection process led to an 1033

originally correct answer being changed to incor- 1034

rect, or where excessive reflections exceeding the 1035

token limits prevented a final answer from being 1036

generated. The results indicate that: (i) ROT signif- 1037

icantly mitigates the hallucination issue prevalent 1038

in Long CoT. (ii) The sequential row-wise traversal 1039

enhances the ability to locate all relevant infor- 1040

mation. (iii) ROT can alleviate Over-Reflection 1041

to some extent by guiding the reflection process 1042

through structured table traversal, thus reducing 1043

ineffective or erroneous reflections. 1044

C Case Study 1045

C.1 Case study of ROT compared with Long 1046

CoT 1047

We present examples where ROT outperforms 1048

Long CoT for distinct reasons, as illustrated in 1049

Figure 11, Figure 12, and Figure 13. 1050

C.2 Case study of ROT with iterative 1051

traversals 1052

We present examples of the three reasons for ROT 1053

performing iterative row-wise table traversals in 1054

Figure 14 and Figure 15. 1055
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Question
who was the guest judge after kelly brook?

Table

Series Premiere Finale … Guest judge(s)
One 9 June 2007 17 June 2007 N/A
Two 12 April 2008 31 May 2008 N/A
Three 11 April 2009 30 May 2009 … Kelly Brook
Four 17 April 2010 5 June 2010 Louis Walsh
Five 16 April 2011 4 June 2011 Louis Walsh

…

Output of RoT
To answer the question, I need to figure out who the guest judge was after Kelly Brook 
based on the given table. … 
Let me go through each row one by one.
1. One: The guest judge(s) column is blank. Hmm, maybe it's not applicable or 
the data isn't provided. I'll skip this one for now.
2. Two: The guest judge(s) column is blank. Same as the first, I'll skip this.
3. Three: The guest judge(s) is Kelly Brook. That's the one I'm looking for, but I 
need to find the next one.
4. Four: The guest judge(s) is Louis Walsh. That's the next one after Kelly Brook.
…
So the answer is Louis Walsh.
Answer: Louis Walsh

Output of Long CoT
<think>
Okay, so I need to figure out who the guest judge was after Kelly Brook on the show. 
… Looking at the "Guest judge(s)" column, I see that for Series One, the guest judge is 
listed as N/A. Series Two also has N/A. Series Three has Kelly Brook as the guest 
judge. Series Four onwards, the guest judges are listed as N/A again. 
…
Wait, so Kelly Brook was the guest judge in Series Three. The question is asking who 
was the guest judge after Kelly Brook. So, after Series Three, the next series is 
Series Four, but the guest judge there is N/A. Then Series Five also has N/A …
</think>
Answer: There was no guest judge after Kelly Brook in the subsequent series.

Figure 11: ROT outperforms Long CoT due to the hallucination issue of Long CoT. The row-wise table traversal
process is highlighted in green, and the hallucinated reasoning steps are highlighted in red.

Question
what city is at the top of the list?

Table

  Team City Venue … Past Season
Aboomoslem Mashhad Samen 4th
Bargh Shiraz Shiraz Hafezieh 7th
Damash Gilan Rasht Sardar 15th
Est. Ahvaz Ahvaz Takhti 8th

…
Persepolis Tehran Azadi Champion

…

Output of RoT
To answer the question, I need to look at the table and find the city that is at the 
top of the list. Let me go through each row one by one.
The table is sorted alphabetically by team name. I'll start from the top:
1. Aboomoslem, Mashhad: Mashhad is the city.
2. Bargh Shiraz, Shiraz: Shiraz is the city.
3. Damash Gilan, Rasht: Rasht is the city.
4. Est. Ahvaz, Ahvaz: Ahvaz is the city.
…
The first city in the list is Mashhad, which is the city of the team Aboomoslem.
Answer: Mashhad

Output of Long CoT
<think>
Okay, so I need to figure out which city is at the top of the list based on table …
First, I should understand what the question is asking. …it's likely referring to 
the ranking from the past season, as that's a common way to list teams in a 
league table.
Looking at the "Past Season" column, each team has a ranking. The rankings go 
from 1st place as the highest to lower ranks. So, the team with 1st place is at the 
top. 
Now, I need to find which team is in 1st place. Scanning through the list, I see 
that Persepolis is ranked Champion, which I assume is 1st place. Their city 
is Tehran. So, the city at the top of the list would be Tehran.
…Yes, Persepolis is the only team with Champion status, so they are 1st. 
</think>
Answer: Tehran

Figure 12: ROT outperforms Long CoT due to the misunderstanding issue of Long CoT. The row-wise table
traversal process is highlighted in green, and the misunderstanding reasoning steps are highlighted in red.
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The demonstration of ROT used on WikiTQ and TableBench

| Parish | Locality | Parish Priest | Founded | Closed |
|:—|:—|:—|:—|:—|
| St Mary | Bacup | Fr Frank Thorpe | 1852 | —- |
| Our Immaculate Mother & St Anselm | Whitworth | Fr Frank Thorpe | 1860 | —- |
| St Joseph | Stacksteads | —- | 1947 | 2005 |
| St Joseph & St Peter | Newchurch-In-Rossendale | Fr Philip Boast | 1915 | —- |
| The Immaculate Conception | Haslingden | Fr Canon John Mackie | 1854 | —- |
| St Veronica (Chapel of Ease) | Helmshore | Served from The Immaculate Conception | 1959 | —- |
| St James the Less | Rawtenstall | Fr David Lupton, Rural Dean | 1828 | —- |
Question:
what’s the number of parishes founded in the 1800s?
Solution:
To answer the question, I need to figure out how many parishes were founded in the 1800s based on the given table.
Let me look at the table again. The table has several columns: Parish, Locality, Parish Priest, Founded, and Closed.
My task is to count how many parishes were established in the 1800s.

First, I should understand what the "Founded" column represents. It likely indicates the year the parish was
established. So, I need to look at each row and check the year under the "Founded" column. If the year is in the
1800s, I’ll count that parish.

Let me go through each row one by one.

1. St Mary, Bacup: Founded in 1852. That’s in the 1800s, so that’s one.
2. Our Immaculate Mother & St Anselm, Whitworth: Founded in 1860. Also in the 1800s, so that’s two.
3. St Joseph, Stacksteads: The "Founded" column is blank. Hmm, maybe it’s not applicable or the data isn’t
provided. I’ll skip this one for now.
4. St Joseph & St Peter, Newchurch-In-Rossendale: Founded in 1915. That’s in the early 1900s, so not in the 1800s.
5. The Immaculate Conception, Haslingden: Founded in 1854. That’s another one, so three.
6. St Veronica (Chapel of Ease), Helmshore: Founded in 1959. That’s in the 1900s, so not relevant.
7. St James the Less, Rawtenstall: Founded in 1828. That’s in the 1800s, so four.

So the answer is four.

Answer: 4

The demonstration of ROT used on HiTab

admissions to adult custody, by sex and by indigenous identity and jurisdiction, 2018/2019
| jurisdiction | male | male | male | male | male | male | female | female | female | female | female | female |
|:—|:—|:—|:—|:—|:—|:—|:—|:—|:—|:—|:—|:—|
| jurisdiction | indigenous | indigenous | non-indigenous | non-indigenous | unknown indigenous identity | unknown
indigenous identity | indigenous | indigenous | non-indigenous | non-indigenous | unknown indigenous identity |
unknown indigenous identity |
| jurisdiction | number | percent change in number from 2017/2018 | number | percent change in number from
2017/2018 | number | percent change in number from 2017/2018 | number | percent change in number from
2017/2018 | number | percent change in number from 2017/2018 | number | percent change in number from
2017/2018 |
| newfoundland and labrador | 333 | -7 | 1,214 | -9 | 0 | .. | 39 | -11 | 187 | -4 | 0 | .. |
| prince edward island | 25 | 9 | 606 | 11 | 4 | -33 | 4 | -56 | 129 | 39 | 1 | 0 |
| nova scotia | 337 | 6 | 3,676 | 3 | 18 | 200 | 108 | 21 | 512 | -8 | 8 | 14 |
| new brunswick | 362 | -10 | 4,319 | 4 | 3 | 0 | 148 | -3 | 916 | 17 | 0 | -100 |
...
Question:
what is the percentage of admissions of non-indigenous males decreased in the provinces and territories compared
with the previous year?
Solution:
Okay, so I need to figure out the percentage decrease in admissions of non-indigenous males across the provinces
and territories compared to the previous year. Let me look at the table provided.
I need to find the percentage change for non-indigenous males in each province and territory. Let me go through
each row:
1. Newfoundland and Labrador: Non-indigenous males have a percent change of -9%.
2. Prince Edward Island: Non-indigenous males have a percent change of 11%.
3. Nova Scotia: Non-indigenous males have a percent change of 3%...
It shows a -7% change for non-indigenous males. That seems to be the overall percentage decrease across all
provinces and territories combined. I think that’s the answer because the total row aggregates all the data, so it’s the
most accurate representation of the overall percentage change.

Answer: 7

Table 4: The demonstrations of ROT used on three datasets.
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The prompt of ROT without Iteration

Your task is to think step by step by traversing the given table to solve the question.
Note that:
1. You must traverse the table row by row once and only once.
2. Represent your answer with: Answer: <Your Answer>.
Here is an example:
...
Based on the above example, you need to traverse the table below and answer the question.

{Table}
Question:
{Question}
Solution:

The prompt of ROT without Traversal

Your task is to think step by step to solve the question.
Note that:
1. You must reflect your reasoning iteratively until you get a correct answer.
2. Represent your answer with: Answer: <Your Answer>.
Here is an example:
...
Based on the above example, you need to answer the question below.

{Table}
Question:
{Question}
Solution:

Table 5: The prompts used in the ablation experiments.

Question
which episode came next after "candy sale"?

Table

Series Season Title … Original air date
1 1 The Charity October 15, 1994
2 1 The Practical Joke War -

…
12 1 Candy Sale January 26, 1995
13 1 The Big Bully February 2, 1995

Output of RoT
To answer the question, I need to figure out which episode came next after "Candy 
Sale" based on the given table…
Let me go through each row one by one.
1. Series 1, Season 1, Title: "The Charity", Original air date: October 15, 
1994. This is not "Candy Sale".
…
12. Series 1, Season 1, Title: "Candy Sale", Notes: ..., Original air date: 
January 26, 1995. This is the episode I'm looking for.
13. Series # 1, Season # 1, Title: "The Big Bully", Notes: ..., Original air date: 
February 2, 1995. This is the next episode after "Candy Sale".
So the answer is "The Big Bully".
Answer: The Big Bully

Output of Long CoT
<think>
Okay, so I need to figure out which episode comes after "Candy Sale" in the show. 
Let me look at the list provided. The episodes are numbered from 1 to 13, and I 
need to find the one that comes right after episode 12, which is "Candy Sale." 

Looking at the list, episode 12 is titled "Candy Sale" and it's from January 26, 
1995. The next episode after that would be episode 13. So, the answer 
should be episode 13.
</think>

Answer: 13

Figure 13: ROT outperforms Long CoT due to the locating error of Long CoT. The row-wise table traversal process
is highlighted in green, and the incorrect linking reasoning steps are highlighted in red.
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Question
In the context of the NFL draft, the "pick efficiency" of a college is calculated as 
the total number of players drafted from that college divided by the total number 
of players drafted in the round. Based on this definition, which college has the 
highest pick efficiency in the first 10 rounds of the draft?

Table

Output
To determine the college with the highest pick efficiency in the first 10 rounds of 
the draft, we need to calculate the pick efficiency for each college. …
First, let's identify the colleges with players drafted in the first 10 rounds and the 
number of players drafted from each:
1. Michigan - 1 player (round 1)
2. Alabama - 2 players (rounds 3, 10)
3. Oregon - 1 player (round 5)
4. Tennessee - 1 player (round 6)
…
Now, let's calculate the pick efficiency for each college in the first 10 rounds:
1. Michigan - 1 player / 8 players = 1/8
2. Alabama - 2 players / 8 players (rounds 3 and 10) = 2/8 = 1/4
3. Oregon - 1 player / 8 players = 1/8
4. Tennessee - 1 player / 8 players = 1/8
…
Alabama’s two players in the first 10 rounds give it the highest pick efficiency.
Answer: alabama

round pick overall name position college
1 10 10 forest evashevski rb michigan
3 10 25 fred davis ot alabama
5 10 40 jim stuart ot oregon
6 10 50 ed cifers e tennessee
7 10 60 al krueger e southern california
8 10 70 henry wilder rb iowa state

…

Figure 14: ROT performs iterative row-wise table traversals due to Multi-Hop Reasoning. The row-wise table
traversal process is highlighted in green.

Question
how many episodes in series 10 did fran carroll write?

Table

Output
To answer the question, I need to find out how many episodes in series 10 …
Let me go through each row one by one.
1. #1: Aired on September 14, 1997. Not in series 10.
2. #2: Aired on September 28, 1997. Not in series 10.
…
18. #18: Aired on February 22, 1998. Not in series 10.
Wait, I made a mistake! I need to look for the episodes written by Fran Carroll, 
not the episodes in series 10. …
Let me go through each row one by one.
1. #1: Written By Simon J. Sharkey. Not Fran Carroll.
2. #2: Written By Simon J. Sharkey. Not Fran Carroll.
…
18. #18: Written By Simon J. Sharkey. Not Fran Carroll.
So, Fran Carroll wrote only one episode.
Answer: 1

# Directed By Written By Original Air Date
1 Frank W. Smith Simon J. Sharkey September 14, 1997
2 Frank W. Smith Simon J. Sharkey September 28, 1997
3 Gerry Poulson David Humphries October 5, 1997
4 Gerry Poulson David Humphries October 12, 1997
5 John Reardon Neil McKay October 26, 1997
6 John Reardon Neil McKay November 2, 1997

…

Figure 15: ROT performs iterative row-wise table traversals due to Reflection. The row-wise table traversal process
is highlighted in green.
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Dataset Method Perfromance

WikiTQ Long CoT (zero-shot) 62.7
Long CoT (one-shot) 45.1

HiTab Long CoT (zero-shot) 49.7
Long CoT (one-shot) 35.4

TableBench Long CoT (zero-shot) 34.9
Long CoT (one-shot) 25.3

Table 6: Performance of Long CoT using R1-Llama-8B
with zero-shot and few-shot.

Method Accuracy

Llama3-70B
FlexTaF (Zhang et al., 2024b) 69.9

Llama3.1-70B
PoTable (Mao et al., 2025) 65.6
SS-CoT (Jiang et al., 2024b) 76.8
TableMaster (Cao, 2025) 78.0

Qwen2-72B
MACT (Zhou et al., 2025) 72.6

Llama3.3-70B
Binder (Cheng et al., 2023) 52.2
Dater (Ye et al., 2023) 59.5
Chain-of-Table (Wang et al., 2024) 62.1
Table-Critic (Yu et al., 2025) 70.1
ROT 78.7

Table 7: Performance comparison between ROT and
previous methods with comparable scale models on
WikiTQ.

Method Accuracy

GPT-3.5
Zhao et al. (2023) 50.0

code-davinci-002
Cao et al. (2023) 69.3

Qwen2-72B
GraphOTTER (Li et al., 2025a) 72.7

Llama3.1-70B
SS-CoT (Jiang et al., 2024b) 79.1

Qwen2.5-32B
ROT 76.6

Table 8: Performance comparison between ROT and
previous methods with comparable scale models on
HiTab.

Method Accuracy

Llama3.1-70B
Wu et al. (2024) 43.9

Llama3.3-70B
ROT 44.8

Table 9: Performance comparison between ROT and
previous methods with comparable scale models on
TableBench.

18


	Introduction
	RoT
	Overview
	Traversal
	Iteration

	Experiments
	Experimental Setup
	Main Results
	Ablation Experiments
	Analysis Experiments
	Why RoT Outperforms Long CoT?
	How does the number of traversals affect RoT?
	How does reasoning length affect table reasoning capabilities?
	How does RoT change with table size?
	How does the traversal unit affect RoT?
	How does the number of demonstrations affect RoT?


	Related Works
	Table Reasoning
	Long CoT

	Conclusion
	Prompts
	Demonstrations of RoT
	Prompts for ablation experiments

	Additional Experiments
	Long CoT with few-shot prompt
	Comparison with previous methods
	Why RoT with RLLMs outperforms Long CoT?

	Case Study
	Case study of RoT compared with Long CoT
	Case study of RoT with iterative traversals


