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ABSTRACT

In this paper, we propose SGEM, Stochastic Gradient with Energy and Momen-
tum to solve a large class of general non-convex stochastic optimization problems,
based on the AEGD method that originated in the work [AEGD: Adaptive Gradi-
ent Descent with Energy. arXiv: 2010.05109]. SGEM incorporates both energy
and momentum at the same time so as to inherit their dual advantages. We show
that SGEM features an unconditional energy stability property, and derive energy-
dependent convergence rates in the general nonconvex stochastic setting, as well
as a regret bound in the online convex setting. A lower threshold for the energy
variable is also provided. Our experimental results show that SGEM converges
faster than AEGD and generalizes better or at least as well as SGDM in training
some deep neural networks.

1 INTRODUCTION

In this paper, we propose SGEM: Stochastic Gradient with Energy and Momentum to solve the
following general non-convex stochastic optimization problem

min
θ∈Rd

f(θ) := Eξ[f(θ; ξ)], (1)

where Eξ[·] denotes the expectation with respect to the random variable ξ. We assume that f is
differentiable and bounded from below, i.e., f∗ = infθ∈Rd f(θ) > −c for some c > 0.

Problem (1) arises in many statistical learning and deep learning models (LeCun et al., 2015; Good-
fellow et al., 2016; Bottou et al., 2018). For such large scale problems, it would be too expensive to
compute the full gradient ∇f(θ). One approach to handle this difficulty is to use an unbiased esti-
mator of ∇f(θ). Denote the stochastic gradient at the t-th iteration as gt, the iteration of Stochastic
Gradient Descent (SGD) (Robbins & Monro, 1951) can be described as:

θt+1 = θt − ηtgt,
where ηt is called the learning rate. Its convergence is known to be ensured if ηt meets the sufficient
condition:

∞∑
t=1

ηt =∞,
∞∑
t=1

η2t <∞. (2)

However, vanilla SGD suffers from slow convergence due to the variance of the stochastic gradient,
which is one of the major bottlenecks for practical use of SGD (Bottou, 2012; Shapiro & Wardi,
1996). Its performance is also sensitive to the learning rate, which is tricky to tune via (2). Dif-
ferent techniques have been introduced to improve the convergence and robustness of SGD, such
as variance reduction (Defazio et al., 2014; Lei et al., 2017; Johnson & Zhang, 2013; Osher et al.,
2019), momentum acceleration (Allen-Zhu, 2018; Sutskever et al., 2013), and adaptive learning rate
(Duchi et al., 2011; Tieleman & Hinton, 2012; Kingma & Ba, 2017). Among these, momentum and
adaptive learning rate techniques are most economic since they require slightly more computation
in each iteration. However, training with adaptive algorithms such as Adam or its variants typically
generalizes worse than SGD with momentum (SGDM), even when the training performance is better
Wilson et al. (2018).

The most popular momentum technique, Heavy Ball (HB) (Polyak, 1964) has been extensively
studied for stochastic optimization problems (Liu et al., 2020b; Jin et al., 2018; Qian, 1999). SGDM,
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also called SHB, as a combination of SGD and momentum takes the following form

mt = µmt−1 + gt, θt+1 = θt − ηtmt,

wherem0 = 0 and µ ∈ (0, 1) is the momentum factor. This helps to reduce the variance in stochastic
gradients thus speeds up the convergence, and has been found to be successful in practice (Sutskever
et al., 2013).

AEGD originated in the work Liu & Tian (2020) is a gradient-based optimization algorithm that
adjusts the learning rate by a transformed gradient v and an energy variable r. The method includes
two ingredients: the base update rule:

θt+1 = θt + 2ηrt+1vt, rt+1 =
rt

1 + 2ηv2t
, (3)

and the stochastic evaluation of the transformed gradient vt as

vt =
gt

2
√
f(θt; ξt) + c

. (4)

AEGD is unconditionally energy stable with guaranteed convergence in energy regardless of the size
of the base learning rate η > 0 and how vt is evaluated. This explains why the method can have a
rapid initial training process as well as good generalization performance (Liu & Tian, 2020).

In this paper, we attempt to incorporate both energy and momentum at the same time so as to inherit
their dual advantages. We do so by keeping the base AEGD update rule (3), but taking

vt =
mt

2(1− βt)
√
f(θt; ξt) + c

, mt = βmt−1 + (1− β)gt, β ∈ (0, 1). (5)

We call this novel method SGEM. An immediate advantage is that with such vt one can significantly
reduce the oscillations observed in the AEGD in stochastic cases. Regarding the theoretical results,
in this work we develop a convergence theory for SGEM, in both stochastic nonconvex setting and
online convex setting. While in Liu & Tian (2020), convergence analysis is provided mainly in
deterministic setting, and the result in the stochastic setting is only an upper bound on the norm of
the stochastic transformed gradient v rather than on ∇f(θ).
We highlight the main contributions of our work as follows:

• We propose a novel and simple gradient-based method SGEM which integrates both energy
and momentum. The only hyperparameter requires tuning is the base learning rate.

• We show the unconditional energy stability of SGEM, and provide energy-dependent con-
vergence rates in the general stochastic nonconvex setting, and a regret bound for the online
convex framework. We also obtain a lower threshold for the energy variable. Our assump-
tions are natural and mild.

• We empirically validate the good performance of SGEM on several deep learning bench-
marks. Our results show that

– The base learning rate requires little tuning on complex deep learning tasks.
– Overall, SGEM is able to achieve both fast convergence and good generalization per-

formance. Specifically, SGEM converges faster than AEGD and generalizes better or
at least as well as SGDM.

Related works. The essential idea behind AEGD is the so called Invariant Energy Quadratiza-
ton (IEQ) strategy, originally introduced for developing linear and unconditionally energy stable
schemes for gradient flows in the form of partial differential equations (Yang, 2016; Zhao et al.,
2017). As for gradient-based methods, there has appeared numerous works on the analysis of con-
vergence rates. In online convex setting, a regret bound for SGD is derived in Zinkevich (2003); the
classical convergence results of SGD in stochastic nonconvex setting can be found in Bottou et al.
(2018); For SGDM, we refer the readers to Yu et al. (2019); Yan et al. (2018); Liu et al. (2020b)
for convergence rates on smooth nonconvex objectives. For adaptive gradient methods, most con-
vergence analysis are restricted to online convex setting (Duchi et al., 2011; Reddi et al., 2018; Luo
et al., 2019), while recent attempts, such as Chen et al. (2019); Zou et al. (2019), have been made to
analyze the convergence in stochastic nonconvex setting.
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This paper is organized as follows. We first review AEGD in Section 2, then introduce the proposed
algorithm in Section 3. Theoretical analysis including unconditional energy stability, convergence
rates in both stochastic nonconvex setting and online convex setting are presented in Section 4. In
Section 5, we report some experimental results on deep learning tasks.

Notation For a vector θ ∈ Rn, we denote θt,i as the i-th element of θ at the t-th iteration. For vector
norm, we use ‖ · ‖ to denote l2 norm and use ‖ · ‖∞ to denote l∞ norm. We also use [m] to represent
the list {1, ...,m} for any positive integer m.

2 REVIEW OF AEGD

Recall that for the objective function f , we assume that f is differentiable and bounded from below,
i.e., f(θ) > −c for some c > 0. The key idea of AEGD introduced in Liu & Tian (2020) is the use
of an auxiliary energy variable r such that

∇f(θ) = 2rv, v := ∇
√
f(θ) + c, (6)

where r, taking as
√
f(θ) + c initially, will be updated together with θ, and v is dubbed as the

transformed gradient. The gradient flow θ̇ = −∇f(θ) is then replaced by

θ̇ = −2rv, ṙ = v · θ̇.

A simple implicit-explicit discretization gives the following AEGD update rule:

vt =
∇f(θt)

2
√
f(θt) + c

. (7a)

θt+1 = θt − 2ηrt+1vt, (7b)
rt+1 − rt = vt · (θt+1 − θt). (7c)

This yields a decoupled update for r as rt+1 = rt/(1 + 2η|vt|2), which serves to adapt the learn-
ing rate. For large-scale problems, stochastic sampling approach is preferred. Let f(θt; ξt) be a
stochastic estimator of the function value f(θt) at the t-th iteration, gt be a stochastic estimator of
the gradient ∇f(θt), then the stochastic version of AEGD is still (7) but with vt replaced by

vt =
gt

2
√
f(θt; ξt) + c

.

Usually, gt should be required to satisfy E[gt] = ∇f(θt) and E[‖gt‖2] bounded. Correspondingly,
an element-wise version of AEGD for stochastic training reads as

vt,i =
gt,i

2
√
f(θt; ξt) + c

, i ∈ [n], (8a)

rt+1,i =
rt,i

1 + 2ηv2t,i
, r1,i =

√
f(θ1; ξ1) + c, (8b)

θt+1,i = θt,i − 2ηrt+1,ivt,i. (8c)

The element-wise AEGD allows for different effective learning rates for different coordinates, which
has been empirically verified to be more effective than the global AEGD (7). For further details, we
refer to Liu & Tian (2020). We will focus only on the element-wise version of SGEM in what
follows.

3 THE PROPOSED ALGORITHM

In this section, we present a novel algorithm to improve AEGD with added momentum in the fol-
lowing manner:

mt = βmt−1 + (1− β)gt, m0 = 0, (9a)

vt =
mt

2(1− βt)
√
f(θt; ξt) + c

, (9b)
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where β ∈ (0, 1) controls the weight for gradient at each step. With vt so defined, the update
rule for r and θ are kept the same as given in (8b, c). The relation between the energy and the
momentum in the algorithm is realized through relating mt ( as an approximation to ∇f ) to vt
(as an approximation of ∇F = ∇f

2
√
f+c

), where vt is used to update the energy rt+1. In machine
learning tasks, f as a loss function is often in the form of f(θ) = 1

m

∑m
i=1 li(θ), where li, measuring

the distance between the model output and target label at the i-th data point, is typically bounded
from below, that is, li(θ) > −c,∀i ∈ [m], for some c > 0. Hence c in (9b) can be easily chosen
in advance so that f(θt; ξt) as a random sample from {li(θt)}mi=1 is bounded below by −c for all
t ∈ [T ]. We summarize this in Algorithm 1 (called SGEM, for short).

A key feature of SGEM is that it incorporates momentum into AEGD without changing the overall
structure of the AEGD algorithm (the update of r and θ remain the same) so that it is shown (in
Section 4) to still enjoy the unconditional energy stability property as AEGD does. In addition, by
using mt instead of gt, the variance can be largely reduced. In fact, as proved in Liu et al. (2020b),
under the assumption Eξt [‖gt − ∇f(θt)‖2] = σ2

g < ∞, mt, which can be expressed as a linear
combination of the gradients at all previous steps,

mt = (1− β)
t∑

j=1

βt−jgj , (10)

enjoys a reduced “variance” in the sense that

Eξt

[∥∥∥∥mt − (1− β)
t∑

j=1

βt−j∇f(θj)
∥∥∥∥2
]
≤ (1− β)σ2

g .

Algorithm 1 SGEM. Good default setting for parameters are η = 0.2, β = 0.9

Require: the base learning rate η; a constant c such that f(θt; ξt) + c > 0 for all t ∈ [T ]; a
momentum factor β ∈ (0, 1).

Require: Initialization: θ1; m0 = 0; r1 =
√
f(θ1; ξ1) + c1

1: for t = 1 to T − 1 do
2: Compute gradient: gt = ∇f(θt; ξt)
3: mt = βmt−1 + (1− β)gt (momentum update)
4: vt = mt/(2(1− βt)

√
f(θt; ξt) + c) (transformed momentum)

5: rt+1 = rt/(1 + 2ηvt � vt) (energy update)
6: θt+1 = θt − 2ηrt+1 � vt (state update)
7: end for
8: return θT

Remark 3.1. (i) In Algorithm 1, we use x � y to denote element-wise product, x/y to denote
element-wise division of two vectors x, y ∈ Rn.
(ii) It is clear that mt defined in (10) is not a convex combination of gj , this is why there is a factor
1− βt in (9b); such treatment is dubbed as bias correction in Kingma & Ba (2017) for Adam.
(iii) In most machine learning problems, we have f(θ) ≥ 0, for which a good default value for c in
Algorithm 1 is 1.

4 THEORETICAL RESULTS

In this section, we present our theoretical results, including the unconditional energy stability of
SGEM, the convergence of SGEM for the general stochastic nonconvex optimization, a lower bound
for energy rT , and a regret bound in the online convex setting.

4.1 UNCONDITIONAL ENERGY STABILITY

Theorem 4.1. (Unconditional energy stability) SGEM in Algorithm 1 is unconditionally energy
stable in the sense that for any step size η > 0,

E[r2t+1,i] = E[r2t,i]− E[(rt+1,i − rt,i)2]− η−1E[(θt+1,i − θt,i)2], i ∈ [n], (11)
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that is E[rt,i] is strictly decreasing and convergent with E[rt,i]→ E[r∗i ] as t→∞, and also

lim
t→∞

E[(θt+1,i − θt,i)2] = 0,

∞∑
t=1

E[(θt+1,i − θt,i)2] ≤ η(f(θ1) + c), ∀i ∈ [n]. (12)

Remark 4.1. (i) The unconditional energy stability only depends on (8b, c), irrespective of the
choice for vt. This property essentially means that the energy variable rt, which serves to approxi-
mate

√
f(θt) + c, is strictly decreasing for any η > 0.

(ii) (12) indicates that the sequence ‖θt+1−θt‖ converges to zero at a rate of at least 1/
√
t. We note

that this does not guarantee the convergence of {θt} unless additional information on the geometry
of f is available.

Proof. From (8b, c) we have

(θt+1,i − θt,i)2 = 4η2r2t+1,iv
2
t,i (By 8c)

= (2ηrt+1,i)(rt,i − rt+1,i) (By 8b)

= η((r2t,i − r2t+1,i)− (rt,i − rt+1,i)
2).

This upon taking expectation ensures the asserted properties. Such proof with no use of the special
form of vt, is the same as that for AEGD (see Liu & Tian (2020)).

4.2 CONVERGENCE ANALYSIS

Below, we state the necessary assumptions that are commonly used for analyzing the convergence
of a stochastic algorithm for nonconvex problems, and notations that will be used in our analysis.
Assumption 4.1. 1. (Smoothness) The objective function in (1) is L-smooth: for any x, y ∈ Rn,

f(y) ≤ f(x) +∇f(x)>(y − x) + L

2
‖y − x‖2.

2. (Independent samples) The random samples {ξt}∞t=1 are independent.
3. (Unbiasedness) The estimator of the gradient and function value are unbiased:

Eξt [gt] = ∇f(θt), Eξt [f(θt; ξt)] = f(θt).

Denoting the variance of the stochastic gradient and function value by σg and σf , respectively:

Eξt [‖gt −∇f(θt)‖2] = σ2
g , Eξt [|f(θt; ξt)− f(θt)|2] = σ2

f .

We have the following results.
Theorem 4.2. Let {θt} be the solution sequence generated by Algorithm 1 with a fixed η > 0.
Under Assumption 4.1 and assume that the stochastic gradient and function value are bounded such
that ‖gt‖∞ ≤ G∞ and 0 < a ≤ f(θt; ξt) + c ≤ B, then σg ≤ G∞ and for all T ≥ 1,

1

T
E

[
min
i
rT,i

T∑
t=1

‖∇f(θt)‖2
]
≤ C1 + C2n+ C3σg

√
nT

ηT
,

where C1, C2, C3 are constants depending on β, η, L,G∞, a, B, n and f(θ1) + c.
Remark 4.2. (i) Numerically we observe that for reasonable choice of η, rt,i decays much slower
than 1/

√
t (See Figures 1), thus the convergence result in Theorem 4.2 is meaningful. The question

of how rT depends on T is theoretically interesting but subtle to characterize. Nevertheless, in The-
orem 4.3 below, we identify a sufficient condition for ensuring a lower threshold for E[rT,i], from
which we see that in the absence of noise, i.e σg = 0, mini r

∗
i > 0 can be ensured, then the rate of

O(1/T ) is recovered in Theorem 4.2.
(ii) The assumption that the magnitude of the stochastic gradient is bounded is standard in non-
convex stochastic analysis (Bottou et al., 2018). As for the upper bound on the stochastic func-
tion value, we recall the new introduced update rule in SGEM (9a,b): to bound vt, we don’t
need an upper bound on f ; while such upper bound is technically needed to bound mt since
mt = 2(1− βt)

√
f + cvt.
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Figure 1: mini rt,i of SGEM with default base learning rate 0.2 in training DL tasks.

We only present a sketch of proofs for Theorem 4.2 and 4.3 here, using notation F̃t =√
f(θt; ξt) + c, ηt = η/F̃t and viewing rt+1 as a n × n diagonal matrix that is made up of

[rt+1,1, ..., rt+1,i, ..., rt+1,n]. Detailed proofs, including two crucial lemmas and the full proof for
Theorem 4.4, are deferred to the appendix.

Proof. Using the L-smoothness of f , we have

f(θt+1)− f(θt) ≤ ∇f(θt)>(θt+1 − θt) +
L

2
‖θt+1 − θt‖2. (13)

The first term on the RHS is carefully regrouped as

− 1− β
1− βt

∇f(θt)>ηt−1rtgt+
1− β
1− βt

∇f(θt)>(ηt−1rt− ηtrt+1)gt−
β

1− βt
∇f(θt)>ηtrt+1mt−1.

Taking a conditional expectation on the first term gives

1− β
1− βt

ηt−1∇f(θt)T rt∇f(θt) ≥ (1− β) η√
B

min
i
rt,i‖∇f(θt)‖2.

We manage to bound the other two terms in terms of
∑n
i=1

∑T
t=1 rt+1,ig

2
t,i and∑n

i=1

∑T
t=1 rt+1,im

2
t,i. Their bounds are presented in Lemma A.2. The asserted bound then fol-

lows by further summation in t with telescope cancellation for f(θt+1) − f(θt) and bounding the
last term in (13) using (12).

4.3 LOWER BOUND FOR THE ENERGY

First note that the L-smoothness of f(θ) implies the LF -smoothness of F (θ) =
√
f(θ) + c with

LF =
1

2F (θ∗)

(
L+

G2
∞

2F 2(θ∗)

)
. (14)

This will be used in the following result and its proof.
Theorem 4.3 (Lower bound of rT ). Under the same assumptions as in Theorem 4.2, we have

min
i

E[rT,i] ≥ max{F (θ∗)− ηD1 − βD2 − σD3, 0}, (15)

where σ = max{σf , σg}≤ max{G∞, B} with LF given in (14) and

D1 =
LFnF

2(θ1)

2
, D2 =

√
BnF (θ1)

(1− β)
√
a
,

D3 =
1

2
√
a
+ F (θ1)

√
ηnT

√
G2
∞

4a3
+

1

a
.

Moreover, in the absence of noise, we have

min
i
rT,i > min

i
r∗i > 0 if ηD1 + µD2 < F (θ∗). (16)
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Remark 4.3. (i) (16) is only a sufficient condition, not used as a guide for choosing η. We observe
from our experimental results that the upper bound for η to guarantee the positiveness of r∗i can be
much larger (See Figure 1).
(ii) In Theorem 4.3, we measure how far r∗ can deviate from F (θ∗) in the worst situation. Under
the stochastic nonconvex setting, ηD1 is the error brought by the step size η, βD2 is due to the use
of momentum, and σD3 is responsible for the existence of noise.
(iii) In the case of no momentum and no noise, we have

min
i
rT,i > min

i
r∗i > 0 if η <

F (θ∗)

D1
.

This captures the result for the deterministic AEGD obtained in Liu & Tian (2020).

Proof. Using the LF -smoothness of F (θ), we have

F (θt+1)− F (θt) ≤ ∇F (θt)>(θt+1 − θt) +
LF
2
‖θt+1 − θt‖2, (17)

in which the key term∇F (θt)>(θt+1 − θt) can be decomposed into three terms:

(∇F (θt)−
gt

2F̃t
)>(θt+1 − θt), (

gt

2F̃t
− vt

1− β
)>(θt+1 − θt), (

vt
1− β

)>(θt+1 − θt),

The first two terms are bounded by using the bounded variance assumption and (12), respectively.
We convert the last term, using (recall 7c)

rt+1,i − rt,i = vt,i(θt+1,i − θt,i),

into expressions in terms of rt+1,i − rt,i, which upon summation is bounded by rT,i. The last term
in (17) is bounded again by using (12).

4.4 REGRET BOUND FOR ONLINE CONVEX OPTIMIZATION

Our algorithm is also applicable to the online optimization that deals with the optimization problems
having no or incomplete knowledge of the future (online). In the framework proposed in Zinkevich
(2003), at each step t, the goal is to predict the parameter θt ∈ F , where F ⊂ Rn is a feasible set,
and evaluate it on a previously unknown loss function ft. The nature of the sequence is unknown
in advance, the SGEM algorithm needs to be modified. This can be done by replacing f(θt, ξt) by
ft(θt) and taking gt = ∇ft(θt) in vt defined in (9), i.e.,

mt = βmt−1 + (1− β)∇ft(θt), (18a)

vt =
mt

2(1− βt)
√
ft(θt) + c

. (18b)

This algorithm is also unconditional energy stable as pointed out in Remark 4.1. For convergence,
we evaluate our algorithm using the regret, that is the sum of all the previous difference between the
online prediction ft(θt) and the best fixed point parameter ft(θ∗) from a feasible set F :

R(T ) =

T∑
t=1

[ft(θt)− ft(θ∗)],

where θ∗ = argminθ∈F
∑T
t=1 ft(θ). For convex objectives we have the following regret bound.

Theorem 4.4. Let {θt} be the solution sequence generated by SGEM with a fixed η > 0. Assume
that ‖x− y‖∞ ≤ D∞ for all x, y ∈ F , 0 < a ≤ ft(θt) + c ≤ B, and θt ∈ F for all t ∈ [T ]. When
F and ft are convex, SGEM achieves the following bound on the regret, for all T ≥ 1,

R(T ) ≤ C
√
nT/η

(
n∑
i=1

1

rT,i

)1/2

, (19)

where C is a constant depending on β,B,D∞ and f1(θ1) + c.
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Remark 4.4. (i) If rT,i > r∗i > 0, then R(T ) is of order O(
√
T ), which is known the best possible

bound for online convex optimization (Hazan, 2019, Section 3.2). Our experimental results show
that for η in a reasonable range, rT,i decays much slower than 1/

√
T (See Figure 1), for which the

convergence holds true in the sense that

lim
T→∞

R(T )

T
= 0.

(ii) The bound on θt is typically enforced by projection onto F (Zinkevich, 2003), with which the
regret bound (19) can still be proven since projection is a contraction operator (Hazan, 2019, Chap-
ter 3). As for the upper bound on the function value, just like we remarked for Theorem 4.2, it is
technically needed to bound mt.

5 NUMERICAL EXPERIMENTS

In this section, we compare the performance of the proposed method with several other methods, in-
cluding AEGD, SGDM, AdaBelief (Zhuang et al., 2020), AdaBound (Luo et al., 2019), RAdam (Liu
et al., 2020a), Yogi (Zaheer et al., 2018), and Adam (Kingma & Ba, 2017), when applied to train-
ing deep neural networks. 1 We consider three convolutional neural network (CNN) architectures:
VGG-16 (Simonyan & Zisserman, 2015), ResNet-34 (He et al., 2016), DenseNet-121 (Huang et al.,
2017) on the CIFAR-10 and CIFAR-100 datasets (Krizhevsky & Hinton, 2009); we also conduct
experiments on the ImageNet dataset (Russakovsky et al., 2015) with the ResNet-18 architecture
(He et al., 2016).

For experiments on CIFAR-10 and CIFAR-100, we employ the fixed budget of 200 epochs and
reduce the learning rates by 10 after 150 epochs. The weight decay and minibatch size are set as
5 × 10−4 and 128 respectively. For the ImageNet tasks, we run 90 epochs and use similar learning
rate decaying strategy at the 30th and 60th epoch. The weight decay and minibatch size are set as
1× 10−4 and 256 respectively.

In each task, we only tune the base learning rate and report the one that achieves the best final
generalization performance for each method:

• SGEM: For CIFAR10 & 100 tasks, we use the default parameter η = 0.2; for the ImageNet
task, the learning rate is set as η = 0.3.

• SGDM, AEGD: We search learning rate among {0.05, 0.1, 0.2}.
• AdaBelief, AdaBound, Yogi, RAdam, Adam: We search learning rate among
{0.0005, 0.001, 0.01}, other hyperparameters such as β1, β2, ε are set as the default val-
ues in their literature.

From the experimental results of CIFAR10 & 100, we see that in all tasks, SGEM and AEGD
achieve higher test accuracy than the other methods while the oscillation of AEGD in test accuracy
is significantly reduced by SGEM as expected. We also observe that the differences between these
methods are more obvious in experiments on CIFAR-100.

For the ImageNet task, since all previous experiments show that SGDM gives the highest test accu-
racy, we focus on the comparison between SGDM and SGEM, and only run Adam as a represen-
tative of other adaptive methods. The results are presented in Figure 3. It can be seen that SGEM
still shows fast convergence and is able to achieve comparable test accuracy as SGDM in the end
of training. Here the highest test accuracy achieved by SGDM and SGEM are 69.89 and 69.92,
respectively.

6 CONCLUSION

In this paper, we propose SGEM, which integrates AEGD with momentum. We show that SGEM
still enjoys the unconditional energy stability property as AEGD, while the use of momentum helps
to reduce the variance of the stochastic gradient significantly, as verified in our experiments. We

1Code is available at https://anonymous.4open.science/r/SGDEM-0042.
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(a) VGG-16 on CIFAR-10 (b) ResNet-34 on CIFAR-10 (c) DenseNet-121 on CIFAR-10

(d) VGG-16 on CIFAR-100 (e) ResNet-34 on CIFAR-100 (f) DenseNet-121 on CIFAR-100

Figure 2: Test accuracy for VGG-16, ResNet-34 and DenseNet-121 on CIFAR-10/100

Figure 3: Training loss and test accuracy for ResNet-18 on ImageNet

also provide convergence analysis in both online convex setting and the general stochastic noncon-
vex setting. Since our convergence results depend on the energy variable, a lower bound on the
energy is also presented. Finally, we empirically show that SGEM converges faster than AEGD and
generalizes better or at least as well as SGDM on several deep learning benchmarks.

Based on our observations in this paper, we list some problems for future work. First, we believe
there is a threshold for η∗, such that rT either tends to a positive number or decays slower than
1/
√
T if η < η∗. A further theoretical investigation on this issue is desirable. Second, since rt is

strictly decreasing, there is a room to limit rt for controlling its decay whenever necessary. A proper
energy limiter should be obtained.
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A APPENDIX

A.1 PROOF OF THEOREM 4.2

For the proofs of Theorem 4.2 and Theorem 4.3, we introduce notation

F̃t :=
√
f(θt; ξt) + c. (20)

The initial data for ri is taken as r1,i = F̃1. We also denote the update rule presented in Algorithm
1 as

θt+1 = θt − 2ηrt+1vt, (21)
where rt+1 is viewed as a n× n diagonal matrix that is made up of [rt+1,1, ..., rt+1,i, ..., rt+1,n].
Lemma A.1. Under the assumptions in Theorem 4.2, we have for all t ∈ [T ],

(i) ‖∇f(θt)‖∞ ≤ G∞.

(ii) E[(F̃t)2] = F 2(θt) = f(θt) + c.

(iii) E[F̃t] ≤ F (θt). In particular, E[r1,i] = E[F̃1] ≤ F (θ1) for all i ∈ [n].

(iv) σ2
g = E[‖gt −∇f(θt)‖2] ≤ G2

∞ and σ2
f = E[|f(θt; ξt)− f(θt)|2] ≤ B2.

(v) E[|F (θt)− F̃t|] ≤ 1
2
√
a
σf .

(vi) E[‖∇F (θt)− gt
2F̃t
‖2] ≤ G2

∞
8a3 σ

2
f +

1
2aσ

2
g .

Proof. (i) By assumption ‖gt‖∞ ≤ G∞, we have

‖∇f(θt)‖∞ = ‖E[gt]‖∞ ≤ E[‖gt‖∞] ≤ G∞.

(ii) This follows from the unbiased sampling of

f(θt) = Eξt [f(θt; ξt)].

(iii) By Jensen’s inequality, we have

E[F̃t] ≤
√

E[F̃ 2
t ] =

√
F (θt)2 = F (θt).

(iv) By assumptions ‖gt‖∞ ≤ G∞ and f(θt; ξt) + c < B, we have

σ2
g = E[‖gt −∇f(θt)‖2] = E[‖gt‖2]− ‖∇f(θt)‖2 ≤ G2

∞,

σ2
f = E[‖f(θt; ξt)− f(θt)‖2] = E[‖f(θt; ξt)‖2]− ‖f(θt)‖2 ≤ B2.

(v) By the assumption 0 < a ≤ f(θt; ξt) + c = F̃ 2
t , we have

E[|F (θt)− F̃t|] ≤ E

[∣∣∣∣f(θt)− f(θt; ξt)F (θt) + F̃t

∣∣∣∣
]
≤ 1

2
√
a
E[|f(θt)− f(θt; ξt)|] ≤

1

2
√
a
σf .

(vi) By the definition of F (θ), we have

‖∇F (θt)−
gt

2F̃t
‖2 =

∥∥∥∥∇f(θt)2F (θt)
− gt

2F̃t

∥∥∥∥2
=

1

4

∥∥∥∥∇f(θt)(F̃t − F (θt))F (θt)F̃t
+
∇f(θt)− gt

F̃t

∥∥∥∥2
≤ 1

2

∥∥∥∥∇f(θt)(F̃t − F (θt))F (θt)F̃t

∥∥∥∥2 + 1

2

∥∥∥∥∇f(θt)− gtF̃t

∥∥∥∥2
≤ G2

∞
2a2
|F̃t − F (θt)|2 +

1

2a
‖∇f(θt)− gt‖2,

13
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where both the gradient bound and the assumption that 0 < a ≤ f(θt; ξt) + c = F̃ 2
t are essentially

used. Take an expectation to get

E[‖∇F (θt)−
gt

2F̃t
‖2] ≤ G2

∞
2a2

E[|F̃t − F (θt)|2] +
1

2a
E[‖∇f(θt)− gt‖2].

Similar to the proof for (iv), we have

E[|F̃t − F (θt)|2] ≤
1

4a
σ2
f .

This together with the variance assumption for gt gives

E[‖∇F (θt)−
gt

2F̃t
‖2] ≤ G2

∞
8a3

σ2
f +

1

2a
σ2
g .

Lemma A.2. For any T ≥ 1, we have

(i) E
[∑T

t=1 v
>
t rt+1vt

]
≤ nF (θ1)

2η .

(ii) E
[∑T

t=1m
>
t−1rt+1mt−1

]
≤ E

[∑T
t=1m

>
t rt+1mt

]
≤ 2BnF (θ1)

η .

(iii) E
[∑T

t=1 ‖rt+1mt‖2
]
≤ 2BnF 2(θ1)

η .

(iv) E
[∑T

t=1 g
>
t rt+1gt

]
≤ 8BnF (θ1)

(1−β)2η .

(v) E
[∑T

t=1 ‖rt+1gt‖2
]
≤ 8BnF 2(θ1)

(1−β)2η .

Proof. From Algorithm 1 line 5, we have
rt,i − rt+1,i = 2ηrt+1,iv

2
t,i.

Taking summation over t from 1 to T gives

r1,i − rT+1,i = 2η

T∑
t=1

rt+1,iv
2
t,i ⇒

T∑
t=1

rt+1,iv
2
t,i ≤

r1,i
2η

.

From which we get
T∑
t=1

v>t rt+1vt =

n∑
i=1

T∑
t=1

rt+1,iv
2
t,i ≤

nF̃1

2η
.

Taking expectation and using (iii) in Lemma A.1 gives (i).

Recall that mt = 2(1− βt)F̃tvt and F̃t ≤
√
B, we further get

T∑
t=1

m>t rt+1mt ≤ 4B

T∑
t=1

v>t rt+1vt =
2BnF̃1

η
.

Using rt+1,i ≤ rt,i and m0,i = 0, we also have
n∑
i=1

T∑
t=1

rt+1,im
2
t−1,i ≤

n∑
i=1

T∑
t=1

rt,im
2
t−1,i =

n∑
i=1

T−1∑
t=1

rt+1,im
2
t,i ≤

n∑
i=1

T∑
t=1

rt+1,im
2
t,i. (22)

Connecting the above two inequalities and taking expectation gives (ii).

Using rt+1,i ≤ r1,i, the above inequality further implies
T∑
t=1

‖rt+1mt‖2 =

n∑
i=1

T∑
t=1

r2t+1,im
2
t,i ≤

n∑
i=1

T∑
t=1

r1,irt+1,im
2
t,i

=

( n∑
i=1

T∑
t=1

rt,im
2
t,i

)
F̃1 ≤ 2BnF̃ 2

1 /η.

14
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Taking expectation and using (ii) in Lemma A.1 gives (iii).

By mt = βmt−1 + (1− β)gt, we have

T∑
t=1

g>t rt+1gt =

n∑
i=1

T∑
t=1

rt+1,ig
2
t,i =

n∑
i=1

T∑
t=1

rt+1,i

(
1

1− β
mt,i −

β

1− β
mt−1,i

)2

≤ 2

(1− β)2
n∑
i=1

T∑
t=1

rt+1,im
2
t,i +

2β2

(1− β)2
n∑
i=1

T∑
t=1

rt+1,im
2
t−1,i

≤ 2(1 + β2)

(1− β)2
T∑
t=1

m>t rt+1mt ≤
8BnF̃1

(1− β)2η
.

Here the third inequality is by (a + b)2 ≤ 2a2 + 2b2; (22) and 0 < β < 1 are used in the fourth
inequality. Taking expectation and using (iii) in Lemma A.1 gives (iv).

Similar as the derivation for (ii), we have
T∑
t=1

‖rt+1gt‖2 ≤
( n∑
i=1

T∑
t=1

rt,ig
2
t,i

)
F̃1 ≤

8BnF̃ 2
1

(1− β)2η
.

Taking expectation and using (ii) in Lemma A.1 gives (v).

We are now ready to prove Theorem 4.2. The upper bound on σg is given by (iv) in Lemma A.1.
Since f is L-smooth, we have

f(θt+1) ≤ f(θt) +∇f(θt)>(θt+1 − θt) +
L

2
‖θt+1 − θt‖2. (23)

Denoting ηt = η/F̃t, the second term in the RHS of (23) can be expressed as

∇f(θt)>(θt+1 − θt)
= ∇f(θt)>(−2ηrt+1vt)

= − 1

1− βt
∇f(θt)>ηtrt+1mt (since mt = 2(1− βt)F̃tvt)

= − 1

1− βt
∇f(θt)>ηtrt+1(βmt−1 + (1− β)gt) (24)

= − 1− β
1− βt

∇f(θt)>ηtrt+1gt −
β

1− βt
∇f(θt)>ηtrt+1mt−1

= − 1− β
1− βt

∇f(θt)>ηt−1rtgt +
1− β
1− βt

∇f(θt)>(ηt−1rt − ηtrt+1)gt

− β

1− βt
∇f(θt)>ηtrt+1mt−1.

We further bound the second term and third term in the RHS of (24), respectively. For the second
term, we note that | 1−β1−βt | ≤ 1 and

|∇f(θt)>(ηt−1rt − ηtrt+1)gt|
= |∇f(θt)>ηt−1(rt − rt+1)gt +∇f(θt)>(ηt−1 − ηt)rt+1gt|
= |∇f(θt)>ηt−1(rt − rt+1)gt + (ηt−1 − ηt)g>t rt+1gt

+ (ηt−1 − ηt)(∇f(θt)− gt)>rt+1gt|
≤ ‖∇f(θt)‖∞|ηt−1|‖rt − rt+1‖1,1‖gt‖∞ + |ηt−1 − ηt|g>t rt+1gt

+ |ηt−1 − ηt||(∇f(θt)− gt)>rt+1gt|
≤ (ηG2

∞/
√
a)(‖rt‖1,1 − ‖rt+1‖1,1) + (2η/

√
a)g>t rt+1gt

+ (2η/
√
a)|(∇f(θt)− gt)>rt+1gt|. (25)
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The third inequality holds because for a positive diagonal matrix A, x>Ay ≤ ‖x‖∞‖A‖1,1‖y‖∞,
where ‖A‖1,1 =

∑
i aii. The last inequality follows from the result rt+1,i ≤ rt,i for i ∈ [n], the

assumption ‖gt‖∞ ≤ G∞, F̃t ≥
√
a, and (i) in Lemma (A.1).

For the third term in the RHS of (24), we note that

− β

1− βt
∇f(θt)>ηtrt+1mt−1 ≤

βη

(1− β)
√
a
|∇f(θt)>ηtrt+1mt−1|,

in which

|∇f(θt)>rt+1mt−1|
= |g>t rt+1mt−1 + (∇f(θt)− gt)>rt+1mt−1|

≤ 1

2
g>t rt+1gt +

1

2
m>t−1rt+1mt−1 + |(∇f(θt)− gt)>rt+1mt−1|, (26)

where the last inequality is because for a positive diagonal matrix A, x>Ay ≤ 1
2x
>Ax + 1

2y
>Ay.

Substituting (25) and (26) into (24), we get

∇f(θt)>(θt+1 − θt) ≤ −
1− β
1− βt

∇f(θt)>ηt−1rtgt +
ηG2
∞√
a

(‖rt‖1,1 − ‖rt+1‖1,1)

+

(
2η√
a
+

βη

2(1− β)
√
a

)
g>t rt+1gt +

βη

2(1− β)
√
a
m>t−1rt+1mt−1

+
2η√
a
|(∇f(θt)− gt)>rt+1gt|+

βη

(1− β)
√
a
|(∇f(θt)− gt)>rt+1mt−1|.

(27)

With (27), we take an conditional expectation on (23) with respect to (θ) and rearrange to get

1− β
1− βt

∇f(θt)>ηt−1rt∇f(θt) = Eξt
[
1− β
1− βt

∇f(θt)>ηt−1rtgt
]

≤ Eξt

[
f(θt)− f(θt+1) +

ηG2
∞√
a

(‖rt‖1,1 − ‖rt+1‖1,1)

+

(
2η√
a
+

βη

2(1− β)
√
a

)
g>t rt+1gt +

βη

2(1− β)
√
a
m>t−1rt+1mt−1

+
2η√
a
|(∇f(θt)− gt)>rt+1gt|

+
βη

(1− β)
√
a
|(∇f(θt)− gt)>rt+1mt−1|+

L

2
‖θt+1 − θt‖2

]
,

(28)

where the assumption Eξt [gt] = ∇f(θt) is used in the first equality. Since ξ1, ..., ξt are independent
random variables, we set E = Eξ1Eξ2 ...EξT and take a summation on (28) over t from 1 to T to get

E

[
T∑
t=1

1− β
1− βt

∇f(θt)>ηt−1rt∇f(θt)

]

≤ E
[
f(θ1)− f(θT+1)

]
+
ηG2
∞√
a

E
[
‖r1‖1,1 − ‖rT+1‖1,1

]
+

(
2η√
a
+

βη

2(1− β)
√
a

)
E

[
T∑
t=1

g>t rt+1gt

]
+

βη

2(1− β)
√
a
E

[
T∑
t=1

m>t−1rtmt−1

]

+
2η√
a
E

[
T∑
t=1

|(∇f(θt)− gt)>rt+1gt|

]

+
βη

(1− β)
√
a
E

[
T∑
t=1

|(∇f(θt)− gt)>rt+1mt−1|

]
+
L

2
E

[
T∑
t=1

‖θt+1 − θt‖2
]
.

(29)

16
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Below we bound each term in (29) separately. By the Cauchy-Schwarz inequality, we get

E

[
T∑
t=1

|(∇f(θt)− gt)>rt+1mt−1|

]

≤ E

[
T∑
t=1

‖∇f(θt)− gt‖‖rt+1mt−1‖

]

≤ E

[( T∑
t=1

‖∇f(θt)− gt‖2
)1/2( T∑

t=1

‖rt+1mt−1‖2
)1/2

]

≤

(
E

[
T∑
t=1

‖∇f(θt)− gt‖2
])1/2(

E

[
T∑
t=1

‖rt+1mt−1‖2
])1/2

≤
√
2BnT/ηF (θ1)σg, (30)

where Lemma A.1 (ii) and the bounded variance assumption were used. We replace mt−1 in (30)
by gt and use Lemma A.1 (v) to get

E

[
T∑
t=1

|(∇f(θt)− gt)>rt+1gt|

]

≤

(
E

[
T∑
t=1

‖∇f(θt)− gt‖2
])1/2(

E

[
T∑
t=1

‖rt+1gt‖2
])1/2

≤
2
√

2BnT/ηF (θ1)σg
1− β

. (31)

By (12), the last term in (29) is bounded above by

L

2
E

[ ∞∑
t=0

‖θt+1 − θt‖2
]
≤ Lηn

2
F 2(θ1). (32)

Substituting Lemma A.1 (i) (iii), (32), (31), (30) into (29) to get

E

[
T∑
t=1

1− β
1− βt

∇f(θt)>ηt−1rt∇f(θt)

]
≤ (f(θ1)− f∗) +

ηG2
∞√
a
nF (θ1)

+

(
2√
a
+

β

2(1− β)
√
a

)
8BnF (θ1)

(1− β)2
+
βBnF (θ1)

(1− β)
√
a

+
(4 + β)

√
2Bη

(1− β)
√
a

F (θ1)
√
nTσg +

Lηn

2
F 2(θ1).

(33)

Note that the left hand side is bounded from below by

(1− β) η√
B
E

[
min
i
rT,i

T∑
t=1

‖∇f(θt)‖2
]
,

where we used | 1−β1−βt | ≥ 1− β and ηt ≥ η/
√
B. Thus we have

E

[
min
i
rT,i

T∑
t=1

‖∇f(θt)‖2
]
≤ C1 + C2n+ C3σg

√
nT

η
,

17
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where

C1 =
(f(θ1)− f∗)

√
B

1− β
,

C2 =

√
BηG2

∞F (θ1)

(1− β)
√
a

+

(
2√
a
+

β

2(1− β)
√
a

)
8B3/2F (θ1)

(1− β)3

+
βB3/2F (θ1)

(1− β)2
√
a
+

√
BLη

2(1− β)2
F 2(θ1),

C3 =
(4 + β)B

√
2η

(1− β)
√
a

F (θ1).

A.2 PROOF OF THEOREM 4.3

First note that by (iv) in Lemma A.1, max{σg, σf} ≤ max{G∞, B}.
Recall that F (θ) =

√
f(θ) + c, then for any x, y ∈ {θt}Tt=0 we have

‖∇F (x)−∇F (y)‖ =
∥∥∥∥∇f(x)2F (x)

− ∇f(y)
2F (y)

∥∥∥∥
=

1

2

∥∥∥∥∇f(x)(F (y)− F (x))F (x)F (y)
+
∇f(x)−∇f(y)

F (y)

∥∥∥∥
≤ G∞

2(F (θ∗))2
|F (y)− F (x)|+ 1

2F (θ∗)
‖∇f(x)−∇f(y)‖.

One may check that

|F (y)− F (x)| ≤ G∞
2F (θ∗)

‖x− y‖.

These together with the L-smoothness of f lead to

‖∇F (x)−∇F (y)‖ ≤ LF ‖x− y‖,

where

LF =
1

2
√
f(θ∗) + c

(
L+

G2
∞

2(f(θ∗) + c)

)
.

This confirms the LF -smoothness of F , which yields

F (θt+1)− F (θt) ≤ ∇F (θt)>(θt+1 − θt) +
LF
2
‖θt+1 − θt‖2

= (∇F (θt)−
gt

2F̃t
)>(θt+1 − θt) + (

gt

2F̃t
− 1− βt

1− β
vt)
>(θt+1 − θt)

+ (
1− βt

1− β
vt)
>(θt+1 − θt) +

LF
2
‖θt+1 − θt‖2.

Summation of the above over t from 1 to T and taken with the expectation gives

E[F (θT+1)− F (θ1)] ≤
4∑
i=1

Si, (34)

18
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where

S1 = E

[
T∑
t=1

1− βt

1− β
v>t (θt+1 − θt)

]
,

S2 = E

[
T∑
t=1

(
gt

2F̃t
− 1− βt

1− β
vt)
>(θt+1 − θt)

]
,

S3 = E

[
T∑
t=1

(∇F (θt)−
gt

2F̃t
)>(θt+1 − θt)

]
,

S4 = E

[
T∑
t=1

LF
2
‖θt+1 − θt‖2

]
.

Below we bound S1, S2, S3, S4 separately. To bound S1, we first note that

rt+1,i − rt,i = −2ηrt+1,iv
2
t,i = vt,i(−2ηrt+1,ivt,i) = vt,i(θt+1,i − θi)

from which we get

S1 = E

[
T∑
t=1

1− βt

1− β
v>t (θt+1 − θt)

]

= E

[
n∑
i=1

T∑
t=1

1− βt

1− β
(rt+1,i − rt,i)

]

≤ E

[
n∑
i=1

T∑
t=1

rt+1,i − rt,i

]
(Since rt+1,i ≤ rt,i)

=

n∑
i=1

E[rT+1,i]− nE[F̃1].

For S2, we have

S2 = E

[
T∑
t=1

(
gt

2F̃t
− 1− βt

1− β
vt)
>(θt+1 − θt)

]

= E

[
n∑
i=1

T∑
t=1

(− 1

2F̃t

β

1− β
mt−1,i)

>(2ηrt+1,ivt,i)

]

≤ βη

(1− β)
√
a
E

[
n∑
i=1

T∑
t=1

rt+1,imt−1,ivt,i

]

≤ βη

(1− β)
√
a
E

[( n∑
i=1

T∑
t=1

rt+1,im
2
t−1,i

)1/2( n∑
i=1

T∑
t=1

rt+1,iv
2
t,i

)1/2
]

≤ β
√
BnF (θ1)

(1− β)
√
a
,

where the fourth inequality is by the Cauchy-Schwarz inequality, the last inequality is by Lemma
A.1 (i) (ii).
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For S3, by the Cauchy-Schwarz inequality, we have

S3 = E

[
T∑
t=1

(∇F (θt)−
gt

2F̃t
)>(θt+1 − θt)

]

≤ E

[
T∑
t=1

‖∇F (θt)−
gt

2F̃t
)‖‖θt+1 − θt)‖

]

≤ E

[( T∑
t=1

‖∇F (θt)−
gt

2F̃t
)‖2
)1/2( T∑

t=1

‖θt+1 − θt‖2
)1/2

]

≤

(
E

[
T∑
t=1

‖∇F (θt)−
gt

2F̃t
)‖2
])1/2(

E

[
T∑
t=1

‖θt+1 − θt‖2
])1/2

≤ F (θ1)
√
ηnT

√
G2
∞

8a3
σ2
f +

1

2a
σ2
g ,

where the last inequality is by (vi) in Lemma A.1 and (12) in Theorem 4.1.

For S4, also by (12) in Theorem 4.1, we have

S4 =
LF
2

E

[
T∑
t=1

‖θt+1 − θt‖2
]
≤ LF ηnF

2(θ1)

2
.

With the above bounds on S1, S2, S3, S4, (34) can be rearranged as

F (θ∗)− β
√
BnF (θ1)

(1− β)
√
a
− F (θ1)

√
ηnT

√
G2
∞

4a3
σ2
f +

1

a
σ2
g −

LF ηnF
2(θ1)

2

≤
n∑
i=1

E[rT+1,i]− nE[F̃1] + F (θ1)

≤
(
min
i

E[rT+1,i] + (n− 1)E[F̃1]
)
− (n− 1)E[F̃1] +

(
F (θ1)− E[F̃1]

)
≤ min

i
E[rT+1,i] + E[|F (θ1)− F̃1|]

≤ min
i

E[rT+1,i] +
1

2
√
a
σf ,

where (iii) in Lemma A.1 was used. Hence,

min
i

E[rT,i] ≥ max{F (θ∗)− ηD1 − βD2 − σD3, 0},

where σ = max{σf , σg} and

D1 =
LFnF

2(θ1)

2
, D2 =

√
BnF (θ1)

(1− β)
√
a
,

D3 =
1

2
√
a
+ F (θ1)

√
ηnT

√
G2
∞

4a3
+

1

a
.

A.3 PROOF OF THEOREM 4.4

Using the same argument as for (iv) in Lemma A.2, we have

n∑
i=1

T∑
t=1

rt+1,ig
2
t,i ≤

8Bn
√
f1(θ1) + c

(1− β)2η
.
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With this estimate and the convexity of ft, the regret can be bounded by

R(T ) =

T∑
t=1

ft(θt)− ft(θ∗) ≤
T∑
t=1

g>t (θt − θ∗)

≤
n∑
i=1

T∑
t=1

|gt,i|
√
rt+1,i

|θt,i − θ∗i |√
rt+1,i

≤

(
n∑
i=1

T∑
t=1

rt+1,ig
2
t,i

)1/2( n∑
i=1

T∑
t=1

|θt,i − θ∗i |2

rt+1,i

)1/2

≤ 2D∞
√
2B

1− β
(f1(θ1) + c)1/4

√
nT/η

(
n∑
i=1

1

rT+1,i

)1/2

,

where the fourth inequality is by the Cauchy-Schwarz inequality, and the assumption ‖x − y‖∞ ≤
D∞ for all x, y ∈ F is used in the last inequality.

21


	Introduction
	Review of AEGD
	The proposed algorithm
	Theoretical results
	Unconditional energy stability
	Convergence analysis
	Lower bound for the energy
	Regret bound for Online convex optimization

	Numerical experiments
	Conclusion
	Appendix
	Proof of Theorem 4.2
	Proof of Theorem 4.3
	Proof of Theorem 4.4


