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Abstract

The Surface Water and Ocean Topography (SWOT) satellite launched in December
2022 and has been providing high-accuracy monitoring of rivers’ water surface
elevation. Remote measurements do not, however, include discharge, an essential
element for improved modelling of river dynamics. Furthermore, orbital charac-
teristics of SWOT satellite overpasses result in spatial and temporal discontinuity
of observations. The process of inferring hydrological information from one river
portion to another is called regionalization and may help alleviate this issue. While
most regionalization methods based on machine learning do not leverage geometri-
cal river properties, recent works point to graph machine learning as a promising
solution for simulation of river flow. This work applies state-of-the-art temporal
graph machine learning techniques for regionalization and discharge estimation.
More specifically, we leverage available SWOT data, in-situ gauge discharge and a
temporal graph neural network to offer basin-scale simulation of river discharge
in US rivers where the SWOT mission operates. We run experiments in different
basins and against several in-situ gauges on which the proposed method offers con-
vincing performance. The approach is compared to the drainage-area ratio method,
a non-temporal graph neural network and a long short-term memory model, which
it outperforms.

1 Introduction and Related Works

The Surface Water and Ocean Topography (SWOT) satellite monitors rivers wider than 100 m.
It is especially useful in poorly gauged regions where it may enable better management of flood
risks [Jongman et al., 2012], improvement of hydrological models [Sagarika et al., 2016] and better
allocation of water resources [Kansakar and Hossain, 2016]. Each river reach monitored by SWOT is
10 km-long on average. When SWOT measurements are available for a reach on a given day, the
reach is assigned a SWOT product comprising daily average Water Surface Elevation (WSE), width
and slope [Fu et al., 2012]. While discharge is a critical part of the SWOT mission, it is not remotely
measured. Moreover, SWOT follows an orbit with a 21-day repeat within ±78 degrees latitude and
shorter repeat cycles near poles [Biancamaria et al., 2016]. Some river reaches are observed more
often than others: observations are subject to spatial and temporal discontinuity, which is a challenge
for the estimation of weekly or monthly hydrodynamic attributes [Biancamaria et al., 2009].

Inferring discharge from SWOT observations can be related to finding reach-scale flow law parameters
in Gauckler–Manning’s equation relying on observations over a time period. Significant reach-
scale efforts have been devoted to this purpose [Durand et al., 2016, Gleason and Smith, 2014,
Hagemann et al., 2017]. However, directly deploying these reach-scale algorithms at global scale is
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Figure 1: Illustration of SWOT-GNN discharge simulation.

computationally infeasible. Integrators, which enforce flow conservation at river confluences, are
currently under development to enable these reach-scale algorithms at basin scale in the context of
SWOT [Durand et al., 2023]. Other algorithms that infer flow law parameters on a higher-scale are
also planned for use, such as geoBAM [Brinkerhoff et al., 2020] and MetroMan [Durand et al., 2014].

Concerning regionalization, a wide variety of methods exist and we refer the reader to [Guo et al.,
2021] for a deep review. The drainage-area ratio method is one of the oldest methods [Archfield
and Vogel, 2010]. It considers the drainage area of an ungauged location, the drainage area of a
gauged location and uses a ratio of the two to obtain the ungauged discharge. Regionalization can
also be carried out via Data Assimilation (DA). Observations are combined with a hydrological
model which aims to reproduce river physics and dynamics [Reichle, 2008]. An estimated discharge
is computed from the SWOT observation for the reach in question, which the model regionalizes
to neighboring reaches based on flow rules [Li et al., 2020]. While DA may carry out effective
regionalization, a hydrological model is complex to create and computationally expensive, especially
on SWOT river scale. Fully data-driven methods have also gained in popularity owing to their cheap
computational requirements and increasingly high accuracy. Various models have been used, such
as artificial neural networks [Besaw et al., 2010], support vector machines [Hwang et al., 2012],
and Long Short-Term Memories (LSTMs) [Kratzert et al., 2019]. Authors in [Kratzert et al., 2019]
report their rainfall-discharge LSTM to be more accurate on multiple basins than hydrological models
calibrated to each basin. Recent works now leverage temporal Graph Neural Networks (GNN) as
a follow-up to LSTMs, due to their ability to incorporate geometrical basin properties on top of
temporal dependencies. GNNs are generalizations of convolutional neural networks to non-Euclidean
graphs [Bronstein et al., 2017] and follow the idea of passing messages between graph nodes. We
refer the reader to [Zhou et al., 2020] for a deep review of GNNs. Relevant works include Zhao
et al., who combine a RNN with a GNN to predict discharge and outperform learning-based baselines
[Zhao et al., 2020]. Sun et al. compare several recurrent GNN architectures and report almost all
architectures to outperform the previous state-of-the-art LSTM model [Sun et al., 2021]. They also
introduce a recurrent GNN trained with data from a hydrological model which is reportedly highly
accurate for reproducing the dynamics of a basin of the Colorado River [Sun et al., 2022].

In this work, we provide a computationally inexpensive alternative to heavy flow-law modelling
methods to estimate discharge under SWOT data discontinuity. Our main contributions are: (1) We
design a pipeline to gather daily SWOT river basins with hydrological properties which we store as
temporal sequences of graphs. (2) We design a temporal GNN, SWOT-GNN, tailored for processing
these temporal sequences and train it to simulate daily reach-wise discharge. (3) We validate the
simulation performance of SWOT-GNN on United States Geological Survey (USGS) gauges.
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Figure 2: Illustration of the SWOT-GNN architecture.

2 Data Gathering and Temporal Graphs

The SWOT River Database (SWORD) serves as foundation for SWOT river products [Altenau et al.,
2021]. Graphs built in this work follow SWORD structure. We format river basins into graphs
G = (V, E). Graph nodes v ∈ V represent SWOT reaches, graph edges e ∈ E connections between
adjacent reaches. Note we refer to reaches and nodes interchangeably.
Definitions. We refer to the state of a river basin on a given day d as a graph G that contains,
for each reach v, the following node features. (i) A SWOT component: a binary variable to encode
SWOT data availability on day d for reach v, followed by SWOT’s measured average WSE, width and
slope (zeroes if unavailable). (ii) A discharge component: a binary variable to encode USGS gauge
discharge availability on day d for reach v, followed by the discharge value (zero if unavailable). (iii)
A Climate component: average temperature, evapotranspiration and cumulative precipitation on day
d for reach v. (iv) A static component independent of the day: a list of prior variables for v from the
SWORD database. These include: prior WSE, width, distance to outlet, reach length, number of
channels flowing into / out of v. Finally, we denote as a temporal sequence a sequence made of the
states of the same river basin over 21 consecutive days, i.e. on day d, d− 1, ..., d− 20. A temporal
sequence constitutes an input to the SWOT-GNN architecture. Note that while the river basin has to
be the same in a temporal sequence to be temporally processable, river basins in different temporal
sequences do not need to be the same and can all be processed by the same SWOT-GNN model.
Dataset creation. We consider 6 sub-areas from SWORD, each corresponding to a purely geometrical
structure (i.e. a graph without the hydrological node variables present in state-of-river graphs).
These areas are created from SWORD basins 78, 74 and 73 using bounding boxes and each totals
∼ 30, 000− 60, 000 sq. miles. We consider a study period from May 2023 to June 2024. We gather,
for every reach on every day, SWOT variables (if available), USGS gauge discharge (if available)
and climate variables. SWOT variables are obtained using the SWOT level 2 river single-pass
products, discharge using USGS’s WaterService daily value API and searching for USGS gauges
on the corresponding SWORD reach, climate variables using Open-Meteo’s historical weather API
[Zippenfenig, 2023]. We create state-of-river graphs on every day of the study timespan for all 6
areas. For each state-of-river graph, ∼ 6% of all nodes have a USGS discharge value available on
average. For half of these, we mask their discharge value (i.e. remove their discharge value from
node features and declare discharge unavailable). The masked values of these nodes become labels
instead, which SWOT-GNN learns to predict using spatial and temporal connections.

3 SWOT-GNN Architecture and Experiments

SWOT-GNN takes as input a temporal sequence and outputs a temporal sequence for which every
reach has a discharge prediction (Fig. 1). The model is trained on nodes for which discharge is
available as label and masked from node features, by minimizing the square difference between the
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Figure 3: Discharge KGE simulation scores on test basin 1 & 2

label value and predicted discharge. When processing a temporal sequence, SWOT-GNN first applies
a Multi-Layer Perceptron (MLP) to every node. Each state-of-river graph in the temporal sequence
becomes a graph embedding (i.e. a graph in which nodes have 64-feature embeddings computed from
the initial hydrological features). Next, multiple ST-blocks are applied. An ST-block is comprised of
(i) a temporal processing phase, in which a two-layer bi-directional LSTM is applied node-wise (i.e.
aggregates features only temporally for each node, through the entire temporal sequence), and (ii) a
spatial processing phase in which graph transformers are used. This is done by applying l GraphGPS
layers on node features [Rampášek et al., 2022]. Each GraphGPS layer is a graph transformer mainly
consisting of a local message passing phase where node features are aggregated based on direct
graph neighbors, followed by a global-attention message passing phase where every node receives
information from any other node in the graph. Finally, the last ST-block is followed by a readout layer,
which applies a readout MLP to every node of every graph, mapping their features to a single value,
the predicted discharge. Figure 2 depicts the ST-block and readout layer. Architecture experiments
lead us to retain a SWOT-GNN architecture with 2 ST-blocks, each with 3 GraphGPS layers. We
conduct performance experiments of the trained SWOT-GNN model across different test basin graphs
from SWORD on USGS gauges (Figure 3). The models we compare are: (i) SWOT-GNN. (ii)
GPS-GNN: a GNN made of 6 GraphGPS layers, applied to state-of-river graphs. (iii) LSTM: a
4-layer bi-directional LSTM, applied temporally to reach features. (iv) Drainage-area ratio method
using neighbors with non-masked discharge. GPS-GNN and LSTM are specifically designed as
independent baselines for experiments and do not provide ablation insights into SWOT-GNN. Results
are single-run. The metric used is the Kling–Gupta Efficiency (KGE) [Gupta et al., 2009]. KGE
values are comprised in [−∞, 1] (higher is better). We provide hyperparameter details in the appendix.
Regardless of the model, we note performance varies depending on the tested gauge, as shown with
varying min/max KGE scores on all models. No model provides accurate discharge for a few gauges
with the worst scores, which tend to be those with the least SWOT coverage. Overall, we note
SWOT-GNN outperforms all baselines. GPS-GNN offers reasonable performance and outperforms
the LSTM and drainage-area ratio method. The low performance of the LSTM may be attributed in
part to its sole reliance on climate variables and the temporally-sparse SWOT variables which are not
used spatially.

4 Conclusion

We introduced SWOT-GNN, a temporal graph neural network that estimates river discharge in
SWOT reaches based on spatial and temporal data from the SWOT mission, weather variables and
in-situ USGS gauges. SWOT-GNN is useful in that it is computationally inexpensive compared to
hydrological models and tackles the problems of SWOT data discontinuity and absence of discharge
measurements. We also provided a pipeline to gather data required for training SWOT-GNN. We
carried out experiments on in-situ gauges in different basins to validate the performance of the model
and demonstrated it outperforms the drainage-area ratio method, a non-temporal GNN and an LSTM.
Future work may include incorporating additional hydrological parameters into SWOT-GNN to
improve discharge modelling in areas with sparser SWOT coverage, as well as featuring upcoming
SWOT reach-scale discharge estimations into the model for further fine-tuning.
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Appendix

Network Architecture, Hyperparameters and Input Formatting

We provide here more details about network architecture and hyperparameters. We justify the choice
of a global graph transformer such as Graph-GPS by the fact that we have found local message
passing graph neural networks to underperform at passing distant messages even with a sufficient
number of layers, due to over-smoothing issues. Prior to processing inputs, a positional embedding
based on the random walk algorithm and graph Laplacian is concatenated to each graph node, so as to
provide positional information for the global attention mechanism present in each Graph-GPS layer.
We select SWOT-GNN with 2 ST-Blocks, each containing 3 Graph-GPS layers and a LSTM with 2
layers. Deeper and wider architectures did not yield better results in experiments. Each hidden layer
has a latent size of 32 neurons. The first LSTM layer is followed by a dropout layer with a keep rate
of 0.5. Each graph-GPS layer first applies the GAT local message passing based on [Veličković et al.,
2018], followed by the linear-cost FAVOR+ attention mechanism defined in [Choromanski et al.,
2020], using 4 attention heads. A dropout layer with a keep rate of 0.5 follows. For training purposes,
we use a batch size of 16 and a learning rate set to 0.005. Training was performed on a RTX A4000
with 16GB of RAM. We use a Scikit Learn’s StandardScaler to normalize both input and output
discharge values, while intermediate layers are normalized using LayerNorm. Figure 4 provides
insight into how inputs are formatted, and fed into SWOT-GNN. Each data chunk, SWOT-based,
weather-based, discharge and prior, is normalized with LayerNorm and fed into a different MLP.
The embeddings obtained are concatenated before being normalized again, so as to create a graph
embedding which is then fed into ST-blocks.
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