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Abstract

Many impressive works have been proposed001
to improve the performance of Machine Read-002
ing Comprehension (MRC) systems in recent003
years. However, it is still difficult to inter-004
pret the predictions of existing MRC models,005
which makes the predictions unconvincing. In006
this work, we propose a two-stage explainable007
framework for multi-choice MRC to model not008
only the correlation between answers and ev-009
idence, but also the competition among evi-010
dence. In stage 1, we select evidence sentences011
for both the right answer and wrong answers012
using the semi-supervised evidence selector.013
In stage 2, we employ an evidence discrimi-014
nator to compare among the competitive evi-015
dence set and make final judgements. More-016
over, we propose an evidence-enabled data aug-017
mentation method. Experiments on four multi-018
choice MRC datasets show that: stage 1 pro-019
vides strong explainability for MRC systems020
and stage 2 improves both the performance and021
robustness of MRC systems meanwhile.022

1 Introduction023

Machine Reading Comprehension (MRC), which024

aims to teach machines to read and comprehend025

the given passages and answer the questions. With026

the help of many effective architectures (Seo et al.,027

2016; Yu et al., 2018) and pre-trained language028

models (Devlin et al., 2018), reading comprehen-029

sion systems are making rapid progress on many030

challenging datasets (Rajpurkar et al., 2016, 2018).031

However, though state-of-the-art systems could032

achieve better performances than humans, it’s un-033

clear to which extent these systems truly under-034

stand the language when simple adversarial exam-035

ples can lead to a large performance drop (Jia and036

Liang, 2017; Gan and Ng, 2019).037

As the need to build more convincing MRC038

systems, the research interests on explainability039

(Miller, 2019; Kratzwald et al., 2020) are rapidly040

growing. Models are required to expose the un-041

Evidence     Extraction 

Question
Who is the passage written for ?
Passsage
Make a five-minute film and win ! Do you love the summer holidays but hate being bored ?
Then why don't you enter the Film Competition by making a short film
this summer with your family and friends ? What you have to do To enter the
competition ... Awards The best short film entered into our competition
will be shown in Film Street's Cinema. You'll win a Cineworld Cinemas pass for
yourself and three more for other members of your filmmaking crew ... Rules * We can't
show films that tell others about either your , or any other kid's name
or address * We can't show films that hurt , harm or insult other people . * ... So
what's stopping you ? Start making your Film Street Summer short now !

Answer List
A: Children
B: Parents
C: Teachers
D: Actors

Nosiy Evidence
A: We can't show films that tell others about either your , or 
any other kid's name or address.
B: .. .making a short film this summer with your family...
C: So what's stopping you ?
D: Awards The best short film entered into our competition 
will be shown in Film Street's Cinema...

Golden Answer
A: Children

Clean Evidence
A: We can't show films that tell others about 
either your , or any other kid's name or address.

Evidence     Competition 

Figure 1: An example from the RACE dataset. We first
extract evidence sentences for each answer, then acquire
evidence for golden answer through competition.

derlying mechanisms adopted to arrive at the final 042

answers, whether by giving knowledge-based ex- 043

planations from passages, or by giving operational 044

explanation such as execution process of symbolic 045

programs (Thayaparan et al., 2020). In this work, 046

we focus on retrieving evidence sentences from 047

passages as knowledge-based explanation. 048

However, most evidence selection methods only 049

model the positive correlation between answers 050

and passage sentences. On the one hand, most 051

explainable MRC datasets only provide sentence- 052

level supporting facts required for reasoning to the 053

right answer (Yang et al., 2018). Sentences which 054

may mislead the model to wrong answers were 055

not given. On the other hand, the widely adopted 056

pipeline methods always use evidence sentences as 057

the substitution of full passages for more efficient 058

reading over long articles (Min et al., 2018). The 059

selected sentences are supposed to be most rele- 060

vant to the right answer to give precise prediction 061

which conversely influence the generation method 062

of pseudo-evidence label (Wang et al., 2019). 063
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By selecting evidence sentences for both right064

and wrong answers (Perez et al., 2019) in multi-065

choice MRC, some works modeled both positive066

and negative correlations. As shown in Figure067

1, extracting evidence sentences not only for the068

right answer but also for wrong answers provides069

stronger explainability. We call the evidence set070

Noisy Evidence which consists of adversarial sen-071

tences for wrong answers and evidence sentences072

for the golden answer (Clean Evidence). However,073

they only modeled evidence-answer correlations074

and ignored the competitive relationship among075

selected evidence. In multi-choice MRC, evidence076

for each answer choice supports its own position077

and competes with each other. Modeling the com-078

petition relationship among evidence is crucial for079

rightly answering the question and building more080

robust and intelligent question answering systems.081

To address the aforementioned problems, we082

propose EveMRC, a two-stage evidence model-083

ing framework for multi-choice reading compre-084

hension inspired by the Competition Model (see085

§2). We first model the correlation between an-086

swers and evidence sentences for both the right087

answer and wrong answers, then model the com-088

petitive correlation among evidence sentences of089

all answers. More specifically, in stage 1, we train090

an evidence selector to select evidence sentences091

for each answer under the supervision of pseudo-092

evidence label. In stage 2, we employ an evidence093

discriminator to compare among the competitive094

evidence set and make judgements about what the095

clean evidence and golden answer are.096

Due to the lack of ground truth evidence sen-097

tences in most multiple-choice MRC tasks, we pro-098

pose a heuristic pseudo-evidence label generating099

algorithm based on model prediction. Our pro-100

posed algorithm is more effective compared to ex-101

isting methods on multi-choice MRC which need102

complex handcrafted rules or extensive training iter-103

ations. Moreover, we propose a novel data augmen-104

tation method inspired by evidence. Concretely, we105

retain the evidence sentences for the golden answer106

of each question while replacing or reducing the107

adversarial evidence sentences for wrong answers108

or non-evidential sentences.109

Our main contributions are as follows:110

• We propose a two-stage evidence modeling111

framework for multi-choice MRC which not112

only models the positive and negative correla-113

tion between answers and evidence, but also114

models the competitive correlation among ev- 115

idence. 116

• We propose an efficient pseudo-evidence label 117

generating algorithm to train the evidence se- 118

lector, and an evidence-enabled data augmen- 119

tation method to improve the performance and 120

robustness of MRC systems. 121

• We conduct thorough experiments on our 122

framework and the experimental results show 123

that our framework not only improves the per- 124

formance of MRC models, but also shows 125

strong explainability and robustness. 126

2 The Competition Model 127

The Competition Model is a psycholinguistic the- 128

ory (Bates; MacWhinney, 1997) which mainly fo- 129

cus on the competition process of sentence process- 130

ing and language acquisition. It argues that people 131

understand a sentence by first searching various 132

linguistic cues, such as word order, morphology, 133

and semantic characteristics, for supporting each 134

possible interpretation, eventually choosing the in- 135

terpretation with the highest likeihood. Thus sen- 136

tence processing can be viewed as a choice among 137

different interpretations with different probabilities 138

given by supporting cues. 139

MRC

Stage 1 Stage 2
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Potential
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Passage
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Passage
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Question

Passage
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(b) Parallel Methods (c) Our Two-stage Conitive Methods

Figure 2: Comparison between our proposed framework
and previous works.

Inspired by the Competition Model on sentence 140

processing, we argue that the human cognitive pro- 141

cess of reading comprehension can also be modeled 142

as a two-stage process: (i) Evidence Extraction (ii) 143

Evidence Competition. As shown in Figure 2(c), 144

we propose an explainable framework for machine 145

reading comprehension, which builds a closed loop 146

between MRC system and two-stage evidence mod- 147

eling. In stage 1, we collect supporting evidence 148

for each possible answer. In stage 2, we conduct 149

evidence competition among all evidence with their 150
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Question: Who is the passage written for?

Passage

Answer
Predictor

Evidence
Selector

Candidates

Noisy 
Evidence

(I) Answer Prediction

Children

Parents

Teachers

Actors

Passage

Evidence
Discriminator+ +

+ +

+ +

+ +

Children

Parents

Teachers

Actors

0.3

0.4

0.15

0.15

Final
Prediction

Clean
Evidence

Question: Who is the passage written for?
(II) Noise Evidence Selection

(III) Evidence Competition
& Answer Verification

Evidence Competition

Figure 3: Overview of proposed EveMRC Framework. Answer Predictor (AP) gives the preliminary prediction
among answers after reading through the whole passage; Evidence Selector (ES) then selects evidence sentences
for each candidate answer; Evidence Discriminator (ED) discriminate among evidence or between evidence-
answer pairs to choose final answer and corresponding evidence. Our EveMRC framework presents a two-stage
selection-competition method for evidence modeling and also a two-stage answer-verify process for MRC.

corresponding answers, and we arrive at the final151

answer with its corresponding evidence. Stage 1152

helps MRC model to retrieve relevant information153

for answering the question, both positively or neg-154

atively. Stage 2 makes the judgement among dif-155

ferent answers with different probabilities given by156

supporting evidence which is very similar to the157

human cognitive process of Competition Model.158

We also compare our two-stage framework with159

other explainable MRC methods. As shown in Fig-160

ure 2(a), pipeline methods first extract evidence161

from passage, then substitute the passage with ev-162

idence sentences for more efficient reading. Due163

to the limitation of pipeline structure, the extracted164

evidence is more relevant to the correct answer165

and lacks diversity of explanation, which may also166

cause the performance degradation of MRC model.167

Parallel methods employ the evidence selector to se-168

lect evidence for each answer which brings stronger169

explainability but ignores the exploitation of ex-170

tracted evidence on model performance.171

3 EveMRC172

As multi-choice MRC need to discriminate among173

confusing candidate answers where the comparison174

between evidence is crucial for rightly answering175

the question, we choose it as the testbed for our176

framework. For multiple-choice MRC, machines177

are required to select the correct answer from the 178

answer set A = {a1, a2, ..., ak} (e.g. k=4) given 179

with a passage P = {s1, s2, ..., sn} with n sen- 180

tences and a question Q. 181

In the following, we first present the overview 182

of our framework as Figure 3, then describe the in- 183

dividual components in our framework: (i) Answer 184

Predictor (AP), (ii) Evidence Selector (ES) and (iii) 185

Evidence Discriminator (ED). Furthermore, we 186

will introduce the unsupervised pseudo-evidence 187

generating algorithm to initialize the evidence se- 188

lector in §3.2, followed by the evidence-enabled 189

data augmentation method in §3.3. 190

3.1 System Overview 191

As shown in Figure 3, our system pipeline is com- 192

posed of three stages: 1) Answer Prediction. 2) 193

Noisy Evidence Selection. 3) Evidence Competi- 194

tion & Answer Verification. The pipeline of our 195

proposed framework can be formulated as follows: 196

197

pA,A = AP(P,Q)
E = {Ei ∶ ES(P,Q, ai) for ai in A}

pD = ED(E,Q,A)
p = α ∗ pD + (1 − α) ∗ pA

(1) 198

where AP,ES,ED are Answer Predictor, Evi- 199

dence Selector, and Evidence Discriminator, re- 200

3



spectively, P,Q,A,E are passage, question, an-201

swer set and evidence set, respectively, pA, pD, p202

are probability distribution over candidate answers203

for Answer Predictor, Evidence Discriminator, and204

final prediction, respectively, α is the weighting205

coefficient.206

3.1.1 Answer Predictor207

For multiple-choice MRC tasks, we construct208

the input sequence by concatenating [CLS], P,209

[SEP], Q, [SEP], ai, and [SEP], where [CLS]210

and [SEP] are the classifier token and sentence211

separator in a pre-trained language model, respec-212

tively. Tokens before the first [SEP] (inclusive)213

is grouped as the first segment and the rest of the214

tokens are treated as the second segment. After215

feeding the input sequence into a pre-trained lan-216

guage model (e.g., BERT), we can arrive at the final217

hidden state for the first token in the input sequence218

as hAP
i ∈ R1×N , where N is hidden size. A linear219

classification layer WAP ∈ RN×1 is applied to get220

the unnormalized score of each candidate answer221

ai, and the final prediction is obtained by applying222

a softmax layer over the unnormalized scores of all223

candidate answers, i.e.224

pA = softmax({hAP
1 WAP,⋯, h

AP
k WAP}) (2)225

3.1.2 Evidence Selector226

Intuitively, evidence sentences of different candi-227

date answers may not be the same. Thus, the ev-228

idence selector chooses evidences for each can-229

didate answer independently. Given candidate230

answer ai, sentence sj and question Q, we con-231

struct the input sequence by concatenating [CLS],232

sj , [SEP], Q, [SEP], ai, and [SEP]. Similar233

to the answer predictor, we denote the final hid-234

den state for the first token in the input sequence235

as h
ES
ij ∈ R1×N . A linear classification layer236

WES ∈ RN×1 is applied to achieve the evidence237

score pE(i, j), i.e.,238

pE(i, j) = sigmoid(hES
ij WES) (3)239

After scoring each sentence for answer ai, top240

K scored sentence are selected as the evidence241

sentences of ai.242

3.1.3 Evidence Discriminator243

Given all associated evidence sentences Ei with244

candidate answer ai, we verify it by feeding the245

concatenation of Ei, Q, and ai into a model with246

the same structure as the Answer Predictor. Simi- 247

larly, we denote the final hidden state for the first 248

token in the input sequence as hED
i ∈ R1×N . A lin- 249

ear classification layer WED ∈ RN×1 is applied to 250

achieve the unnormalized score for ai and the dis- 251

criminator probabilities are computed by applying 252

a softmax function over the unnormalized scores, 253

i.e., 254

pD = softmax({hED
1 WED,⋯, h

ED
k WED}) (4) 255

Then the final answer score will be: 256

p = α ∗ pD + (1 − α) ∗ pA (5) 257

where α is the weighting coefficient. 258

Furthermore, the evidence sentences correspond- 259

ing to the final answer will be the predicted Clean 260

Evidence. 261

3.2 Pseudo-evidence Generating Algorithm 262

Due to the lack of evidence annotation in most 263

MRC datasets especially on multi-choice MRC 264

datasets, we propose a heuristic pseudo-evidence 265

label generating algorithm based on the prediction 266

of Answer Predictor to train the Evidence Selector. 267

The algorithm is inspired by how human regard 268

a sentence as evidence that evidence contributes 269

most to the process of human prediction. 270

Algorithm 1 (see appendix A) describes the pro- 271

cedure of generating pseudo-label. We first use 272

Answer Predictor, i.e. a MRC model trained on 273

multi-choice MRC, to get the original probability 274

distribution over answers. To reveal the importance 275

of each sentence si in the passage, we conduct 276

sentence-level masking on input passages and ac- 277

quired the masked prediction p̂i after replacing the 278

original input passage of AP with P̂i. We believe 279

that if the masked sentence is critical for answering 280

this question, the answer distribution will change a 281

lot after masking. Thence, we use Kullback-Leibler 282

(KL) Divergence between two distributions as the 283

overall evidential score. To make sure the corre- 284

sponding answer of each sentence, we also calcu- 285

late the difference between two distributions and 286

assign the sentence to the answer with the largest 287

decrease in probability score. For each passage, 288

we select top N sentences with their correspond- 289

ing answer as positive examples. Moreover, we 290

randomly sample non-evidential answer-sentence 291

pairs as negative examples for training Evidence 292

Selector. 293
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Model RACE Model DREAM
dev test dev test

HAF (Zhu et al., 2018) 47.2 46.0 Sliding Window (Sun et al., 2019) 42.6 42.5
DFN (Xu et al., 2017) - 47.4 DSW++ (Sun et al., 2019) 51.4 50.1
MRU (Tay et al., 2018) - 50.4 GBDT++ (Sun et al., 2019) 53.3 52.8
GPT (Radford et al., 2018) - 59.0 FTLM++ (Sun et al., 2019) 57.6 57.4
BERT-base† - 65.0 BERT-base (Zhu et al., 2020) 61.2 61.5
ALBERT-base (Lan et al., 2019) - 66.8 ALBERT-base (Zhu et al., 2020) 64.5 64.4

BERT-base (re-run) 66.5 65.6 BERT-base (re-run) 61.8 62.0
+DA 67.4 66.2 +DA 62.4 62.6
+Discriminator 67.5 67.3 +Discriminator 63.1 63.3
+EveMRC 68.2 67.4 +EveMRC 63.3 63.5

ALBERT-base (re-run) 71.0 69.9 ALBERT-base (re-run) 66.6 66.4
+DA 71.9 70.6 +DA 67.7 67.5
+Discriminator 72.5 71.2 +Discriminator 67.9 67.4
+EveMRC 72.8 71.4 +EveMRC 68.0 67.6

Table 1: Experimental results on RACE and DREAM datasets.†: Results are token from leaderboard; DA: using
data augmentation method; Discriminator: using Evidence Discriminator module; EveMRC: both using data
augmentation and Evidence Discriminator.

3.3 Evidence-enabled Data Augmentation294

After we obtain Noisy Evidence and Clean Ev-295

idence from Evidence selector and Evidence296

Discriminator, we propose a data augmentation297

method based on evidence. We argue that evidence298

sentences not only provide strong explainability but299

also indicate the intrinsic structure of information.300

Concretely, we classify the sentences of passage301

into three categories: (i) non-evidential sentences302

(ii) evidence sentences corresponding to wrong an-303

swers (iii) evidence sentences corresponding to the304

golden answer. Non-evidential sentences contain305

background information that is not essential for306

answering the question. Evidence sentences for307

wrong answers will disturb the answer choice of308

MRC model. Consequently, we propose the follow-309

ing two data augmentation methods:310

• Clean Evidence Preservation. For each ques-311

tion, we keep the Clean Evidence (evidence312

sentences of the golden answer) remained and313

substitute other sentences in the passage with314

retrieved passages.315

• Noisy Evidence Preservation. Similar to316

Clean Evidence Preservation, we only retain317

Noisy Evidence (evidence sentences of both318

right and wrong answers) instead.319

The algorithm details are described below. First,320

for a given example with passage P, question Q and321

answer list A, we retrieve examples with similar322

passage by embedding text into its corresponding323

TFIDF-weighted bag-of-words vector. We com- 324

pute the cosine similarity S of the embeddings for 325

two passages P1 and P2: 326

S(P1,P2) = cos(TFIDF(P1),TFIDF (P2))
(6) 327

We conduct data augmentation only for passage 328

pairs with a matching score S between α1 and α2. 329

In this way, we can filter the irrelevant passages or 330

over-similar passages for a given example. 331

4 Experiments 332

We evaluate our framework on four multi-choice 333

datasets: RACE, DREAM, RACE+ (with evidence 334

annotation) and AdvRACE (with adversarial at- 335

tacks). Our experiments are divided into three parts: 336

(i) performance evaluation (ii) robustness evalua- 337

tion and (iii) explainability evaluation, also with 338

some analytical studies. 339

For the evaluation on RACE, DREAM, Ad- 340

vRACE and answer prediction tasks in RACE+, 341

the standard accuracy is applied. As for the eval- 342

uation of evidence, F1 score that measures the 343

weighted average of the precision and recall rate at 344

a character level is used. Besides, the authors of 345

RACE+(Cui et al., 2021) also provide an overall F1 346

metric that reflects the correctness of both answers 347

and its evidence. 348

4.1 Implementation Details 349

To evaluate our framework, we use two pre-trained 350

language models: BERT-base-uncased(Lan et al., 351

2019) and Albert-base-v2(Lan et al., 2019) of 352
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which the implementation is based on the public353

Pytorch implementation from Transformers1. Due354

to the RACE+ only provides development set and355

hidden test set, we use RACE train set for training.356

The sampling numbers N of evidence sentences357

and negative examples are both 2 for RACE and 1358

for DREAM. The numbers of evidence sentences359

selected for evidence discriminator are 3, 3, 2, 1360

for RACE, RACE
+, DREAM and AdvRACE, re-361

spectively. See more implementation details in362

appendix C.363

4.2 Accuracy Evaluation364

4.2.1 Datasets365

RACE (Lai et al., 2017): RACE is a dataset col-366

lected from the English exams for middle and high367

school Chinese students. RACE are generated by368

human experts, and covers a variety of topics that369

are carefully designed for evaluating the students’370

ability in understanding and reasoning.371

DREAM (Sun et al., 2019): DREAM is the first372

dialogue-based multiple-choice reading compre-373

hension dataset, which is collected from English374

as a Foreign Language examinations designed by375

human experts to evaluate the ability of reading376

comprehension of Chinese English learners.377

4.2.2 Experiment Results378

Table 1 shows our results on RACE and DREAM379

with BERT-base and ALBERT-base as baselines.380

EveMRC achieves comparable and consistent im-381

provement over RACE + BERT-base with +1.7%,382

+1.8%, RACE + ALBERT-base with +1.8%,383

+1.5%, DREAM + BERT-base with +1.5%, 1.5%384

and DREAM + ALBERT-base with +1.4%, 1.2%385

for development set and test set, respectively. Also,386

only using data augmentation or only using the387

evidence discriminator can achieve comparable im-388

provements. Notably, we observe that evidence dis-389

criminator achieves better results than data augmen-390

tation method and contributes most to our EveMRC391

Framework.392

4.3 Explainability Evaluation393

4.3.1 Datasets394

RACE+ (Cui et al., 2021): RACE+ is a subset of395

ExpMRC and similar to RACE, which is designed396

for evaluating the explainability of the MRC sys-397

tems. The evidence of each case in RACE+ is a398

minimal passage span that can support the answer.399

1https://github.com/huggingface/transformers

Model RACE+ (dev) RACE+ (test)
Ans. Evi. All Ans. Evi. All

BERT-base Baselines♣

Most Similar Sent. 62.4 36.6 28.2 59.8 34.4 26.3
Most Similar Sent. w/Ques. 62.4 44.5 31.5 59.8 41.8 27.3
Pseudo-data training 63.6 45.7 31.7 60.1 43.5 27.1

BERT-large Baselines♣

Most Similar Sent. 69.0 37.6 29.9 68.1 36.8 28.9
Most Similar Sent. w/Ques. 69.0 48.0 36.8 68.1 42.5 31.3
Pseudo-data training 69.0 45.9 32.6 70.4 41.3 30.8

Bert-base + Search agents♢ 63.6 35.9 29.6 - - -
Bert-base + Learned agents♢ 63.6 44.7 37.0 - - -

Our Method
Bert-base + EveMRC 66.7 58.5 47.2 66.7 52.5 40.7

Table 2: Experimental results on RACE+ dataset. Ans.:
answer accuracy. Evi.: F1 score between golden ev-
idence label and selected evidence sentences. All re-
flects the correctness of both answer and its evidence.
♣: Results are taken from Cui et al. (2021). ♢: Our
implementation of Perez et al. (2019); we only report
the results on dev set due to the submission interval of
ExpMRC leaderboard.

4.3.2 Baselines 400

Most Similar Sent. and Most similar Sent. w/Ques 401

(Cui et al., 2021) select the sentence with the high- 402

est F1 score calculated with predicted answer text 403

or concatenation of predicted answer and question. 404

Pseudo-data training is a stronger baseline that em- 405

ploys golden answers and questions to retrieve the 406

most similar sentences as pseudo-data. Besides, 407

we implement two algorithms proposed by (Perez 408

et al., 2019). Search agents search the sentences 409

that most convince the model while learned agents 410

employ another model to learn from the prediction 411

of search agents. 412

4.3.3 Experiment Results 413

Table 2 compare our framework on RACE+ with 414

several baselines which are proposed in (Cui et al., 415

2021). Experimental results on RACE+ show our 416

framework achieves significant improvement over 417

the same base-level baselines both on evidence 418

selection (+12.8%, +9% for development set and 419

test set respectively) and answer prediction (+3.1%, 420

+6.6% for development set and test set respectively). 421

Although we did not submit compared to large- 422

level baselines, the improvement on evidence se- 423

lection is substantial where F1 score of evidence 424

selection is increased by 10.5 points and 10 points 425

for development set and test set respectively. On 426

the other hand, we observe that search agents and 427

learned agents have relatively poor performance 428

considering that they only selected evidence for 429

each answer independently and did not model the 430
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Original AS CS DE DG Ave.

BERT-base 65.6 19.8 49.3 30.7 53.1 38.2
+ DA 66.2 21.8 48.8 30.4 52.5 38.4
+ ED 67.3 25.0 50.9 33.0 55.2 41.0
+ EveMRC 67.4 26.7 50.6 33.0 55.4 41.4

Table 3: Experimental Results on AdvRACE dataset.
DA: use data augmentation. ED: use evidence discrimi-
nator. EveMRC: both with data augmentation and evi-
dence discriminator. AS: AddSent for adversarial aug-
mentation. CS: CharSwap. DE: Distractor Extraction.
DG: Distractor Generation.

competition process among evidence.431

4.4 Robustness Evaluation432

4.4.1 Datasets433

AdvRACE (Si et al., 2021): AdvRACE is a multi-434

choice style benchmark for evaluating the robust-435

ness of MRC models under four different types436

of adversarial attacks, i.e., Distractor Extraction,437

Distractor Generation, AddSent and CharSwap.438

4.4.2 Experiment Results439

Table 3 shows the experimental results on Ad-440

vRACE. The performance of BERT-base dramat-441

ically drops during all types of attack methods.442

The most violent attack method is AddSent where443

BERT-base exhibits a nearly 70% reduction in ac-444

curacy. However, both data augmentation and evi-445

dence discriminator improve the model robustness446

on AddSent by +2.0 point and + 5.2 point, respec-447

tively. Although sentence-level data augmentation448

does not defend against other types of attack, ev-449

idence competition by discriminator can signifi-450

cantly improve the model robustness comprehen-451

sively for all attacks (agerage +3.2 point).452

4.5 Analytical Studies453

we design another three types of evidence discrimi-454

nator for analytical studies:455

Exclusive-Evidence Discriminator. Exclusive ev-456

idence means that one sentence can only be the457

evidence of one answer. Once multiple answers458

select the same sentence as evidence, we use the459

sentence-answer pair with highest evidential score.460

Unified-Evidence Discriminator. In unified-461

evidence discriminator, all the answers are using462

the same evidence sentences. We select the sen-463

tence with the highest max-score among all the464

answers as the unified evidence.465

Question-only Discriminator. To figure out the466

efficiency of evidence-question interaction and467
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Figure 4: Different lengths of evidence for evidence dis-
criminator. Baseline: Albert-base. Our method: Albert-
base with the evidence discriminator.
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Figure 5: Comparison among different discriminator
settings. Baseline: Albert-base. Question with option:
Albert-base with standard evidence discriminator. The
others are described in section 4.3.2.

evidence-answer interaction, we implement evi- 468

dence discriminator only using question and evi- 469

dence sentences for all answers. 470

4.5.1 Evidence Sentences of Different Lengths 471

When we extract evidence sentences for each an- 472

swer candidate to do answer verification, a ques- 473

tion that what length of evidence sentences is most 474

suitable for answer verification comes naturally. 475

It will introduce a lot of noise or ignore essen- 476

tial evidence in the case that extracted evidence is 477

too long or too short. Figure 4(a) and Figure 4(b) 478

shows the discriminator results of answer selection 479

accuracy on RACE and DREAM dev-set with the 480

growing number of evidence sentences. We see 481

that our model achieves the best accuracy with 3 or 482

4 evidence sentences on RACE and 2 evidence sen- 483

tences on DREAM which is reasonable considering 484

that RACE has a much longer average number of 485

sentences than DREAM (17.6 vs. 8.5). 486

4.5.2 Different discriminator Settings 487

In Section 4.3.2, we propose several verification 488

settings with exclusive-evidence, unified-evidence, 489

and question-only. The results for comparison on 490

the RACE dev set are shown in Figure 5. From 491
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Figure 6: Different types of data augmentation methods.
Baseline: BERT-base.

the overall results of four types of discriminator492

settings, we first observe that our standard evi-493

dence discriminator which employs answer-wise494

evidence with both question and option as veri-495

fication achieves the best performance. Unified-496

evidence discriminator performs slightly worse497

than our standard discriminator but also improves498

a lot over baseline. One important difference be-499

tween unified evidence and answer-wise evidence500

is that answer-wise evidence can provide more501

comprehensive evidential information for verifi-502

cation while unified evidence shares limited infor-503

mation. Similarly, the exclusive evidence ensures504

the comprehensiveness of evidential information505

in the case of short evidence but introduces more506

noise in the case of long evidence which can also507

be drawn from the accuracy curve over the number508

of evidence sentences of the exclusive-evidence509

discriminator. Furthermore, the question-only dis-510

criminator performs worst which reveals the indis-511

pensability of evidence-answer verification in our512

framework.513

4.5.3 Clean Evidence vs. Noisy Evidence514

Figure 6shows the results of two types of data aug-515

mentation methods on RACE dev sets. Obviously,516

data augmentation method with the preserving of517

clean evidence performs better than the method518

with noisy evidence preserving. Surprisingly, we519

observe an accuracy increase of noisy evidence pre-520

serving also with an accuracy decrease of clean521

evidence preserving with the growth of the num-522

ber of evidence sentences. We argue that clean523

evidence with short length can already contain the524

most important evidential information and it will525

introduce more noise as the consequence of in-526

creasing evidence length. On the contrary, noisy527

evidence requires a longer length to include the528

essential information for answering the question.529

5 Related Work 530

Building MRC systems with stronger explainabil- 531

ity are more urgent due to the lack of robustness 532

(Jia and Liang, 2017; Mudrakarta et al., 2018). 533

On the one hand, researchers build benchmarks 534

with labeled data for training or evaluation. Hot- 535

potQA(Yang et al., 2018) provides sentence-level 536

supporting facts and introduces a leaderboard for 537

evaluating the explanations. CoQA(Reddy et al., 538

2019) contains free-form answers and each answer 539

has a span-based rationale for each answer. CoS- 540

E(Rajani et al., 2019) collect human explanations 541

for commonsense reasoning. ExpMRC(Cui et al., 542

2021) annotated several datasets for explainability 543

evaluation. On the other hand, attention mech- 544

anisms have been frequently used for revealing 545

the prediction process with attended sentences(Seo 546

et al., 2016). Moreover, Niu et al. (2020) train 547

a self-supervised evidence extractor with auto- 548

generated labels in an iterative process for multi- 549

hop reasoning MRC. Zhang et al. (2020); Min et al. 550

(2018) use two-stage pipeline methods which ex- 551

tract evidence for build more efficient and robust 552

MRC systems. Wang et al. (2019) employ linguis- 553

tic knowledge to extract evidence sentences for 554

multiple-choice MRC. Perez et al. (2019) select ev- 555

idence sentences for all answers by learning to con- 556

vince Q&A models. Although Perez et al. (2019) 557

proves that the evidence for all answers can be gen- 558

eralizable for training MRC models, they do not 559

model the competition process among evidence. 560

6 Conclusion 561

With the emerging research interest in explainable 562

MRC systems, this paper proposes an explainable 563

MRC framework for evidence extraction and an- 564

swer verification. We tackle the problem of lack- 565

ing labeled evidence data by proposed a heuristic 566

method to generate the pseudo-evidence label and 567

propose two impressive applications of evidence 568

sentences: answer verification and data augmenta- 569

tion. The experimental results show the effective- 570

ness and strong explainability of our framework. 571

In the future, we will explore more unsupervised 572

methods to utilize and enhance the explainability 573

of MRC systems. 574
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A Pseudo-evidence label Generating708

Algorithm709

Algorithm 1 Pseudo-evidence generating algo-
rithm
Require: Passage P = {s1, s2, . . . sn}, Question

Q , answer list A = {a1, a2, ..., ak}, Answer
Predictor AP

Ensure: Pseudo-evidence label set E
{each element in E is a sentence-answer pair}

1: Initialize three empty list SKL ,S∆ and E
2: pA = AR(P,Q,A)

{pA is the probability distribution on candidate answers}

3: for si in P do
4: P̂i = {s1, . . . , si−1, [MASK], si+1, . . . , sn}
5: p̂i = AR(P̂i, Q,A)
6: s = KL(pA, p̂i)
7: Add s to SKL

8: Add p̂i − pA to S∆

9: end for
10: for i in argmax(SKL, n) do
11: mi = argmin S∆i

12: Add Pi ∶ Ami
to E

13: end for
14: return Pseudo-evidence label E

B Dataset Statistics710

RACE DREAM RACE+ AdvRACE

# of documents
Train 25137 3869 - -
Dev 1389 1288 167 -
Test 1407 1287 168 1407

# of questions
Train 87866 6116 - -
Dev 4887 2040 561 -
Test 4934 2041 564 19736

Average # of sentences
per document 17.6 8.5 23 (dev) 19

Average # of tokens per
evidence - - 23 -

Table 4: Datasets Statistics.

C Implementation Details711

RACE DREAM

learning rate
AR 3e-5 2e-5
ES / AV 3e-5 3e-5

batch size all 32 32

epoch
AR / AV 3 30
ES 2 20

Table 5: Training hyperparamters of different compo-
nents.

We use AdamW(Loshchilov and Hutter, 2017) op- 712

timizer with β1 = 0.9, β2 = 0.999 and without 713

weight decay and warmup. The max input se- 714

quence length is set to 512. The training hyper- 715

parameters are shown in 5. We search for the best 716

weighting coefficient of probability combination 717

on dev set which ranges from 0.1 to 0.5 with 0.1 718

as the interval. The α1 and α2 for filtering TFIDF 719

scores are 0.2, 0.8 respectively. We average the 720

main results by running three random seeds and re- 721

port the average scores. We use 4 NVIDIA 2080Ti 722

for all the experiments. 723

D Case Study 724
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Passage
The discovery of an ancient giant panda skull has confirmed its bamboo diet dates back more than 2

million years and may have played a key part in its survival.[: A Chinese-US research team reports its
results today following studies on a fossil skull found in south China’s Cuangxi Zhuang Autonomous
Region in 2001. The six fossils unearthed in Jinyin Cave are dated between 2.4 and 2 million years ago,
according to the report in Proceedings of the National Academy of Sciences, an influential US journal.
Jin Changzhu, of the chinese Academy of Sciences (CAS) and lead author of the paper,
said the smaller fossil skull indicates the giant pandas were about a third smaller than
today’s pandas. Researchers knew the panda reached its maximum size about 500,000
years ago, when it peaked, and then gradually became smaller. Jin, a paleontologist at the
Institute of Vertebrate paleontology and Paleoanthropology attached to the CAS, said the size _ was a
basic rule of evolution. "A species tends to grow bigger when it reaches the peak of its population , but
becomes smaller when numbers decline," he said. ...

Q: According to the research of the CAS , there were most pandas in the world _
A: 2 million years ago
B: between 2.4 and 2 million years ago
C: 500,000 years ago (verifier prediction) ✓
D: Nowadays (original prediction)

Table 6: An example from RACE with one sentence as evidence for each answer candidate. We only mark the
original prediction and verifier prediction for clarity(in color). Baseline model wrongly predict option D as the
answer and our verifier successfully predict the golden option C. We can see that "CAS" occurred in both the
evidence sentence of option D and question, which may be the reason of misjudgement. With the extracted evidence
sentences, it’s more effective at distinguishing between answers with subtle semantic differences.

Passage
I’m Mary.I have a piece of good news to tell you.My parents bought a new flat in the centre of the city.The
rooms are not big, but they are all comfortable.There are more rooms than our old flat. I am excited
because I have my own bedroom.In the old flat, I share the bedroom with my sister. My favourite
room in the new flat is my bedroom. I can be alone in it.It is my own small world.I can listen to
music, read comics and chat with my friends on the phone.I can also look for things on the internet and
send e-mails to my e-friends. Kitchen is my favourite room, too.I like helping my mother with the
cooking.She is not only a good teacher but also a good cook.She often teaches me how to make some
different dishes.She lived in Sichuan when she was a child.So she likes hot food and she can cook very
delicious hot food.

Q: Which room does Marry like best?
A. The kitchen
B. Her bedroom (original prediction)
C. The sitting room
D. Both A and B (verifier prediction) ✓

Table 7: In this example which is also taken from RACE, we select two evidence sentences for each candidate
answer. The sentence in red is both the evidence sentence for option B and option D. Baseline model wrongly
predict the option B while our verifier predict the right option D. The two evidence sentences for answer B are
strongly related to question but are one-sided for answering the question. On the contrary, two evidence sentences
for answer D are necessary and sufficient. It’s easily misled to choose the wrong answer B when MRC models or
humans only see the sentence in red. However, we can perform accurate reasoning with the help of comprehensive
evidence sentences.
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Passage
People around the world have their own ways of celebrating weddings. Now let’s compare Eastern
and Western weddings. Chinese and Indian brides normally wear red dresses and most of the wedding
decorations are of the same color. This is because the color red is said to bring good fortune. In many
Eastern weddings, especially Chinese weddings, the bride will change into a different dress after the
ceremony. White dresses only arrived in modern times because of the influence of Western
wedding dress designs. Western wedding dresses are different. Brides usually wear a wedding dress
that is white in color and wear it throughout the whole wedding. Wearing white wedding dresses is
said to have started in the 1840s, beginning with Queen Victoria, Queen of Great Britain.
There are occasions when brides dress into more comfortable clothing so that they will be able to move
more freely during the wedding reception. Traditional practices are strictly followed for most
Western weddings. The couple follow up with any plans they have agreed and decided on to make their
special wedding day unique and memorable. Wedding receptions and other celebrations differ
among the East and the West, but the concept is still the same. They are held to show gratitude
towards family members, friends and guests for being a part of the wedding ceremony. Another common
custom that weddings of the East and the West have is the wearing of the wedding veil . According
to superstitious beliefs, the bride wears a veil to protect her from being seen by evil spirits and the
bridesmaids are decoys . This is still followed even today.
Q: The passage is mainly developed _ .
A: by time (original prediction)
B: by space
C: by process
D: by comparison (verifier prediction) ✓

Table 8: In this example, we select three evidence sentences for each candidate answer. Both the evidence sentences
for option A and for option D are strongly related to their corresponding answer. It’s difficult for typical MRC model
to arrive at the final answer with these confusing sentences. On the other hand, reasoning over long distance is still
strong challenge for MRC models. With the extracted evidence sentences and answer verification, we can perform
long-distance reasoning by extracting evidence sentences from the whole passage and aggregating them together.
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