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Abstract

Many impressive works have been proposed
to improve the performance of Machine Read-
ing Comprehension (MRC) systems in recent
years. However, it is still difficult to inter-
pret the predictions of existing MRC models,
which makes the predictions unconvincing. In
this work, we propose a two-stage explainable
framework for multi-choice MRC to model not
only the correlation between answers and ev-
idence, but also the competition among evi-
dence. In stage 1, we select evidence sentences
for both the right answer and wrong answers
using the semi-supervised evidence selector.
In stage 2, we employ an evidence discrimi-
nator to compare among the competitive evi-
dence set and make final judgements. More-
over, we propose an evidence-enabled data aug-
mentation method. Experiments on four multi-
choice MRC datasets show that: stage 1 pro-
vides strong explainability for MRC systems
and stage 2 improves both the performance and
robustness of MRC systems meanwhile.

1 Introduction

Machine Reading Comprehension (MRC), which
aims to teach machines to read and comprehend
the given passages and answer the questions. With
the help of many effective architectures (Seo et al.,
2016; Yu et al., 2018) and pre-trained language
models (Devlin et al., 2018), reading comprehen-
sion systems are making rapid progress on many
challenging datasets (Rajpurkar et al., 2016, 2018).
However, though state-of-the-art systems could
achieve better performances than humans, it’s un-
clear to which extent these systems truly under-
stand the language when simple adversarial exam-
ples can lead to a large performance drop (Jia and
Liang, 2017; Gan and Ng, 2019).

As the need to build more convincing MRC
systems, the research interests on explainability
(Miller, 2019; Kratzwald et al., 2020) are rapidly
growing. Models are required to expose the un-
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Make a five-minute film and win ! Do you love the summer holidays but hate being bored ?
Then why don't you enter the Film Competition by making a short film
this summer with your family and friends ? What you have to do To enter the
competition ... Awards The best short film entered into our competition
will be shown in Film Street's Cinema. You'll win a Cineworld Cinemas pass for
yourself and three more for other members of your filmmaking crew ... Rules * We can't
show films that tell others about either your , or any other kid's name
or address * We can't show films that hurt , harm or insult other people . * ... So
what's stopping you ? Start making your Film Street Summer short now !
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Figure 1: An example from the RACE dataset. We first
extract evidence sentences for each answer, then acquire
evidence for golden answer through competition.

derlying mechanisms adopted to arrive at the final
answers, whether by giving knowledge-based ex-
planations from passages, or by giving operational
explanation such as execution process of symbolic
programs (Thayaparan et al., 2020). In this work,
we focus on retrieving evidence sentences from
passages as knowledge-based explanation.

However, most evidence selection methods only
model the positive correlation between answers
and passage sentences. On the one hand, most
explainable MRC datasets only provide sentence-
level supporting facts required for reasoning to the
right answer (Yang et al., 2018). Sentences which
may mislead the model to wrong answers were
not given. On the other hand, the widely adopted
pipeline methods always use evidence sentences as
the substitution of full passages for more efficient
reading over long articles (Min et al., 2018). The
selected sentences are supposed to be most rele-
vant to the right answer to give precise prediction
which conversely influence the generation method
of pseudo-evidence label (Wang et al., 2019).



By selecting evidence sentences for both right
and wrong answers (Perez et al., 2019) in multi-
choice MRC, some works modeled both positive
and negative correlations. As shown in Figure
1, extracting evidence sentences not only for the
right answer but also for wrong answers provides
stronger explainability. We call the evidence set
Noisy Evidence which consists of adversarial sen-
tences for wrong answers and evidence sentences
for the golden answer (Clean Evidence). However,
they only modeled evidence-answer correlations
and ignored the competitive relationship among
selected evidence. In multi-choice MRC, evidence
for each answer choice supports its own position
and competes with each other. Modeling the com-
petition relationship among evidence is crucial for
rightly answering the question and building more
robust and intelligent question answering systems.

To address the aforementioned problems, we
propose EveMRC, a two-stage evidence model-
ing framework for multi-choice reading compre-
hension inspired by the Competition Model (see
§2). We first model the correlation between an-
swers and evidence sentences for both the right
answer and wrong answers, then model the com-
petitive correlation among evidence sentences of
all answers. More specifically, in stage 1, we train
an evidence selector to select evidence sentences
for each answer under the supervision of pseudo-
evidence label. In stage 2, we employ an evidence
discriminator to compare among the competitive
evidence set and make judgements about what the
clean evidence and golden answer are.

Due to the lack of ground truth evidence sen-
tences in most multiple-choice MRC tasks, we pro-
pose a heuristic pseudo-evidence label generating
algorithm based on model prediction. Our pro-
posed algorithm is more effective compared to ex-
isting methods on multi-choice MRC which need
complex handcrafted rules or extensive training iter-
ations. Moreover, we propose a novel data augmen-
tation method inspired by evidence. Concretely, we
retain the evidence sentences for the golden answer
of each question while replacing or reducing the
adversarial evidence sentences for wrong answers
or non-evidential sentences.

Our main contributions are as follows:

* We propose a two-stage evidence modeling
framework for multi-choice MRC which not
only models the positive and negative correla-
tion between answers and evidence, but also

models the competitive correlation among ev-
idence.

* We propose an efficient pseudo-evidence label
generating algorithm to train the evidence se-
lector, and an evidence-enabled data augmen-
tation method to improve the performance and
robustness of MRC systems.

* We conduct thorough experiments on our
framework and the experimental results show
that our framework not only improves the per-
formance of MRC models, but also shows
strong explainability and robustness.

2 The Competition Model

The Competition Model is a psycholinguistic the-
ory (Bates; MacWhinney, 1997) which mainly fo-
cus on the competition process of sentence process-
ing and language acquisition. It argues that people
understand a sentence by first searching various
linguistic cues, such as word order, morphology,
and semantic characteristics, for supporting each
possible interpretation, eventually choosing the in-
terpretation with the highest likeihood. Thus sen-
tence processing can be viewed as a choice among
different interpretations with different probabilities
given by supporting cues.
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Figure 2: Comparison between our proposed framework
and previous works.

Inspired by the Competition Model on sentence
processing, we argue that the human cognitive pro-
cess of reading comprehension can also be modeled
as a two-stage process: (i) Evidence Extraction (ii)
Evidence Competition. As shown in Figure 2(c),
we propose an explainable framework for machine
reading comprehension, which builds a closed loop
between MRC system and two-stage evidence mod-
eling. In stage 1, we collect supporting evidence
for each possible answer. In stage 2, we conduct
evidence competition among all evidence with their
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Figure 3: Overview of proposed EveMRC Framework. Answer Predictor (AP) gives the preliminary prediction
among answers after reading through the whole passage; Evidence Selector (ES) then selects evidence sentences
for each candidate answer; Evidence Discriminator (ED) discriminate among evidence or between evidence-
answer pairs to choose final answer and corresponding evidence. Our EveMRC framework presents a two-stage
selection-competition method for evidence modeling and also a two-stage answer-verify process for MRC.

corresponding answers, and we arrive at the final
answer with its corresponding evidence. Stage 1
helps MRC model to retrieve relevant information
for answering the question, both positively or neg-
atively. Stage 2 makes the judgement among dif-
ferent answers with different probabilities given by
supporting evidence which is very similar to the
human cognitive process of Competition Model.

We also compare our two-stage framework with
other explainable MRC methods. As shown in Fig-
ure 2(a), pipeline methods first extract evidence
from passage, then substitute the passage with ev-
idence sentences for more efficient reading. Due
to the limitation of pipeline structure, the extracted
evidence is more relevant to the correct answer
and lacks diversity of explanation, which may also
cause the performance degradation of MRC model.
Parallel methods employ the evidence selector to se-
lect evidence for each answer which brings stronger
explainability but ignores the exploitation of ex-
tracted evidence on model performance.

3 EveMRC

As multi-choice MRC need to discriminate among
confusing candidate answers where the comparison
between evidence is crucial for rightly answering
the question, we choose it as the testbed for our
framework. For multiple-choice MRC, machines

are required to select the correct answer from the
answer set A = {aq,ao,...,a;} (e.g. k=4) given
with a passage P = {sq, s9,...,5,} with n sen-
tences and a question Q.

In the following, we first present the overview
of our framework as Figure 3, then describe the in-
dividual components in our framework: (i) Answer
Predictor (AP), (i1) Evidence Selector (ES) and (iii)
Evidence Discriminator (ED). Furthermore, we
will introduce the unsupervised pseudo-evidence
generating algorithm to initialize the evidence se-
lector in §3.2, followed by the evidence-enabled
data augmentation method in §3.3.

3.1 System Overview

As shown in Figure 3, our system pipeline is com-
posed of three stages: 1) Answer Prediction. 2)
Noisy Evidence Selection. 3) Evidence Competi-
tion & Answer Verification. The pipeline of our
proposed framework can be formulated as follows:

pAvA = AP(P>Q)
E ={FE; : ES(P,Q,a;) for a; in A}
bPp = ED(EaQaA)
p=axpp+(l—a)*ps

6]

where AP,ES,ED are Answer Predictor, Evi-
dence Selector, and Evidence Discriminator, re-



spectively, P, Q, A, E are passage, question, an-
swer set and evidence set, respectively, p, pp, p
are probability distribution over candidate answers
for Answer Predictor, Evidence Discriminator, and
final prediction, respectively, « is the weighting
coefficient.

3.1.1 Answer Predictor

For multiple-choice MRC tasks, we construct
the input sequence by concatenating [CLS], P,
[SEP],Q, [SEP],a;,and [SEP], where [CLS]

and [SEP] are the classifier token and sentence
separator in a pre-trained language model, respec-
tively. Tokens before the first [SEP] (inclusive)
is grouped as the first segment and the rest of the
tokens are treated as the second segment. After
feeding the input sequence into a pre-trained lan-
guage model (e.g., BERT), we can arrive at the final
hidden state for the first token in the input sequence
as h?P € RIXN, where N is hidden size. A linear
classification layer Wap € RV s applied to get
the unnormalized score of each candidate answer
a;, and the final prediction is obtained by applying
a softmax layer over the unnormalized scores of all
candidate answers, i.e.

pa = softmax({h} Wap, -+, hjy Wap})  (2)

3.1.2 Evidence Selector

Intuitively, evidence sentences of different candi-
date answers may not be the same. Thus, the ev-
idence selector chooses evidences for each can-
didate answer independently. Given candidate
answer a;, sentence s; and question QQ, we con-
struct the input sequence by concatenating [CLS],
sj, [SEP], Q, [SEP], a;, and [SEP]. Similar
to the answer predictor, we denote the final hid-
den state for the first token in the input sequence
as hlfjs e R™ . A linear classification layer

Wgs € RV s applied to achieve the evidence
score pg(1,7), i.e.,

pi(i,j) = sigmoid(hy; Wes) 3)

After scoring each sentence for answer a;, top
K scored sentence are selected as the evidence
sentences of a;.

3.1.3 Evidence Discriminator

Given all associated evidence sentences F; with
candidate answer a;, we verify it by feeding the
concatenation of F;, Q, and a; into a model with

the same structure as the Answer Predictor. Simi-
larly, we denote the final hidden state for the first
token in the input sequence as hED e RN, Alin-
ear classification layer Wgp € RV js applied to
achieve the unnormalized score for a; and the dis-
criminator probabilities are computed by applying
a softmax function over the unnormalized scores,
ie.,

ED ED
pp = softmax({h; Wep, -+, hy Wgp}) (4
Then the final answer score will be:

p=axpp+(l—a)*py Q)

where « is the weighting coefficient.

Furthermore, the evidence sentences correspond-
ing to the final answer will be the predicted Clean
Evidence.

3.2 Pseudo-evidence Generating Algorithm

Due to the lack of evidence annotation in most
MRC datasets especially on multi-choice MRC
datasets, we propose a heuristic pseudo-evidence
label generating algorithm based on the prediction
of Answer Predictor to train the Evidence Selector.
The algorithm is inspired by how human regard
a sentence as evidence that evidence contributes
most to the process of human prediction.

Algorithm 1 (see appendix A) describes the pro-
cedure of generating pseudo-label. We first use
Answer Predictor, i.e. a MRC model trained on
multi-choice MRC, to get the original probability
distribution over answers. To reveal the importance
of each sentence s; in the passage, we conduct
sentence-level masking on input passages and ac-
quired the masked prediction p; after replacing the
original input passage of AP with P,. We believe
that if the masked sentence is critical for answering
this question, the answer distribution will change a
lot after masking. Thence, we use Kullback-Leibler
(KL) Divergence between two distributions as the
overall evidential score. To make sure the corre-
sponding answer of each sentence, we also calcu-
late the difference between two distributions and
assign the sentence to the answer with the largest
decrease in probability score. For each passage,
we select top NV sentences with their correspond-
ing answer as positive examples. Moreover, we
randomly sample non-evidential answer-sentence
pairs as negative examples for training Evidence
Selector.



RACE DREAM

Model dev  test | Model dev  test

HAF (Zhu et al., 2018) 472  46.0 | Sliding Window (Sun et al., 2019) 42.6  42.5
DFN (Xu et al., 2017) - 47.4 | DSW++ (Sun et al., 2019) 514 50.1
MRU (Tay et al., 2018) - 50.4 | GBDT++ (Sun et al., 2019) 53.3 528
GPT (Radford et al., 2018) - 59.0 | FTLM++ (Sun et al., 2019) 576 574
BERT-base’ - 65.0 | BERT-base (Zhu et al., 2020) 612 615
ALBERT-base (Lan et al., 2019) - 66.8 | ALBERT-base (Zhu et al., 2020) 645 644
BERT-base (re-run) 66.5 65.6 | BERT-base (re-run) 61.8 62.0
+DA 67.4 66.2 +DA 624 62.6
+Discriminator 67.5 673 +Discriminator 63.1 633
+EveMRC 682 674 +EveMRC 63.3 63.5
ALBERT-base (re-run) 71.0 69.9 | ALBERT-base (re-run) 66.6 66.4
+DA 71.9 70.6 +DA 67.7 67.5
+Discriminator 725 712 +Discriminator 679 674
+EveMRC 728 714 +EveMRC 68.0 67.6

Table 1: Experimental results on RACE and DREAM datasets.”: Results are token from leaderboard; DA: using
data augmentation method; Discriminator: using Evidence Discriminator module; EveMRC: both using data

augmentation and Evidence Discriminator.

3.3 Evidence-enabled Data Augmentation

After we obtain Noisy Evidence and Clean Ev-
idence from Evidence selector and Evidence
Discriminator, we propose a data augmentation
method based on evidence. We argue that evidence
sentences not only provide strong explainability but
also indicate the intrinsic structure of information.
Concretely, we classify the sentences of passage
into three categories: (i) non-evidential sentences
(i1) evidence sentences corresponding to wrong an-
swers (iii) evidence sentences corresponding to the
golden answer. Non-evidential sentences contain
background information that is not essential for
answering the question. Evidence sentences for
wrong answers will disturb the answer choice of
MRC model. Consequently, we propose the follow-
ing two data augmentation methods:

* Clean Evidence Preservation. For each ques-
tion, we keep the Clean Evidence (evidence
sentences of the golden answer) remained and
substitute other sentences in the passage with
retrieved passages.

¢ Noisy Evidence Preservation. Similar to
Clean Evidence Preservation, we only retain
Noisy Evidence (evidence sentences of both
right and wrong answers) instead.

The algorithm details are described below. First,
for a given example with passage P, question Q and
answer list A, we retrieve examples with similar
passage by embedding text into its corresponding

TFIDF-weighted bag-of-words vector. We com-
pute the cosine similarity S of the embeddings for
two passages P and P:

S(Pq,P3) = cos(TFIDF(P,), TFIDF (P5))
(6)
We conduct data augmentation only for passage
pairs with a matching score S between oy and .
In this way, we can filter the irrelevant passages or
over-similar passages for a given example.

4 Experiments

We evaluate our framework on four multi-choice
datasets: RACE, DREAM, RACE" (with evidence
annotation) and AdvRACE (with adversarial at-
tacks). Our experiments are divided into three parts:
(i) performance evaluation (ii) robustness evalua-
tion and (iii) explainability evaluation, also with
some analytical studies.

For the evaluation on RACE, DREAM, Ad-
vRACE and answer prediction tasks in RACE",
the standard accuracy is applied. As for the eval-
uation of evidence, F1 score that measures the
weighted average of the precision and recall rate at
a character level is used. Besides, the authors of
RACE™ (Cui et al., 2021) also provide an overall F1
metric that reflects the correctness of both answers
and its evidence.

4.1 Implementation Details

To evaluate our framework, we use two pre-trained
language models: BERT-base-uncased(Lan et al.,
2019) and Albert-base-v2(Lan et al., 2019) of



which the implementation is based on the public
Pytorch implementation from Transformers'. Due
to the RACE" only provides development set and
hidden test set, we use RACE train set for training.
The sampling numbers N of evidence sentences
and negative examples are both 2 for RACE and 1
for DREAM. The numbers of evidence sentences
selected for evidence discriminator are 3, 3, 2, 1
for RACE, RACE", DREAM and AdvRACE, re-
spectively. See more implementation details in
appendix C.

4.2 Accuracy Evaluation
4.2.1 Datasets

RACE (Lai et al., 2017): RACE is a dataset col-
lected from the English exams for middle and high
school Chinese students. RACE are generated by
human experts, and covers a variety of topics that
are carefully designed for evaluating the students’
ability in understanding and reasoning.

DREAM (Sun et al., 2019): DREAM is the first
dialogue-based multiple-choice reading compre-
hension dataset, which is collected from English
as a Foreign Language examinations designed by
human experts to evaluate the ability of reading
comprehension of Chinese English learners.

4.2.2 Experiment Results

Table 1 shows our results on RACE and DREAM
with BERT-base and ALBERT-base as baselines.
EveMRC achieves comparable and consistent im-
provement over RACE + BERT-base with +1.7%,
+1.8%, RACE + ALBERT-base with +1.8%,
+1.5%, DREAM + BERT-base with +1.5%, 1.5%
and DREAM + ALBERT-base with +1.4%, 1.2%
for development set and test set, respectively. Also,
only using data augmentation or only using the
evidence discriminator can achieve comparable im-
provements. Notably, we observe that evidence dis-
criminator achieves better results than data augmen-
tation method and contributes most to our EveMRC
Framework.

4.3 Explainability Evaluation
4.3.1 Datasets

RACE" (Cui et al., 2021): RACE" is a subset of
ExpMRC and similar to RACE, which is designed
for evaluating the explainability of the MRC sys-
tems. The evidence of each case in RACE is a
minimal passage span that can support the answer.

: https://github.com/huggingface/transformers

RACE+ (dev) RACE-+ (test)

Model Ans. Evi. Al Ans. Evi. All

BERT-base Baselines*

Most Similar Sent. 624 36.6 282 598 344 263
Most Similar Sent. w/Ques. 624 445 315 598 418 273
Pseudo-data training 63.6 457 31.7 60.1 435 27.1
BERT-large Baselines®

Most Similar Sent. 69.0 376 299 68.1 368 289
Most Similar Sent. w/Ques. 69.0 48.0 36.8 68.1 425 313
Pseudo-data training 69.0 459 326 704 413 308

Bert-base + Search agents<> 63.6 359 29.6
Bert-base + Learned agems<> 63.6 447 37.0

Our Method
Bert-base + EveMRC 66.7 58.5 472 667 525 40.7

Table 2: Experimental results on RACE™ dataset. Ans.:
answer accuracy. Evi.: F1 score between golden ev-
idence label and selected evidence sentences. All re-
flects the correctness of both answer and its evidence.
&: Results are taken from Cui et al. (2021). <¢: Our
implementation of Perez et al. (2019); we only report
the results on dev set due to the submission interval of
ExpMRC leaderboard.

4.3.2 Baselines

Most Similar Sent. and Most similar Sent. w/Ques
(Cui et al., 2021) select the sentence with the high-
est F1 score calculated with predicted answer text
or concatenation of predicted answer and question.
Pseudo-data training is a stronger baseline that em-
ploys golden answers and questions to retrieve the
most similar sentences as pseudo-data. Besides,
we implement two algorithms proposed by (Perez
et al., 2019). Search agents search the sentences
that most convince the model while learned agents
employ another model to learn from the prediction
of search agents.

4.3.3 Experiment Results

Table 2 compare our framework on RACE" with
several baselines which are proposed in (Cui et al.,
2021). Experimental results on RACE" show our
framework achieves significant improvement over
the same base-level baselines both on evidence
selection (+12.8%, +9% for development set and
test set respectively) and answer prediction (+3.1%,
+6.6% for development set and test set respectively).
Although we did not submit compared to large-
level baselines, the improvement on evidence se-
lection is substantial where F1 score of evidence
selection is increased by 10.5 points and 10 points
for development set and test set respectively. On
the other hand, we observe that search agents and
learned agents have relatively poor performance
considering that they only selected evidence for
each answer independently and did not model the



Original AS CS DE DG Ave.

BERT-base 65.6 19.8 493 30.7 53.1 382
+ DA 66.2 21.8 488 304 525 384
+ED 67.3 250 509 33.0 552 410

+ EveMRC 67.4 26.7 50.6 330 554 414

Table 3: Experimental Results on AdvRACE dataset.
DA: use data augmentation. ED: use evidence discrimi-
nator. EveMRC: both with data augmentation and evi-
dence discriminator. AS: AddSent for adversarial aug-
mentation. CS: CharSwap. DE: Distractor Extraction.
DG: Distractor Generation.

competition process among evidence.

4.4 Robustness Evaluation

4.4.1 Datasets

AdvRACE (Si et al., 2021): AdvRACE is a multi-
choice style benchmark for evaluating the robust-
ness of MRC models under four different types
of adversarial attacks, i.e., Distractor Extraction,
Distractor Generation, AddSent and CharSwap.

4.4.2 Experiment Results

Table 3 shows the experimental results on Ad-
VRACE. The performance of BERT-base dramat-
ically drops during all types of attack methods.
The most violent attack method is AddSent where
BERT-base exhibits a nearly 70% reduction in ac-
curacy. However, both data augmentation and evi-
dence discriminator improve the model robustness
on AddSent by +2.0 point and + 5.2 point, respec-
tively. Although sentence-level data augmentation
does not defend against other types of attack, ev-
idence competition by discriminator can signifi-
cantly improve the model robustness comprehen-
sively for all attacks (agerage +3.2 point).

4.5 Analytical Studies

we design another three types of evidence discrimi-
nator for analytical studies:

Exclusive-Evidence Discriminator. Exclusive ev-
idence means that one sentence can only be the
evidence of one answer. Once multiple answers
select the same sentence as evidence, we use the
sentence-answer pair with highest evidential score.
Unified-Evidence Discriminator. In unified-
evidence discriminator, all the answers are using
the same evidence sentences. We select the sen-
tence with the highest max-score among all the
answers as the unified evidence.

Question-only Discriminator. To figure out the
efficiency of evidence-question interaction and
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Figure 4: Different lengths of evidence for evidence dis-
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Figure 5: Comparison among different discriminator
settings. Baseline: Albert-base. Question with option:
Albert-base with standard evidence discriminator. The
others are described in section 4.3.2.

evidence-answer interaction, we implement evi-
dence discriminator only using question and evi-
dence sentences for all answers.

4.5.1 Evidence Sentences of Different Lengths

When we extract evidence sentences for each an-
swer candidate to do answer verification, a ques-
tion that what length of evidence sentences is most
suitable for answer verification comes naturally.
It will introduce a lot of noise or ignore essen-
tial evidence in the case that extracted evidence is
too long or too short. Figure 4(a) and Figure 4(b)
shows the discriminator results of answer selection
accuracy on RACE and DREAM dev-set with the
growing number of evidence sentences. We see
that our model achieves the best accuracy with 3 or
4 evidence sentences on RACE and 2 evidence sen-
tences on DREAM which is reasonable considering
that RACE has a much longer average number of
sentences than DREAM (17.6 vs. 8.5).

4.5.2 Different discriminator Settings

In Section 4.3.2, we propose several verification
settings with exclusive-evidence, unified-evidence,
and question-only. The results for comparison on
the RACE dev set are shown in Figure 5. From
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the overall results of four types of discriminator
settings, we first observe that our standard evi-
dence discriminator which employs answer-wise
evidence with both question and option as veri-
fication achieves the best performance. Unified-
evidence discriminator performs slightly worse
than our standard discriminator but also improves
a lot over baseline. One important difference be-
tween unified evidence and answer-wise evidence
is that answer-wise evidence can provide more
comprehensive evidential information for verifi-
cation while unified evidence shares limited infor-
mation. Similarly, the exclusive evidence ensures
the comprehensiveness of evidential information
in the case of short evidence but introduces more
noise in the case of long evidence which can also
be drawn from the accuracy curve over the number
of evidence sentences of the exclusive-evidence
discriminator. Furthermore, the question-only dis-
criminator performs worst which reveals the indis-
pensability of evidence-answer verification in our
framework.

4.5.3 Clean Evidence vs. Noisy Evidence

Figure 6shows the results of two types of data aug-
mentation methods on RACE dev sets. Obviously,
data augmentation method with the preserving of
clean evidence performs better than the method
with noisy evidence preserving. Surprisingly, we
observe an accuracy increase of noisy evidence pre-
serving also with an accuracy decrease of clean
evidence preserving with the growth of the num-
ber of evidence sentences. We argue that clean
evidence with short length can already contain the
most important evidential information and it will
introduce more noise as the consequence of in-
creasing evidence length. On the contrary, noisy
evidence requires a longer length to include the
essential information for answering the question.

5 Related Work

Building MRC systems with stronger explainabil-
ity are more urgent due to the lack of robustness
(Jia and Liang, 2017; Mudrakarta et al., 2018).
On the one hand, researchers build benchmarks
with labeled data for training or evaluation. Hot-
potQA(Yang et al., 2018) provides sentence-level
supporting facts and introduces a leaderboard for
evaluating the explanations. CoQA(Reddy et al.,
2019) contains free-form answers and each answer
has a span-based rationale for each answer. CoS-
E(Rajani et al., 2019) collect human explanations
for commonsense reasoning. ExpMRC(Cui et al.,
2021) annotated several datasets for explainability
evaluation. On the other hand, attention mech-
anisms have been frequently used for revealing
the prediction process with attended sentences(Seo
et al., 2016). Moreover, Niu et al. (2020) train
a self-supervised evidence extractor with auto-
generated labels in an iterative process for multi-
hop reasoning MRC. Zhang et al. (2020); Min et al.
(2018) use two-stage pipeline methods which ex-
tract evidence for build more efficient and robust
MRC systems. Wang et al. (2019) employ linguis-
tic knowledge to extract evidence sentences for
multiple-choice MRC. Perez et al. (2019) select ev-
idence sentences for all answers by learning to con-
vince Q&A models. Although Perez et al. (2019)
proves that the evidence for all answers can be gen-
eralizable for training MRC models, they do not
model the competition process among evidence.

6 Conclusion

With the emerging research interest in explainable
MRC systems, this paper proposes an explainable
MRC framework for evidence extraction and an-
swer verification. We tackle the problem of lack-
ing labeled evidence data by proposed a heuristic
method to generate the pseudo-evidence label and
propose two impressive applications of evidence
sentences: answer verification and data augmenta-
tion. The experimental results show the effective-
ness and strong explainability of our framework.
In the future, we will explore more unsupervised
methods to utilize and enhance the explainability
of MRC systems.
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A Pseudo-evidence label Generating
Algorithm

Algorithm 1 Pseudo-evidence generating algo-

rithm

Require: Passage P = {s1, s9,...5,}, Question
Q , answer list A = {aq,aq, ..., ai}, Answer
Predictor AP

Ensure: Pseudo-evidence label set Ef
{each element in E is a sentence-answer pair}

1: Initialize three empty list Si1 ,SA and
2 ba= AR(P7 Q7 A)
{p 4 is the probability distribution on candidate answers}
3: for s; in P do
4: Pi:{Slw;-751'—17[MASK]781'+1’“‘787L}
5 ﬁleR(PZ7Q7A)
6:  s=KL(pa,p;)
7: Add sto Sk,
8: Addﬁz—pA tOSA
9: end for
10: for i in argmax(Sk,n) do
11: m; =argmin Sa;
12: Add P, : A, to E
13: end for
14: return Pseudo-evidence label F
B Dataset Statistics
‘ RACE DREAM RACE+ AdvRACE
Train | 25137 3869 - -
# of documents Dev 1389 1288 167 -
Test 1407 1287 168 1407
Train | 87866 6116 - -
# of questions  Dev 4887 2040 561 -
Test 4934 2041 564 19736
Average # of sentences 176 35 23 (dev) 19
per document
Average # of tokens per
! - - 23 -
evidence
Table 4: Datasets Statistics.
C Implementation Details
| RACE DREAM
learning rate AR 3e5 - 2e5
& ES/AV | 3e-5 3e-5
batch size  all ‘ 32 32
epoch AR/ AV 3 30
P ES 2 20

Table 5: Training hyperparamters of different compo-
nents.
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We use AdamW (Loshchilov and Hutter, 2017) op-
timizer with 5; = 0.9, 85 = 0.999 and without
weight decay and warmup. The max input se-
quence length is set to 512. The training hyper-
parameters are shown in 5. We search for the best
weighting coefficient of probability combination
on dev set which ranges from 0.1 to 0.5 with 0.1
as the interval. The o and a» for filtering TFIDF
scores are 0.2, 0.8 respectively. We average the
main results by running three random seeds and re-
port the average scores. We use 4 NVIDIA 2080Ti
for all the experiments.

D Case Study



Passage

The discovery of an ancient giant panda skull has confirmed its bamboo diet dates back more than 2
million years and may have played a key part in its survival.[: A Chinese-US research team reports its
results today following studies on a fossil skull found in south China’s Cuangxi Zhuang Autonomous
Region in 2001. The six fossils unearthed in Jinyin Cave are dated between 2.4 and 2 million years ago,
according to the report in Proceedings of the National Academy of Sciences, an influential US journal.
Jin Changzhu, of the chinese Academy of Sciences (CAS) and lead author of the paper,
said the smaller fossil skull indicates the giant pandas were about a third smaller than
today’s pandas. Researchers knew the panda reached its maximum size about 500,000
years ago, when it peaked, and then gradually became smaller. Jin, a paleontologist at the
Institute of Vertebrate paleontology and Paleoanthropology attached to the CAS, said the size _ was a
basic rule of evolution. "A species tends to grow bigger when it reaches the peak of its population , but
becomes smaller when numbers decline," he said. ...

Q: According to the research of the CAS , there were most pandas in the world _
A: 2 million years ago

B: between 2.4 and 2 million years ago

C: 500,000 years ago (verifier prediction) v*

D: Nowadays (original prediction)

Table 6: An example from RACE with one sentence as evidence for each answer candidate. We only mark the
original prediction and verifier prediction for clarity(in color). Baseline model wrongly predict option D as the
answer and our verifier successfully predict the golden option C. We can see that "CAS" occurred in both the
evidence sentence of option D and question, which may be the reason of misjudgement. With the extracted evidence
sentences, it’s more effective at distinguishing between answers with subtle semantic differences.

Passage

I’'m Mary.I have a piece of good news to tell you.My parents bought a new flat in the centre of the city.The

rooms are not big, but they are all comfortable.There are more rooms than our old flat. I am excited
because I have my own bedroom.In the old flat, I share the bedroom with my sister. My favourite
room in the new flat is my bedroom. I can be alone in it.It is my own small world.I can listen to
music, read comics and chat with my friends on the phone.I can also look for things on the internet and
send e-mails to my e-friends. Kitchen is my favourite room, too.I like helping my mother with the
cooking.She is not only a good teacher but also a good cook.She often teaches me how to make some
different dishes.She lived in Sichuan when she was a child.So she likes hot food and she can cook very
delicious hot food.

Q: Which room does Marry like best?
A. The kitchen

B. Her bedroom (original prediction)
C. The sitting room

D. Both A and B (verifier prediction) v'

Table 7: In this example which is also taken from RACE, we select two evidence sentences for each candidate
answer. The sentence in red is both the evidence sentence for option B and option D. Baseline model wrongly
predict the option B while our verifier predict the right option D. The two evidence sentences for answer B are
strongly related to question but are one-sided for answering the question. On the contrary, two evidence sentences
for answer D are necessary and sufficient. It’s easily misled to choose the wrong answer B when MRC models or
humans only see the sentence in red. However, we can perform accurate reasoning with the help of comprehensive
evidence sentences.
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Passage

People around the world have their own ways of celebrating weddings. Now let’s compare Eastern
and Western weddings. Chinese and Indian brides normally wear red dresses and most of the wedding
decorations are of the same color. This is because the color red is said to bring good fortune. In many
Eastern weddings, especially Chinese weddings, the bride will change into a different dress after the
ceremony. White dresses only arrived in modern times because of the influence of Western
wedding dress designs. Western wedding dresses are different. Brides usually wear a wedding dress
that is white in color and wear it throughout the whole wedding. Wearing white wedding dresses is
said to have started in the 1840s, beginning with Queen Victoria, Queen of Great Britain.
There are occasions when brides dress into more comfortable clothing so that they will be able to move
more freely during the wedding reception. Traditional practices are strictly followed for most
Western weddings. The couple follow up with any plans they have agreed and decided on to make their
special wedding day unique and memorable. Wedding receptions and other celebrations differ
among the East and the West, but the concept is still the same. They are held to show gratitude
towards family members, friends and guests for being a part of the wedding ceremony. Another common
custom that weddings of the East and the West have is the wearing of the wedding veil . According
to superstitious beliefs, the bride wears a veil to protect her from being seen by evil spirits and the
bridesmaids are decoys . This is still followed even today.

Q: The passage is mainly developed _ .
A: by time (original prediction)

B: by space

C: by process

D: by comparison (verifier prediction) v’

Table 8: In this example, we select three evidence sentences for each candidate answer. Both the evidence sentences
for option A and for option D are strongly related to their corresponding answer. It’s difficult for typical MRC model
to arrive at the final answer with these confusing sentences. On the other hand, reasoning over long distance is still
strong challenge for MRC models. With the extracted evidence sentences and answer verification, we can perform
long-distance reasoning by extracting evidence sentences from the whole passage and aggregating them together.
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