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Abstract

The combined use of Large Language Mod-001
els (LLMs) and Information Retrieval (IR) has002
made significant progress in solving the multi-003
hop QA problem. However, achieving high per-004
formance requires increasingly complex and005
interactive integration of IR and “large” LLMs,006
which poses challenges to efficiency and do-007
main specialization capabilities. A specifically008
fine-tuned “small” LLM, such as LlaMa-7B,009
presents a viable solution to this challenge.010
Nevertheless, addressing the challenges entails011
considering two aspects: 1) Where Problem:012
identifying the phases in which employing a013
“small” LLMs is most beneficial is essential.014
2) How Problem: devising effective strategies015
for combining “small” and “large” LLMs is016
necessary. A lightweight approach is proposed017
where the “large” LLMs service and a specif-018
ically fine-tuned “small” LLMs cooperate to019
answer the multi-hop questions. Our research020
reveals that the “large” LLMs service primar-021
ily handles top-level planning, while the fine-022
tuned “small” LLMs is tasked with generating023
answers and rectifying any inconsistencies with024
the retrieved information. Experimental results025
on the HotPotQA dataset demonstrate that our026
proposed method achieves comparable accura-027
cies with significantly reduced costs.028

1 Introduction029

Currently, Large Language Models (LLMs) match-030

ing Information Retrieval (IR) engines have demon-031

strated impressive performance on knowledge-032

intensive tasks such as complex multi-hop prob-033

lems (Menick et al., 2022; Liu et al., 2023c,a).034

Considering the advantages of the IR engines for035

real-time and long-tail content, together with the036

decomposition and contemplation ability of LLMs037

for complex problems, it improves the accuracy038

and interpretability in multi-hop scenarios. De-039

spite the effectiveness of this combination, there040

are still many problems, such as high interaction041

Figure 1: Three categories for combining LLMs and IR.

costs and difficulty in domain specialization. We 042

first categorized these methods and then analyzed 043

the problems with each category. 044

According to the role played by the large lan- 045

guage model, ongoing efforts to integrate search 046

engines and large language models can be divided 047

into two categories. The first framework is the 048

LLM acts predominantly as a summarizer for the 049

outputs generated by IR systems (Feng et al., 2023; 050

Qin et al., 2023), leverages the LLM’s capacity 051

to synthesize and conclude information from re- 052

trieved documents, as illustrated in Figure 1(a). 053

Since the LLM’s role is confined to processing 054

the final stage of summarizing information with- 055

out engaging in the initial query understanding or 056

information filtering processes (Liu et al., 2023d; 057

Schick et al., 2023), the approach cannot utilize the 058

strong comprehension and inference capabilities 059

of LLM. Conversely, as illustrated in Figure 1(b), 060

the second framework represents a more holistic 061

integration of LLM throughout the entire question 062

resolution process (Ram et al., 2023; Peng et al., 063

2023; Xu et al., 2023). This includes initial ques- 064

tion decomposition, answer recall, and finally sum- 065

marization. Although this method makes fuller 066

use of the capabilities of the LLMs, it requires fre- 067
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quent interactions between the IR system and the068

LLMs, resulting in increased computational costs069

and potentially affecting the smoothness of user070

interactions (Hu et al., 2023a; Bang, 2023). An-071

other common challenge for both frameworks is the072

lack of domain-specific adaptations for LLMs (Liu073

et al., 2023e; Zhang et al., 2023c). Tailoring these074

models to specific fields or topics could largely en-075

hance their accuracy and reliability. However, the076

requisite supplementary training/fine-tuning is pro-077

hibitive in terms of computational costs and time.078

Considering the above issues, we attempt to syn-079

ergize the “small” and “large” LLMs for a multi-080

hop reasoning task, thereby mitigating the inherent081

contradictions between model scalability and the082

necessity for specialized domain adaptation. In083

this way, inference cost reduction and domain spe-084

cialization can be achieved by “small” LLM while085

being able to maintain the advanced capabilities086

of the “large” LLM. For ease of notation, we de-087

note “large” LLMs that consist of 100+ billion088

parameters (e.g., ChatGPT, Gemini), by LaLM;089

and “small” LLMs (e.g., LLaMA-7B, Alpaca-13B)090

by SmLM. To make LaLM and SmLM collaborate091

for multi-hop reasoning, two key questions need to092

be addressed:093

• WHERE to replace the LaLM with the094

SmLM throughout the inference process?095

• HOW to maintain the ability of the SaLM096

when it has replaced the LaLM?097

For the “WHERE” question, we introduce an098

innovative strategy that synergies the capabilities099

of both LaLM and SmLM, conceptualized in Fig-100

ure 1(c). In our method, the LaLM plays the role of101

processing top-level question decomposition and102

executing the final answer summarization. This103

allocation leverages the LaLM’s ability to under-104

stand complex queries and task planning. Mean-105

while, the SaLM is responsible for interfacing with106

the IR systems and solving domain-specific prob-107

lems through a more focused and efficient chain of108

thought (CoT) process (Wei et al., 2022; Xu et al.,109

2023).110

For the “HOW” question,it becomes imperative111

to enhance the SmLM’s ability in two critical as-112

pects: nuanced problem decomposition and effec-113

tive interaction with IR. In terms of problem de-114

composition, we have fine-tuned the SmLM by115

constructing data for positive and negative exam-116

ples to teach the SmLM to ask IR questions and to117

better understand the IR returns. In terms of inter- 118

acting the SmLM with the search engine, we note 119

that the traditional IR model is a keyword-based 120

system trained on lexical items, while the output 121

of the language model is more oriented to natural 122

language. We design a rewriting unit to change the 123

natural language questions output by the SmLM to 124

questions based on keyword forms. 125

We propose a scalable, learnable framework 126

that adeptly combines large and small language 127

models (LaLM and SmLM, respectively) to effi- 128

ciently tackle multi-hop inference tasks, named 129

Coop. CoopLLM leverages LaLM for decompos- 130

ing complex questions into simpler sub-tasks, uti- 131

lizes SaLM for detailed reasoning and informa- 132

tion retrieval interactions, and re-engages LaLM 133

to synthesize and summarize the final answers. 134

The advantages of CoopLLM include: (1) signif- 135

icantly reduces computational costs by minimiz- 136

ing reliance on LaLM for intermediate steps; and 137

(2) enhances answer accuracy through domain- 138

specialized SmLM, striking a balance between effi- 139

ciency and accuracy. 140

The major contributions of the paper include: 141

(1) We focus on the shortcomings of the current 142

LLM approach to Multi-Hop QA, in terms 143

of model efficiency and domain specializa- 144

tion. A novel paradigm of combining large 145

and small LLMs for enhancing multi-hop in- 146

ference tasks is proposed. 147

(2) We explore where and how to synergy the 148

large and small LLMs, and propose a learn- 149

able and scalable framework that achieves a 150

balance between efficiency and accuracy. 151

(3) We conducted groups of experiments on multi- 152

hop QA datasets, and the experimental re- 153

sults verified the effectiveness of the proposed 154

model. 155

2 Related Work 156

Multi-hop QA Problems with Large Language 157

Model: Multi-hop QA means answering com- 158

plex questions that require multiple steps to re- 159

trieve and reason about (Yang et al., 2018). While 160

previous approaches have developed retrieval mod- 161

ules for selecting relevant passages, Q&A prob- 162

lems in multi-hop scenarios remain challenging 163

due to the limited performance of one-step meth- 164

ods and the difficulty of decomposing complex 165

problems (Ho et al., 2020). LLM has recently 166
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demonstrated excellent performance in a range167

of downstream tasks, including in planning and168

question decomposition (Shao et al., 2023; Yoran169

et al., 2023). There is a line work exploring how170

to use LLM to solve Q&A problems in multi-hop171

scenarios; either by carefully designing prompts172

to stimulate the potential reasoning ability of the173

large language models (Zhang et al., 2023a; Khal-174

ifa et al., 2023), or by designing different thinking175

scenarios based on the chain-of-thinking approach176

to generate reasonable decomposition paths (Sun177

et al., 2023; Tang and Yang, 2024; Xu et al., 2023;178

Khot et al., 2022). SearChain (Xu et al., 2023) is179

one of the more representative approaches, and the180

problem decomposition approach in our work is an181

improvement based on it. SearChain operates by182

having the LLM generate a global reasoning chain,183

known as Chain-of-Query (CoQ), wherein each184

node comprises an IR-oriented query along with its185

corresponding answer. Subsequently, IR evaluates186

the accuracy of each node’s answer in CoQ, cor-187

recting inconsistencies with retrieved information188

when confident, thereby enhancing credibility. By189

transforming the reasoning topology from a chain190

to a tree, SearChain has the ability to modify the191

direction of reasoning.192

Synergy between Large Language Model and In-193

formation Retrieval: In recent years, the synergy194

between Large Language Model (LLM) and Infor-195

mation Retrieval (IR) systems has emerged as a196

pivotal methodology for addressing complex multi-197

hop queries, as evidenced by a growing body of lit-198

erature including representative works by (Menick199

et al., 2022; Liu et al., 2023c,a). On one hand, the200

utilization of LLM in conjunction with IR systems201

capitalizes on the former’s ability to parse and un-202

derstand complex queries, break them into more203

solvable sub-queries, and then synthesize the re-204

trieved information into coherent and contextually205

relevant answers. This process not only augments206

the precision of the answers provided but also en-207

riches the explanation of the answers (Jeronymo208

et al., 2023; Saad-Falcon et al., 2023; Jeong, 2023).209

On the other hand, IR systems’ strengths are search-210

ing a vast area of sources in real time, ensuring that211

the information used in the problem-solving pro-212

cess is not only broad-ranging but also up-to-date.213

Consequently, the integration of LLM with IR tools214

can fix LLM’s shortcomings on the topics that are215

rapidly evolving or have sparse coverage in pre-216

existing datasets on which LLM are trained (Zhu217

et al., 2023; Liu et al., 2023b; Zhang et al., 2023b).218

Notation Description
(q, a) a query-answer pair
MQA QA model
FQA Subproblem solver
FIR retrieval model
Q original query
A final answer

S = {qi}ni=1 processed queries set
R = {(qi, ai)}ni=1 correct reasoning path

T tree-of-reasoning

Table 1: Notations and explanations.

The IR + LLM paradigm marries the real-time 219

data retrieval capabilities and extensive coverage 220

of long-tail content inherent to IR with the nuanced 221

problem decomposition and analytical strengths of 222

LLM. Such a collaboration significantly enhances 223

both the accuracy and interpret ability of responses 224

in multi-hop problem-solving scenarios. 225

3 Task Formulation and Analysis 226

3.1 Task Formulation for Multi-hop QA 227

Depending on the underlying complexity, multi- 228

hop QA requires identifying and reasoning about 229

multiple related facts. Multi-hop QA often requires 230

logical links and comparisons, e.g. to solve "Which 231

genus of moth in the world’s seventh-largest coun- 232

try contains only one species?". We need to break it 233

down into two steps, first we need to know "which 234

country is the seventh largest in the world" and 235

then we need to solve "which is the only moth of a 236

species in this country". By introducing a global 237

QA model MQA, a sub-step solver FQA, and a sub- 238

step retriever FIR, we define the multi-hop QA 239

problem through a three-stage workflow: 240

Stage 1: Top planning. This stage begins with 241

parsing the original query Q, where QA model 242

MQA is responsible for parsing and decomposing 243

Q into multiple sub-queries S = {qi}ni=1. This step 244

is crucial as it sets the foundation for subsequent 245

retrieval and information integration. 246

Stage 2: Solving. This stage is executed by the 247

QA model FQA and retrieval model FIR together. 248

FQA tries to solves each sub-queries qi ∈ S and 249

give the answer ai. At this point, the FIR performs 250

information retrieval in the document collection D 251

for each sub-queries, aiming to find relevant text 252

segments that can validate the answers provided 253

by FQA. This process might be iterative until all 254

sub-queries are ensured to be answered correctly. 255
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Stage 3: Summarizing. The final stage involves256

the QA model MQA, which is responsible for inte-257

grating the information that generated in the second258

stage to construct a comprehensive answer A. In259

this stage, the model may need to establish a rea-260

soning path R = {(qi, ai)}ni=1, which are series of261

sub-queries that together with the answer.262

In this study, we utilized both LaLM and SaLM263

as the QA models. This design not only exploits the264

superior inference and decomposition capabilities265

of LaLM, but also facilitates inference cost reduc-266

tion and domain specialisation. We highlighted267

the advantages of employing smaller Language268

Models (LLMs) over larger ones, such as GPT,269

within the context of multi-hop Question Answer-270

ing (QA) tasks. These advantages are notably in271

terms of inference efficiency and domain specializa-272

tion. Nonetheless, two pivotal questions arise: (1)273

WHERE within the multi-hop QA process should274

LaLM be replaced by a SmLM, and (2) HOW can275

we preserve the effectiveness of the SmLM once it276

has taken the place of LaLM.277

The major notations of the study are listed in278

Table 1.279

3.2 GPT ROI Analysis of Different Stages280

To address the “WHERE” question, we conducted281

a detailed analysis of the return-on-improvement282

(ROI) provided by LaLM across the three distinct283

stages of multi-hop QA, namely, initial planning,284

problem solving, and summarization.285

In this section, we address the question of286

WHERE to optimally replace LaLM with SaLM287

within the multi-hop QA framework. To determine288

this, it is essential to examine the contributions and289

advantages of integrating LaLM at each stage of290

the multi-hop QA process, assessing these in terms291

of Return on Investment (ROI). ROI is quantified292

as ROI = vimp/vcost, where vimp represents the293

performance enhancement attributed to LaLM’s in-294

clusion, as indicated by the relative improvement295

in multi-hop QA evaluation metrics, and vcost sig-296

nifies the incurred cost, measured by the number297

of tokens processed by LaLM.298

Identifying the phase with the lowest ROI is cru-299

cial as it suggests the most advantageous stage for300

implementing SmLM. This substitution strategy301

serves a dual purpose: it not only reduces the costs302

associated with LaLM interactions but also min-303

imizes the potential performance degradation in304

phases where SaLM is employed. We divided the305

problem solving steps into three major steps accord-306
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Figure 2: ROI comparison of methods for incorporating
LaLM at Different Stages. The yellow color indicates
the average cost required to perform one interaction
with the LaLM at that stage, the orange color indicates
the accuracy rate, and the red dash line indicates the
ROI value at that stage compared to the vanilla version.

ing to the purpose: top-level planning, solving sub- 307

problems, and final summarization. To rigorously 308

evaluate LaLM’s ROI across different phases, we 309

initially deploy a SaLM as the question-and-answer 310

model throughout all three stages of multi-hop QA, 311

establishing a baseline for performance. Subse- 312

quently, LaLM is incorporated as the QA model in 313

each phase individually, and the ROI is calculated 314

based on both performance improvement and cost. 315

The findings, illustrated in Figure 2, reveal that 316

the integration of LaLM yields the lowest ROI dur- 317

ing the problem-solving phase. This outcome is at- 318

tributable to the iterative nature of this phase, which 319

requires multiple interactions with the IR system 320

and adjustments to the answers of sub-queries. It 321

is more necessary to use specific knowledge, fine- 322

tuning a SmLM to do the adaptation is a more 323

appropriate means. Conversely, the highest ROI is 324

observed in the initial planning phase, underscor- 325

ing the foundational importance of early problem 326

framing for the efficacy of subsequent stages. 327

4 CoopLLM Framework 328

Although we find that combining LaLM and 329

SmLM can get good ROI, but the overall perfor- 330

mance is lower than LaLM. In this section, we in- 331

troduce a novel, learnable, and scalable framework– 332

referred to as CoopLLM. The framework facilitates 333

the integration of varying-sizes LLMs within the 334

multi-hop QA workflow, which is designed to sub- 335

stantially lower the costs associated with LaLM in- 336

teractions. In response to the second question, our 337

target is to enhance the SmLM’s ability in problem 338

decomposition and their interaction with IR mod- 339

els. To achieve this, we suggest specific strategies 340

for fine-tuning and for the development of query 341

rewriting units. Furthermore, we explore methods 342
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to bolster the domain-specific expertise of SmLM,343

thereby maximizing their utility in multi-hop QA344

scenarios.345

Inspired by this pilot experiment, we subse-346

quently designed a novel, learnable, and scalable347

framework, referred as CoopLLM.348

4.1 Synergizing LaLM and SmLM349

Building on our previous deliberations, we opted350

to implement a SaLM for the problem-solving351

step, while continuing to employ LaLM for both352

the problem planning and answer summarization353

phases. This strategic allocation is depicted in Fig-354

ure 3. Through this architectural approach, we aim355

to substantially decrease the costs associated with356

LaLM interactions and mitigate any potential de-357

cline in performance. Additionally, this structure358

allows for the facile specialization of the SmLM359

to function as an expert model across various tasks360

within the solving phase. Our architecture inte-361

grates three pivotal components: the problem plan-362

ning prompt, the problem solver and checker, and363

the answer summarization prompt.364

Problem Planning Prompt: This component365

is crafted to harness LaLM’s planning capability,366

steering it towards a facilitative role in problem367

decomposition rather than direct problem-solving.368

Initially, we present a structured prompt, for exam-369

ple, Construct a global reasoning chain, to LaLM370

along with the original query. LaLM’s task is to dis-371

sect the original query into manageable sub-queries,372

ensuring that the decomposition maintains logical373

coherence and simplifies the complexity of the over-374

arching problem. This step is crucial for setting a375

solid foundation for the problem-solving process,376

as it prepares the sub-queries in a manner that is377

conducive to efficient and focused solving by the378

subsequent components.379

Problem Solver and Checker: This segment380

of our architecture features a specialized SaLM as381

the solver and an Information Retrieval (IR) model382

serving as the checker. We refer to Searchain (Xu383

et al., 2023) for the processing flow of this phase,384

with the difference that the full process of interact-385

ing with IR is done using SmLM. The situations to386

be handled by the SaLM are categorized into three387

types: (1) Confirmation of the answer’s correct-388

ness, leading to progression to the next sub-query;389

(2) Identification of missing answers, indicating390

cases where the solver fails to provide a response,391

prompting the IR checker to supply the necessary392

information for the solver to re-engage with the393

problem; (3) Detection of incorrect answers, ne- 394

cessitating the provision of the correct answer by 395

the IR checker to realign the solver’s efforts. This 396

iterative mechanism ensures the generation of a 397

complete and accurate chain of reasoning across 398

sub-queries, culminating in a comprehensive solu- 399

tion ready for summarization by LaLM. 400

Answer Summarization Prompt: The final 401

component is tailored to leverage LaLM’s sum- 402

marization prowess, enabling it to constructively 403

contribute to resolving the original complex query 404

through a step-by-step engagement with the rea- 405

soned chain of sub-query answers. Similar to the 406

planning phase, a specific prompt, e.g., You can try 407

to generate the final answer for the [Question] by 408

referring to the following [Query]-[Answer] pairs., 409

is submitted to LaLM alongside the reasoned chain. 410

The expectation is for LaLM to utilize this struc- 411

tured input to synthesize the final answer, employ- 412

ing its summarization capabilities to integrate the 413

details from the problem-solving process into a 414

coherent and comprehensive response. 415

Algorithm 1 Description of the whole pipeline
Initialize: R,S = null; T = Q;

Output: Final Generated Answer
Function Main(Q):

if CallLaLM(T) == true then ▷ Top planning
T ← ChainGenerate(T,LaLM)

else
T ← ChainGenerate(T,SmLM)

end if
for (q, a)in T do

if q not in S then
T̃ = SearChain(T ,(q, a)) ▷ Solving

sub-problems with IR in SearChain (Xu et al., 2023)

R.add(T,T̃ )▷ Compare the forward and backward

trees and add the correct node to the path R

T ← T̃
end if

end for
if CallLaLM(T) == true then ▷ Summary

return AnswerSummary(Q,R,LaLM)
else

return AnswerSummary(Q,R,SmLM)
end if

4.2 Specializing Smaller Language Models 416

In addressing the second question regarding HOW 417

to augment the capabilities of SmLM for problem 418

decomposition and their interaction with IR mod- 419
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Figure 3: The overall pipeline of our method. We first let the LaLM do the top-level planning for the solution steps
of the complex problem, then use the fine-tuned SaLM to interact with IR to complete the intermediate steps, and
finally call the LaLM again to summarise and generate the final answer. Gray undertones indicate offline work, blue
undertones indicate the need for real-time interaction with the LaLM.

els, we delineate a two-fold strategy focusing on420

model fine-tuning and query rewriting to enhance421

the interaction with IR systems.422

Parameter-Efficient Fine-Tuning: We em-423

ploy a widely recognized and efficient Parameter-424

Efficient Fine-Tuning (PEFT) technique known as425

Low-Rank Adaptation (LoRA), which offers an426

optimal compromise between resource utilization427

and model efficacy. To specifically enhance the428

SmLM’s performance in the context of multi-hop429

problems that necessitate interaction with IR mod-430

els, we have developed a customized "error book"431

for the SmLM. This involves utilizing a "searchain"432

process to identify and label both successful rea-433

soning interaction pathways and erroneous paths434

that fail to lead to the correct final answer. In-435

spired by the training set format of LoRA, we uti-436

lize these erroneous paths as inputs and the correct437

reasoning pathways as outputs. The model is then438

fine-tuned with the prompt of "Generate a more439

logical question-answer reasoning link," thereby440

improving its ability to navigate through complex441

reasoning tasks more effectively.442

Query Rewriting Unit: After fine-tuning, we443

introduce a query rewriting unit aimed at refining444

the interaction between the SmLM and the IR sys-445

tem. This involves two adjustments: Firstly, for446

queries passed from the SmLM to the IR, we trans-447

form the natural language questions into keyword-448

based search terms to streamline the search process. 449

Secondly, for content retrieved by the IR to be pro- 450

cessed by the SmLM, recognizing the SmLM’s 451

proficiency in parsing extensive text, we increase 452

the volume of returned documents. This expan- 453

sion aims to enhance the consistency and accuracy 454

of the SmLM’s final answer by providing it with 455

a broader context and more contents for analysis. 456

Through these strategic enhancements, we seek to 457

optimize the synergy between SmLMs and IR mod- 458

els, thereby improving the overall effectiveness and 459

precision of the multi-hop QA process. 460

5 Experiments and Results 461

5.1 Experimental Setups 462

Datasets and Evaluation For the dataset we chose 463

the classic multi-hop quiz dataset HotPotQA (Yang 464

et al., 2018). The metric used is cover-EM (Rosset 465

et al., 2020), which determines whether the gen- 466

erated answer contains the ground truth answer. 467

This ensures objectivity in the evaluation process. 468

Regarding the way costs are measured, we eval- 469

uate them in three dimensions. One is the aver- 470

age number of interactions, which can reflect the 471

number of engagements of the LaLM in solving a 472

multi-hop problem. For a more careful measure- 473

ment, we record the average number of input and 474

output tokens of the LaLM through binary groups 475
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(input_tokens, output_tokens). For a more intu-476

itive comparison, we use the current GPT3.5-turbo477

charging method, i.e., 0.001/1k tokens for inputs478

and 0.002/1k tokens for outputs, to calculate the479

average cost of solving a problem.480

Baselines Our baseline is primarily based on481

existing Searchain methods (Xu et al., 2023) for482

LLM+IR interaction frameworks, which are com-483

pared in terms of accuracy and interaction cost.484

Implementation Details The LaLM model we485

used is provided by the API of an widely used486

chatbot. The retrieval model we used is Col-487

BERTv2 (Santhanam et al., 2021). Regarding488

the SmLMs, we use a merger of LLaMA-7B-HF,489

LLaMA-13B-HF, LLaMA-33B-HF, and vicuña-490

related parameter scales publicly available on hug-491

gingface. For the experiments on small model se-492

lection, we used the open source models alpaca-493

7b-lora and Llama-2-7b-chat-hf on huggingface.494

For the training details, we use AdamW opti-495

mizer and set a batch size of 16, rank r = 4.496

The adapter matrices B are initialized to be zero,497

while the entries of A are randomly initialized498

using Kaiming Uniform (He et al., 2015). The499

maximum input sequence length was set to 1280,500

and efficient training was facilitated by utilizing501

bf16 precision. The experiments are available502

at https://anonymous.4open.science/r/CoopLLM-503

5EE0.504

5.2 Main Results505

Performance of our method and baselines on com-506

plex multi-hop question answering tasks are shown507

in Table 2. The top half of the table represents508

the comparison of our method with the baseline,509

and the bottom half represents the ablation experi-510

ments of the different components of our method.511

LaLM + SmLM denotes the use of open source512

vicuña, without any fine-tuning, directly with the513

LaLM to solve the multi-hop problem; CoopLLM514

denotes our approach, i.e., by fine-tuning the com-515

bination of SmLM and LaLM to solve the multi-516

hop problem.(1) Reduction of interaction costs.517

The three numbers following the vertical lines in518

the table indicate the average number of times an-519

swering a question interacts with the LaLM, the520

monetary cost incurred, and the number of tokens521

input and output, respectively. A comparison with522

LaLM + SmLMLoRA
w/oDecision in Table 2 shows that us-523

ing a combination of small and large models, and524

letting the SmLM decide whether to call the LaLM525

model or not, this approach allows for a signifi-526

cant reduction in the number of interactions and 527

the cost while ensuring that there is no significant 528

drop in accuracy, and that this decision-making 529

ability increases as the size of the SmLM increases. 530

(2) Effect of fine-tuning. As can be seen from 531

the comparison between the second and third rows 532

of the table, fine-tuning of SmLMs is necessary re- 533

gardless of their size. This helps the SmLM to have 534

more domain-specific knowledge. In the multi-hop 535

QA scenario, fine-tuning can help the SmLM to 536

better decompose the complex question as well as 537

better interact with the IR. Additionally through 538

diagonal comparisons, we can see that the fine- 539

tuned SmLM can essentially achieve what it would 540

be possible to achieve after scaling up the scale 541

parameters by one level over it. 542

5.3 Empirical Analysis 543

This subsection discusses the effects of the fine- 544

tuning and rewriting units added to the use of 545

SmLM to ensure performance. 546

Selection of Fine-tuning Data and Methods 547

During the fine-tuning process, we used a labeling 548

approach for the construction of the dataset, and 549

used the decomposition paths that were incorrect 550

during previous interactions with IR as negative 551

examples, and the decomposition paths that were 552

ultimately answered correctly as positive exam- 553

ples, and were fine-tuned using the PEFT approach. 554

Comparing our method with LaLM+SmLMLoRA
w/oLabel 555

in Table 2, it can be found that such a dataset con- 556

struction method is more helpful for the SmLMs 557

to improve their understanding of the task. In or- 558

der to verify the generalization of the framework, 559

we chose different capability-focused SmLMs and 560

different PEFT methods, and the Table 3 shows 561

that the fine-tuned framework improves the results 562

independently of the model. It can be noticed that 563

the SmLMs that focus on enhancing the ability 564

of multi-round dialogues perform better, this is 565

because the solution of complex problems often 566

requires the ability to memorize and analyze the 567

previous sub-problems. And there is no best PEFT 568

method, it depends on the chosen SmLMs and the 569

resource requirements. 570

Functional design of the rewrite unit The 571

large language model is based on a huge amount of 572

natural language for pre-training, but the traditional 573

information retrieval model is still based on item to 574

do keyword matching, so there is a certain seman- 575

tic distance between the query generated by the 576

two of them. In order to better adapt the two, we 577
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Method

Accuracy
∣∣∣∣ avg_interaction

avg_cost
(input_tokens, output_tokens)

SmLM

Vicuna-7B Vicuna-13B Vicuna-33B GPT

Baselines
SearChain 15.7|

0
0

(0,0)
18.9|

0
0

(0,0)
28.9|

0
0

(0,0)
52.2|

4.92
3.71e−3

(1567,1071)

LaLM+SmLM 17.6|
1.89

1.68e−3
(675,502)

22.7|
1.93

1.84e−3
(692,574)

29.6|
1.72

1.49e−3
(625,432)

-

CoopLLM Variations

CoopLLM 21.6|
1.83

1.69e−3
(677,506)

32.7|
1.73

1.57e−3
(685,442)

42.9|
1.87

1.66e−3
(681,490)

-

LaLM+SmLMLoRA
w/oLabel 18.1|

1.92
1.69e−3
(671,509)

29.7|
1.76

1.54e−3
(629,455)

32.9|
1.67

1.27e−3
(612,329)

-

LaLM+SmLMLoRA
w/oRewriter 20.9|

1.77
1.60e−3
(663,468)

30.0|
1.84

1.64e−3
(678,482)

40.8|
1.79

1.58e−3
(667,457)

-

LaLM+SmLMLoRA
w/oDecision 21.3|

2
1.92e−3
(873,523)

34.5
∣∣∣ 2

2.01e−3
(897,556)

42.8|
2

1.97e−3
(848,561)

-

Table 2: The overall performance of our method and other baselines in HotpotQA. Specifically, avg_cost (in USD)
is calculated based on GPT3.5-turbo’s current rates, billed based on the number of input/output tokens. CoopLLM
Variables reports the ablation experiments of the different components of our approach. ‘-’ means the values are not
avialable.

SearChain LaLM+SmLM LaLM+SmLMLoRA LaLM+SmLMQLoRA

Alpaca-7B 12.1/0 14.2|1.821.69e−3 18.5|1.811.64e−3 19.0|1.871.77e−3

Vicuña-7B 15.7/0 17.6|1.891.68e−3 21.6|1.831.69e−3 22.1|1.901.83e−3

Llama2-7B-chat 16.2/0 17.9|1.921.91e−3 22.3|1.881.75e−3 21.9|1.741.66e−3

Table 3: Effect of Various LLMs with Different Fine-tuning Methods. The content behind the vertical lines indicates,
from top to bottom, the average number of interactions and the cost of interactions.Charges are based on current
GPT3.5-turbo rates in USD.

Dataset Vanilla Keyword Top3 Soft-prompt History All
openbookQA 0.296 0.315 0.304 0.306 0.309 0.401

HotpotQA 0.178 0.197 0.189 0.192 0.204 0.223

Table 4: Effects of different modules in the rewrite unit. Vicuña-7B is used as a base to modularly decouple the
design of the rewrite unit. ‘Keyword’ means rewriting the natural language query into the form of keywords; ‘Top3’
means the top-3 ranked documents by IR; ‘Soft-prompt’ means turning the previous path into a vector embedded in
the forefront of the prompt; and ‘History’ means the previous path in form of text to be added to prompt.

design the rewriting unit and the effect of different578

modules in this unit is shown in Table 4. Specifi-579

cally, for IR input, rewriting the SmLM-generated580

query based on keywords and incorporating the in-581

teraction history of previous rounds can improve582

alignment. For output results, we utilized SmLM’s583

ability to quickly understand large amounts of text584

and integrated the top three results returned by IR.585

The approach resulted in improved effectiveness.586

6 Conclusion587

In this paper, we explore the necessity of using588

a combination of small and large models in com-589

plex multi-hop QA scenarios, in terms of cost re-590

duction and domain specialization. We analyze591

where small models can be substituted for large592

ones by decoupling the phases from an ROI per- 593

spective. A learnable traceability framework with 594

a combination of large and small models is pro- 595

posed. Specifically, we utilize large LLMs with 596

rich world knowledge to do the top-level planning 597

and summarization, and let the fine-tuned small 598

LLMs complete the detailed parts. Experimental 599

results verified the effectiveness of the proposed 600

method. Future work includes applying the present 601

framework to other vertical domains and investigat- 602

ing ways to adaptively select models of different 603

sizes based on the problem difficulty. 604

8



7 Limitations605

In this work, multi-hop QA scenarios was chosen606

as a research area. However, when considering607

other application scenarios, it is important to ad-608

dress the following two issues. If high accuracy is609

required, it may be necessary to make a trade-off610

between cost and effectiveness by increasing the611

number of times the LaLM is engaged to enhance612

its effectiveness. This work has limited granular-613

ity for combining LaLM and SmLM models and614

does not discuss the impact on cost and accuracy if615

LaLM is involved in solving intermediate subprob-616

lems. Secondly, SmLM performs reasonably well617

in multi-hop scenarios based on general knowledge,618

which are relatively common (Wang et al., 2023).619

However, if more specialized or vertical domains620

are chosen, the results may suffer, especially if the621

SmLM lacks knowledge in that domain (Zhao et al.,622

2023).623

Second, solving problems in different applica-624

tion domains requires different capabilities (Valero-625

Lara et al., 2023), and thus may require experi-626

mentation in the choice of SmLM and PEFT meth-627

ods when applied to specific scenarios (Hu et al.,628

2023b). To fine-tune the SmLM, it is necessary to629

construct the dataset based on the specific appli-630

cation scenario. In this work, the Searchain (Xu631

et al., 2023) process was used to generate correct632

and incorrect data. However, different scenarios633

may have different requirements and may require634

different approaches to problem decomposition.635

Finally, regarding the choice of LaLM, we only636

experimented with one. However, LaLMs of637

different sizes and training styles may vary in638

their problem planning and summarization capabil-639

ities (Kalyan, 2023). This work proposes a fusion640

idea and framework for combining large and small641

models. When targeting specific problems, appro-642

priate substitutions of components in the frame-643

work may be necessary.644
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