Exploring the Cooperation of LLMs

Anonymous ACL submission

Small Empowering Large: Leverage Performance and Efficiency by

Abstract

The combined use of Large Language Mod-
els (LLMs) and Information Retrieval (IR) has
made significant progress in solving the multi-
hop QA problem. However, achieving high per-
formance requires increasingly complex and
interactive integration of IR and “large” LLMs,
which poses challenges to efficiency and do-
main specialization capabilities. A specifically
fine-tuned “small” LLM, such as LlaMa-7B,
presents a viable solution to this challenge.
Nevertheless, addressing the challenges entails
considering two aspects: 1) Where Problem:
identifying the phases in which employing a
“small” LLMs is most beneficial is essential.
2) How Problem: devising effective strategies
for combining “small” and “large” LLMs is
necessary. A lightweight approach is proposed
where the “large” LLMs service and a specif-
ically fine-tuned “small” LLMs cooperate to
answer the multi-hop questions. Our research
reveals that the “large” LLMs service primar-
ily handles top-level planning, while the fine-
tuned “small” LLMs is tasked with generating
answers and rectifying any inconsistencies with
the retrieved information. Experimental results
on the HotPotQA dataset demonstrate that our
proposed method achieves comparable accura-
cies with significantly reduced costs.

1 Introduction

Currently, Large Language Models (LLMs) match-
ing Information Retrieval (IR) engines have demon-
strated impressive performance on knowledge-
intensive tasks such as complex multi-hop prob-
lems (Menick et al., 2022; Liu et al., 2023c,a).
Considering the advantages of the IR engines for
real-time and long-tail content, together with the
decomposition and contemplation ability of LLMs
for complex problems, it improves the accuracy
and interpretability in multi-hop scenarios. De-
spite the effectiveness of this combination, there
are still many problems, such as high interaction
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Figure 1: Three categories for combining LLMs and IR.

costs and difficulty in domain specialization. We
first categorized these methods and then analyzed
the problems with each category.

According to the role played by the large lan-
guage model, ongoing efforts to integrate search
engines and large language models can be divided
into two categories. The first framework is the
LLM acts predominantly as a summarizer for the
outputs generated by IR systems (Feng et al., 2023;
Qin et al., 2023), leverages the LLM’s capacity
to synthesize and conclude information from re-
trieved documents, as illustrated in Figure 1(a).
Since the LLM’s role is confined to processing
the final stage of summarizing information with-
out engaging in the initial query understanding or
information filtering processes (Liu et al., 2023d;
Schick et al., 2023), the approach cannot utilize the
strong comprehension and inference capabilities
of LLM. Conversely, as illustrated in Figure 1(b),
the second framework represents a more holistic
integration of LLLM throughout the entire question
resolution process (Ram et al., 2023; Peng et al.,
2023; Xu et al., 2023). This includes initial ques-
tion decomposition, answer recall, and finally sum-
marization. Although this method makes fuller
use of the capabilities of the LLMs, it requires fre-



quent interactions between the IR system and the
LLMs, resulting in increased computational costs
and potentially affecting the smoothness of user
interactions (Hu et al., 2023a; Bang, 2023). An-
other common challenge for both frameworks is the
lack of domain-specific adaptations for LLMs (Liu
et al., 2023e; Zhang et al., 2023c). Tailoring these
models to specific fields or topics could largely en-
hance their accuracy and reliability. However, the
requisite supplementary training/fine-tuning is pro-
hibitive in terms of computational costs and time.

Considering the above issues, we attempt to syn-
ergize the “small” and “large” LLMs for a multi-
hop reasoning task, thereby mitigating the inherent
contradictions between model scalability and the
necessity for specialized domain adaptation. In
this way, inference cost reduction and domain spe-
cialization can be achieved by “small” LLM while
being able to maintain the advanced capabilities
of the “large” LLM. For ease of notation, we de-
note “large” LLMs that consist of 100+ billion
parameters (e.g., ChatGPT, Gemini), by LalLM;
and “small” LLMs (e.g., LLaMA-7B, Alpaca-13B)
by SmLM. To make LalLM and SmLM collaborate
for multi-hop reasoning, two key questions need to
be addressed:

* WHERE to replace the LaLM with the
SmLM throughout the inference process?

* HOW to maintain the ability of the SaLM
when it has replaced the LalLM?

For the “WHERE” question, we introduce an
innovative strategy that synergies the capabilities
of both LaLM and SmLM, conceptualized in Fig-
ure 1(c). In our method, the LaLLM plays the role of
processing top-level question decomposition and
executing the final answer summarization. This
allocation leverages the LalLM’s ability to under-
stand complex queries and task planning. Mean-
while, the SalLM is responsible for interfacing with
the IR systems and solving domain-specific prob-
lems through a more focused and efficient chain of
thought (CoT) process (Wei et al., 2022; Xu et al.,
2023).

For the “HOW?” question,it becomes imperative
to enhance the SmLLM’s ability in two critical as-
pects: nuanced problem decomposition and effec-
tive interaction with IR. In terms of problem de-
composition, we have fine-tuned the SmLM by
constructing data for positive and negative exam-
ples to teach the SmLM to ask IR questions and to

better understand the IR returns. In terms of inter-
acting the SmLLM with the search engine, we note
that the traditional IR model is a keyword-based
system trained on lexical items, while the output
of the language model is more oriented to natural
language. We design a rewriting unit to change the
natural language questions output by the SmLM to
questions based on keyword forms.

We propose a scalable, learnable framework
that adeptly combines large and small language
models (LaLM and SmLM, respectively) to effi-
ciently tackle multi-hop inference tasks, named
Coop. CoopLLM leverages LalLM for decompos-
ing complex questions into simpler sub-tasks, uti-
lizes SalLM for detailed reasoning and informa-
tion retrieval interactions, and re-engages LalLM
to synthesize and summarize the final answers.
The advantages of CoopLLM include: (1) signif-
icantly reduces computational costs by minimiz-
ing reliance on LalLM for intermediate steps; and
(2) enhances answer accuracy through domain-
specialized SmLM, striking a balance between effi-
ciency and accuracy.

The major contributions of the paper include:

(1) We focus on the shortcomings of the current
LLM approach to Multi-Hop QA, in terms
of model efficiency and domain specializa-
tion. A novel paradigm of combining large
and small LLMs for enhancing multi-hop in-
ference tasks is proposed.

(2) We explore where and how to synergy the
large and small LLMs, and propose a learn-
able and scalable framework that achieves a
balance between efficiency and accuracy.

(3) We conducted groups of experiments on multi-
hop QA datasets, and the experimental re-
sults verified the effectiveness of the proposed
model.

2 Related Work

Multi-hop QA Problems with Large Language
Model: Multi-hop QA means answering com-
plex questions that require multiple steps to re-
trieve and reason about (Yang et al., 2018). While
previous approaches have developed retrieval mod-
ules for selecting relevant passages, Q&A prob-
lems in multi-hop scenarios remain challenging
due to the limited performance of one-step meth-
ods and the difficulty of decomposing complex
problems (Ho et al., 2020). LLM has recently



demonstrated excellent performance in a range
of downstream tasks, including in planning and
question decomposition (Shao et al., 2023; Yoran
et al., 2023). There is a line work exploring how
to use LLM to solve Q&A problems in multi-hop
scenarios; either by carefully designing prompts
to stimulate the potential reasoning ability of the
large language models (Zhang et al., 2023a; Khal-
ifa et al., 2023), or by designing different thinking
scenarios based on the chain-of-thinking approach
to generate reasonable decomposition paths (Sun
et al., 2023; Tang and Yang, 2024; Xu et al., 2023;
Khot et al., 2022). SearChain (Xu et al., 2023) is
one of the more representative approaches, and the
problem decomposition approach in our work is an
improvement based on it. SearChain operates by
having the LLM generate a global reasoning chain,
known as Chain-of-Query (CoQ), wherein each
node comprises an IR-oriented query along with its
corresponding answer. Subsequently, IR evaluates
the accuracy of each node’s answer in CoQ, cor-
recting inconsistencies with retrieved information
when confident, thereby enhancing credibility. By
transforming the reasoning topology from a chain
to a tree, SearChain has the ability to modify the
direction of reasoning.

Synergy between Large Language Model and In-
formation Retrieval: In recent years, the synergy
between Large Language Model (LLM) and Infor-
mation Retrieval (IR) systems has emerged as a
pivotal methodology for addressing complex multi-
hop queries, as evidenced by a growing body of lit-
erature including representative works by (Menick
et al., 2022; Liu et al., 2023c,a). On one hand, the
utilization of LLM in conjunction with IR systems
capitalizes on the former’s ability to parse and un-
derstand complex queries, break them into more
solvable sub-queries, and then synthesize the re-
trieved information into coherent and contextually
relevant answers. This process not only augments
the precision of the answers provided but also en-
riches the explanation of the answers (Jeronymo
et al., 2023; Saad-Falcon et al., 2023; Jeong, 2023).
On the other hand, IR systems’ strengths are search-
ing a vast area of sources in real time, ensuring that
the information used in the problem-solving pro-
cess is not only broad-ranging but also up-to-date.
Consequently, the integration of LLM with IR tools
can fix LLM’s shortcomings on the topics that are
rapidly evolving or have sparse coverage in pre-
existing datasets on which LLM are trained (Zhu
et al., 2023; Liu et al., 2023b; Zhang et al., 2023b).

Notation Description
(¢q,a) a query-answer pair
Moa QA model
Foa Subproblem solver
FIr retrieval model
Q original query
A final answer
S ={a}t, processed queries set

R ={(¢i,a;)}"y correct reasoning path
T tree-of-reasoning

Table 1: Notations and explanations.

The IR + LLM paradigm marries the real-time
data retrieval capabilities and extensive coverage
of long-tail content inherent to IR with the nuanced
problem decomposition and analytical strengths of
LLM. Such a collaboration significantly enhances
both the accuracy and interpret ability of responses
in multi-hop problem-solving scenarios.

3 Task Formulation and Analysis

3.1 Task Formulation for Multi-hop QA

Depending on the underlying complexity, multi-
hop QA requires identifying and reasoning about
multiple related facts. Multi-hop QA often requires
logical links and comparisons, e.g. to solve "Which
genus of moth in the world’s seventh-largest coun-
try contains only one species?". We need to break it
down into two steps, first we need to know "which
country is the seventh largest in the world" and
then we need to solve "which is the only moth of a
species in this country". By introducing a global
QA model Mqa, a sub-step solver Fqa, and a sub-
step retriever JFir, we define the multi-hop QA
problem through a three-stage workflow:

Stage 1: Top planning. This stage begins with
parsing the original query (), where QA model
Maqa is responsible for parsing and decomposing
( into multiple sub-queries S = {¢;}}"_;. This step
is crucial as it sets the foundation for subsequent
retrieval and information integration.

Stage 2: Solving. This stage is executed by the
QA model Fqa and retrieval model Fir together.
FQa tries to solves each sub-queries ¢; € S and
give the answer a;. At this point, the Fir performs
information retrieval in the document collection D
for each sub-queries, aiming to find relevant text
segments that can validate the answers provided
by Fqa. This process might be iterative until all
sub-queries are ensured to be answered correctly.



Stage 3: Summarizing. The final stage involves
the QA model Mqa, which is responsible for inte-
grating the information that generated in the second
stage to construct a comprehensive answer A. In
this stage, the model may need to establish a rea-
soning path R = {(g;, a;)}};, which are series of
sub-queries that together with the answer.

In this study, we utilized both LaLM and SaLM
as the QA models. This design not only exploits the
superior inference and decomposition capabilities
of LalLM, but also facilitates inference cost reduc-
tion and domain specialisation. We highlighted
the advantages of employing smaller Language
Models (LLMs) over larger ones, such as GPT,
within the context of multi-hop Question Answer-
ing (QA) tasks. These advantages are notably in
terms of inference efficiency and domain specializa-
tion. Nonetheless, two pivotal questions arise: (1)
WHERE within the multi-hop QA process should
LalLM be replaced by a SmLM, and (2) HOW can
we preserve the effectiveness of the SmLM once it
has taken the place of LaLM.

The major notations of the study are listed in
Table 1.

3.2 GPT ROI Analysis of Different Stages

To address the “WHERE” question, we conducted
a detailed analysis of the return-on-improvement
(ROI) provided by LalLM across the three distinct
stages of multi-hop QA, namely, initial planning,
problem solving, and summarization.

In this section, we address the question of
WHERE to optimally replace LaLM with SaLM
within the multi-hop QA framework. To determine
this, it is essential to examine the contributions and
advantages of integrating LalLM at each stage of
the multi-hop QA process, assessing these in terms
of Return on Investment (ROI). ROl is quantified
as ROI = vjpp/Veost, Where v, represents the
performance enhancement attributed to LalLM’s in-
clusion, as indicated by the relative improvement
in multi-hop QA evaluation metrics, and v.ys; Sig-
nifies the incurred cost, measured by the number
of tokens processed by LaLLM.

Identifying the phase with the lowest ROI is cru-
cial as it suggests the most advantageous stage for
implementing SmLM. This substitution strategy
serves a dual purpose: it not only reduces the costs
associated with LalLM interactions but also min-
imizes the potential performance degradation in
phases where SalLM is employed. We divided the
problem solving steps into three major steps accord-
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Figure 2: ROI comparison of methods for incorporating
LalLM at Different Stages. The yellow color indicates
the average cost required to perform one interaction
with the LalLM at that stage, the orange color indicates
the accuracy rate, and the red dash line indicates the
ROI value at that stage compared to the vanilla version.

ing to the purpose: top-level planning, solving sub-
problems, and final summarization. To rigorously
evaluate LalLM’s ROI across different phases, we
initially deploy a SalLM as the question-and-answer
model throughout all three stages of multi-hop QA,
establishing a baseline for performance. Subse-
quently, LalLM is incorporated as the QA model in
each phase individually, and the ROI is calculated
based on both performance improvement and cost.
The findings, illustrated in Figure 2, reveal that
the integration of LalLM yields the lowest ROI dur-
ing the problem-solving phase. This outcome is at-
tributable to the iterative nature of this phase, which
requires multiple interactions with the IR system
and adjustments to the answers of sub-queries. It
is more necessary to use specific knowledge, fine-
tuning a SmLM to do the adaptation is a more
appropriate means. Conversely, the highest ROI is
observed in the initial planning phase, underscor-
ing the foundational importance of early problem
framing for the efficacy of subsequent stages.

4 CoopLLM Framework

Although we find that combining LalLM and
SmLM can get good ROI, but the overall perfor-
mance is lower than LaLLM. In this section, we in-
troduce a novel, learnable, and scalable framework—
referred to as CoopLLM. The framework facilitates
the integration of varying-sizes LLMs within the
multi-hop QA workflow, which is designed to sub-
stantially lower the costs associated with LalLM in-
teractions. In response to the second question, our
target is to enhance the SmLM’s ability in problem
decomposition and their interaction with IR mod-
els. To achieve this, we suggest specific strategies
for fine-tuning and for the development of query
rewriting units. Furthermore, we explore methods



to bolster the domain-specific expertise of SmLM,
thereby maximizing their utility in multi-hop QA
scenarios.

Inspired by this pilot experiment, we subse-
quently designed a novel, learnable, and scalable
framework, referred as CoopLLM.

4.1 Synergizing LalLM and SmLM

Building on our previous deliberations, we opted
to implement a SaLM for the problem-solving
step, while continuing to employ LalLM for both
the problem planning and answer summarization
phases. This strategic allocation is depicted in Fig-
ure 3. Through this architectural approach, we aim
to substantially decrease the costs associated with
LalLM interactions and mitigate any potential de-
cline in performance. Additionally, this structure
allows for the facile specialization of the SmLM
to function as an expert model across various tasks
within the solving phase. Our architecture inte-
grates three pivotal components: the problem plan-
ning prompt, the problem solver and checker, and
the answer summarization prompt.

Problem Planning Prompt: This component
is crafted to harness LalLM’s planning capability,
steering it towards a facilitative role in problem
decomposition rather than direct problem-solving.
Initially, we present a structured prompt, for exam-
ple, Construct a global reasoning chain, to LaLM
along with the original query. LaLM’s task is to dis-
sect the original query into manageable sub-queries,
ensuring that the decomposition maintains logical
coherence and simplifies the complexity of the over-
arching problem. This step is crucial for setting a
solid foundation for the problem-solving process,
as it prepares the sub-queries in a manner that is
conducive to efficient and focused solving by the
subsequent components.

Problem Solver and Checker: This segment
of our architecture features a specialized SaLM as
the solver and an Information Retrieval (IR) model
serving as the checker. We refer to Searchain (Xu
et al., 2023) for the processing flow of this phase,
with the difference that the full process of interact-
ing with IR is done using SmLM. The situations to
be handled by the SalLM are categorized into three
types: (1) Confirmation of the answer’s correct-
ness, leading to progression to the next sub-query;
(2) Identification of missing answers, indicating
cases where the solver fails to provide a response,
prompting the IR checker to supply the necessary
information for the solver to re-engage with the

problem; (3) Detection of incorrect answers, ne-
cessitating the provision of the correct answer by
the IR checker to realign the solver’s efforts. This
iterative mechanism ensures the generation of a
complete and accurate chain of reasoning across
sub-queries, culminating in a comprehensive solu-
tion ready for summarization by LaLM.

Answer Summarization Prompt: The final
component is tailored to leverage LalLM’s sum-
marization prowess, enabling it to constructively
contribute to resolving the original complex query
through a step-by-step engagement with the rea-
soned chain of sub-query answers. Similar to the
planning phase, a specific prompt, e.g., You can try
to generate the final answer for the [Question] by
referring to the following [Query]-[Answer] pairs.,
is submitted to LalLM alongside the reasoned chain.
The expectation is for LalLM to utilize this struc-
tured input to synthesize the final answer, employ-
ing its summarization capabilities to integrate the
details from the problem-solving process into a
coherent and comprehensive response.

Algorithm 1 Description of the whole pipeline
Initialize: R, S =null; T = Q;
Output: Final Generated Answer
Function Main(Q):
if CallLaLM(T) == true then > Top planning
T + ChainGenerate(T,LalLM)
else
T <+ ChainGenerate(T,SmLM)
end if
for (¢, a)in T do
if g not in .S then
T = SearChain(T',(¢, a))
sub-problems with IR in SearChain (Xu et al., 2023)
R.add(T,T)D Compare the forward and backward
trees and add the correct node to the path R
T+T
end if
end for
if CallLaLM(T) == true then > Summary
return AnswerSummary(Q,R,Lal.M)
else
return AnswerSummary(Q,R,SmLM)
end if

> Solving

4.2 Specializing Smaller Language Models

In addressing the second question regarding HOW
to augment the capabilities of SmLM for problem
decomposition and their interaction with IR mod-



Online Pipeline of SmartSyn

Top Planning

|

Bordan Tkachuk was the Finetuned Sal.M

CEO of a company that

provides what sort of
g products?

ﬁ B | |

[Query 1]: Who is Bordan Tkachuk?
[Quety 2]: What company was
Bordan Tkachuk the CEO of?
[Query 3]: What products does
Viglen provide?

o =

IR System

Offline Finetune of SalLM
([Query], [Answer], Label);

II [Query 1]: world's seventh-largest country [Answer 1]: India.
[Query 2]: genus of moth found only in India [Answer 2]: Indogrammodes.
Label

: True

[Question]: Bordan Tkachuk...?

[Quety 1]: Bordan Tkachuk

[Answer 1]: a businessman...
— [Query 2]: company CEO of...

[Answer 2]: Viglen

[Quety 3]: products Viglen provide

[Answer 3]: I'T products

TLalM

’
l wh (@)
% 5—'— l_ ‘:‘>

SalLM

@.@ﬁ

Lol(A Finetuned Sal.M

Figure 3: The overall pipeline of our method. We first let the LalLM do the top-level planning for the solution steps
of the complex problem, then use the fine-tuned SalLM to interact with IR to complete the intermediate steps, and
finally call the LaLM again to summarise and generate the final answer. Gray undertones indicate offline work, blue
undertones indicate the need for real-time interaction with the Lal.M.

els, we delineate a two-fold strategy focusing on
model fine-tuning and query rewriting to enhance
the interaction with IR systems.

Parameter-Efficient Fine-Tuning: We em-
ploy a widely recognized and efficient Parameter-
Efficient Fine-Tuning (PEFT) technique known as
Low-Rank Adaptation (LoRA), which offers an
optimal compromise between resource utilization
and model efficacy. To specifically enhance the
SmLM’s performance in the context of multi-hop
problems that necessitate interaction with IR mod-
els, we have developed a customized "error book"
for the SmLM. This involves utilizing a "searchain"
process to identify and label both successful rea-
soning interaction pathways and erroneous paths
that fail to lead to the correct final answer. In-
spired by the training set format of LoRA, we uti-
lize these erroneous paths as inputs and the correct
reasoning pathways as outputs. The model is then
fine-tuned with the prompt of "Generate a more
logical question-answer reasoning link," thereby
improving its ability to navigate through complex
reasoning tasks more effectively.

Query Rewriting Unit: After fine-tuning, we
introduce a query rewriting unit aimed at refining
the interaction between the SmLM and the IR sys-
tem. This involves two adjustments: Firstly, for
queries passed from the SmLM to the IR, we trans-
form the natural language questions into keyword-

based search terms to streamline the search process.
Secondly, for content retrieved by the IR to be pro-
cessed by the SmLM, recognizing the SmLM’s
proficiency in parsing extensive text, we increase
the volume of returned documents. This expan-
sion aims to enhance the consistency and accuracy
of the SmLM'’s final answer by providing it with
a broader context and more contents for analysis.
Through these strategic enhancements, we seek to
optimize the synergy between SmLMs and IR mod-
els, thereby improving the overall effectiveness and
precision of the multi-hop QA process.

S Experiments and Results

5.1 Experimental Setups

Datasets and Evaluation For the dataset we chose
the classic multi-hop quiz dataset HotPotQA (Yang
et al., 2018). The metric used is cover-EM (Rosset
et al., 2020), which determines whether the gen-
erated answer contains the ground truth answer.
This ensures objectivity in the evaluation process.
Regarding the way costs are measured, we eval-
uate them in three dimensions. One is the aver-
age number of interactions, which can reflect the
number of engagements of the LalLM in solving a
multi-hop problem. For a more careful measure-
ment, we record the average number of input and
output tokens of the LalLM through binary groups



(input_tokens, output_tokens). For a more intu-
itive comparison, we use the current GPT3.5-turbo
charging method, i.e., 0.001/1k tokens for inputs
and 0.002/1k tokens for outputs, to calculate the
average cost of solving a problem.

Baselines Our baseline is primarily based on
existing Searchain methods (Xu et al., 2023) for
LLM+IR interaction frameworks, which are com-
pared in terms of accuracy and interaction cost.

Implementation Details The LalLM model we
used is provided by the API of an widely used
chatbot. The retrieval model we used is Col-
BERTV2 (Santhanam et al., 2021). Regarding
the SmLMs, we use a merger of LLaMA-7B-HF,
LLaMA-13B-HF, LLaMA-33B-HF, and vicufa-
related parameter scales publicly available on hug-
gingface. For the experiments on small model se-
lection, we used the open source models alpaca-
7b-lora and Llama-2-7b-chat-hf on huggingface.
For the training details, we use AdamW opti-
mizer and set a batch size of 16, rank r = 4.
The adapter matrices B are initialized to be zero,
while the entries of A are randomly initialized
using Kaiming Uniform (He et al., 2015). The
maximum input sequence length was set to 1280,
and efficient training was facilitated by utilizing
bf16 precision. The experiments are available
at https://anonymous.4open.science/r/CoopLLM-
SEEO.

5.2 Main Results

Performance of our method and baselines on com-
plex multi-hop question answering tasks are shown
in Table 2. The top half of the table represents
the comparison of our method with the baseline,
and the bottom half represents the ablation experi-
ments of the different components of our method.
LaLM + SmLM denotes the use of open source
vicufia, without any fine-tuning, directly with the
LalLM to solve the multi-hop problem; CoopL LM
denotes our approach, i.e., by fine-tuning the com-
bination of SmLLM and LalLM to solve the multi-
hop problem.(1) Reduction of interaction costs.
The three numbers following the vertical lines in
the table indicate the average number of times an-
swering a question interacts with the LalLM, the
monetary cost incurred, and the number of tokens
input and output, respectively. A comparison with
LaLM + SmLMEES. ..., in Table 2 shows that us-
ing a combination of small and large models, and
letting the SmLM decide whether to call the LaLM
model or not, this approach allows for a signifi-

cant reduction in the number of interactions and
the cost while ensuring that there is no significant
drop in accuracy, and that this decision-making
ability increases as the size of the SmLM increases.
(2) Effect of fine-tuning. As can be seen from
the comparison between the second and third rows
of the table, fine-tuning of SmLMs is necessary re-
gardless of their size. This helps the SmLM to have
more domain-specific knowledge. In the multi-hop
QA scenario, fine-tuning can help the SmLM to
better decompose the complex question as well as
better interact with the IR. Additionally through
diagonal comparisons, we can see that the fine-
tuned SmLLM can essentially achieve what it would
be possible to achieve after scaling up the scale
parameters by one level over it.

5.3 Empirical Analysis

This subsection discusses the effects of the fine-
tuning and rewriting units added to the use of
SmLM to ensure performance.

Selection of Fine-tuning Data and Methods

During the fine-tuning process, we used a labeling
approach for the construction of the dataset, and
used the decomposition paths that were incorrect
during previous interactions with IR as negative
examples, and the decomposition paths that were
ultimately answered correctly as positive exam-
ples, and were fine-tuned using the PEFT approach.
Comparing our method with LaLM+SmLM%L0%,.,
in Table 2, it can be found that such a dataset con-
struction method is more helpful for the SmLMs
to improve their understanding of the task. In or-
der to verify the generalization of the framework,
we chose different capability-focused SmLMs and
different PEFT methods, and the Table 3 shows
that the fine-tuned framework improves the results
independently of the model. It can be noticed that
the SmLMs that focus on enhancing the ability
of multi-round dialogues perform better, this is
because the solution of complex problems often
requires the ability to memorize and analyze the
previous sub-problems. And there is no best PEFT
method, it depends on the chosen SmLMs and the
resource requirements.

Functional design of the rewrite unit The
large language model is based on a huge amount of
natural language for pre-training, but the traditional
information retrieval model is still based on item to
do keyword matching, so there is a certain seman-
tic distance between the query generated by the
two of them. In order to better adapt the two, we
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LaLM+SmLM; 70 fewriter 20.9| 1.60e—3 30.0] 1.64e-3 40.8| 1.58e—3 -
,,,,,,,,,,,,,,, _ _(663,468) | _ _ _(678,482) | _ _ _(667.457) | _ _ _ _ _ _ _ _ _
LaLM+SmLMZoE4 . 21.3 1.o%e3 345 200e-3 | 42 8| 1.o7e—3 -
w/oDecision ' (873,523) 1 (897,556) "' (848,561)

Table 2: The overall performance of our method and other baselines in HotpotQA. Specifically, avg_cost (in USD)
is calculated based on GPT3.5-turbo’s current rates, billed based on the number of input/output tokens. CoopLLM
Variables reports the ablation experiments of the different components of our approach. ‘-* means the values are not

avialable.
SearChain |LaLM+SmLM | LaLM+SmLMZ°%4 | Lal M+SmLM®@Lof4
Alpaca-7B 12.1/0 | 142183, 5 18.5|1 843 19.0/1:87,_4
Vicufia-7B 157/0 | 1761825 21.6]185._5 22101993
Llama2-7B-chat| 16.2/0 | 17.9]1:3%._4 22.3[188, 4 21.9]1 8803

Table 3: Effect of Various LLMs with Different Fine-tuning Methods. The content behind the vertical lines indicates,
from top to bottom, the average number of interactions and the cost of interactions.Charges are based on current

GPT3.5-turbo rates in USD.

Dataset Vanilla | Keyword Top3 Soft-prompt History | All
openbookQA | 0.296 0.315 0.304 0.306 0.309 | 0.401
HotpotQA 0.178 0.197 0.189 0.192 0.204 | 0.223

Table 4: Effects of different modules in the rewrite unit. Vicufia-7B is used as a base to modularly decouple the
design of the rewrite unit. ‘Keyword’ means rewriting the natural language query into the form of keywords; “Top3’
means the top-3 ranked documents by IR; ‘Soft-prompt’ means turning the previous path into a vector embedded in
the forefront of the prompt; and ‘History’ means the previous path in form of text to be added to prompt.

design the rewriting unit and the effect of different
modules in this unit is shown in Table 4. Specifi-
cally, for IR input, rewriting the SmLM-generated
query based on keywords and incorporating the in-
teraction history of previous rounds can improve
alignment. For output results, we utilized SmLM’s
ability to quickly understand large amounts of text
and integrated the top three results returned by IR.
The approach resulted in improved effectiveness.

6 Conclusion

In this paper, we explore the necessity of using
a combination of small and large models in com-
plex multi-hop QA scenarios, in terms of cost re-
duction and domain specialization. We analyze
where small models can be substituted for large

ones by decoupling the phases from an ROI per-
spective. A learnable traceability framework with
a combination of large and small models is pro-
posed. Specifically, we utilize large LLMs with
rich world knowledge to do the top-level planning
and summarization, and let the fine-tuned small
LLMs complete the detailed parts. Experimental
results verified the effectiveness of the proposed
method. Future work includes applying the present
framework to other vertical domains and investigat-
ing ways to adaptively select models of different
sizes based on the problem difficulty.



7 Limitations

In this work, multi-hop QA scenarios was chosen
as a research area. However, when considering
other application scenarios, it is important to ad-
dress the following two issues. If high accuracy is
required, it may be necessary to make a trade-off
between cost and effectiveness by increasing the
number of times the LalLM is engaged to enhance
its effectiveness. This work has limited granular-
ity for combining LalLM and SmLM models and
does not discuss the impact on cost and accuracy if
Lal.M is involved in solving intermediate subprob-
lems. Secondly, SmLM performs reasonably well
in multi-hop scenarios based on general knowledge,
which are relatively common (Wang et al., 2023).
However, if more specialized or vertical domains
are chosen, the results may suffer, especially if the
SmLM lacks knowledge in that domain (Zhao et al.,
2023).

Second, solving problems in different applica-
tion domains requires different capabilities (Valero-
Lara et al., 2023), and thus may require experi-
mentation in the choice of SmLM and PEFT meth-
ods when applied to specific scenarios (Hu et al.,
2023b). To fine-tune the SmLM, it is necessary to
construct the dataset based on the specific appli-
cation scenario. In this work, the Searchain (Xu
et al., 2023) process was used to generate correct
and incorrect data. However, different scenarios
may have different requirements and may require
different approaches to problem decomposition.

Finally, regarding the choice of LaLM, we only
experimented with one. However, LaLMs of
different sizes and training styles may vary in
their problem planning and summarization capabil-
ities (Kalyan, 2023). This work proposes a fusion
idea and framework for combining large and small
models. When targeting specific problems, appro-
priate substitutions of components in the frame-
work may be necessary.

8 Ethics Statement

In this work, we are committed to upholding the
highest standards of integrity, respecting individu-
als’ rights, and adhering to legal and ethical princi-
ples. The dataset and any developed models used
in this research were sourced from openly available
repositories. We acknowledge the contributions
of the data providers and model creators, and we
commit to adhering to any applicable licenses or
usage agreements. In terms of privacy protection,

we ensure that our research adheres to strict pri-
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fidentiality of individuals involved. Additionally,
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