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ABSTRACT

Root Cause Analysis (RCA) is essential for pinpointing the root causes of fail-
ures in microservice systems. Traditional data-driven RCA methods are typically
limited to offline applications due to high computational demands, and existing
online RCA methods handle only single-modal data, overlooking complex interac-
tions in multi-modal systems. In this paper, we introduce OCEAN, a novel online
multi-modal causal structure learning method for root cause localization. OCEAN
employs a dilated convolutional neural network to capture long-term temporal de-
pendencies and graph neural networks to learn causal relationships among system
entities and key performance indicators. We further design a multi-factor atten-
tion mechanism to analyze and reassess the relationships among different metrics
and log indicators/attributes for enhanced online causal graph learning. Addition-
ally, a contrastive mutual information maximization-based graph fusion module
is developed to effectively model the relationships across various modalities. Ex-
tensive experiments on three real-world datasets demonstrate the effectiveness and
efficiency of our proposed method.

1 INTRODUCTION

Root Cause Analysis (RCA) is crucial for identifying the underlying causes of system failures and
ensuring the high performance of microservice systems (Wang et al., 2023a; Li et al., 2021; Wang
et al., 2023c). Traditional manual root cause analysis is labor-intensive, costly, and error-prone, given
the complexity of microservice systems and the extensive volume of data involved. Consequently,
effective and efficient root cause analysis methods are vital for pinpointing failures in complex
microservice systems and mitigating potential financial losses when system faults occur.

Previous studies in data-driven RCA, particularly those utilizing causal discovery techniques, have
primarily focused on constructing causal or dependency graphs (Ikram et al., 2022; Lu et al., 2017;
Li et al., 2021; Soldani & Brogi, 2022; Wang et al., 2023c; Zheng et al., 2024a). These graphs depict
the causal links between different system entities and key performance indicators (KPIs), thereby
enabling the tracing of underlying causes through these structures. For instance, Wang et al. (Wang
et al., 2023c) developed a hierarchical graph neural network method that automatically identifies
causal relationships both within and between networks to help pinpoint root causes.

Despite significant advances, most of these approaches are designed for offline use and face challenges
with real-time implementation in microservice systems due to high computational demands. To
address this, Wang et al. (Wang et al., 2023a) introduced an online RCA method that decouples
state-invariant and state-dependent information and incrementally updates the causal graph. Li et
al. (Li et al., 2022) developed a causal Bayesian network that leverages system architecture knowledge
to mitigate potential biases toward new data. However, these online RCA methods are limited to
handling single-modal data.

Recently, multi-modal data, such as system metrics and logs, are commonly collected from microser-
vice systems, revealing the complex nature of system failures (Zheng et al., 2024a). For instance,
failures such as “Database Query Failures” might be overlooked if only system metrics are considered,
whereas issues like “Disk Space Full” are more effectively identified through combined analysis
of metrics and logs. This underscores the importance of using multi-modal data for a thorough
understanding of system failures. By integrating information from various sources, we can detect the
abnormal patterns of system failures that might not be evident when analyzing single-modal data.
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To bridge this gap, this paper aims to propose an online multi-modal causal structure learning method
for identifying root causes in microservice systems. Formally, given the system KPI data along with
multi-modal microservice data including metrics and log data, our objective is to develop an online
multi-modal causal graph that identifies the top k system entities most relevant to the system KPI.
Three major challenges exist in this task. (C1) Capturing Long-term Temporal Dependencies:
Current auto-regressive based RCA methods (Wang et al., 2023a; Zheng et al., 2024a) are limited to
capturing short-term temporal dependencies. However, some system faults, such as Distributed Denial
of Service (DDoS) attacks, may persist for extended periods. Effectively capturing these long-term
temporal dependencies is crucial for identifying various types of system faults. (C2) Capturing the
Correlation of Multi-dimensional Factors: Existing RCA approaches (Ikram et al., 2022; Wang
et al., 2023c; Zheng et al., 2024a) often analyze abnormal patterns from multiple factors individually,
such as CPU usage or memory usage from system metrics and frequency or golden signal from system
logs, overlooking potential relationships among these factors from both modalities. Furthermore,
these methods often consider all factors as equally important; however, in real applications, certain
factors prove to be considerably more crucial than others. It is vital, therefore, to reassess the
contributions of each factor to the learning of causal structures. (C3) Learning Multi-modal Causal
Structures: Effectively capturing the relationships between different modalities in an online setting
is crucial. Simply combining causal graphs from individual modalities can be problematic, especially
if one modality is of lower quality.

To tackle these challenges, we introduce OCEAN, Online Multi-modal Causal Structure LEArNing,
for root cause identification in microservice systems. Specifically, we propose to encode long-term
temporal dependencies using a dilated convolutional neural network (Yu & Koltun, 2016) and forecast
future values based on the p-th lagged historical data. We further develop a multi-factor attention
mechanism to analyze the correlations among various factors and reassess their importance for causal
graph learning. Additionally, we propose a contrastive mutual information estimation technique to
model the relationships of different modalities. Our contributions can be summarized as follows:

• We introduce a novel online framework for multi-modality root cause analysis.

• We propose employing a dilated convolutional neural network to capture long-term temporal
dependencies and graph neural networks to model causal relations among system entities.

• We design a multi-factor attention mechanism to analyze the relationships among different
factors and reassess their impact on online causal graph learning.

• We develop graph fusion techniques with contrastive multi-modal learning to model the
relationships between different modalities and assess their importance.

• Extensive experiments on three real-world datasets demonstrate the effectiveness and effi-
ciency of our proposed method.

2 PRELIMINARY AND RELATED WORK

Key Performance Indicator (KPI). In a microservice system, KPIs serve as invaluable metrics
for assessing the effectiveness and productivity of the architecture (Podgórski, 2015). They play an
indispensable role in monitoring and managing different aspects of microservices to uphold optimal
performance levels. Common KPIs encompass latency and service response time. High values in
these metrics typically indicate suboptimal system performance or potential system failure.

Entity Metrics. Entity metrics are the measurable time-series attributes that provide insights
into the performance and status of services within a system (Bogner et al., 2017). These entities
encompass various components such as physical machines, containers, virtual machines, and pods.
In microservice architectures, typical entity metrics include CPU utilization, memory usage, disk I/O
activity, packet transmission rate, and etc. These metrics are extensively employed to detect anomalous
behavior and pinpoint potential causes of system failures in microservice environments (Wang et al.,
2023a;b; Zheng et al., 2024a; Soldani & Brogi, 2023; Liu et al., 2021).

Root Cause Analysis. Current root cause analysis (RCA) methods can be categorized into two
main branches: single-modal RCA methods and multi-modal RCA methods. Single-modal RCA
methods primarily investigate causal relationships among system components using one type of data
only (Sporleder et al., 2019; Duan et al., 2020; Meng et al., 2020; Soldani & Brogi, 2022; Aggarwal
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Table 1: Notation Table

X0
M the historical metric data

Xi
M the i-th batch of the system metric

X0
L the historical log data

Xi
L the i-th batch of system log

T1 the length of the historical metric time-series data
T2 the length of the batch for the system metric

n− 1 the number of system entities
T the total number of batches
dM the number of different system metric features
dL the number of different system log features
y the system Key Performance Indicator

G = {V,A} the causal graph
A the adjacency matrix in the causal graph

et al., 2020; Li et al., 2021). For instance, Liu et al. (Liu et al., 2021) generate a service call graph
based on domain-specific software and rules, while Wang et al. (Wang et al., 2023c) construct causal
networks from time series data. However, these methods often exhibit suboptimal performance due
to their reliance on single-modal data. To enhance accuracy, recent research integrates multi-modal
data for RCA (Yu et al., 2023; Hou et al., 2021; Zheng et al., 2024a). Nezha (Yu et al., 2023) and
PDiagnose (Hou et al., 2021) extract and combine information from each modality individually,
while MULAN (Zheng et al., 2024a) and MM-DAG (Lan et al., 2023) consider interactions among
modalities, constructing comprehensive causal graphs. Despite notable progress, these approaches
are implemented offline, necessitating extensive data collection and retraining for new faults. Wang
et al. (Wang et al., 2023a) enable online root cause identification by decoupling state-invariant and
state-dependent information to learn a causal graph for root cause identification. However, their
focus remains on single-modal data. Recently, large language model (LLM)-based approaches have
emerged as a new research direction for learning causal relations in root cause identification, owing
to the success of LLMs in tackling complex tasks (Chen et al., 2024; Shan et al., 2024; Goel et al.,
2024; Zhou et al., 2024; Roy et al., 2024; Wang et al., 2024). For example, Chen et al. (Chen et al.,
2024) introduce RCACopilot, an on-call system powered by LLMs to automate RCA for cloud
incidents. Similarly, Shan et al. (Shan et al., 2024) propose an approach that first identifies log
messages indicating configuration-related errors, then localizes suspected root-cause configuration
properties based on these log messages and LLM-generated configuration settings. While LLMs
could effectively learn temporal dependencies within the metric data of individual system entities, they
often struggle to capture interdependencies—such as causal relationships between different system
entities—leading to higher computational costs. Unlike existing RCA methods, this paper addresses
the online multi-modal RCA problem by uniquely modeling long-term temporal dependencies while
simultaneously capturing the cross-modal correlation of multiple factors.

3 METHODOLOGY

In this section, we first present the problem statement and then introduce OCEAN, an online causal
structural learning method designed to identify root causes using multi-modal data. We propose three
modules to tackle the challenges outlined in the introduction: long-term temporal causal structure
learning, multi-factor attention mechanism, and contrastive multi-modal learning. Subsequently, we
identify potential root causes through the network propagation-based root cause identification module
and establish stopping criteria. The overview of the proposed OCEAN is provided in Figure 1.

3.1 PROBLEM STATEMENT

Let XM = {X0
M ,X1

M , ...,XT
M} represent T + 1 multi-variate time series data for entity metrics.

Here, X0
M is the historical metric data, and Xi

M , i ∈ [1, . . . , T ], is the ith batch for the metric
data, with T1 denoting the length of historical metric data, T2 the length of each batch, n − 1
the number of system entities, and dM the number of different system metric features. Similarly,
XL = {X0

L,X
1
L, ...,X

T
L } represents T +1 multi-variate time series data for system logs. Assuming

preprocessing has converted the logs into multi-variate time series data (details of converting log data
into time series can be found in Appendix C), X0

L is the historical log data, and Xi
L, i ∈ [1, . . . , T ],

is the ith batch for system logs, where dL is the number of different log attributes/features. Notice

3
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Figure 1: The overview of the proposed framework OCEAN with four main modules: long-term
temporal causal structure learning, representation learning with multi-factor attention, graph fusion
with contrastive multi-modal learning, and network propagation-based root cause localization.

that in the offline setting, only the historical data is available for model training, but in the online
setting, the batch data is also available for the root cause analysis. The system KPI is denoted as
y = {y0,y1, ...,yT }, with y0 and yi, i ∈ [1, . . . , T ], representing KPI data with lengths T1 and T2,
respectively. Our goal is to construct a causal graph G = {V,A} to identify the top k system entities
most relevant to y. Here, V represents the set of vertices, A ∈ Rn×n denotes the adjacency matrix,
and n is the total number of entities plus the system KPI. To simplify, we replicate the KPI dM times
to match the number of metrics. This allows us to concatenate the system metric time-series data and
KPI, yielding X̂0

M ∈ Rn×dM×T1 and X̂i
M ∈ Rn×dM×T2 for metric data. Similarly, we combine the

system log time-series data and KPI, denoted as X̂0
L ∈ Rn×dL×T1 and X̂i

L ∈ Rn×dL×T2 . Online
RCA is a crucial step in system diagnosis post online fault/failure detection, which falls beyond
the scope of this work. Here, we employ the Multivariate Singular Spectrum Analysis (MSSA)
model (Alanqary et al., 2021), a state-of-the-art method for online failure detection, to identify the
triggers for the root cause analysis process. We summarize the notation in Table 1.

3.2 LONG-TERM TEMPORAL CAUSAL STRUCTURE LEARNING

To capture temporal causal relations among various system entities and KPIs, the Vector Autoregres-
sion Model (VAR) (Stock & Watson, 2001) is often employed (Wang et al., 2023a;b; Zheng et al.,
2024a) due to its effectiveness in capturing dynamic interactions among variables in time series data.
Specifically, given the two-way matrix XM,i ∈ Rn×T1 for the ith system metric, our objective is to
minimize a VAR-based loss function as follows:

X̂t
M,i = W 1Xt−1

M,i +W 2Xt−2
M,i + · · ·+W t−1X1

M,i + ϵ

Lvar =

dM∑
i=1

||Xt
M,i − F (X̂t

M,i,A, θ)||2 (1)

where X̂t
M,i represents the prediction for the ith system metric, W i ∈ Rn×n denotes the weight

matrix, ϵ ∈ Rn signifies the error variable, F (·) represents the graph neural network (Kipf & Welling,
2017) parameterized by θ, A is the learnable causal graph capturing the relationships among node
entities and KPIs, and Xt

M,i denotes the future value.

This model is also known as the tth order VAR-based model, where t defines the range of temporal
dependencies it can capture. However, a recent study (Lin et al., 2020) indicates that as the time lag
t increases, the autoregressive model becomes computationally expensive, making it challenging
to capture long-term temporal dependencies in online settings. Similarly, many existing temporal
modeling techniques, such as Recurrent Neural Networks (RNNs) and Transformers (Vaswani et al.,
2017), also incur high computational costs, limiting their applicability for online root cause analysis
(see Appendix A for detailed discussion).

To address this issue, we propose a module based on dilated convolution and graph neural networks
to efficiently capture the long-term temporal dependencies and causal relations among system entities

4
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and KPIs. Different from the VAR-based methods (Wang et al., 2023a;b; Zheng et al., 2024a) that
take as input the 2-way matrix, we propose to capture the long-term temporal dependency via 3-way
tensors. Specifically, given four 3-way tensors (i.e., historical metric data X̂0

M , historical log data
X̂0

L, the current batch of metric data X̂i
M and log data X̂i

L), we follow the idea of LSTM (Hochreiter
& Schmidhuber, 1997) and Gated Temporal Convolutional Network (TCN) (Wu et al., 2019) to model
the temporal dependency for the historical and current batches of time series for two modalities as
follows:

g(x,f) = x ∗ f =

K−1∑
τ=0

f(τ) · x(t− d× τ) (2)

H0
v = tanh(g(X̂0

v ,f1))⊙ σ1(g(X̂
0
v ,f2)) (3)

Hi
v = tanh(g(X̂i

v,f3))⊙ σ1(g(X̂
i
v,f4)) (4)

Ô0
v = MFL(Ĥ0

v ), Ô
i
v = MFL(Ĥi

v) (5)

where f ∈ RK represents the 1-D kernel, d is the dilation factor controlling the skipping distance,
⊙ denotes the Hadamard product, v ∈ {M,L}, σ(x) = 1

(1+e−x) is the sigmoid function, and

tanh(x) = ex−e−x

ex+e−x is the tanh function. f1, f2, f3, and f4 are 1-D kernels of the dilated convolution
networks. H0

v ∈ Rn×dv×T3 and Hi
v ∈ Rn×dv×T4 represent the historical time series and the ith batch

of streaming time series for the modality v, respectively. T3 and T4 are the output dimensions of the
dilated convolution networks. Additionally, MFL(·) denotes the representation learning with multi-
factor attention module, aiming to encode the correlation of different metrics into the representations
Ô0

v ∈ Rn×dv·T3 and Ôi
v ∈ Rn×dv·T4 , which will be introduced in the next subsection. By stacking

dilated causal convolution layers, the model’s receptive field grows exponentially, allowing for longer
time series with fewer layers and thereby reducing computation costs. We validate the efficiency
of dilated convolutional operations in our experiments (see Subsection 4.2) by comparing their
computational costs with those of VAR-based methods.

To learn the causal relationship among system entities, we aggregate information from neighbors
via a graph neural network (i.e., GraphSAGE (Hamilton et al., 2017)) and mimic fault propagation
through a message-passing mechanism:

X̃0
v = σ2(Aold(Ô

0
v ⊕N0

v )W
1),where N0

v [j] =
1

|Nj |
∑
k∈Nj

Ô0
v[k] (6)

X̃i
v = σ2((Aold +∆Av)(Ô

i
v ⊕N i

v)W
2),where N i

v[j] =
1

|Nj |
∑
k∈Nj

Ôi
v[k] (7)

where W 1 and W 2 are weight matrices, ⊕ denotes concatenation, Nj represents node entity j’s
neighbors, N i

v aggregates neighbor information, Aold is the previous batch’s learned causal graph,
and ∆Av ∈ Rn×n is a learnable adjacency matrix. Unlike Aold, ∆Av captures unique patterns in
the current streaming data batch. X̃0

v (X̃i
v) predicts future values based on previous lagged data X̂0

v

(X̂i
v), leveraging temporal dependencies captured by dilated convolutional neural networks. Finally,

we minimize forecasting errors as follows:

Ltemporal =
1

n(dL + dM )

∑
v

n∑
j=1

dv∑
k=1

[||X̂0
v [j, k]− X̃0

v [j, k]||2 + ||X̂i
v[j, k]− X̃i

v[j, k]||2] (8)

Notice that leveraging Eq. 8 and the message passing mechanism of GNNs in Eq. 6 allows the model
to encode causality in the learned adjacency matrix Ã = Aold + ∆Av, such as X → y, where
X is a potential root cause and y is a Key Performance Indicator (KPI). Additionally, we add the
trace exponential function h(Ã) = (tr(eÃ⊙Ã)− n) = 0 as a regularization term to ensure that Ã is
acyclic (Pamfil et al., 2020), where ⊙ denotes the Hadamard product of two matrices.

3.3 REPRESENTATION LEARNING WITH MULTI-FACTOR ATTENTION

In microservice systems, each system entity has multiple entity metrics and various log at-
tributes/indicators, including CPU usage, memory usage, log frequency, log golden signal, etc.

5
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Existing RCA methods analyze abnormal patterns from each factor (i.e., metric or log indicator)
individually, neglecting potential relationships among them. However, the importance of factors
varies depending on the abnormal patterns. Hence, reassessing the contribution of each factor to
causal structure learning is crucial. To bridge this gap, we propose to explore the correlation of
different factors from two modalities and then assess the contribution of each factor to causal structure
learning with the attention mechanism (Lu et al., 2016; Vaswani et al., 2017). Given two represen-
tations H0

L and H0
M in Eq. 3, we compute the multi-factor similarity matrix C0

j ∈ RdM×dL for
historical representation of the jth system entity to capture the correlation of different modalities and
the relationship among multiple metrics and log indicators as follows:

C0
j = tanh (H0

M [j]W 3(H0
L[j])

T ) (9)

where W 3 ∈ RT3×T3 is a weight matrix and H0
v [j] denotes the historical representation of the

jth system entity for modality v ∈ {M,L}. Starting here, we will skip equations related to the
ith batch of streaming data for brevity, unless their computation differs from historical data. This
matrix measures the similarities between modalities and among multiple factors. By leveraging this
similarity matrix, we aim to encode information from both modalities in the hidden representation
H0

v and assess the importance of each factor across both modalities, formulated as:

Z0
L[j] = tanh (H0

L[j]W
4 +H0

M [j]C0
jW

5)

Z0
M [j] = tanh (H0

M [j]W 5 +H0
L[j](C

0
j )

TW 4)

a0
L[j] = softmax(w6Z0

L[j]), a0
M [j] = softmax(w7Z0

M [j]) (10)

where W 4 ∈ RT3×T3 and W 5 ∈ RT3×T3 are two weight matrices and w6 ∈ RT4 and w7 ∈ RT4 are
two weight vectors. Notice that a0

L[j] and a0
M [j] measure the importance of each factor by encoding

information from both modalities, capturing rich relationships for multi-modal and multi-dimensional
data. Using these attention vectors, we encode all information learned from multiple factors of two
modalities into the weighted representation Ĥ0

v ∈ Rn×T3 by:

Ĥ0
v [j] =

dv∑
k=1

a0
v[i, k] ·H0

v [j, k] (11)

After encoding the relationship among different factors and two modalities into Ĥ0
v and Ĥi

v , we aim
to recover the factors of two modalities by:

O0
v = MLP0(Ĥ0

v ),O
i
v = MLP1(Ĥi

v) (12)

where MLP0 and MLP1 are two multi-layer perceptrons (MLP) to recover the metrics, O0
v ∈

Rn×dv×T3 and Oi
v ∈ Rn×dv×T4 . Here, we reshape O0

v and Oi
v, so that O0

v ∈ Rn×dv·T3 and
Oi

v ∈ Rn×dv·T4 . Overall, Eqs. 9, 10, 11 and 12 are combined to derive MFL(·) in Eq. 5. After we
assess the contribution of each factor to the causal structure learning, we use av[j, k] to reweigh the
importance of different factors in the future value prediction task in Eq. 8 and further encourage that
the representations Ĥ0

v and Ĥi
v should contain more information for the factor with a larger weight

av[j, k]. Therefore, Eq. 8 can be updated as follows:

Ltemporal =
1

n(dL + dM )

∑
v

n∑
j=1

dv∑
k=1

[a0
v[j, k]||X̂0

v [j, k]− X̃0
v [j, k]||2

+ai
v[j, k]||X̂i

v[j, k]− X̃i
v[j, k]||2] (13)

3.4 GRAPH FUSION WITH CONTRASTIVE MULTI-MODAL LEARNING

To tackle the challenges of multi-modal learning (as discussed in challenge C3 in Section 1), we
propose to maximize the relatedness between two modalities via contrastive mutual information
maximization. Given the representations of historical data Ĥ0

v and streaming data Ĥi
v extracted

from both metric and log data, we maximize the mutual information between these two modalities:

LMI = Iϕ(Ĥ0
M , Ĥ0

L) + Iϕ(Ĥi
M , Ĥi

L) (14)
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where Iϕ is the mutual information parameterized by a neural network ϕ. Following InfoNCE style
contrastive loss (Oord et al., 2018), we approximate the mutual information with its lower bound as
follows:

Iϕ(Ĥ0
M , Ĥ0

L) :=
1

n

n∑
j=1

log
sim(ϕ(Ĥ0

M [j]), ϕ(Ĥ0
L[j]))∑

k sim(ϕ(Ĥ0
M [j]), ϕ(Ĥ0

L[k]))
(15)

where sim(a, b) = exp( abT

|a||b| ) is the exponential of cosine similarity measurement between two entity
representations a and b.

To generate the causal graph for the current batch of data, simple addition may not work because it
may result in dense and cyclical graphs. This issue might even exacerbate in the low-quality modality
scenario, as one modality might convey more important information than others. The low-quality
modality usually obscures the crucial patterns for causal graph learning if both modalities are treated
with equal importance. To address this issue, we propose to measure the importance of two modalities
with the correlation of multiple metrics captured in Eq. 9. Based on the similarity map for the current
batch (i.e., Ci

j), we further measure the importance of each modality and fuse two causal graphs:

sM =

∑n
j=1

∑dM

l=1 exp(
∑dL

k=1 C
i
j [l, k])∑n

j=1

∑dM

l=1 exp(
∑dL

k=1 C
i
j [l, k]) +

∑n
j=1

∑dL

k=1 exp(
∑dM

l=1 C
i
j [l, k])

(16)

A = (1− sM ) · (Aold +∆AL) + sM · (Aold +∆AM ) (17)
Optimization. The final objective function is written as:

Lsparse = ||∆AL||1 + ||∆AM ||1
L = −LMI + λ1Ltemporal + λ2Lsparse + λ3h(A) (18)

where || · ||1 is the sparsity constraint imposed on the adjacency matrix and Lsparse aims to ensure
that the changes of the edges are expected to be sparse. The trace exponential function h(A) =
(tr(eA⊙A) − n) = 0 holds if and only if A is acyclic (Pamfil et al., 2020), where ⊙ denotes the
Hadamard product of two matrices. λ1, λ2 and λ3 are the positive constant hyper-parameters.

3.5 NETWORK PROPAGATION-BASED ROOT CAUSE IDENTIFICATION

The propagation of malfunction effects from the root cause to adjacent entities implies that the
immediate neighbors of system KPIs may not necessarily be the root causes themselves. To identify
the root cause, we initially derive the transition probability matrix based on the causal graph G and
then utilize a random walk with restart method (Tong et al., 2006) to simulate the spread patterns of
malfunctions as follows:

Pij =
βAj,i∑n
k=1 Ak,i

(19)

The transition probability matrix P is the normalized adjacency matrix signified by the coefficient
β ∈ [0, 1]. During the visiting exploration process, we may restart from the KPI node to revisit other
system entities with the probability c ∈ [0, 1]. The equation for the random walk with restart is
formulated by:

rt+1 = (1− c)Prt + cr0 (20)
where rt represents the jumping probability at the tth step, r0 denotes the initial starting probability,
and c ∈ [0, 1] stands for the restart probability. Upon convergence of the jumping probability rt, the
probability scores of the nodes are employed to rank the system entities and the top k entities are
selected as the most probable root causes for system failure.

Stopping Criterion. As the number of new data batches increases, the identified causal structure
and its associated root cause list may gradually converge. To prevent unnecessary consumption of
computing resources, we employ them as indicators for automatic termination of the online RCA
process. We use the rank-biased overlap metric (RBO) (Webber et al., 2010) to measure the similarity
between two root cause lists, effectively capturing the evolving trend of root cause rankings. Given
the rank lists from the previous and current batches, denoted as Rt−1 and Rt respectively, we quantify
the similarity between these lists as follows:

γ = RBO(Rt−1, Rt) (21)
where γ ∈ [0, 1]. A higher value of γ indicates a greater similarity between the two root cause lists.
The online RCA process is terminated when the similarity score s surpasses a predefined threshold.
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4 EXPERIMENTS

In this section, we evaluate the effectiveness of our proposed OCEAN by comparing it with state-of-
the-art root cause analysis techniques. Additionally, we conduct a case study and an ablation study to
further validate the assumptions outlined in the previous sections.

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate the performance of OCEAN using three public real-world datasets: (1)
Product Review* (Zheng et al., 2024b): A microservice system dedicated to online product reviews,
encompassing 234 pods deployed across 6 cloud servers. It recorded four system faults between May
2021 and December 2021. (2) Online Boutique† (Yu et al., 2023): A microservice system designed
for e-commerce, including five system faults. (3) Train Ticket (Yu et al., 2023): A microservice
system for railway ticketing services, also with five system faults. All three datasets contain two
modalities: system metrics and system logs.

Evaluation Metrics. We choose four widely-used metrics (Wang et al., 2023c; Meng et al., 2020):
(1) Precision@K (PR@K): Measures the accuracy of the top-K predicted root causes. (2) Mean
Average Precision@K (MAP@K): Evaluates the overall accuracy of the top-K predicted causes. (3)
Mean Reciprocal Rank (MRR): Assesses the ranking capability of the models. (4) Time: Measures
the training time (in seconds) for each batch of data. Details on the first three metrics are provided in
Appendix D and we provide the time complexity analysis in Appendix B.

Baselines. We compare OCEAN with seven causal discovery based RCA methods: (1) PC (Burr,
2003): A classic constraint-based algorithm that identifies the causal graph’s skeleton using an
independence test. (2) Dynotears (Pamfil et al., 2020): Constructs dynamic Bayesian networks
through vector autoregression models. (3) C-LSTM (Tank et al., 2022): Utilizes LSTM to model
temporal dependencies and capture nonlinear Granger causality. (4) GOLEM (Ng et al., 2020):
Relaxes the hard Directed Acyclic Graph (DAG) constraint in NOTEARS (Zheng et al., 2018) with a
scoring function. (5) REASON (Wang et al., 2023c): Learns both intra-level and inter-level causal
relationships in interdependent networks. (6) MULAN (Zheng et al., 2024a): A multi-modal method
that captures both modality-invariant and modality-specific representations. (7) CORAL (Wang
et al., 2023a): A VAR-based online RCA method that decouples state-invariant and state-dependent
information.

The first four baseline models were originally designed to learn causal structures solely from time
series data. As outlined in (Wang et al., 2023c;a), these causal discovery models can be extended
to identify the root cause nodes. In this process, we first apply causal discovery models to learn the
causal graphs, then utilize random walk with restarts (Wang et al., 2023a) on these graphs to identify
the top K nodes as root causes.

4.2 PERFORMANCE EVALUATION

Experimental Results. In this subsection, we present the performance evaluation results in Tables 2,
3, and 5 for various methods. Due to the page limit, we have moved the results for the Train Ticket
dataset (i.e., Table 5) to Appendix E.1. Notably, although many baseline methods (e.g., PC, C-
LSTM, REASON, Dynotears, GOLEM) are tailored for single-modal scenarios, we assess their
performance in both single-modal contexts (e.g., system metrics only or system logs only) and multi-
modal scenarios. System logs are considered additional system metrics, enabling these single-modal
methods to be evaluated in a multi-modal context. We derive an average ranking score from different
system metrics as the final result for all single-modal methods.

Our findings include: (1) Most baseline methods show improved performance when leveraging
multi-modal data across three datasets. (2) CORAL, as an online RCA method, surpasses all offline
methods across seven metrics. (3) OCEAN consistently outperforms all baselines across the datasets.
(4) Both CORAL and OCEAN demonstrate shorter training time compared to offline methods, with
OCEAN reducing its computational costs to 1/9 that of CORAL on the Product Review dataset.
This reduction is credited to the efficiency of dilated convolutional operations and the design of the

*https://lemma-rca.github.io/docs/data.html
†https://github.com/IntelligentDDS/Nezha
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Table 2: Results on Product Review dataset w.r.t different metrics.

Modality Model PR@1 PR@5 PR@10 MRR MAP@3 MAP@5 MAP@10 Time (s)

Metric Only

PC 0 0 0 0.034 0 0 0 225.19
Dynotears 0 0.25 0.50 0.092 0 0.05 0.175 390.37
C-LSTM 0.25 0.5 0.5 0.409 0.417 0.45 0.475 1482.01
GOLEM 0 0 0.25 0.043 0 0 0.025 308.25
REASON 0.25 1.0 1.0 0.5625 0.583 0.75 0.875 247.87
CORAL 0.5 1.0 1.0 0.75 0.833 0.9 0.95 146.46

Log Only

PC 0 0 0 0.043 0 0 0 93.98
Dynotears 0 0 0.25 0.058 0 0 0.075 142.26
C-LSTM 0 0 0.25 0.059 0 0 0.075 602.92
GOLEM 0 0 0.25 0.058 0 0 0.075 144.8
REASON 0 0 0.5 0.088 0 0 0.1 129.17
CORAL 0 0 0.5 0.118 0 0 0.2 50.29

Multi-Modality

PC 0 0 0.25 0.054 0 0 0.075 300.26
Dynotears 0 0.25 0.5 0.114 0 0.05 0.225 426.78
C-LSTM 0.25 0.5 0.5 0.341 0.25 0.35 0.425 1808.76
GOLEM 0 0 0.25 0.066 0 0 0.05 452.25
REASON 0.5 1.0 1.0 0.687 0.667 0.8 0.9 303.5
MULAN 0.75 1.0 1.0 0.833 0.833 0.9 0.95 255.74
CORAL 0.75 1.0 1.0 0.875 0.917 0.95 0.975 186.73
OCEAN 1.0 1.0 1.0 1.0 1.0 1.0 1.0 20.16

Table 3: Results on Online Boutique w.r.t different metrics.

Modality Model PR@1 PR@3 PR@5 MRR MAP@2 MAP@3 MAP@5 Time (s)

Metric Only

PC 0.2 0.4 0.6 0.39 0.3 0.333 0.4 5.25
Dynotears 0.2 0.4 0.4 0.344 0.2 0.267 0.32 14.56
C-LSTM 0 0.4 0.8 0.3 0.1 0.2 0.44 20.75
GOLEM 0 0.4 0.6 0.291 0.2 0.267 0.36 4.32
REASON 0.4 0.8 1.0 0.617 0.5 0.6 0.76 3.23
CORAL 0.2 1.0 1.0 0.6 0.6 0.733 0.84 2.99

Log Only

PC 0 0.4 0.6 0.257 0.1 0.2 0.32 3.88
Dynotears 0 0.2 0.6 0.207 0 0.067 0.24 10.23
C-LSTM 0 0.4 0.6 0.267 0.1 0.2 0.36 15.07
GOLEM 0 0.4 0.8 0.248 0 0.133 0.36 3.39
REASON 0.2 0.8 0.8 0.458 0.3 0.467 0.6 2.39
CORAL 0.2 0.6 1.0 0.457 0.3 0.4 0.6 2.04

Multi-Modality

PC 0.4 0.8 1.0 0.573 0.4 0.533 0.68 6.78
Dynotears 0.2 0.6 1.0 0.467 0.3 0.4 0.64 16.38
C-LSTM 0.2 0.4 1.0 0.45 0.3 0.333 0.6 22.66
GOLEM 0.2 0.6 1.0 0.467 0.3 0.4 0.64 5.68
REASON 0.4 1.0 1.0 0.667 0.6 0.733 0.84 4.51
MULAN 0.4 0.8 1.0 0.617 0.5 0.6 0.76 4.96
CORAL 0.4 1.0 1.0 0.7 0.7 0.8 0.88 3.63
OCEAN 0.6 1.0 1.0 0.8 0.8 0.867 0.92 1.84

multi-factor attention module. CORAL’s approach of individually learning and then fusing causal
graphs for each metric is computationally intensive in an online setting. Furthermore, OCEAN
shows a notable improvement in MRR on the Product Review dataset, outperforming CORAL by
12.5%. Additionally, OCEAN exceeds CORAL by 20% in PR@1 and 10% in MAP@2 on the Online
Boutique dataset, benefiting from the assessment of the importance of multiple factors and exploring
correlations among different modalities.

Ablation Study. In this subsection, we evaluate the effectiveness of individual components within
the objective function of OCEAN (Eq. 18). Specifically, we define OCEAN-F and OCEAN-M
as variants that lack the multi-factor attention learning module and the contrastive multi-modal
learning module, respectively, while OCEAN-S removes the sparse constraint. The results, shown in

Table 4: Ablation study on three datasets w.r.t MRR.

Model Product Review Online Boutique Train Ticket
OCEAN 1.0 0.8 0.381

OCEAN-F 0.75 0.8 0.331
OCEAN-M 0.875 0.7 0.320
OCEAN-S 0.833 0.7 0.345

9
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(a) Identification Time (b) ln(λ1) w.r.t. MRR (c) ln(λ2) w.r.t. MRR (d) ln(λ3) w.r.t. MRR

Figure 2: Figure (a) shows the identification time for four cases as well as the average identification
time. Figures (b), (c), and (d) are the parameter analysis on the Product Review dataset w.r.t MRR.

Table 4, indicate a significant performance degradation when any component is omitted. Specifically,
removing the multi-factor attention module results in 25% and 5% performance drop on the Product
Review dataset and Train Ticket dataset, respectively. Eliminating the contrastive multi-modal
learning module leads to 12.5% reduction on the Product Review dataset. These findings underscore
the importance of each component in maintaining OCEAN’s high performance. Additionally, as
detailed in Appendix E.2, replacing the dilated convolutional network with LSTM or Transformer
model resulted in performance decline, reinforcing the effectiveness of our design.

Case Study. In this subsection, we evaluate the promptness of two online RCA methods on the
Product Review dataset, CORAL and OCEAN, as shown in Figure 2 (a). Note that we also evaluate
the effectiveness of the long-term temporal causal structure learning module by varying the number
of dilated convolutional layers in OCEAN, specifically comparing configurations with one and two
layers. In Figure 2 (a), the y-axis represents the batch index at which an RCA method meets the
stopping criteria, and the real-time marker indicates the actual system failure time. A lower batch
index value signifies faster identification of the ground-truth root cause by the RCA method. Notably,
CORAL did not successfully rank the ground-truth root cause first in case 2, so we use the total
number of batches to represent its detection time for a fair comparison. Our observations reveal that
CORAL experiences about a 10-epoch delay relative to real-time in most cases, whereas OCEAN (2-
layer) achieves quicker detection than OCEAN (1-layer). This improvement confirms our hypothesis
that adding more dilated convolutional layers enhances the model’s ability to capture longer temporal
dependencies, as discussed in Subsection 3.2.

Parameter Analysis. In this subsection, we present detailed parameter sensitivity analysis conducted
on the Product Review dataset, with additional analyses for other datasets available in Appendix E.3.
Specifically, we explore the impact of three parameters, λ1, λ2, and λ3, on the overall objective
functions as defined in Eq. 18. The experimental results are displayed in Figures 2 (b), (c), and (d),
showing the Mean Reciprocal Rank (MRR) on the Product Review dataset. On these figures, the
x-axis represents ln(λi) for i ∈ [1, 2, 3], and the y-axis shows the MRR score. Our analysis reveals
that a higher λ1 (e.g., ln(λ1) = 4.6) significantly enhances performance, underscoring the vital role of
the long-term temporal causal structure learning module in capturing temporal dependencies among
system entities. Conversely, λ2 and λ3 exhibit optimal performance at relatively lower values (e.g.,
ln(λ2) = −0.7 and ln(λ3) = 0), with performance declining noticeably at higher levels. However,
further reducing λ2 and λ3 also leads to diminished performance, which verifies the important role of
sparse regularization and the acyclic constraint of the causal graph.

5 CONCLUSION

In this paper, we investigate the challenging problem of online multi-modal root cause localization in
microservice systems. We introduce OCEAN, a novel online causal structure learning framework
designed to effectively identify root causes using diverse data sources. OCEAN utilizes a dilated
convolutional neural network to capture long-term temporal dependencies and employs graph neural
networks to establish causal relationships among system entities and key performance indicators.
Additionally, we develop a multi-factor attention mechanism to evaluate and refine the contributions
of various factors to the causal graph. Furthermore, OCEAN incorporates a contrastive mutual
information maximization-based graph fusion module to enhance interactions between different
modalities and optimize their mutual information. The effectiveness of OCEAN is validated through
extensive experiments on three real-world datasets, demonstrating its robustness and efficiency.
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A MORE RATIONAL BEHIND THE MODEL DESIGN

The main issue of Recurrent Neural Networks (RNNs) and Transformers is their high computational
cost, which makes them impractical for online root cause analysis. We chose Dilated Convolutional
Neural Networks (DCNNs) for their efficiency and ability to capture long-range dependencies, both
of which are essential in online settings where computational efficiency is critical. Unlike RNNs and
Transformers, which could capture temporal dependencies but often come with high computational
overhead, DCNNs are parallelizable and offer a lower time complexity of O(NTkC), where T is
the sequence length, L is the number of layers, C is the number of filters, and k is the filter size.
In contrast, the complexity of the Transformer is O(LT 2d), where T is the sequence length, L is
the number of layers, and d is the hidden feature dimensionality. As a result, Transformers are
computationally more expensive than dilated convolutional neural networks. We further demonstrate
the efficiency and effectiveness of our method compared to LSTM and Transformers in the ablation
study presented in Table 6.

The rational behind the multi-factor attention mechanism is to capture complex relationships among
various factors (e.g., CPU usage and memory usage metrics in a microservice system) across two
modalities. A common limitation of existing methods is their focus on correlations between modalities,
often overlooking the importance of individual factors within each modality. Our mechanism
addresses this by reassessing the significance of each factor, enhancing causal structure learning. This
enables our model to dynamically adjust to the changing significance of factors, which is crucial for
accurate root cause analysis.

We integrate contrastive learning into our model because of its proven effectiveness in multi-modal
tasks. It extracts shared information across different modalities, enhancing robustness and addressing
challenges posed by low-quality data. By assigning weights to each modality based on its importance,
contrastive learning ensures that critical patterns are not obscured by noise. This approach helps
maintain the quality of causal graph learning, even when dealing with data of varying quality.

B TIME COMPLEXITY

The time complexity of dilated convolution based causal structure learning is O(NTkC). Here, T
is the sequence length, L is the number of layers, C is the number of filters, and k is the filter size.
The time complexity of multi-factor attention module is O(dMdLd), where d is the hidden feature
dimensionality, and dM and dL are the number of factors in two modalities. The time complexity of
contrastive learning module is O(n2d), where n is the number of system entities.

C LOG FEATURE/INDICATOR EXTRACTION

In this subsection, we provide the details of converting the raw data into the time series, though this
is not within the scope of this work. Specifically, we first use the Drain parser He et al. (2017) to
transform the unstructured log event into structured log templates for each entity. Then, we partition
the log data with fixed time windows, such as 5 minutes, and set time steps at 10 seconds. Within
these intervals, we count the occurrence of each log template to derive the log frequency feature. The
extraction of the log frequency feature is inspired by the insight that the recurrence of a log event
template often correlates with its significance. For instance, when a microservice system experiences
Distributed Denial of Service (DDoS) attacks, the system will produce an unusual volume of system
logs, indicating abnormal activity. Thus, the log frequency provides the information to identify
unusual patterns indicative of potential failure scenarios. In addition to log frequency, we also extract
a second type of log feature known as the ‘golden signal.’ Notice that different from log frequency,
golden signal heavily relies on domain knowledge and it only focuses on the abnormal system logs.
More specifically, we are only interested in some keywords, including ‘error,’ ‘exception,’ ‘critical,’
‘fatal’, and various others indicative of system anomalies. By identifying these keywords within log
event templates, we can discern abnormal occurrences for system failure localization. Similar to
the frequency-based feature, we compute the number of abnormal log events to derive the golden
signal-based feature.
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D EVALUATION METRICS

We evaluate the model performance with the following four widely-used metrics Meng et al. (2020):

(1). Precision@K (PR@K): It measures the probability that the top K predicted root causes are
relevant by:

PR@K =
1

|A|
∑
a∈A

∑
i<k Ra(i) ∈ Va

min(K, |va|)
(22)

where A is the set of system faults, a is one fault in A, Va is the real root causes of a, Ra is the
predicted root causes of a, and i is the i-th predicted cause of Ra.

(2). Mean Average Precision@K (MAP@K): It evaluates the top K predicted causes from the
overall perspective formulated as:

MAP@K =
1

K|A|
∑
a∈A

∑
i≤j≤K

PR@j (23)

where a higher value indicates a better performance.

(3). Mean Reciprocal Rank (MRR): It assesses the ranking capability of models, defined as:

PR@K =
1

|A|
∑
a∈A

1

rankRa

(24)

where rankRa
is the rank number of the first correctly predicted root cause for system fault a.

(4). Time: Measures the training time (in seconds) for each batch of data.

E ADDITIONAL EXPERIMENT

E.1 EXPERIMENTAL RESULTS

We report the experimental results on Train Ticket dataset in Table 5.

Table 5: Results on Train Ticket w.r.t different metrics.

Modality Model PR@1 PR@5 PR@10 MRR MAP@3 MAP@5 MAP@10 Time (s)

Metric Only

PC 0 0 0.2 0.067 0 0 0.06 9.65
Dynotears 0 0 0 0.047 0 0 0 21.3
C-LSTM 0 0.2 0.2 0.097 0 0.08 0.14 30.63
GOLEM 0 0.2 0.2 0.098 0 0.08 0.14 9.56
REASON 0.2 0.4 0.6 0.323 0.2 0.36 0.48 9.03
CORAL 0 0.4 1.0 0.184 0 0.16 0.5 5.72

Log Only

PC 0 0.2 0.4 0.166 0.133 0.16 0.26 6.34
Dynotears 0 0 0.2 0.072 0 0 0.02 17.26
C-LSTM 0 0 0.2 0.072 0 0 0.02 21.40
GOLEM 0 0.2 0.6 0.125 0 0.08 0.24 7.54
REASON 0 0.2 0.6 0.126 0 0.08 0.28 7.58
CORAL 0 0.2 0.8 0.138 0 0.08 0.32 3.35

Multi-Modality

PC 0 0 0.2 0.083 0 0 0.1 12.83
Dynotears 0 0.4 0.6 0.141 0 0.16 0.32 27.82
C-LSTM 0.2 0.4 0.6 0.294 0.2 0.28 0.36 36.76
GOLEM 0 0.4 0.6 0.144 0 0.16 0.3 12.16
REASON 0.2 0.4 0.6 0.300 0.2 0.28 0.42 12.81
MULAN 0.2 0.4 1.0 0.317 0.2 0.28 0.46 11.42
CORAL 0.2 0.4 1.0 0.334 0.2 0.28 0.56 7.26
OCEAN 0.2 0.4 1.0 0.381 0.333 0.36 0.58 3.22

E.2 ADDITIONAL ABLATION STUDY

We conduct additional ablation study by replacing the dilated convolutional neural network with
LSTM or Transformer model on the Product Review and Train Ticket datasets in Table 6. The results
showed a performance decline, demonstrating the effectiveness of our design.
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Table 6: Additional Ablation Study

Product Review Dataset PR@1 PR@5 PR@10 MRR MAP@3 MAP@5 MAP@10 Time (s)
OCEAN 1 1 1 1 1 1 1 20.16

OCEAN-LSTM 0.25 1 1 0.542 0.583 0.75 0.875 546.37
OCEAN-Transformer 0.5 1 1 0.75 0.833 0.9 0.95 658.72
Train Ticket Dataset PR@1 PR@5 PR@10 MRR MAP@3 MAP@5 MAP@10 Time (s)

OCEAN 0.2 0.4 1.0 0.381 0.333 0.36 0.58 3.22
OCEAN-LSTM 0.2 0.6 0.8 0.342 0.2 0.36 0.54 12.6

OCEAN-Transformer 0.2 0.2 1 0.314 0.2 0.2 0.5 18.9

(a) ln(λ1) w.r.t. MRR (b) ln(λ2) w.r.t. MRR (c) ln(λ3) w.r.t. MRR

Figure 3: Parameter analysis on the Online Boutique dataset w.r.t MRR.

(a) ln(λ1) w.r.t. MRR (b) ln(λ2) w.r.t. MRR (c) ln(λ3) w.r.t. MRR

Figure 4: Parameter analysis on the Train Ticket dataset w.r.t MRR.
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Table 7: Experimental results with more modality

Product Review Dataset PR@1 PR@5 PR@10 MRR MAP@3 MAP@5 MAP@10 Time (s)
OCEAN 1 1 1 1 1 1 1 20.1

OCEAN + trace 1 1 1 1 1 1 1 26.3
Train Ticket PR@1 PR@5 PR@10 MRR MAP@3 MAP@5 MAP@10 Time (s)

OCEAN 0.2 0.4 1 0.38 0.33 0.36 0.58 3.2
OCEAN + trace 0.2 0.6 1 0.39 0.33 0.44 0.62 3.8

Table 8: Comparison with Physical Graph

Graphs SHD AUROC
Causal graph Learned From Metric Data 0.314 0.865

Causal graph Learned From Log Data 0.593 0.663
Fused Causal Graph 0.298 0.881

E.3 ADDITIONAL PARAMETER ANALYSIS

In this subsection, we conduct a comprehensive parameter sensitivity analysis on the Online Boutique
and Train Ticket datasets. Similarly, we assess the impact of three parameters on the overall objective
functions (Eq. 18): λ1, λ2, and λ3. Figures 3 and Figures 4 show the experimental results in terms
of Mean Reciprocal Rank (MRR) on the Online Boutique and Train Ticket datasets. The x-axis
represents ln(λi), where i ∈ [1, 2, 3], and the y-axis indicates the MRR score. We consistently
observe that OCEAN favors a larger value of λ1 on these two datasets as the temporal causal structure
learning module is crucial in capturing both temporal and causal dependency. Different from the
parameter analysis on the Product Review dataset, we find that λ2 and λ3 are not very sensitive on the
Online Boutique and Train Ticket datasets. We conjecture that this can be attributed to the small size
of these two datasets and both sparse regularization and acyclic constraint contribute less to securing
high performance on these two datasets than the Product Review dataset.

E.4 EXPERIMENTAL RESULTS WITH MORE MODALITY

OCEAN can naturally extend to include additional modalities, such as traces. These types of data can
enhance the model’s ability to capture complex interactions and dependencies within the system. We
conducted additional experiments by incorporating traces into the AIOps and Train Ticket datasets.
The results demonstrated improved performance, as the inclusion of traces provided valuable context
and enriched the causal structure learning. This additional information allows OCEAN to more
accurately identify root causes and improve the precision of its analysis.

E.5 COMPARISON WITH PHYSICAL GRAPH

Here, we evaluate the quality of the learned causal graph by comparing it with the physical dependency
graph with two settings. In the first setting, we compared the causal graph learned by each modality
(corresponding to the inter-modal graphs) and in the second setting, we compared the fused causal
graph from two modality (corresponding to the intra-model graph). Following Dynotear Pamfil et al.
(2020), we use AUROC and SHD as two metrics to quantify the difference between learned causal
graphs and the physical dependency graph.

F REPRODUCIBILITY

All experiments are conducted on a desktop running Ubuntu 18.04.5 with an Intel(R) Xeon(R) Silver
4110 CPU @2.10GHz and one 11GB GTX2080 GPU. In the experiment, we set the size of historical
metric and log data to 8-hour intervals and each batch is set to be a 10-minute interval. We use the
Adam as the optimizer and we train the model for 100 iterations at each batch. We use two layers
of dilated convolutional operations in the experiment. As for the stopping criteria, we terminate the
identification process if the similarity γ between the current batch and the previous batch is greater
than 0.9 for three consecutive times.
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