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Abstract

We study the fundamental problem of ReLU regression, where the goal is to fit
Rectified Linear Units (ReLUs) to data. This supervised learning task is efficiently
solvable in the realizable setting, but is known to be computationally hard with
adversarial label noise. In this work, we focus on ReLU regression in the Massart
noise model, a natural and well-studied semi-random noise model. In this model,
the label of every point is generated according to a function in the class, but an
adversary is allowed to change this value arbitrarily with some probability, which is
at most ⌘ < 1/2. We develop an efficient algorithm that achieves exact parameter
recovery in this model under mild anti-concentration assumptions on the underlying
distribution. Such assumptions are necessary for exact recovery to be information-
theoretically possible. We demonstrate that our algorithm significantly outperforms
naive applications of `1 and `2 regression on both synthetic and real data.

1 Introduction

Learning in the presence of outliers is a key challenge in machine learning, with several data analysis
applications, including in ML security (4; 7; 46; 14) and in exploratory data analysis of real datasets
with natural outliers, e.g., in biology (43; 41; 36). The goal is to design computationally efficient
learners that can tolerate a constant fraction of outliers, independent of the dimensionality of the
data. Early work in robust statistics (28; 30) gave sample-efficient robust estimators for various
basic tasks, alas with exponential runtime. A recent line of work in computer science, starting
with (13; 35), developed the first computationally efficient robust learning algorithms for various
high-dimensional tasks. Since these early works, there has been significant progress in algorithmic
robust high-dimensional statistics by several communities, see (16) for a recent survey.

In this work, we study the problem of learning Rectified Linear Units (ReLUs) in the presence of
label noise. The ReLU function ReLUw : Rd

! R, parameterized by a vector w 2 Rd, is defined
as ReLUw(x) := ReLU(w · x) = max {0,w · x}. ReLU regression – the task of fitting ReLUs
to a set of labeled examples – is a fundamental task and an important primitive in the theory of
deep learning. In recent years, ReLU regression has been extensively studied in theoretical machine
learning both from the perspective of designing efficient algorithms and from the perspective of
computational hardness, see, e.g., (26; 45; 37; 48; 27; 49; 11; 15; 25; 18). The computational
difficulty of this problem crucially depends on the assumptions about the input data. In the realizable
case, i.e., when the labels are consistent with the target function, the problem is efficiently solvable,
see, e.g., (45). On the other hand, in the presence of even a small constant fraction of adversarially
labeled data, computational hardness results are known even for approximate recovery (29; 37) and
under well-behaved distributions (27; 15; 25; 18). See Section 1.3 for a detailed summary of related
work.
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A challenging corruption model is the adversarial label noise model, in which an adversary is allowed
to corrupt an arbitrary ⌘ < 1/2 fraction of the labels. The aforementioned hardness results rule out
the existence of efficient algorithms for learning ReLUs with optimal error guarantees in this model,
even when the underlying distribution on examples is Gaussian. Moreover, when no assumptions
are made on the underlying data distribution, no fully polynomial time algorithm with non-trivial
guarantee is possible. In fact, for the distribution-independent setting, even for the simpler case of
learning linear functions, there are strong computational hardness results for any constant ⌘ (33; 29).
These negative results motivate the following natural question:

Are there realistic label noise models in which efficient learning is possible
without strong distributional assumptions?

Here we focus on ReLU regression in the presence of Massart (or bounded) noise (38), and provide
an efficient learning algorithm with minimal distributional assumptions. In the process, we also
provide an efficient noise-tolerant algorithm for the simpler case of linear regression.

The Massart model (38) is a classical semi-random noise model originally defined in the context
of binary classification. In this model, an adversary has control over a random ⌘ < 1/2 fraction
of the labels. Recent work (12) gave the first efficient learning algorithm for linear separators with
non-trivial error gurrantees in the Massart model without distributional assumptions. In this work,
we ask to what extent such algorithmic results are possible for learning real-valued functions. To
state our contributions, we formally define the following natural generalization of the model for
real-valued functions.
Definition 1.1 (Learning Real-valued Functions with Massart Noise). Let F be a concept class of
real-valued functions over Rd and f : Rd

! R be an unknown function in F . For a given parameter
⌘ < 1/2, the algorithm specifies m 2 Z+ and obtains m samples (xi, yi)mi=1, such that:

(a) every xi is drawn i.i.d. from a fixed distribution Dx, and

(b) each yi is equal to f(xi) with probability 1� ⌘ and takes an arbitrary value with probability
⌘, chosen by an adversary after observing the samples drawn and the values that can be
corrupted.

In the context of binary classification, the above model has been extensively studied in the theoretical
ML community for the class of linear separators (2; 3; 51; 50; 20; 12; 9). Even though the noise model
might appear innocuous at first sight, the ability of the Massart adversary to choose whether to perturb
a given label and, if so, with what probability (which is unknown to the learner), makes the design of
efficient algorithms in this model challenging. Specifically, for distribution-independent PAC learning
of linear separators, even approximate learning in this model is computationally hard (17).

Extending this model to real-valued functions, we study regression under Massart noise for the
realizable setting; that is, when the uncorrupted data exhibit clean functional dependencies, i.e.,
yi = ReLU(w⇤

· xi). The realizable setting is both of theoretical and practical interest. Prior
work (45; 23; 31; 49) developed algorithms for learning ReLUs in this setting (without Massart noise),
providing theoretical insights on the success of deep learning architectures. On the practical side, there
are many applications in which we observe clean functional dependencies on the uncorrupted data.
For instance, clean measurements are prevalent in many signal processing applications, including
medical imaging, and are at the heart of the widely popular field of compressive sensing (8).

1.1 Main Results

To build up to the more challenging case of ReLUs, we start with the simpler case of linear functions,
which is in and of itself one of the most well-studied statistical tasks, with numerous applications in
machine learning (44), as well as in other disciplines, including economics (21) and biology (39).

In our Massart setting, the goal is to identify a linear relation y = w⇤
· x that the clean samples (x, y)

(inliers) satisfy. We show that, under the minimal (necessary) assumption that the distribution is not
fully concentrated on any subspace, the problem is efficiently identifiable.
Theorem 1.2 (Exact Recovery of Linear Functions). Let Dx be a distribution on Rd that has zero
measure on any linear subspace and let ⌘ < 1/2 be the upper bound on the Massart noise rate.
Denote w⇤ the vector representing the true linear function. There is an algorithm that draws
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Õ( d3

(1�2⌘)2 ) samples, runs in poly(d, b, (1 � 2⌘)�1) time, where b is an upper bound on the bit
complexity of the samples and parameters, and outputs w⇤ with probability at least 9/10.

We provide a more general algorithmic result that relaxes the density assumption on Dx in Theo-
rem C.3 of Appendix C, so that the only assumption needed is that the support of Dx spans Rd. It is
important to note that if the distribution was concentrated entirely on a linear subspace, it would be
information-theoretically impossible to determine the orthogonal component of w⇤ on that subspace.
That is, our anti-concentration assumption on the distribution is necessary for identifiability to be
possible. Even when this assumption is violated and the problem is non-identifiable, we provide a
(weaker) PAC learning guarantee for the linear case in Theorem D.1 of Appendix D.

Our main algorithmic result is for the problem of ReLU regression, where the inliers satisfy y =
ReLU(w⇤

· x) and an ⌘ < 1/2 fraction of the labels are corrupted by Massart noise. Even in this
more challenging case, we show it is possible to efficiently identify the true parameters w⇤, as long
as every homogeneous halfspace contains a non-negligible fraction of the sample points.

Theorem 1.3 (Exact Recovery of ReLUs). Let Dx be a distribution on Rd that has zero measure
on any linear subspace and such that Prx⇠Dx [w · x � 0] � � for any w 2 Rd. Let ⌘ < 1/2 be
the upper bound on the Massart noise rate. Denote w⇤ the parameter vector of the target ReLU.
There is an algorithm that draws Õ( d3

�2(1�2⌘)2 ) samples, runs in time poly(d, b,��1
, (1� 2⌘)�1),

and outputs w⇤ with probability at least 9/10.

We similarly provide a more general result relaxing the density assumption on Dx in Theorem C.4 of
Appendix C. We note that the assumption on the mass of halfspaces in Theorem 1.3 is necessary for
identifiability. Indeed, if there was a halfspace, parameterized by w 2 Rd, such that Prx⇠Dx [w ·x �
0] = 0, it would be impossible to distinguish between the functions ReLU(w · x) and ReLU(2w · x)
(even without noise), as all points would have 0 labels. It remains an interesting open problem
whether similar PAC learning guarantees can be obtained for the case of ReLU regression. We suspect
that this problem is computationally hard in full generality.

1.2 Technical Overview

As explained in the introduction, the focus of our work is on the problem of robust regression in
the presence of outliers. When ⌘ <

1
2 fraction of the data is arbitrarily corrupted in the realizable

setting, the goal is to compute the function that fits as many as points (inliers) as possible. Given a
sufficient number of samples from a full-dimensional distribution, this function is unique for the class
of ReLUs and matches the true function with high probability. However, even in the simpler case of
linear functions, the corresponding computational problem of `0-minimization is computationally
hard without distributional assumptions, as it is an instance of robust subspace recovery (29).

Our positive results are driven by relaxing the assumption that an arbitrary ⌘ fraction of the points
is corrupted. Instead, as defined in Definition 1.1, we consider a more restricted adversary that is
presented with a uniformly random ⌘ fraction of the points, which can be corrupted arbitrarily at will.

`0 to `1 minimization Given this milder corruption model, we propose novel algorithms for efficient
exact recovery of the underlying function. We obtain our algorithms by replacing the `0-minimization
with `1-minimization, which can be shown to converge to the true function in the limit and is efficient
to optimize in the linear regression case. For intuition, consider a single-point distribution that always
outputs labeled examples of the form (x, y), where the example x is always the same but the labels y
may differ. The Massart assumption indicates that the value of y is correct more than half of the time,
so the estimate that maximizes the number of correct samples (`0-minimizer) recovers the underlying
function. However, if one considers the `1-minimizer, i.e., the value v that minimizes E[|y � v|], this
corresponds to the median value of y which is also correct if more than half samples are correct.

We generalize this intuition and propose a natural and tight condition under which empirical `1-
minimization results in the true `0-minimizer (see Lemma 2.2). While this condition holds under
Massart noise for arbitrary distributions in the population level, it can fail to hold with high probability
when considering only a finite set of samples from the distribution. For example, consider the one-
dimensional case of w⇤ = 1 where most xi’s are near-zero and uncorrupted, while a few corrupted
samples lie extremely far from zero. The empirical `1-minimizer here will be dominated by the few
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corrupted samples and would not be the `0-minimizer. In particular, the sample complexity of naive
`1-minimization would crucially depend on the concentration properties of the distribution on x.

Transforming the points via radial-isotropy The main technical idea behind obtaining sample-
efficient algorithms that run in polynomial time is to transform the original point set into an equivalent
one that satisfies the required properties with high probability, as it becomes sufficiently concentrated.
In particular, performing a linear transformation mapping every point x to Ax, while keeping the
corresponding label y, is without loss of generality, as we are interested in identifying the true
(generalized) linear function that depends only on the inner product of every point with a parameter
vector w. Finding such a vector w0 in the transformed space Ax results in the equivalent vector
w = ATw0 in the original space. Moreover, an additional operation we can perform is to take a
single sample (x, y) and multiply it by a positive scalar � > 0 to replace it with the sample (�x,�y).
For both the linear and ReLU cases, any sample that is an inlier for the true function remains an inlier
after this transformation.

We can use these two operations to bring our point set in radial-isotropic position, i.e., so that all the
x’s in the dataset are unit-norm and the variance in any direction is nearly identical:

Definition 1.4 (Radial Isotropy). Let Sd�1 be the unit sphere in Rd. Given {x1, . . . ,xn} ⇢ S
d�1,

A : Rd
! Rd is a radial-isotropic transformation if

Pn
i=1

(Axi)(Axi)
T

kAxik2
2

= n
d I . For 0 < � < 1,

we say the points are in �-approximate radial-isotropic position, if for all v 2 S
d�1, it holds that

(d/n)
Pn

i=1(xi · v)2 � 1� �.

In such a normalized position, we can argue that with high probability the weight of all inliers in every
direction is more than the weight of the outliers, which guarantees that the empirical `1-minimizer
will converge to the true function.

Learning ReLUs Unfortunately, while `1-minimization for linear functions is convex and ef-
ficiently solvable via linear programming, `1-minimization for ReLUs is challenging due to its
non-convexity; that is, we cannot easily reduce ReLU regression to a simple optimization method.
We instead establish a structural condition under which we can compute an efficient separation
oracle between the optimal parameter vector w⇤ and a query w. More specifically, we show that
any suboptimal guess for the parameter vector w can be improved by moving along the opposite
direction of the gradient of the `1-loss for the subset of points in which the condition in Lemma 3.1 is
satisfied. Identifying such a direction of improvement yields a separating hyperplane, so we exploit
this to efficiently identify w⇤ by running the ellipsoid method with our separation oracle.

However, for this result to hold with a small number of samples, we need to again bring to radial-
isotropic position the points that fall in the linear (positive) part of the ReLU for the current guess
vector w. In contrast to the linear case, though, where this transformation was applied once, in this
case it needs to be applied again with every new guess. This results in a function that changes at
every step, which is not suitable for direct optimization.

Using these ideas, our algorithms can efficiently recover the underlying function exactly using few
samples. Our algorithms make mild genericity assumptions about the position of the points, requiring
that the points are not concentrated on a lower-dimensional subspace or, for the case of ReLUs, do not
lie entirely in an origin-centered halfspace. As already mentioned, such assumptions are necessary
for the purposes of identifiability.

1.3 Related Work

Given the extensive literature on robust regression, here we discuss the most relevant prior work.

ReLU Regression In the realizable setting, (45) and, more recently, (31) showed that gradient
descent efficiently performs exact recovery for ReLU regression under the Gaussian distribution
on examples. (49) generalized this result to a broader family of well-behaved distributions. In the
agnostic or adversarial label noise model, a line of work has shown that learning with near-optimal
error guarantees requires super-polynomial time, even under the Gaussian distribution (27; 15; 25; 18).
On the positive side, (11) gave an efficient learner with approximation guarantees under log-concave
distributions. Without distributional assumptions, even approximate learning is hard (29; 37).
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The recent work (32) studies ReLU regression in the realizable setting under a noise model similar to –
but more restrictive than – the Massart model of Definition 1.1. Specifically, in the setting of (32), the
adversary can corrupt a label with probability at most ⌘, but only via additive noise bounded above by
a constant. (32) gives an SGD-type algorithm for ReLU regression in this model. We note that their
algorithm does not achieve exact recovery and its guarantees crucially depend on the concentration
properties of the marginal distribution and the bound on the additive noise.

Comparison of Noise models It is worth comparing the Massart noise model (Definition 1.1)
with other noise models studied in the literature. The strongest corruption model we are aware of
is the strong contamination model (13), in which an omniscient adversary can corrupt an arbitrary
⌘ < 1/2 fraction of the labeled examples. In the adversarial label noise model, the adversary can
corrupt an arbitrary ⌘ < 1/2 fraction of the labels (but not the examples). Efficient robust learning
algorithms in these models typically only give approximate error guarantees and require strong
distributional assumptions. Specifically, for the case of linear regression, (34; 19; 14) give robust
approximate learners in the strong contamination model under the Gaussian distribution and, more
broadly, distributions with bounded moments. In the adversarial label noise model, (6) gave efficient
robust learners under strong concentration bounds on the underlying distribution that can tolerate
⌘ < 1/50 fraction of outliers.

The recent work (10) considers a Massart-like noise model in the context of linear regression with
random observation noise. (10) provides an SDP-based approximate recovery algorithm when the
noise rate satisfies ⌘ < 1/3. It should be noted their algorithm does not efficiently achieve exact
recovery. Due to space limitations, we provide a more detailed description of that work in Appendix F.

A related noise model is that of oblivious label noise, where the adversary can corrupt an ⌘ fraction
of the labels with additive noise that is independent of the covariate x. More precisely, the oblivious
adversary corrupts the vector of labels y 2 Rm by adding a ⌘m-sparse corruption vector b. Since b is
independent of the covariates, oblivious noise can be viewed as corrupting a sample with probability
⌘ with a random non-zero entry of b. Consequently, oblivious noise can be seen as a special case of
Massart noise. We formally compare these two noise models in more detail in Appendix E. A line of
work (5; 47; 22; 42) studied robust linear regression under oblivious noise and developed efficient
exact recovery algorithms under strong distributional assumptions.

2 Warmup: Linear Regression with Massart Noise

In this section, we establish structural conditions under which we can perform efficient `0-
minimization for linear functions under Massart noise. It is imperative that we find the `0-minimizer
with respect to w since, with a sufficient number of samples, the `0-minimizer is the true function
we wish to recover. We then show that appropriately transforming the data via radial-isotropic
transformation and then solving for the empirical `1-loss argminw2Rd

1
m

Pm
i=1 |ỹi �w · x̃i| can

efficiently recover the true parameter w⇤. We describe the algorithm for recovering linear functions
below.

Algorithm 1 Linear function recovery via radial isotropy

Draw m = Õ( d3

(1�2⌘)2 ) samples (xi, yi)mi=1 with ⌘-Massart noise
Compute A that puts (xi, yi)mi=1 in 1/2-approximate radial-isotropic position
ŵ argminw2Rd

Pm
i=1 |

yi

kAxik2
�w ·

Axi
kAxik2

| by solving the LP
return Aŵ

In fact, there is no need to compute an exact radial-isotropic transformation (� = 0) as an approximate
one suffices. An approximate radial-isotropic transformation can be computed efficiently as in Lemma
2.1, which we prove in Appendix A.

Lemma 2.1. Given S ⇢ Rd in general position, there is a poly(n, d, b, ��1) time algorithm that
computes a positive definite symmetric matrix A such that

�
Ax

kAxk : x 2 S
 

is in �-approximate
radial-isotropic position where b is an upper bound on the bit complexity of the parameters and
samples in S. Morever, the condition number of A is at most 2poly(n,d,b).
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Given that computing such approximate transformation A and solving a linear program (LP) can be
done efficiently, Algorithm 1 gives us the polynomial runtime for Theorem 1.2.

The proof of Theorem 1.2 relies on two key ideas. First, we can minimize the empirical `1-loss
with respect to w instead of the `0-loss because the two are equivalent under the structural condition
of Lemma 2.2. Once the following sufficient condition is satisfied, we can efficiently solve for
`1-minimization as this is efficient in the case of linear functions by solving an LP.
Lemma 2.2 (Structural Condition for Recovery). Given f : R! R and m samples (xi, yi)mi=1 in
Rd, let the `0-minimizer w⇤ = argminw2Rd

1
m

Pm
i=1 kyi � f(w · xi)k0 be unique. If

P
yi=f(w⇤·xi)

|f((w⇤ + r) · xi)� f(w⇤
· xi)| >

P
yi 6=f(w⇤·xi)

|f((w⇤ + r) · xi)� f(w⇤
· xi)| (?)

for all non-zero r 2 Rd, then w⇤ is also the `1-minimizer argminw2Rd
1
m

Pm
i=1 |yi � h(xi)|.

The structural condition (?) for linear functions reduces to having the sum of |r · xi| for the “good”
points be greater than the sum of |r · xi| for the “bad” points in every direction r. However, this
implies that if one sample is much greater in norm than the others in some direction, this point can
have undue influence and may easily dominate the `1-loss. Therefore, without any preprocessing or
transformation to the data, one has to rely on naively increasing the sample complexity until there are
enough points in this direction to satisfy condition (?). Instead, we minimize the dominating effects
of such outlier points and reduce the sample complexity through transforming the dataset with radial
isotropy. We defer the proof of Lemma 2.2 and Theorem 1.2 to Appendix A.

3 ReLU Regression with Massart Noise

In this subsection, we study the problem of exact recovery for ReLUs in the presence of Massart
noise. For the case of ReLUs, we can still use the structural condition of Lemma 2.2 to do `1-
minimization argminw

1
m

Pm
i=1 |yi � ReLU(w · xi)|. However, minimizing this objective is no

longer straightforward, because the objective function is non-convex. Despite this fact, it is possible
to exactly recover a ReLU under mild anti-concentration assumptions on the underlying distribution.

The key idea behind Theorem 1.3 is establishing the condition under which we can compute an
efficient separation oracle between the query w and the true parameter w⇤. Once we obtain a
separation oracle, we can use the ellipsoid method to recover w⇤ exactly. In turn, similarly to Lemma
2.2, we identify a sufficient structural condition on the dataset, which allows us to efficiently compute
a separating hyperplane between w and w⇤ if w 6= w⇤, and then use radial-isotropic transformations
such that this condition is satisfied. We state this separation condition in the following lemma.
Lemma 3.1 (Separation Condition). Let H be an hypothesis class such that H = {hw : hw(x) =
f(w · x),w 2 Rd

} where f : R! R is monotonically non-decreasing. Given a set of m samples
(xi, yi)mi=1, let w⇤ = argminw2Rd

1
m

Pm
i=1 kyi � f(w · xi)k0 be unique. Let � > 0 and B(w,�)

be the open ball of radius � centered at w. Denote the empirical `1-loss L̂(w) = (1/m)
Pm

i=1 |yi�

f(w · xi)|. Given a query w0 /2 B(w⇤
,�), if

P
yi=f(w⇤·xi)

|(w0 �w⇤) · xi|f
0(w0 · xi)�

P
yi 6=f(w⇤·xi)

|(w0 �w⇤) · xi|f
0(w0 · xi) � �m (†)

then rL̂(w0) · (w0 � w) = 0 is a separating hyperplane for w0 and B(w⇤
,�/2) such that

rL̂(w0) · (w0 �w) > 0 for w 2 B(w⇤
,�/2).

In particular, the gradient of the empirical `1-loss gives us the separating hyperplane above. Other
than the fact that only the points in the non-negative side of the halfspace of w are considered in the
separation condition (†), the condition resembles much of the structural condition used for linear
functions. Analogously, we apply a radial-isotropic transformation to the points of w · xi � 0. Thus,
we have the following sub-procedure of the ellipsoid method where � is the radius of a ball which
depends on the distance between the points (and hence the bit complexity b).

The main difference between the algorithm for ReLUs and linear functions is that here we must apply
a different radial-isotropic transformation to every new subset of points in every iteration, depending
on the query w0. In turn, the algorithm transforms the space according a new transformation A and
computes a separating hyperplane and transforms the hyperplane back into the original space. Due to
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Algorithm 2 Separation oracle sub-procedure
Input: (xi, yi)mi=1 with Massart noise, query w0, � > 0
Output: Unless w0 2 B(w⇤

,�), a separating hyperplane between w0 and B(w⇤
,�/2)

if ReLU(w0 · x) fits at least m
2 points then

return w0 as true parameter w⇤

S  {(xi, yi) : w0 · xi � 0 for i 2 [m]}
Compute A that puts Sx into 1/2-approximate radial-isotropic position
r 1

|S|
P

(xi,yi)2S
Axi

kAxik2
· sgn(w0 · xi � yi)

return separating hyperplane A�1r · (w0 �w) = 0

these repeated transformations, the proof of Theorem 1.3 requires a more intricate argument to make
the ellipsoid method work correctly. We now prove Theorem 1.3.

Proof of Theorem 1.3. Let w0 be the original query to the oracle and assume the separation condition
(†) holds for a set of points (Axi/kAxik2, yi/kAxik2)mi=1 and A�1w0. Then, by Lemma 3.1,
r ·(A�1w0�w) = 0 where r = (1/m)

Pm
i=1(Axi/kAxik2) ·sgn(w0 · xi � yi) separates A�1w0

and A�1w⇤. Thus the separation for w0 and w⇤ is A�1r · (w0 �w) = 0.

Now it remains to check the sample complexity necessary for the separation condition (†). Each
unique set of {(xi, yi) : w0 · xi � 0 for i 2 [m]} determines a radial isotropic transformation
but there can only be at most md+1 unique sets by the VC dimension of halfspaces. So there
are only at most md+1 radial-isotropic transformations we have to consider. Let A be the linear
transformation of the radial-isotropic transformation applied to points of w0 · xi � 0. Denote
(x̃i, ỹi) = (Axi/kAxik2, yi/kAxik2), w̃⇤ = A�1w⇤, w̃0 = A�1w0, and let D̃x be Dx|{w0·x�0}
transformed by A then normalized so that D̃x lies on S

d�1. Then, for all md+1 transformations, we
have the following VC inequality using m = Õ(d/✏2) samples with high probability:

sup
w2Rd

�� Pr
x̃⇠D̃x

[|(w � w̃⇤) · x̃|1{w · x̃ � 0, y = ReLU(w⇤
· x)} > t]

� (1/m)
mP
i=1

1{|(w � w̃⇤) · x̃i| > t, w · x̃i � 0, yi = ReLU(w⇤
· xi)}

��  ✏.

Let S = {(x̃i, ỹi) : w0 ·xi � 0}. Similarly to the proof of Theorem 1.2, we have that max(x̃,ỹ)2S |r ·

x̃|  (1��)d
1���✏dEx̃⇠D̃x

[|r · x̃|] where � = 1/2. Then, we can write

(1/|S|)
P

(x̃i,ỹi)2S

|(w̃0 � w̃⇤) · x̃|1{yi = ReLU(w⇤
· xi)}

= (m/|S|)

Z 1

0

�
(1/m)

mP
i=1

1{|(w̃0 � w̃⇤) · x̃i| > t, w̃0 · x̃i � 0, yi = ReLU(w⇤
· xi)

�
dt

� ED̃x
[|(w̃0 � w̃⇤) · x̃|1{y = ReLU(w⇤

· x)}]� (✏m/|S|) max
(x̃,ỹ)2S

|(w̃0 � w̃⇤) · x̃|

� (1� ⌘)ED̃x
[|(w̃0 � w̃⇤) · x̃|]� (✏md/(|S|(1� 2✏d)))ED̃x

[|(w̃0 � w̃⇤) · x̃|]

By setting ✏ = Õ(�(1� 2⌘)/d), we can bound m/|S| be at most a constant times ��1 for all md+1

possible subsets S using Hoeffding’s inequality and the union bound. Then we have

(1/|S|)
P

(x̃,ỹ)2S

|(w̃0�w̃⇤) · x̃|1{ỹ = ReLU(w̃⇤
· x̃)} � ((1/2)+(1�2⌘)/4)ED̃x

[|(w̃0�w̃⇤) · x̃|].

We can do the same to the corrupted points in S getting  (1/2� (1� 2⌘)/4)ED̃x
[|(w̃ � w̃⇤) · x̃|].

Thus, for points (x̃, ỹ) 2 S, we have the condition

(1/|S|)
� P
ỹ=ReLU(w̃⇤·x̃)

|(w̃0 � w̃⇤) · x̃|�
P

ỹ 6=ReLU(w̃⇤·x̃)
|(w̃0 � w̃⇤) · x̃|

�
� (1/2� ⌘)ED̃x

[|(w̃0 � w̃⇤) · x̃|]

� (1/2� ⌘)kw̃0 � w̃⇤
k2/d .
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By Lemma 3.1, the inequality above implies that we can find a hyperplane of r that separates w̃0 and
B(w̃⇤

, �̃/2) where �̃ = 1�2⌘
2d kw̃0 � w̃⇤

k2. In the original space of (xi, yi)mi=1, we have that the
transformed hyperplane of A�1r seperates w0 and B(w⇤

,�/2) where � = 1�2⌘
2d ·

�min(A)
�max(A)kw0 �

w⇤
k2 since applying A�1 to r keeps the distance from w⇤ to w0 at least 1�2⌘

2d�max(A)kw0�w⇤
k2 and

applying A to w̃⇤ bounds the distance from w⇤ to w0 to be at least �. Therefore, we can set � of
Algorithm 2 to be equal to minw 6=w⇤

1�2⌘
2d ·

�min(A)
�max(A)kw �w⇤

k2.

If w 6= w⇤, by bounded bit complexity b, we have that the volume of the ellipsoid decreases at every
step but the ball of radius (1�2⌘)�min(A)

4d�max(A) will always be contained in it. Thus the algorithm terminates

in poly(d, b, (1� 2⌘)�1) iterations since log
��max(A)
�min(A)

�
= poly(d, b, (1� 2⌘)�1).

4 Experiments

In this section, we apply our algorithms that are based on radial-isotropic transformations to both
synthetic and real datasets and compare robustness in regression with other baseline methods of `1
and `2-regression. Our experiments demonstrate the efficacy of radial-isotropic transformations in
robust regression and how our algorithms outperform baseline regression methods.

All experiments were done on a laptop computer with a 2.3 GHz Dual-Core Intel Core i5 CPU and 8
GB of RAM. We ran CVXPY’s linear program solver for `1-regression for linear functions.

Recovering Linear Functions We first show how our algorithm based on radial-isotropic position
(Algorithm 1) compares to naive `1 regression in exact recovery using an LP solver. As another
baseline, we also ran `1-regression with a normalization preprocessing step, where we normalize all
points (x, y) to ( x

kxk ,
y

kxk ). We did not run regression with an isotropic-transformation preprocessing
step because this yields identical results as naive regression with no preprocessing.

We evaluated different transformations to the data on the following synthetic distribution. Define
a mixture of Gaussians Dx = 1

2N (e1,
1
d2 Id) +

1
2d

Pd
i=1 N (dei,

1
d2 Id), where ei denotes the i-th

standard basis vector and d = 30. Let w⇤ = 9e2 +
Pd

i=1 ei. For various noise levels ⌘, consider the
following ⌘-Massart adversary: the labels for all x for which any coordinate is greater than d

2 are
flipped to �w⇤

· x with probability ⌘, and the labels for all other points are not flipped. Essentially,
only the points not from N (e1,

1
d2 Id) are affected by Massart noise.

We measured exact parameter recovery rate, which captures how often the algorithm solves for w⇤

exactly. We varied the noise rate ⌘ while running the methods with 120 samples from Dx. We also
varied the sample size while keeping the noise ⌘ = 0.25. We ran 200 trials for each measurement of
exact recovery rate and the error bars represent two standard deviations from the mean.

Recovering ReLUs For ReLUs, we used the same distribution as the experiments for linear
functions to generate samples. We ran and compared constant-step-sized gradient descent on the
empirical `1-loss 1

m

Pm
i=1 |yi � ReLU(w⇤

· xi)| with different transformations to the data. We ran
gradient descent since our separation oracle for the Ellipsoid method bears similarities with gradient
descent. As seen in Lemma 3.1, this is due to the fact that our separating hyperplane is based on the
gradient of the empirical `1-loss of a subset of points.

The experiment is set up with ⌘ = 0.4, w⇤ = 9e2 +
Pd

i=1 ei, w0 = 0, 240 samples from Dx, and
gradient descent step size of one. For ‘Original’, we use a step size of 1/465 to keep the magnitude
of the points xi comparable to that of the transformed points x̃i.

In Figure 2(a), ‘Original’ corresponds to naive gradient descent, while ‘Normalized’ has a normal-
ization preprocessing step. The transformations of ‘Isotropic’ and ‘Radial-isotropic’ follow our
algorithm for ReLUs from Section 3, where the transformation is only applied to the positive-side
points of w ·xi � 0 for the current hypothesis w. The gradient is then calculated with the transformed
points x̃i and appropriately transformed back to the original space in order to update w. The gradient
descent updates under transformation A and step size ↵ is the following:

w0
 A�1w then w w � ↵ · (Arw0L

0) ,
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(a) Recovering Linear (vs. noise rate) (b) Recovering Linear (vs. sample size)

Figure 1: Experiments for exact parameter recovery of linear functions on synthetic data. Exact
recovery rate (y-axis) measures how often the algorithm outputs the true parameter out of 200 trials.
We compare Algorithm 1 with naive `1-minimization and `1-minimization with normalized data.
Error bars cover two standard deviations from the mean.

(a) Gradient Descent on ReLU (b) Drug Discovery Dataset

Figure 2: On the left, we compare the performance of different transformations with gradient descent
on synthetic data where we measure the `2-distance to the optimal solution. On the right, we compare
different regression methods applied to real data where the labels are artificially corrupted with
⌘-Massart noise. Rescaled L1 represents Algorithm 1. We report the fraction of points that lie in the
subspace generated by its output with margin.

where L
0 denotes the empirical `1-loss for the transformed subset of points. This update method is

directly adapted from our Ellipsoid method.

Drug Discovery Dataset The drug discovery dataset was originally curated by (40) and we used
the same dataset as the one used in (14). The dataset has a training and test set of 3084 and 1000
points of 410 dimensions. The ⌘-Massart noise adversary corrupts the training data (xi, yi) so that
all points are corrupted to flip labels to �100yi with probability ⌘.

We compared `1-regression with radial-isotropic transformation (‘Rescaled L1’) to other baseline
methods, such as least squares and naive `1-regression. For ridge regression, we optimized the
regularization coefficient based on the uncorrupted data. We measure performance by computing the
fraction of the test set that lies within the subspace generated by the output vector with a margin of 2.

Results In Figure 1, our algorithm with radial-isotropic transformation outperforms other baseline
methods in robustness with respect to the noise level and in efficiency with respect to the sample size.
This is in line with the results of Theorem 1.2. In fact, our experiments on ReLUs also empirically
demonstrate that radial isotropy significantly improves ReLU regression via gradient descent by
making the dataset more robust to noise at each iteration. For the drug discovery dataset, although

9



`1-regression with radial isotropy performs slightly worse than naive `1-regression when there is
minimal noise, it significantly outperforms the baseline methods at regimes of high noise levels.

5 Conclusion

In this work, we propose a generalization of the Massart (or bounded) noise model, previously studied
in binary classification, to the real-valued setting. The Massart model is a realistic semi-random noise
model that is stronger than uniform random noise or oblivious noise, but weaker than adversarial label
noise. Our main result is an efficient algorithm for ReLU regression (and, in the process, also linear
regression) in this model under minimal distributional assumptions. At the technical level, we provide
structural conditions for `0-minimization to be efficiently computable. A key conceptual idea enabling
our efficient algorithms is that of transforming the dataset using radial-isotropic transformations.
We empirically validated the effectiveness of radial-isotropic transformations for robustness via
experiments on both synthetic and real data. In contrast to previous works on robust regression that
require strong distributional assumptions, our framework and results may be seen as an intricate
balance between slightly weakening the noise model yet affording generality in the underlying
distribution.
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