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ABSTRACT

Federated learning (FL) has received widespread attention due to its distributed
training and privacy protection. However, existing federated learning methods
encounter significant challenges, such as increased communication costs and de-
graded model performance, when processing non-independently and identically
distributed (non-IID) data. This paper jointly alleviates these problems by analyzing
and exploiting the low-rank properties of global model trajectories.
Primarily, we introduce a streaming subspace update strategy and then propose a
general federated learning framework, Ferated Learning in Streaming Subspace
(FLSS). In FLSS, local model updates are restricted to the global streaming
subspace, resulting in low-dimensional trajectories. The server then aggregates
these trajectories to update the global model. Comprehensive experiments verify
the effectiveness of our framework. In Cifar100, the FLSS-equipped FL method
outperforms the baseline by 2.14% and reduces the communication cost by 80%.
FLSS utilizes the early training information of the global model to simultaneously
improve the performance and communication efficiency of federated learning.

1 INTRODUCTION

The remarkable progress made in machine learning is largely due to the availability of abundant and
extensive data Cordts et al. (2016); Lin et al. (2014); Russakovsky et al. (2015). Nonetheless, as
data volumes grow, aggregating such data becomes very difficult. Consequently, federated learning
emerged as a distributed framework for machine learning Li et al. (2021b; 2020a); Yang et al.
(2019). Federated learning leverages data stored on edge devices such as smartphones and PCs to
collaboratively train global models under scheduling by a central server Kairouz et al. (2021); Li
et al. (2020a); Mothukuri et al. (2021), which is of great significance in privacy-sensitive applications
Bonawitz et al. (2019); Kaissis et al. (2020); Dayan et al. (2021); Hard et al. (2018).

Within the domain of federated learning, the communication cost of handling heterogeneous data is a
significant obstacle Konecnỳ et al. (2016); Wu et al. (2022); Kairouz et al. (2021). This challenge
stems mainly from the essential requirement of transmitting local models or gradients from each client
to a central server Li et al. (2022a). Moreover, in the non-independently and identically distributed
(non-IID) scenario, the imbalance of client data further affects the performance of the model Li et al.
(2019); Hsu et al. (2019); Zhang et al. (2023b). Hence, two pivotal challenges emerge as focal points
for research in federated learning: ❶ reducing communication overhead Konecnỳ et al. (2016) and
❷ mitigating the accuracy degradation problem resulting from data heterogeneity Konečnỳ et al.
(2016).

Numerous studies have been conducted to address these challenges Zhu et al. (2021); Li et al. (2021a);
Acar et al. (2021); Bernstein et al. (2018). In the context of addressing data heterogeneity, FL methods
are primarily categorized into update correction Karimireddy et al. (2020), regularization Li et al.
(2020b), model splitting Li et al. (2021a), and knowledge distillation Zhu et al. (2021). However,
these methods often do not fully leverage early information from the global model. Regarding
communication compression, approaches such as Fetchsgd Rothchild et al. (2020), Signsgd Bernstein
et al. (2018); Karimireddy et al. (2019), and STC Sattler et al. (2019) introduce gradient compres-
sion techniques like sketching, quantization, and sparsification. Nevertheless, these compression
frameworks are randomized and data-independent, which inherently limits their effectiveness. While
existing algorithms are effective in tackling individual issues, they often struggle to simultaneously
address both communication overhead and data heterogeneity challenges.
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Figure 1: Model trajectory diagram
of FedAvg. Its global model tra-
jectory is mainly distributed in a
low-dimensional subspace (blue dia-
mond). The green dotted line is the
main direction of this subspace.

Therefore, we focus on designing a strategy that can han-
dle these problems simultaneously, which can be applied to
most federated learning frameworks, further improve its per-
formance, and reduce communication costs. Inspired by the
representational redundancy exhibited by neural networks Li
et al. (2022b); Jacot et al. (2018); Gressmann et al. (2020), we
performed principal component analysis on the training trajec-
tories of the global model, as shown in Fig. 2. We find that a
rough model update can be constructed with fewer basis vec-
tors. Consequently, we propose to restrict local model update
to a low-dimensional global subspace. This approach maxi-
mizes the utilization of global model information by aligning
local updates within the global subspace, thereby enhancing
overall performance. Additionally, communication costs are
reduced by transferring the projection coefficients of the model
within this subspace.

Nonetheless, a key challenge in training federated learning models within subspaces lies in obtaining
a subspace that maintains training performance. Existing subspace extraction solutions primarily
involve random generation or pre-training sampling, which often struggle to cover the complete
neural network parameter space. Applying it to federated learning may lead to a loss of accuracy.
To address this issue, we design a strategy inspired by subspace tracking algorithms Eftekhari et al.
(2019); Řehůřek (2011); Grammenos et al. (2020), which involves real-time monitoring of changes
in neural network parameters to ensure that the subspace consistently contains the latest model
information. Building upon this subspace, we propose a novel federated learning training scheme
named Ferated Learning in Streaming Subspace (FLSS).

In FLSS, the training process involves constraining the local model to a low-dimensional subspace of
the global model trajectory, which is equivalent to unifying the local model updates under the global
subspace and performing local model fine-tuning, thus mitigating the harm of statistical heterogeneity.
The consensus among the models is achieved by aggregating the projection coefficients of the local
model update residing in this subspace, resulting in reduced communication costs. To cultivate
the streaming subspace on the client side, a subspace tracking method is employed. This method
periodically samples the global model trajectory and performs singular value decomposition to capture
the knowledge of model changes during the training phase. Extensive experiments show that we
obtain better performance by applying FLSS to the traditional FL algorithms. For instance, compared
with traditional FedAvg, after applying the FLSS strategy, we obtained an accuracy improvement of
1.90 ∼ 2.58% and 0.08 ∼ 1.76% on Cifar10 and Cifar100 with different degrees of heterogeneity,
respectively, and reduced the communication cost by nearly 80%. In summary, the key contributions
of this paper can be summarized as follows:

• We propose FLSS, which limits local model updates to the streaming subspace of global
model trajectory to fully exploit global information, and reduces communication costs by
transmitting the projection coefficients of model updates in the subspace.

• We introduce a strategy to extract the streaming subspace for training. This strategy ensures
that the subspace always contains the latest information of the model by performing singular
value decomposition on the global model trajectory in real-time.

• Through multiple datasets, we verify that FLSS can improve the FL method in terms of
communication efficiency and model performance. Specifically, with FedAvg, using FLSS
reduced communication costs by 80% and increased accuracy by up to 8.15%.

2 RELATED WORK

Due to space limitations, only most related works to this paper are discussed here. For more detailed
illustrations, please refer to the Appendix A.

Federated Learning. FL algorithms that improve performance in heterogeneous scenarios mainly
include four categories: regularization Li et al. (2020b); Acar et al. (2021); Kim et al. (2022), model
splitting Li et al. (2021a); Jiang et al. (2022), knowledge distillation Zhu et al. (2021); Lee et al.
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(2022); Gong et al. (2022); Huang et al. (2022), and update correction Karimireddy et al. (2020); Gao
et al. (2022); Niu & Deng (2022). Specifically, FedProx Li et al. (2020b) adds a regularization term
to local loss. MOON Li et al. (2021a) combines contrastive learning to align local and global features.
FedGen Zhu et al. (2021) utilizes generators to ensemble local knowledge and guide local training, but
it also brings non-negligible communication and computational overhead. SCAFFOLD Karimireddy
et al. (2020) counters local model drift using gradient calibration. Although they address statistical
heterogeneity, it does not reduce message size nor fully exploit early global model information.

For communication efficient FL methods, Fetchsgd Rothchild et al. (2020) uses sketches to compress
local gradients. The Signsgd+EF Karimireddy et al. (2019) framework reduces communication
costs and enhances the generalization of signsgd through 1-bit quantization and error feedback.
Furthermore, STC Sattler et al. (2019) combines top-k sparsification with quantization. Although
these methods can reduce communication costs, they are less effective in heterogeneous scenarios
due to the randomness of compression and insufficient consideration of global information.

Training in Tiny Subspace. Many studies have emphasized the inherent low-dimensional character-
istics of neural networks Tuddenham et al. (2020); Vinyals & Povey (2012); Gressmann et al. (2020).
A seminal investigation in Li et al. (2018); Gur-Ari et al. (2018) illuminates that training within a
randomly chosen subspace facilitates parameter compression, albeit potentially at the expense of final
accuracy. In subsequent work Li et al. (2022b;c), Li et al. successfully extracted a subspace approxi-
mating the entire parameter trajectory through principal component analysis applied to a pre-trained
neural network. However, despite the richness of information captured within the aforementioned
subspace, its efficacy remains primarily constrained to the early stages of pre-training. Realizing its
full potential often necessitates multiple epochs.

3 METHODOLOGY

3.1 PROBLEM STATEMENT

Suppose we have N clients, client k(k ∈ [N ]) has its private data xk (labelled by yk) that obeys a
different distribution Dk, and the local dataset size is nk. Our objective is to solve

arg min
w∈RD

F (w) ≜
1

N

∑
k∈[N ]

Fk(w)

 , (1)

where Fk(w) = E(xk,yk)∼Dk
[ℓk(w; (xk, yk))] is the empirical loss of the k-th device, and w ∈ RD

is the parameter to be optimized. We use w∗ to represent the minimum value of the global empirical
loss function.

3.2 CONSTRAIN THE LOCAL MODELS TO A SUBSPACE
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Figure 2: We extract the top
50 principal components from
the global model trajectory of
ResNet-18 on Cifar100 over 200
rounds, with a cumulative per-
centage of 82.04%.

In statistically heterogeneous scenarios, average aggregation and
local training using local data cannot fully utilize the information
of the global model. In addition, the huge amount of model pa-
rameters often becomes a communication bottleneck for federated
learning. Our goal is to find a reasonable strategy that can not only
promote parameter dimensionality reduction, but also make full
use of the information from the previous global model to assist
local model aggregation and training.

Low-dimensional Subspace of Neural Network Training. Our
central concern is to reduce the communication parameters while
striving to make the local model consistent with the global model.
Given the redundancy in neural network representations, this char-
acteristic can serve as the basis for mapping high-dimensional
models to a low-dimensional space to find optimal solutions. In
fact, previous studies have elucidated the rationale for restricting
neural network training to randomly selected subspaces. Specifi-
cally, it can be expressed as:

wt+1 = wt + ProjP(g̃t), (2)

3
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where P ∈ RD×R is a randomly selected low-dimensional space, D and R represent the number of
parameters and the degree of freedom of the subspace, respectively, and g̃t represents the projection
coefficient of the negative gradient in the low-dimensional space in the t-th iteration.

Global Subspace Extraction. We consider restricting local models to be trained in a carefully
chosen low-dimensional space. Notably, this subspace is founded upon the global model, and it
can approximately cover the update trajectory of the global model. Clients undertake local model
training by combining global and local information, in contrast to the traditional approach where
local models are exclusively trained on local data. This fusion of information mitigates the issues of
local overfitting and model drift that stem from localized over-training. Consequently, the current
issue that needs to be considered is how to obtain the accurate subspace that describes the global
model update trajectory. This process requires two pivotal phases:

Step 1: Sample the first L global model updates on the clients, then align the global model update
into a vector gt ∈ RD, and get GL = [g1,g2, ...,gL], where gt = wt+1 −wt.

Step 2: Perform singular value decomposition on GL and extract the first R orthogonal bases.

Step 2 is a standard singular value decomposition problem. Its orthogonal basis can be obtained by
finding the eigenvectors of GLG

T
L. However, for neural networks, D is often very large, and it is

very difficult to store and decompose GLG
T
L ∈ RD×D. Since the singular value decomposition of

GL and GT
L are transposes of each other, we first calculate the spectral decomposition of GT

LGL

to obtain the eigenvalues σ2
r and eigenvectors vr, and then calculate the orthogonal basis, ur =

1
σr
GLvr, r = 1, ..., R. Finally we get the global subspace P = [u1, ...,uR]. Based on Eq. (2), the

local model update can be expressed as follows:

wk
t+1 −wt ≈ ProjP(z

k
t+1 − zt) = ProjP(g̃

k
t ), (3)

where wk
t+1 is the local model, and zkt+1 is the projection coefficient of wk

t+1 on P. The server
aggregates the low-dimensional trajectory g̃k

t of the client model update, g̃t =
1

|Mt|
∑

k∈Mt
g̃k
t .

The effectiveness of this strategy depends on whether the direction of the global optimal solution is
contained within the above subspace. The absence of this critical component may result in the model
not converging to satisfactory accuracy. Hence, we introduce the concept of “streaming subspace”.
This approach helps to track subspace changes in real-time, ensuring that the latest model updates are
included.

Algorithm 1 The Learning Process in FedAvg+FLSS
Input: Number of communication rounds T , number of parties N and selected parties M , local steps
τ , learning rate η, sampling interval s.
Output: The final model wT .

1: All clients to initialize their local models wk
0 . ▷ Initialization Period

2: The clients train and communicate without FLSS for L round and obtain the streaming subspace
P = [u1, ...,uR] by SLDSR(·, ·).

3: for each round t = L, ..., T do ▷ Federated Learning Period
4: Server samples a client subsetMt based on M .
5: for client k ∈Mt in parallel do
6: Initialize: wk

t,1 ← wt−1 + ProjP(g̃t−1) or gt−1, and update P by SLDSR(P,gt−1).
7: Update the local model by batch data ξkt,i: w

k
t,i+1 ← wk

t,i − ηt∇Fk

(
wk

t,i, ξ
k
t,i

)
.

8: Compute the local model update: gk
t ← wk

t,τ+1 −wk
t,1.

9: Transmit: g̃k
t ← ProjPT(gk

t ) or gk
t according to mod(t− L, s).

10: end for
11: Server aggregates model updates and obtains gt, or obtains g̃t by g̃t =

1
|Mt|

∑
k∈Mt

g̃k
t .

12: end for

3.3 STREAMING SUBSPACE

Subsequently, our focus shifts towards the acquisition of the streaming subspace. Illustrated in Fig.
3, we postulate that the subspace in the left panel approximately covers the parameter trajectories
w0,w1, ...,w3. As the model is updated, w4 may deviate slightly from the subspace in the left panel.
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Consequently, the current task is to identify an appropriate set of parameters to construct a subspace
that can effectively encapsulate the trajectories of w0,w1, ...,w4.

This is accomplished by considering a sequential array, denoted as GL,gL+s,gL+2s, ..., of global
model update. These vectors are acquired continuously and are akin to streaming data. Here, GL

represents the results derived from the initial L samplings of the global model update. The sampling
interval is set to 1 before and s after the L-th sampling, respectively. We choose to utilize truncated
singular value decomposition (SVDR) for subspace extraction of global model updates, which does
not require centralization and thus avoids storing previously sampled model parameters. Instead,
only low-dimensional subspaces need to be preserved. Essentially, this process can be expressed as
[Û, Σ̂, V̂] = SVDR ([GL,Gs]), where Gs = [gL+s,gL+2s, ...].

𝐰𝐰 𝟏𝟏

𝐞𝐞𝟏𝟏
𝐞𝐞𝟐𝟐

𝐰𝐰𝟎𝟎
𝐰𝐰𝟏𝟏
𝐰𝐰𝟐𝟐
𝐰𝐰𝟑𝟑

𝐰𝐰 𝟐𝟐

𝐰𝐰 𝟑𝟑

(a) Round 3

𝐞𝐞𝟏𝟏
𝐞𝐞𝟐𝟐

𝐰𝐰𝟎𝟎
𝐰𝐰𝟏𝟏
𝐰𝐰𝟐𝟐
𝐰𝐰𝟑𝟑
𝐰𝐰𝟒𝟒

𝐰𝐰 𝟏𝟏 𝐰𝐰 𝟐𝟐

𝐰𝐰 𝟑𝟑

(b) Round 4

Figure 3: Illustration on the update of the sub-
space of the global model update trajectory.
The left subspace can approximately cover
the trajectory of the model w0 to w3, and the
right subspace can approximately cover the
trajectory of the model w0 to w4.

Considering that the above sequence is stream-
ing data and the amount of model parameters is
huge. The subspace needs to remain available at
all times. Therefore, subspace tracking Řehůřek
(2011); Eftekhari et al. (2019) is used to extract
the subspace Ũ of all model updates, [Ũ, Σ̃, Ṽ] ←
SVDR ([λU1Σ1,U2Σ2]) , where λ is the attenua-
tion coefficient, assigning smaller weights to the pre-
vious subspace U1, and GL = U1Σ1V1,Gs =

U2Σ2V2. If λ = 1, then the subspaces Û and Ũ

are the same, and Û = ŨB, B is a diagonal uni-
tary matrix, if the non-zero singular values do not
repeat, then B = IR. Furthermore, based on the
above description, we have
[U,Σ,V]← SVDR ([λU1Σ1,gL+s,gL+2s, ...]) ,

(4)
where the subspace U is the same as Û and Ũ. For Eq. (4), if we add a global model update vector
gt each time and then perform SVDR, it can be expressed as SVDR([λU1Σ1,gt]). The streaming
subspace extraction process is shown in Alg. 2. The overall FLSS algorithm is shown in Alg. 1.

Algorithm 2 Streaming Low Dimensional Subspace (SLDSR)
Input: The degree of freedom of the subspace R, attenuation coefficient λ, sampling interval s,
streaming subspace P, global model update gt.
Output: streaming subspace P.

1: if t < L then ▷ Sampling Period
2: Sample global model update gt to form [g1,g2, ...,gt].
3: else if t ≥ L & mod(t−L, s) == 0 then ▷ Sampling and Subspace Updates
4: Sample global model update gt to form Gt = [λPΣ,gt].
5: Perform spectral decomposition on GT

tGt, and obtain the largest R eigenvalues σ2
r with the

corresponding eigenvectors vr.
6: Compute orthonormal basis: ur = 1

σr
Gtvr, P = [u1, ...,uR], Σ = diag([σ1, ...σR]).

7: else
8: P = P.

3.4 THEORETICAL ANALYSIS

Here, we consider the scenario where the clients have a global subspace P, and local updates are
aligned to this global subspace to more fully utilize the early knowledge of the global model. We
then analyze the convergence of this strategy, communication and computational overhead issues.

Assumption 3.4.1 Loss functions Fk are L-smooth; that is, ∀v,w ∈ RD, Fk(v) − Fk(w) ≤
⟨v −w,∇Fk(w)⟩+ L

2 ∥v −w∥22 ,∀k ∈ [N ].

Assumption 3.4.2 Loss functions Fk are µ-strongly convex; that is,∀v,w ∈ RD, Fk(v)−Fk(w) ≥
⟨v −w,∇Fk(w)⟩+ µ

2 ∥v −w∥22 ,∀k ∈ [N ].

5
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Assumption 3.4.3 The expected squared l2-norm of the stochastic gradients is bounded; that is,
E
[
∥∇Fk

(
wk

t , ξ
k
t

)
∥22
]
≤ G2,∀k ∈ [N ],∀t.

Assumptions 3.4.1 and 3.4.2 are standard for convergence analysis of strongly convex and smooth
problems, and Assumption 3.4.3 has been made by following the works Zhang et al. (2012); Li et al.
(2019); Amiri et al. (2021). We use F ∗ and F ∗

k to represent the minimum value of F (w) and Fk(w)
respectively, and use Γ = F ∗ − 1

N

∑
k∈[N ] F

∗
k to quantify the non-IID degree.

Assumption 3.4.4 For the global update gt ∈ G, its expectation lies within the subspace; that is,
E [Proj(gt)] = E [gt] ,∀t. The detailed discussion can be found in Appendix C.5.

Proposition 3.4.1 For the global update gt ∈ G, the squared projection error is bounded; that is,

E
[
∥P̃rojP(gt)∥22

]
≤ ρRη

2
t τ

2G2, ρR =
∑D

r=R+1 σ2
r∑D

r=1 σ2
r

,∀t. The proof is in Appendix C.6.

Assumption 3.4.4 indicates that the subspace P contains the expectation for global updates, where
Proj(·) = ProjPPT(·), P̃rojP(·) = ProjPPT−ID (·), and G represents the set of global model
updates. When R = D, the subspace P is full rank, which is no different from conventional training,
but the storage overhead of P is very high. To alleviate this problem, we exploit the low-rank structure
of the training trajectories to wisely choose the direction of the subspace (such as Fig. 2), thereby
reducing ρR.

Theorem 3.4.1 Suppose that Assumptions 3.4.1 to 3.4.4 hold and a learning rate ηt such that
0 < ηt ≤ min{ 1

µB , 1
L(τ+1)} is chosen, we have

E
[
∥wt+1 −w∗∥22

]
≤ (1− µηtB)E

[
∥wt −w∗∥22

]
+ η2tC, (5)

where

B = τ − τ

L(τ + 1)
, C = (2 + µ)G2 2τ

3 + 3τ2 + τ

6
+ (2Lτ2 + 4Lτ)Γ +

2(1 + ρR)τ
2G2

M
. (6)

Corollary 3.4.1 Suppose that Assumptions 3.4.1 to 3.4.4 hold with µ ≥ 0, a constant learning rate
η > 0 such that η ≤ 1

L(τ+1) , we have

E[F (wT )]− F ∗ ≤ L

2
(1− µηB)TE

[
∥w0 −w∗∥22

]
+

L

2

T∑
t=1

η2(1− µηB)T−tC. (7)

We investigate the effects of the hyperparameters Γ, M , and τ on the model according to Corollary
3.4.1. As indicated by the third component of C, reduced data heterogeneity Γ can get closer to
optimal performance. Similarly, an increase in M improves performance, with M = N yielding
optimal results. The impact of τ on convergence is intricate, augmenting τ accelerates convergence
rates as reflected by 1 − µηB. However, this acceleration is constrained by the three terms in C,
which ultimately limit peak performance potential.

Corollary 3.4.2 Let Assumptions 3.4.1 to 3.4.4 hold and L, µ,G, ρR be defined therein. Choose
κ = L

µ , γ = 2L2(τ+1)2

µτ(L(τ+1)−1) − 1, and the learning rate ηt =
2

µB(γ+t) . Then FLSS satisfies

E[F (wT )]− F ∗ ≤ κ

γ + T − 1

(
2C

µB2
+

µ(γ + 1)

2
E
[
∥w1 −w∗∥22

])
. (8)

It can be seen from Eq. (8) that limT→∞ E[F (wT )] − F ∗ = 0. Notably, when ηt = β
t+γ ≤

min{ 1
µB , 1

L(τ+1)} for some β > 1
µB , FLSS converges to the global optimum at a rate of O(1/T )

for strongly convex functions.

Communication and computational overhead. The local computation process of FLSS primarily
encompasses subspace extraction and local model training. The computational overhead associated
with subspace extraction mainly arises from the spectral decomposition of an (R+1)×(R+1) matrix,
where R is typically assumed to be of a small value. Consequently, the computational cost incurred by
subspace extraction is negligible compared to that of local model training. In terms of communication,
FLSS transmits a parameter vector, which has a size of either D or R, with the communication

6
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interval set to s. The average communication cost of each transmission isO((sR−R+D)/s). Since
R is much smaller than D, it is simplified to O(D/s). Additionally, FLSS mainly stores datasets,
a subspace, and corresponding singular values. The sizes of the subspace and singular values are
D ×R and L respectively, which are often negligible relative to the scale of local data.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. In this paper, we focus on classification tasks. We conduct extensive experiments on six
CV datasets FMNIST Xiao et al. (2017), Cifar10 Krizhevsky et al. (2009), Cifar100 Krizhevsky
et al. (2009), Tiny-Imagenet Le & Yang (2015), and NLP dataset AG News Zhang et al. (2015).
We use the ratio of 0.75 and 0.25 to divide the training data and test data. For the pathological
setting, we sample disjoint data with 2/2/10/20 labels per client from 10/10/100/200 labels of
FMNIST/Cifar10/Cifar100/Tiny-ImageNet. This scheme was first introduced in McMahan et al.
(2017). For practical settings, we sample data from six CV datasets and AG News based on the
Dirichlet distribution (Dir(β)) Kotz et al. (2019). The default β for CV and NLP tasks are 0.1 and 1,
respectively.

Baselines. We compare FLSS with eight federated learning baseline algorithms: FedAvg McMahan
et al. (2017), FedProx Li et al. (2020b), SCAFFOLD Karimireddy et al. (2020), Moon Li et al.
(2021a), FedDyn Acar et al. (2021), FedDC Gao et al. (2022), FedGen Zhu et al. (2021), FedNTD
Lee et al. (2022) , and three popular communication-efficient methods: Fetchsgd Rothchild et al.
(2020), Signsgd with error feedback Karimireddy et al. (2019), and STC Sattler et al. (2019).

Hyperparameters. For fair comparison, we set the baseline methods with local epochs as 5, the
number of clients as 20 by default, the training batch size as 128, the communication rounds as
400, and the learning rate as 0.01. For the four CV datasets, we adopt the popular 4-layer CNN by
default, following FedAvg, which contains two convolutional layers and two fully connected layers.
In addition, we use larger models ResNet-18 He et al. (2016) and ResNet-50 He et al. (2016). For
the text dataset, we used the text classification model fastText Joulin et al. (2016). All results are
averages of repeated experiments with three different random seeds. All experiments are run on
NVIDIA GeForce RTX 3090 GPUs.

4.2 PERFORMANCE COMPARISON AND ANALYSIS

4.2.1 PARAMETER COMPRESSION
Table 1: Average test accuracy and communication cost of different algorithms under varying degrees
of heterogeneity. These include traditional and communication-efficient FL algorithms.

Method Cifar10 Cifar100

Com.cost β=0.1 β=0.5 β=1 Com.cost β=0.1 β=0.5 β=1

FedAvg 0.17 G 57.45 65.29 67.24 0.18 G 28.33 29.71 30.07
FedProx 0.17 G 57.08 65.38 67.34 0.18 G 28.42 29.91 29.94

SCAFFOLD 0.17 G 56.30 67.87 68.01 0.18 G 29.07 29.10 30.12
Moon 0.17 G 57.65 65.33 67.41 0.18 G 28.47 29.83 30.03

FedDyn 0.17 G 55.03 67.58 67.81 0.18 G 29.02 29.02 30.22
FedDC 0.17 G 55.63 67.20 68.21 0.18 G 29.14 29.31 29.98
FedGen — 58.06 65.61 67.43 — 28.35 29.89 29.80
FedNTD 0.17 G 58.07 65.52 67.53 0.18 G 28.41 29.51 30.07

FedAvg+FLSS 35.14 M 59.44 67.19 69.82 37.00 M 28.41 31.47 31.61
Fetchsgd 43.92 M 52.57 59.83 62.29 46.23 M 22.66 23.98 25.38

Signsgd+EF 5.49 M 51.92 64.27 66.78 5.78 M 22.40 28.30 29.62
STC 5.49 M 48.62 59.02 57.29 5.78 M 21.32 25.30 24.09

Sign+EF+FLSS 1.11 M 52.43 64.69 63.43 1.16 M 24.11 29.85 30.61

We first focus on Cifar10 and Cifar100, and compare the accuracy and communication cost of
different algorithms that continue to communicate for 200 rounds after sampling in Tab. 1. For FLSS,
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the default settings are L = 200, R = 50, and s = 5. We list the accuracy of the update correction
algorithms based on the same communication cost as FedAvg. After using FLSS, the communication
cost is reduced by nearly 5×. Without any additional techniques (such as regularization), we can
achieve lower communication cost and comparable accuracy.

In addition, to illustrate the performance of FLSS in the compression framework, we apply it to
Signsgd+EF. In Cifar100, when we further reduce the communication cost of Signsgd+EF, the
accuracy increases from 0.99% to 1.71%.

4.2.2 PERFORMANCE ON VARIOUS DATASETS

Table 2: Test accuracy of different methods in two settings of statistical heterogeneity. Cifar100∗ and
TINY∗ represent the test results of ResNet-18.

Method Pathological setting Practical setting
FMNIST Cifar10 Cifar100 Cifar100∗ FMNIST Cifar100 TINY TINY∗ AG News

FedAvg 79.02 55.27 22.98 23.31 85.06 28.33 14.26 14.97 75.13
FedProx 78.81 55.38 23.06 23.93 84.06 28.42 14.12 15.10 75.33

Moon 78.21 55.41 22.91 23.65 85.03 28.47 15.21 14.71 75.54
FedDC 79.00 56.76 23.29 24.24 83.89 29.14 15.98 17.75 79.53
FedGen 78.61 56.34 23.51 27.52 84.27 28.35 15.44 14.85 75.98
FedNTD 78.36 56.62 23.60 27.30 84.96 28.41 15.43 15.20 75.11

FedAvg+FLSS 81.09 58.89 25.12 31.46 86.25 28.41 17.01 18.56 81.35

In a comparison involving seven methods, FedAvg+FLSS showed good performance in both patho-
logical and practical scenarios, as shown in Tab. 2. In the pathological setting of Cifar100, FLSS
achieves performance improvements of 1.83% compared to the baseline FedDC. Notably, applying
FLSS to FedAvg leads to an improvement from 0.08% to 6.23%, verifying the effectiveness of FLSS
and that early information from the global model can assist in obtaining better solutions. In addition,
it does not require further training and may be able to avoid problems such as overfitting caused by
overtraining in tens of millions of dimensional parameter spaces.

4.3 HETEROGENEITY

We studied the performance of FLSS under different β values, as shown in Tab. 1. We also compared
FedAvg+FLSS with other methods in pathological scenarios, as shown in Tab. 2. We observe that
FLSS outperforms most benchmarks in terms of accuracy. Notably, using the FLSS strategy, FedAvg
improves the accuracy in the Cifar100 by 8.15% and reduces the communication overhead.

4.4 SCALABILITY

Table 3: The test accuracy of the algorithms under different numbers of clients and different numbers
of participants. We report the average running time per round for 20 clients.

Method N = 20 N = 50 N = 100 Overhead
M = 20M = 10M = 50M = 10M ≥ 20M = 100M = 50M ≥ 50 Avg. time

FedAvg 57.45 56.46 57.10 56.31 57.65 50.25 49.70 49.80 32.26s
FedNTD 58.06 57.10 57.36 57.25 57.96 50.93 50.10 50.12 80.83s

FedAvg+FLSS 59.44 59.40 58.27 56.67 58.03 50.60 50.01 50.62 39.02s

In real scenarios, some clients are unable to join the entire federated learning process due to client
failures, network instability, etc. We simulate these scenarios by varying the number of clients M in
each iteration. Under different settings, FLSS still maintains its advantages, as shown in Tab. 3. In
addition, since FLSS introduces operations such as subspace update and projection, we evaluate the
average computational overhead of different algorithms when M = 20. Although FLSS has some
shortcomings in this regard, generally, accuracy and communication efficiency are improved.
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Figure 4: Performance of FLSS using different sampling rounds. After using the FLSS strategy, the
accuracy of FedAvg is improved and is better than the final accuracy within 400 rounds.

4.5 ABLATION STUDY

Influence of Streaming Subspace. To verify the importance of dynamically updating subspaces, we
evaluate the performance of two different strategies on Cifar100 with β = 0.5: Streaming Subspace
(S-Sub10, s = 10) and Fixed Subspace(F-Sub∞, s =∞). We tested the performance of 200 rounds
of communication, as shown in Tab. 4.

Notably, S-Sub shows about 1% higher accuracy than F-Sub across three networks. This is because
the fixed subspace only contains the global model information of the first 200 rounds, and the amount
of information is limited. In contrast, streaming methods dynamically adapt to model changes by
continuously updating the subspace, resulting in better accuracy than fixed subspace strategy.

Effect of Subspace Degrees of Freedom. As shown in Tab. 4, higher degrees of freedom can enhance
performance in FLSS. Specifically, when R = 20, 40, 50, the test accuracy of FedAvg+FLSS
gradually increases. This is because the higher the degree of freedom of the subspace, the more model
information it contains, which is consistent with Theorem 3.4.1. However, larger R also increases
storage and communication requirements, so the trade-off in degrees of freedom is necessary.

Additionally, to evaluate the effect of varying the number of sampling rounds L, we tested the
accuracy after continuing communication for 100 rounds following L sampling rounds, as shown in
Fig. 4. As L increases, the performance of FLSS increases and is higher than FedAvg final accuracy.

Effect of Attenuation Coefficient. We studied the impact of the FLSS test accuracy when the
attenuation coefficient λ is 1, 0.7, and 0.5, as shown in Tab. 4. We observe that the best performance
occurs when λ is 0.7. This observation suggests that the parameter space introduced later in the
streaming subspace strategy may be of greater significance for model updates. Compared with the
fixed subspace strategy, it emphasizes the importance of subspace tracking. Thus, a reasonable
selection of the attenuation coefficient can achieve better performance.
Table 4: Communication cost and test accuracy of FedAvg+FLSS under different hyperparameters,
including subspace degrees of freedom, attenuation coefficient, and sampling interval.

Model Evaluation λ = 0.7 S-Sub5 λ = 1 FedAvgF-Sub∞ S-Sub10 λ = 0.5 λ = 0.7 λ = 1 R = 20 R = 40

CNN Com.cost (M) 1e-2 18.50 37.00 37.00 37.00 36.98 36.99 180
Accuracy 30.52 31.13 30.83 31.57 31.47 30.98 31.25 29.71

ResNet-18 Com.cost (G) 1e-5 0.22 0.45 0.45 0.45 0.45 0.45 2.24
Accuracy 27.98 28.81 28.91 29.40 29.32 28.03 29.10 26.42

ResNet-50 Com.cost (G) 1e-5 0.47 0.95 0.95 0.95 0.95 0.95 4.74
Accuracy 21.37 22.51 22.35 23.09 23.08 22.82 22.86 21.61

5 CONCLUSION

To simultaneously address the high communication costs and suboptimal performance of federated
learning under statistical heterogeneity, we propose a general strategy called FLSS, with a theoretical
guarantee. Specifically, it helps the client better utilize the early information of the global model
and reduce the impact of heterogeneity on global performance by limiting local updates to the
global model subspace. Notably, FLSS reduces communication costs by transmitting the projection
coefficients of local model updates within the streaming subspace.
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Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and
Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

Samuel Kotz, Narayanaswamy Balakrishnan, and Norman L Johnson. Continuous multivariate
distributions, Volume 1: Models and applications, volume 334. John wiley & sons, 2019.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Gihun Lee, Minchan Jeong, Yongjin Shin, Sangmin Bae, and Se-Young Yun. Preservation of the
global knowledge by not-true distillation in federated learning. Advances in Neural Information
Processing Systems, 35:38461–38474, 2022.

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the intrinsic dimension
of objective landscapes. arXiv preprint arXiv:1804.08838, 2018.

Qinbin Li, Bingsheng He, and Dawn Song. Model-contrastive federated learning. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 10713–10722, 2021a.

Qinbin Li, Zeyi Wen, Zhaomin Wu, Sixu Hu, Naibo Wang, Yuan Li, Xu Liu, and Bingsheng He. A
survey on federated learning systems: Vision, hype and reality for data privacy and protection.
IEEE Transactions on Knowledge and Data Engineering, 2021b.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He. Federated learning on non-iid data silos: An
experimental study. In 2022 IEEE 38th international conference on data engineering (ICDE), pp.
965–978. IEEE, 2022a.

Tao Li, Lei Tan, Zhehao Huang, Qinghua Tao, Yipeng Liu, and Xiaolin Huang. Low dimensional
trajectory hypothesis is true: Dnns can be trained in tiny subspaces. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45(3):3411–3420, 2022b.

Tao Li, Yingwen Wu, Sizhe Chen, Kun Fang, and Xiaolin Huang. Subspace adversarial training.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
13409–13418, 2022c.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges,
methods, and future directions. IEEE signal processing magazine, 37(3):50–60, 2020a.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. Proceedings of Machine learning and systems,
2:429–450, 2020b.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of
fedavg on non-iid data. arXiv preprint arXiv:1907.02189, 2019.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer Vision–
ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pp. 740–755. Springer, 2014.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and Bill Dally. Deep gradient compression: Reducing
the communication bandwidth for distributed training. In International Conference on Learning
Representations, 2018.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Viraaji Mothukuri, Reza M Parizi, Seyedamin Pouriyeh, Yan Huang, Ali Dehghantanha, and Gautam
Srivastava. A survey on security and privacy of federated learning. Future Generation Computer
Systems, 115:619–640, 2021.

Yifan Niu and Weihong Deng. Federated learning for face recognition with gradient correction. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 1999–2007, 2022.
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A RELATED WORK

A.1 FEDERATED LEARNING

Federated learning is a distributed machine learning framework through iterative communication
and computation between servers and clients. FedAvg McMahan et al. (2017) is a well-known FL
method and the basic framework of many FL methods. We first introduce its main steps: (1) Server
sends the current global model to clients; (2) The clients initialize the current global model as its own
local model; (3) The clients train the local model on its own private data and send the trained local
models to the server; (4) The server receives the client models and aggregates them to obtain the
global model, and then resends it to the clients. However, the above solutions often face the problems
of high communication and poor performance in heterogeneous scenarios. Therefore, a lot of work
have been carried out to solve the above problems.

Traditional Federated Learning. Federated learning algorithms designed to enhance perfor-
mance in heterogeneous environments can be divided into four different types Zhang et al. (2023a):
regularization-based FL Li et al. (2020b); Acar et al. (2021); Kim et al. (2022), update correction-
based FL Karimireddy et al. (2020); Gao et al. (2022); Niu & Deng (2022), model split-based FL Li
et al. (2021a); Jiang et al. (2022), and knowledge distillation-based FL Zhu et al. (2021); Lee et al.
(2022); Gong et al. (2022); Huang et al. (2022). In the field of regularization-based FL, FedProx
Li et al. (2020b) introduces a proximal term to reduce the Euclidean distance between the global
model and the local model, while FedDyn Acar et al. (2021) adopts dynamic regularization to align
the local optimal point with the minimum value of the global empirical loss. For FL based on update
correction, methods such as SCAFFOLD Karimireddy et al. (2020) and FedDC Gao et al. (2022)
employ global gradient calibration to mitigate local model drift. However, these methods require
the transmission of twice the message size required by FedAvg McMahan et al. (2017). In model
split-based FL, MOON Li et al. (2021a) enhances the consistency between local and global model
representations by adding a contrastive learning loss. Meanwhile, in knowledge distillation-based FL,
FedGen Zhu et al. (2021) utilizes a generator trained on the server to absorb local insights and utilizes
the synthesized knowledge as an inductive bias to guide the local training process. Furthermore,
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FedNTD Lee et al. (2022) uses local non-true distillation to solve the problem of forgetting global
information during local training.

Communication-efficient Federated Learning. To address the challenge of communication over-
head in federated learning, many frameworks for gradient compression techniques have been proposed.
Fetchsgd Rothchild et al. (2020) utilizes sketching techniques to effectively compress local gradients.
Signsgd+EF Karimireddy et al. (2019) combines error feedback with 1-bit quantization, which
reduces communication costs and improves the generalization ability of Signsgd. Furthermore,
STC Sattler et al. (2019) is specifically designed for federated learning, combining top-k sparsity
and quantization techniques to optimize data transfer. Similarly, DGC Lin et al. (2018) utilizes
sparsification to preserve important gradients while minimizing bandwidth in distributed training
environments. LBGM Azam et al. (2021) utilizes the low-rank characteristics of gradient space to
reduce communication requirements; however, it does not fully consider the relationship between
early global model information and local model updates. Although these methods have proven their
feasibility in reducing communication load, their effectiveness is often limited in heterogeneous
environments. This limitation is due to the stochastic nature of the compression framework and the
fact that the client does not have complete information about the global model.

A.2 TRAINING IN TINY SUBSPACE

Many studies have emphasized the inherent low-dimensional characteristics of neural networks
Tuddenham et al. (2020); Vinyals & Povey (2012); Gressmann et al. (2020). A seminal study in Li
et al. (2018); Gur-Ari et al. (2018) reveals that training a neural network within a randomly chosen
subspace helps to achieve parameter compression, though the final accuracy may not be as high as
that in the original space. The following work Gressmann et al. (2020) improved the training of fixed
random subspaces by considering different layers of the network and re-drawing the random subspace
at each step. Different from random subspaces, Li et al. Li et al. (2022b;c) successfully extracted
a subspace that approximates the entire parameter trajectory by performing principal component
analysis on a pre-trained neural network. Efficient dimensionality reduction is achieved by limiting
the training process to this subspace.

However, although the above subspace contains model information to a certain extent, it is essentially
limited to the early stage of pre-training. Often it takes multiple epochs to reach its full potential.
In contrast, streaming subspace adapts to data changes by continuously updating the subspace to
dynamically capture real-time model information.

B ADDITIONAL EXPERIMENTS

B.1 EFFECT OF PROJECTED OBJECTS

Table 5: We tested the impact of using streaming subspace on model updates or gradients respectively
on algorithm performance.

Method Proj(gk
t ) Proj(∇Fkw

k
t,i) Proj(gk

t ) + Proj(∇Fk(w
k
t,i))

sr = 1 sr = 3 sr = 1 sr = 3 sr = 10 sr = 1 sr = 3 sr = 10

FedAvg+FLSS 57.34 60.02 55.98 57.58 56.58 56.10 57.01 56.28

We apply the streaming subspace strategy to different locations of FedAvg McMahan et al. (2017),
including the model updates and gradients of the local model. Then we tested the performance
of using ResNet-18 at different scaled (sr) learning rates in Cifar10, as shown in Tab. 5. Using
the streaming subspace strategy for model updates can improve communication efficiency and
performance through little additional computational overhead.

B.2 HETEROGENEITY

To further demonstrate the performance of the FLSS-equipped algorithms on different datasets, we
conduct additional experiments in heterogeneous scenarios, as shown in Tab. 6. From the results, we
can see that the algorithms with FLSS outperform FedAvg McMahan et al. (2017) and Signsgd+EF
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Table 6: Test accuracy on different datasets under Dirichlet distribution. Cifar100∗ represents using
ResNet-18 on Cifar100.

Method FMNIST Cifar100∗ TINY

β=0.1 β=0.5 β=1 β=0.1 β=0.5 β=1 β=0.1 β=0.5 β=1

FedAvg 85.06 91.02 91.18 23.04 26.42 27.43 14.26 15.61 18.47
FedProx 84.06 91.03 91.14 23.00 26.25 27.02 14.12 15.63 18.35

Moon 85.03 91.18 91.29 23.08 26.54 27.10 15.21 15.72 18.51
FedDyn 83.11 90.68 90.92 24.41 28.65 29.09 15.63 — 19.07
FedGen 84.27 91.17 91.25 23.42 26.24 27.85 15.44 15.80 18.72
FedNTD 84.96 91.15 91.36 22.84 26.51 27.15 15.43 15.77 18.39

FedAvg+FLSS 86.25 91.64 91.29 24.31 29.32 30.68 17.01 17.84 19.00

Fetchsgd 79.79 90.67 90.56 21.99 24.43 25.35 14.12 14.46 16.16
Signsgd+EF 80.79 90.76 90.37 22.57 25.99 26.01 14.02 14.20 16.86

STC 80.40 85.33 85.78 22.38 25.92 26.42 13.86 14.59 15.93
Sign+EF+FLSS 81.32 91.05 91.02 23.01 27.59 26.17 13.20 15.04 17.32

Karimireddy et al. (2019), which suggests that the FLSS strategy can effectively utilize the early
knowledge of the global model to achieve better performance.

B.3 CONVERGENCE

We present the loss throughout the training process in Fig. 5a. The experimental results confirm that
the FLSS-equipped FL algorithm converges. Notably, the FLSS loss slightly increases at 200 rounds
before continuing to decrease. This indicates that the model needs several rounds to adapt to the
streaming subspace intervention. The loss reduction shows that constraining local model updates to
subspace can continue to train and converge.

To verify the low-rank characteristics of different network update spaces, we compute the Singular
Values (SV) of the other networks, as shown in Fig. 5b, Fig. 5c, and Fig. 5d. We observe that smaller
networks, with larger percentages of the first few principal components, require fewer subspace
degrees of freedom to approximate the update trajectory. In contrast, larger networks, such as
ResNet-50, need more orthogonal bases to approximate their update trajectory.
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Figure 5: (a) is the training loss curve of FedAvg+FLSS in FMNIST. (b) to (d) are the singular value
distributions of the global model update trajectory of CNN in Cifar10, ResNet-18 in Cifar10, and
ResNet-50 in Cifar100, respectively.

B.4 FEATURES VISUALIZATION

We visualize the feature representations of the different algorithms in FMNIST using t-SNE Van der
Maaten & Hinton (2008) in Fig. 6. The feature representations extracted by FedAvg+FLSS become
more and more distinct with iterative updates of the algorithm. Based on Fig. 6b and Fig. 6f, it can
be seen that the FL algorithm equipped with FLSS ends up with more distinguishable features than
those extracted by FedAvg.
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(a) Initial (b) FedAvg (c) FLSS T : 10 (d) FLSS T : 50 (e) FLSS T : 150 (f) FLSS Final

Figure 6: t-SNE visualization of features extracted by the CNN model at different times on FMNIST.
FLSS Final and FedAvg denote the final features with and without FLSS, respectively. T denotes
the number of communication rounds.

Table 7: The impact of different client local training epochs on the performance of different algo-
rithms.

Method CNN Local Epochs ResNet Local Epochs
Com.cost 1 5 10 Com.cost 1 5 10

FedAvg 0.17 G 59.88 65.29 65.31 2.23 G 48.51 56.17 58.88
FedProx 0.17 G 59.77 65.38 65.11 2.23 G 48.44 56.03 58.27

Moon 0.17 G 59.93 65.33 65.26 2.23 G 48.74 56.28 59.24
FedGen — 60.03 65.61 65.12 — 49.23 56.24 59.04
FedNTD 0.17 G 60.42 65.52 65.15 2.23 G 49.64 56.42 59.06

FedAvg+FLSS 35.14 M 62.31 67.19 65.53 0.45 G 51.92 57.34 58.93

Fetchsgd 43.92 M 52.20 59.83 58.57 0.56 G — 54.18 56.04
Signsgd+EF 5.49 M 59.21 64.27 63.95 69.88 M 47.22 54.23 55.68

STC 5.49 M 59.55 59.02 62.38 69.88 M 47.91 55.03 55.35
Sign+EF+FLSS 1.11 M 59.01 64.69 64.06 14.0 M 49.02 54.77 56.81

B.5 DIFFERENT LOCAL EPOCHS

Increasing local epochs results in higher computational costs but reduces the number of communica-
tion rounds. We evaluate the performance of CNN and ResNet-18 over 400 rounds on Cifar10 with
β = 0.5, as shown in Tab. 7. Across different local epochs settings, FLSS performs better than most
baselines. Notably, FLSS shows more significant performance improvement with fewer local epochs.
Specifically, with 1 local epoch, FedAvg combined with FLSS achieves improvements of 2.43% and
3.41%, respectively.

B.6 COMPARISON WITH OTHER BASELINES

Table 8: Average test accuracy and communication cost of different algorithms under varying degrees
of heterogeneity.

Method Cifar10 Cifar100

β=0.1 β=0.5 β=1 β=0.1 β=0.5 β=1

LBGM 56.37(0.21G)64.42(0.20G)65.15(0.20G) 27.70(0.27G)28.81(0.27G)30.01(0.26 G)

FedAvg+FLSS59.44(0.21G)67.19(0.21G)69.82(0.21G) 28.41(0.22G)31.47(0.22G) 31.61(0.22G)

We compared the performance and total communication cost of 400 rounds between LBGM and
FLSS, as shown in Tab. 8. LBGM is a low-rank method based on gradient space, focusing on local
training trajectories, while FLSS targets low-rank properties of the global model. FLSS projects local
updates onto the global subspace to filter out harmful components. Additionally, LBGM emphasizes
a single gradient direction early in training, while FLSS uses all early training information, unifying
them into a low-rank subspace.
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C CONVERGENCE OF FLSS

C.1 NOTATION

We defined the local model update at device k as gk
t = wk

t+1 − wt, We define the low-
dimensional trajectory of the local model updated on device k within subspace P as ĝk

t ,
ĝk
t = ProjP(ProjPT(wk

t+1 − wt)). The global model parameters updated as wt+1 = wt +
1
M

∑
k∈Mt

ĝk
t , we define the following auxiliary variable: vt+1 = wt +

1
N

∑N
k=1 ĝ

k
t . We have

∥wt+1 −w∗∥22 = ∥wt+1 − vt+1 + vt+1 −w∗∥22
= ∥wt+1 − vt+1∥22 + ∥vt+1 −w∗∥22 + 2⟨wt+1 − vt+1,vt+1 −w∗⟩.

(9)

In the following, we bound the average of the terms on the right hand side (RHS).

C.2 KEY LEMMAS

Lemma C.2.1 Suppose that Assumptions 3.4.1 to 3.4.4 hold, the difference between wt+1 and vt+1

can be bounded

E
[
∥wt+1 − vt+1∥22

]
≤ 2η2t τ

2G2

M
+

2
∑D

r=R+1 σ
2
r

M
∑D

r=1 σ
2
r

η2t τ
2G2.

P roof. See Appendix C.7.

Lemma C.2.2 Suppose that Assumptions 3.4.1 to 3.4.4 hold, the upper bound of E
[
∥vt+1 −w∗∥22

]
is as follows

E
[
∥vt+1 −w∗∥22

]
≤ (1− µηtτ(1− ηt))E

[
∥wt −w∗∥22

]
+ (2 + µ) η2tG

2 τ(τ + 1)(2τ + 1)

6
+ (2Lη2t τ

2 + 4Lη2t τ)Γ.

P roof. See Appendix C.8.

Lemma C.2.3 Let EMt
denote expectation over the device scheduling randomness at the global

iteration t. We have EMt
[wt+1] = vt+1, from which it follows that

EMt [⟨wt+1 − vt+1,vt+1 −w∗⟩] = 0.

P roof . Due to the randomness of the device scheduling policy and the scheduling update of each
device appears

(
N−1
M−1

)
times, it follows that

EMt

[
1

M

∑
k∈Mt

ĝk
t

]
=

(
N−1
M−1

)
M
(
N
M

) N∑
k=1

ĝk
t =

1

N

N∑
k=1

ĝk
t . (10)

C.3 THEOREMS

Theorem C.3.1 Suppose that Assumptions 3.4.1 to 3.4.4 hold and a learning rate ηt such that
0 < ηt ≤ min{ 1

µB , 1
L(τ+1)} is chosen, we have

E
[
∥wt+1 −w∗∥22

]
≤ (1− µηtB)E

[
∥wt −w∗∥22

]
+ η2tC, (11)

where

B = τ − τ

L(τ + 1)
, C = (2 + µ)G2 2τ

3 + 3τ2 + τ

6
+ (2Lτ2 + 4Lτ)Γ +

2(1 + ρR)τ
2G2

M
. (12)

Proof. See Appendix C.9.
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C.4 COROLLARIES

Corollary C.4.1 Suppose that Assumptions 3.4.1 to 3.4.4 hold with µ ≥ 0, a constant learning rate
η > 0 such that η ≤ 1

L(τ+1) , we have

E[F (wT )]− F ∗ ≤ L

2
(1− µηB)TE

[
∥w0 −w∗∥22

]
+

L

2

T∑
t=1

η2(1− µηB)T−tC. (13)

Proof. See Appendix C.10.1.

Corollary C.4.2 Let Assumptions 3.4.1 to 3.4.4 hold and L, µ,G, ρR be defined therein. Choose
κ = L

µ , γ = 2L2(τ+1)2

µτ(L(τ+1)−1) − 1, and the learning rate ηt =
2

µB(γ+t) . Then FLSS satisfies

E[F (wT )]− F ∗ ≤ κ

γ + T − 1

(
2C

µB2
+

µ(γ + 1)

2
E
[
∥w1 −w∗∥22

])
. (14)

Proof. See Appendix C.10.2.

C.5 DISCUSSION ON ASSUMPTION 3.4.4

We define G to be the set consisting of global model updates and G ∈ RD×J to be the matrix
consisting of the set of global model updates G. In the experiments, G ∈ RD×J can be obtained by
sampling the global updates. A truncated singular value decomposition of G of rank R yields P,
whose singular values are σ1, ..., σD. Based on the linearity property of expectation, we have

E [Proj(gt)] = E[PPTgt] = PPTE[gt] = Proj(E[gt]). (15)

Due to the low-rank character of the global model update space, the last few singular values are small
and the corresponding dimensions are almost null space. In Eq. (15), it is assumed that the expectation
of the global model update E [gt] will be contained within the subspace P, so E [Proj(gt)] = E [gt].

C.6 PROOFS OF PROPOSITION 3.4.1

For the global update gt ∈ G, we compute the expectation of the squared projection error:

Egt∈G(∥gt − Proj(gt)∥2) =
1

J

J∑
j=1

∥Gj −PPTGj∥2. (16)

Using trace properties, we have

1

J

J∑
i=1

∥Gj −PPTGj∥2 =
1

J
tr(GT(ID −PPT)G) =

1

J
tr((ID −PPT)GGT). (17)

Since ID −PPT projected GGT to a space orthogonal to the columns of P, we have

E(∥gt − Proj(gt)∥2) =
1

J

D∑
r=R+1

σ2
r ≤

∑D
r=R+1 σ

2
r∑D

r=1 σ
2
r

η2t τ
2G2. (18)

The last inequality is due to Assumption 3.4.3, E
[
∥∇Fk

(
wk

t , ξ
k
t

)
∥22
]
≤ G2, so that E

[
∥gt∥22

]
≤

η2t τ
2G2 and ∥G∥22 ≤ Jη2t τ

2G2.
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C.7 PROOF OF LEMMA C.2.1

According to the definitions, wt+1 = wt +
1
M

∑
k∈Mt

ĝk
t , vt+1 = wt +

1
N

∑N
k=1 ĝ

k
t , im ∈ Mt,

and ĝt ≜ 1
N

∑N
k=1 ĝ

k
t . Taking the expectation of the first term of Eq. (9), we have

EMt

[
∥wt+1 − vt+1∥22

]
= EMt

∥∥∥∥∥ 1

M

M∑
m=1

(
ĝim
t − ĝt

)∥∥∥∥∥
2

2


=

1

M2
EMt

 M∑
m=1

∥∥ĝim
t − ĝt

∥∥2
2
+

M∑
m=1

M∑
m′=1,m′ ̸=m

⟨ĝim
t − ĝt, ĝ

im′
t − ĝt⟩

 .

(19)

Due to the symmetry, it follows that

EMt

[
M∑

m=1

∥∥ĝim
t − ĝt

∥∥2
2

]
=

(
N−1
M−1

)(
N
M

) N∑
k=1

∥ĝk
t − ĝt∥22 =

M

N

N∑
k=1

∥∥ĝk
t − ĝt

∥∥2
2
, (20)

where the first equality is because there are
(
N
M

)
choices in selecting M from N clients. For each

index k, k ∈ [N ], the number of times is selected is
(
N−1
M−1

)
.

EMt

[ M∑
m=1

M∑
m′=1,m′ ̸=m

⟨ĝim
t − ĝt, ĝ

im′
t − ĝt⟩

]
=

(
N−2
M−2

)(
N
M

) K∑
k=1

N∑
k′=1
k′ ̸=k

⟨ĝk
t − ĝt, ĝ

k′

t − ĝt⟩

= −
(
N−2
M−2

)(
N
M

) N∑
k=1

∥∥ĝk
t − ĝt

∥∥2
2
≤ 0.

(21)

where the first equality is because, for each particular index pair (k, k′) , k′ ∈ [N ] , k ̸= k′, the

number of times is selected is
(
N−2
M−2

)
, and the second equality is because

∥∥∥∑N
k=1

(
ĝk
t − ĝt

)∥∥∥2
2
= 0.

Substituting Eq. (20) and Eq. (21) into Eq. (19) yields

E
[
∥wt+1 − vt+1∥22

]
=

1

NM

N∑
k=1

E
[∥∥ĝk

t − ĝt

∥∥2
2

]
+

(
N−2
M−2

)
M2
(
N
M

) N∑
k=1

N∑
k′=1
k′ ̸=k

⟨ĝk
t − ĝt, ĝ

k′

t − ĝt⟩ ≤
1

NM

N∑
k=1

E
[∥∥ĝk

t − ĝt

∥∥2
2

]

=
1

NM

(
N∑

k=1

E
[∥∥ĝk

t

∥∥2
2

]
− E

[
∥ĝt∥22

])
≤ 1

NM

N∑
k=1

E
[∥∥ĝk

t

∥∥2
2

]
≤ 1

NM

N∑
k=1

E
[∥∥gk

t + ekt
∥∥2
2

]
≤2η2t τ

2G2

M
+

2
∑D

r=R+1 σ
2
r

M
∑D

r=1 σ
2
r

η2t τ
2G2.

(22)

C.8 PROOF OF LEMMA C.2.2

According to the definition of vt+1, vt+1 = wt+
1
N

∑N
k=1 ĝ

k
t , taking the expectation and expanding

the second term of the Eq. (9), we have

E
[
∥vt+1 −w∗∥22

]
= E

[
∥wt −w∗∥22

]
︸ ︷︷ ︸

A1

+E

∥∥∥∥∥ 1

N

N∑
k=1

ĝk
t

∥∥∥∥∥
2

2


︸ ︷︷ ︸

A2

+2E

[〈
wt −w∗,

1

N

N∑
k=1

ĝk
t

〉]
︸ ︷︷ ︸

A3

.

(23)
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For A2, due to the convexity of ∥ · ∥22 and the L-smoothness of Fk(·),
∥∥∇Fk

(
wk

t,i, ξ
k
t,i

)∥∥2 ≤
2L
(
Fk(w

k
t,i)− F ∗

k

)
, we have

A2 ≤
1

N

N∑
k=1

E
[
∥ĝk

t ∥22
]
≤ 1

N

N∑
k=1

E
[
∥gk

t ∥22
]
=

η2t
N

N∑
k=1

E

∥∥∥∥∥
τ∑

i=1

∇Fk

(
wk

t,i, ξ
k
t,i

)∥∥∥∥∥
2

2


≤ η2t τ

N

N∑
k=1

τ∑
i=1

E
[∥∥∇Fk

(
wk

t,i, ξ
k
t,i

)∥∥2
2

]
≤ 2Lη2t τ

N

N∑
k=1

τ∑
i=1

E
[
Fk(w

k
t,i)− F ∗

k

]
.

(24)

For A3, according to Assumption 3.4.4 and the definition of ĝk
t , we can know that ĝk

t =
ProjP(ProjPT(gk

t )), and ProjP(ProjPT(wt −w∗) = wt −w∗ + ϵt. We have

2E

[
⟨wt −w∗,

1

N

N∑
k=1

ĝk
t ⟩

]
=

2ηt
N

N∑
k=1

E

[
⟨w∗ −wt,

τ∑
i=1

∇Fk

(
wk

t,i, ξ
k
t,i

)
⟩

]
︸ ︷︷ ︸

B1

. (25)

For B1, we split w∗ − wt into w∗ − wk
t,i and wk

t,i − wt, so B1 can be split
into two items: C1 = 2ηt

K

∑N
k=1

∑τ
i=1 E

[
⟨wk

t,i −wt,∇Fk

(
wk

t,i, ξ
k
t,i

)
⟩
]
, C2 =

2ηt

K

∑N
k=1

∑τ
i=1 E

[
⟨w∗ −wk

t,i,∇Fk

(
wk

t,i, ξ
k
t,i

)
⟩
]
. So next we calculate the upper bounds

of these two terms respectively. To bound C1, we have

C1 ≤
ηt
N

N∑
k=1

τ∑
i=1

E
[
1

ηt

∥∥wk
t,i −wt

∥∥2
2
+ ηt

∥∥∇Fk

(
wk

t,i, ξ
k
t,i

)∥∥2
2

]

≤ 1

N

N∑
k=1

τ∑
i=1

E
[∥∥wk

t,i −wt

∥∥2
2

]
+

2Lη2t
N

N∑
k=1

τ∑
i=1

E
[
Fk(w

k
t,i)− F ∗

k

]
,

(26)

where the first inequality is by Cauchy-Schwarz inequality, and the second inequality is by the
L-smoothness of Fk(·),

∥∥∇Fk

(
wk

t,i, ξ
k
t,i

)∥∥2 ≤ 2L
(
Fk(w

k
t,i)− F ∗

k

)
. To bound C2, we have

C2 =
2ηt
N

N∑
k=1

τ∑
i=1

E
[
⟨w∗ −wk

t,i,∇Fk

(
wk

t,i

)
⟩
]

≤ 2ηt
N

N∑
k=1

τ∑
i=1

E
[
Fk(w

∗)− Fk(w
k
t,i)−

µ

2

∥∥wk
t,i −w∗∥∥2

2

]
,

(27)

where the first equality is by Eξ

[
∇Fk

(
wt, ξ

k
t,i

)]
= ∇Fk (wt) ,∀i, k, t and the first inequality is by

the fact that Fk is µ-strongly convex.

For A3, substituting Eq. (26) and Eq. (27) into Eq. (25), we have

2E

[
⟨wt −w∗,

1

N

N∑
k=1

ĝk
t ⟩

]
≤ 1

N

N∑
k=1

τ∑
i=1

E
[∥∥wk

t,i −wt

∥∥2
2

]
+

2Lη2t
N

N∑
k=1

τ∑
i=1

E
[
Fk(w

k
t,i)− F ∗

k

]
+

2ηt
N

N∑
k=1

τ∑
i=1

E
(
Fk(w

∗)− Fk(w
k
t,i)
)
− µηt

N

N∑
k=1

τ∑
i=1

E
[∥∥wk

t,i −w∗∥∥2
2

]
.

(28)
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For E
[
∥vt+1 −w∗∥22

]
, substituting Eq. (28) and Eq. (24) into Eq. (23), we have

E
[
∥vt+1 −w∗∥22

]
≤E

[
∥wt −w∗∥22

]
+

2Lη2t τ

N

N∑
k=1

τ∑
i=1

E
[
Fk(w

k
t,i)− F ∗

k

]
+

1

N

N∑
k=1

τ∑
i=1

E
[∥∥wk

t,i −wt

∥∥2
2

]
+

2Lη2t
N

N∑
k=1

τ∑
i=1

E
[
Fk(w

k
t,i)− F ∗

k

]
+

2ηt
N

N∑
k=1

τ∑
i=1

E
(
Fk(w

∗)− Fk(w
k
t,i)
)

− µηt
N

N∑
k=1

τ∑
i=1

E
[∥∥wk

t,i −w∗∥∥2
2

]
=E

[
∥wt −w∗∥22

]
− µηt

N

N∑
k=1

τ∑
i=1

E
[∥∥wk

t,i −w∗∥∥2
2

]
︸ ︷︷ ︸

D1

+
1

N

N∑
k=1

τ∑
i=1

E
[∥∥wk

t,i −wt

∥∥2
2

]

+
2Lη2t (τ + 1)

N

N∑
k=1

τ∑
i=1

E
[
Fk(w

k
t,i)− F ∗

k

]
− 2ηt

N

N∑
k=1

τ∑
i=1

E
(
Fk(w

k
t,i − Fk(w

∗))
)

︸ ︷︷ ︸
D2

.

(29)

To bound D1, we first calculate the upper bound of −
∥∥wk

t,i −w∗
∥∥2
2

−
∥∥wk

t,i −w∗∥∥2
2
= −

∥∥wk
t,i −wt

∥∥2
2
− ∥wt −w∗∥22 − 2⟨wk

t,i −wt,wt −w∗⟩

≤ −
∥∥wk

t,i −wt

∥∥2
2
− ∥wt −w∗∥22 +

1

ηt

∥∥wk
t,i −wt

∥∥2
2
+ ηt ∥wt −w∗∥22

= −(1− ηt) ∥wt −w∗∥22 +
(

1

ηt
− 1

)∥∥wk
t,i −wt

∥∥2
2
, (30)

where the first inequality is by Cauchy-Schwarz inequality. We next aim to bound D2. We define γt =
2ηt(1−Lηtτ−Lηt). Let γt ≥ 0, we have ηt ≤ 1

L(τ+1) , γt ≤ 2ηt. We define Γ = F ∗− 1
N

∑N
k=1 F

∗
k ,

which is a measure of non-IID degree. Then we have

D2 =
2Lη2t (τ + 1)

N

N∑
k=1

τ∑
i=1

E
[
Fk(w

k
t,i)− F ∗

k

]
− 2ηt

N

N∑
k=1

τ∑
i=1

E
(
Fk(w

k
t,i − Fk(w

∗))
)

= −γt
N

N∑
k=1

τ∑
i=1

E
[
Fk(w

k
t,i)− F ∗]

︸ ︷︷ ︸
E

+
2Lη2t (τ + 1)

N

N∑
k=1

τ∑
i=1

E [F ∗ − F ∗
k ] .

(31)

To bound E, considering γt ≥ 0, we need to obtain the lower bound of
1
N

∑N
k=1

∑τ
i=1 E

[
Fk(w

k
t,i)− F ∗]. Then, we split Fk(w

k
t,i) − F ∗ into Fk(w

k
t,i) − Fk(wt)

and Fk(wt)−F ∗, and take the expectations of them, respectively. We first calculate the lower bound
of 1

N

∑N
k=1

∑τ
i=1 E

[
Fk(w

k
t,i)− Fk(wt)

]
:

1

N

N∑
k=1

τ∑
i=1

E
[
Fk(w

k
t,i)− Fk(wt)

]
≥ 1

N

N∑
k=1

τ∑
i=1

E
[
⟨∇Fk(wt),w

k
t,i −wt⟩

]
≥− 1

2N

N∑
k=1

τ∑
i=1

E
[
ηt∥∇Fk(wt)∥2 +

1

ηt
∥wk

t,i −wt∥2
]

≥− 1

N

N∑
k=1

τ∑
i=1

E
[
ηtL [Fk(wt)− F ∗

k ] +
1

2ηt
∥wk

t,i −wt∥2
]
.

(32)
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Where the first inequality is by the convexity of Fk(·), the second inequality is by Cauchy-
Schwarz inequality, and the third inequality is by the L-smoothness of Fk(·), ∥∇Fk (wt)∥2 ≤
2L (Fk(wt)− F ∗

k ).

According to the above formula, we can obtain the bounds of −γt

N

∑N
k=1

∑τ
i=1 E

[
Fk(w

k
t,i)− F ∗]

− γt
N

N∑
k=1

τ∑
i=1

E
[
Fk(w

k
t,i)− F ∗]

≤γt
N

N∑
k=1

τ∑
i=1

E
[
ηtL (Fk(wt)− F ∗

k ) +
1

2ηt
∥wk

t,i −wt∥2 − (F (wt)− F ∗)

]
.

(33)

For D2, recall the property of γt in Eq. (31) , 0 ≤ γt ≤ 2ηt, substituting Eq. (33) into Eq. (31), we
have

− γt
N

N∑
k=1

τ∑
i=1

E
[
Fk(w

k
t,i)− F ∗]+ 2Lη2t τ(τ + 1)Γ

≤γt
N

N∑
k=1

τ∑
i=1

E
[
ηtL (Fk(wt)− F ∗

k ) +
1

2ηt
∥wk

t,i −wt∥2 − (F (wt)− F ∗)

]
+ 2Lη2t τ(τ + 1)Γ

=
γt(ηtL− 1)

N

N∑
k=1

τ∑
i=1

E [F (wt)− F ∗] + (2Lη2t τ
2 + 2Lη2t τ + γtηtLτ)Γ

+
γt

2Nηt

N∑
k=1

τ∑
i=1

E
[
∥wk

t,i −wt∥2
]

≤(2Lη2t τ2 + 4Lη2t τ)Γ +
1

N

N∑
k=1

τ∑
i=1

E
[
∥wk

t,i −wt∥2
]
. (34)

So, for E
[
∥vt+1 −w∗∥22

]
, substituting Eq. (34) and Eq. (30) into Eq. (29), we have

E
[
∥vt+1 −w∗∥22

]
≤(1− µηtτ(1− ηt))E

[
∥wt −w∗∥22

]
+ (2Lη2t τ

2 + 4Lη2t τ)Γ +
(2 + µ(1− ηt))

N

N∑
k=1

τ∑
i=1

E
[∥∥wk

t,i −wt

∥∥2
2

]
︸ ︷︷ ︸

F

.

(35)
For F , according to the fact wk

t,i − wt =
∑i

j=1 ηt∇Fk

(
wk

t,j , ξ
k
t,j

)
, and Assumption 3.4.3, the

expected squared l2-norm of the stochastic gradients is bounded. We have

(2 + µ(1− ηt))η
2
t

N

N∑
k=1

τ∑
i=1

E


∥∥∥∥∥∥

i∑
j=1

∇Fk

(
wk

t,j , ξ
k
t,j

)∥∥∥∥∥∥
2

2

 ≤ (2 + µ− µηt))η
2
tG

2 τ(τ + 1)(2τ + 1)

6
.

(36)
So, for the upper bound of E

[
∥vt+1 −w∗∥22

]
, due to 1 − ηt < 1 , substituting Eq. (36) into Eq.

(35), we have

E
[
∥vt+1 −w∗∥22

]
≤(1− µηtτ(1− ηt))E

[
∥wt −w∗∥22

]
+ (2 + µ(1− ηt)) η

2
tG

2 τ(τ + 1)(2τ + 1)

6
+ (2Lη2t τ

2 + 4Lη2t τ)Γ

≤(1− µηtτ(1− ηt))E
[
∥wt −w∗∥22

]
+ (2 + µ) η2tG

2 τ(τ + 1)(2τ + 1)

6
+ (2Lη2t τ

2 + 4Lη2t τ)Γ.

(37)
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C.9 PROOFS OF THEOREM C.3.1

According to Lemma C.2.1 to C.2.3, and a learning rate ηt such that 0 < ηt ≤ min{ 1
µB , 1

L(τ+1)}, it
can be concluded:

E
[
∥wt+1 −w∗∥22

]
≤(1− µηtτ(1− ηt))E

[
∥wt −w∗∥22

]
+

2
∑D

r=R+1 σ
2
r

M
∑D

r=1 σ
2
r

η2t τ
2G2

+ (2 + µ) η2tG
2 τ(τ + 1)(2τ + 1)

6
+ (2Lη2t τ

2 + 4Lη2t τ)Γ +
2η2t τ

2G2

M

≤(1− µηtB)E
[
∥wt −w∗∥22

]
+ η2tC,

(38)
where

B = τ − τ

L(τ + 1)
, C = (2 + µ)G2 2τ

3 + 3τ2 + τ

6
+ (2Lτ2 + 4Lτ)Γ +

2(1 + ρR)τ
2G2

M
. (39)

C.10 PROOFS OF COROLLARIES

C.10.1 PROOF OF COROLLARY C.4.1

Assuming that Assumptions 3.4.1 to 3.4.4 hold with µ ≥ 0, we consider a constant learning rate η

such that 0 < η ≤ min
{

1
µB , 1

L(τ+1)

}
. According to Theorem C.3.1, we have

E
[
∥wT −w∗∥22

]
≤ (1− µηB)TE

[
∥w0 −w∗∥22

]
+

T∑
t=1

η2(1− µηB)T−tC. (40)

From the L-smoothness of function F (·), E[F (wT )] − F ∗ ≤ L
2E
[
∥wT −w∗∥22

]
, after T global

iterations, we have

E[F (wT )]− F ∗ ≤ L

2
(1− µηB)TE

[
∥w0 −w∗∥22

]
+

L

2

T∑
t=1

η2(1− µηB)T−tC. (41)

C.10.2 PROOF OF COROLLARY C.4.2

Let ∆t = E
[
∥wt −w∗∥22

]
and consider a diminishing learning rate, ηt = β

t+γ for some β > 1
µB

and γ > 0 such that η1 ≤ min{ 1
µB , 1

L(τ+1)} = 1
L(τ+1) . We will prove ∆t ≤ v

γ+t where v =

max
{

β2C
βµB−1 , (γ + 1)∆1

}
. We prove it by induction. The definition of v ensures that it holds for

t = 1. Assuming that it also holds for ∆t, we draw the conclusion

∆t+1 ≤ (1− ηtµB)∆t + η2tC ≤
(
1− βµB

t+ γ

)
v

t+ γ
+

β2C

(t+ γ)2

=
t+ γ − 1

(t+ γ)2
v +

[
β2C

(t+ γ)2
− βµB − 1

(t+ γ)2
v

]
≤ v

t+ γ + 1
.

(42)

Then by the L-smoothness of F (·), we have E[F (wt)]− F ∗ ≤ L
2∆t ≤ L

2
v

γ+t . We choose β = 2
µB ,

γ = 2L2(τ+1)2

µτ(L(τ+1)−1) − 1, and denote κ = L
µ . Therefore, ηt can be further expressed as ηt = 2

µB(γ+t) .
we have

ν = max

{
β2C

βµB − 1
, (γ + 1)∆1

}
≤ β2C

βµB − 1
+ (γ + 1)∆1 =

4C

µ2B2
+ (γ + 1)∆1, (43)

and

E[F (wT )]− F ∗ ≤ L

2

v

γ + t
≤ κ

γ + t

(
2C

µB2
+

µ(γ + 1)

2
∆1

)
. (44)
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D HYPERPARAMETERS USED IN BASELINE ALGORITHMS

Besides the hyperparameter setting provided in the main body, the other hyperparameters are as
follows: For FedProx, we set µ = 0.01; for MOON, we set τ = 1, µ = 0.01; for FedGen, the server
epoch is 1000 and the generator learning rate is 0.005; for FedDC, we set α = 0.5; for FedDyn, we
set α = 0.5; for FedNTD, we set β = 0.001, τ = 1. For communication-efficient algorithms, we set
δ = 0.05 in LBGM; for signSGD and STC, we set their compression ratios as 1/32. Besides, We use
the SGD optimizer in all experiments with momentum set to 0.

E FURTHER DISCUSSION

We found that the global model space of federated learning has low rank properties. In fact, due to
the scarcity of client data, federated learning algorithms face the risk of overfitting. By restricting
the local model to a low dimensional subspace, the degree of freedom in model updates is reduced.
This can be used as a basis for many federated learning algorithms to improve their generalization
capabilities.

In addition, since the global model update of federated learning can be represented with fewer orthog-
onal bases, FLSS can also be widely integrated as a compression strategy into various compression
frameworks to further reduce the compression rate. Compared with traditional compression schemes,
FLSS pays more attention to the distribution of model parameters or gradient space. FLSS can
adaptively select appropriate orthogonal bases to represent model updates for different networks and
different scenarios. In other words, the compression of FLSS is data-driven and task-relevant.

In fact, many algorithms address the heterogeneity problem by considering local and global consis-
tency. For instance, model parameter consistency is tackled by FedProx, representation consistency
by Moon, and logit consistency by FedNTD. In contrast to these approaches, our method emphasizes
the directional consistency between global and local updates, constraining the update direction by
applying a projection to limit the angle.
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