

000 SPIKING DISCREPANCY TRANSFORMER FOR POINT 001 CLOUD ANALYSIS 002 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

011 Spiking Transformer has sparked growing interest, with the Spiking Self-Attention
012 merging spikes with self-attention to deliver both energy efficiency and competitive
013 performance. However, existing work primarily focuses on 2D visual tasks, and
014 in the domain of 3D point clouds, the disorder and complexity of spatial informa-
015 tion, along with the scale of the point clouds, present significant challenges. For
016 point clouds, we introduce spiking discrepancy, measuring differences in spike
017 features to highlight key information, and then construct the Spiking Discrepancy
018 Attention Mechanism (SDAM). SDAM contains two variants: the Spiking Element
019 Discrepancy Attention captures local geometric correlations between central points
020 and neighboring points, while the Spiking Intensity Discrepancy Attention char-
021 acterizes structural patterns of point clouds based on macroscopic spike statistics.
022 Moreover, we propose a Spatially-Aware Spiking Neuron. Based on these, we
023 construct a hierarchical Spiking Discrepancy Transformer. Experimental results
024 demonstrate that our method achieves state-of-the-art performance within the Spik-
025 ing Neural Networks and exhibits impressive performance compared to Artificial
026 Neural Networks along with a few parameters and significantly lower theoretical
027 energy consumption.

028 1 INTRODUCTION

030 Spiking Neural Networks (SNNs), regarded as the third generation Neural Networks Maass (1997),
031 are characterized by their biological plausibility Roy et al. (2019), spike-driven characteristics, and low
032 power consumption. By emulating the dynamics of biological neurons, SNNs utilize asynchronous
033 binary spikes for information transmission, with the membrane potential updated only upon the
034 arrival of spikes. This unique feature allows SNNs to avoid unnecessary computations on zero values,
035 making them promising candidates on neuromorphic hardware, such as TrueNorth Merolla et al.
036 (2014) and Loihi Davies et al. (2018).

037 Researchers are making extensive efforts to enhance the performance of SNNs across various visual
038 tasks, including image classification Fang et al. (2021b;a); Guo et al. (2023); Meng et al. (2023); Xu
039 et al. (2024); Shen et al. (2024b), object detection Su et al. (2023); Luo et al. (2024); Qu et al. (2025),
040 and semantic segmentation Yao et al. (2024a). Recently, inspired by the impressive achievements
041 of vision transformers Dosovitskiy et al. (2021); Liu et al. (2021) in Artificial Neural Networks
042 (ANNs), attempts have been made to incorporate transformer-based architectures into SNNs. Notably,
043 Spikformer Zhou et al. (2023c) introduces Spiking Self-Attention (SSA) mechanism, while the Spike-
044 Driven Transformer Yao et al. (2024b) employs Spike-Driven Self-Attention. Other studies have
045 focused on structural enhancements Yao et al. (2021); Zhou et al. (2023a;b); Zhang et al. (2024b);
046 Qiu et al. (2024b); Deng et al. (2024); Qiu et al. (2025), training methodologies Wang et al. (2023b),
047 and applications across different tasks Bal & Sengupta (2024). However, these efforts are primarily
048 confined to 2D visual domains. The exploration of the Spiking Transformer in 3D point clouds
049 remains limited.

050 3D point clouds analysis is critical in autonomous driving Chen et al. (2017); Kidono et al. (2011);
051 Navarro-Serment et al. (2010), scene understanding Chen et al. (2019), and robotics Correll et al.
052 (2016). SNNs leverage sparse spike features to replace the dense features used in ANNs, resulting in
053 significant improvements in energy efficiency. However, the 3D point clouds exploration of SNNs
remains quite limited, with existing approaches Lan et al. (2023b); Ren et al. (2023); Wu et al.
(2024b) demonstrating inadequate performance. Furthermore, the architecture has yet to be designed

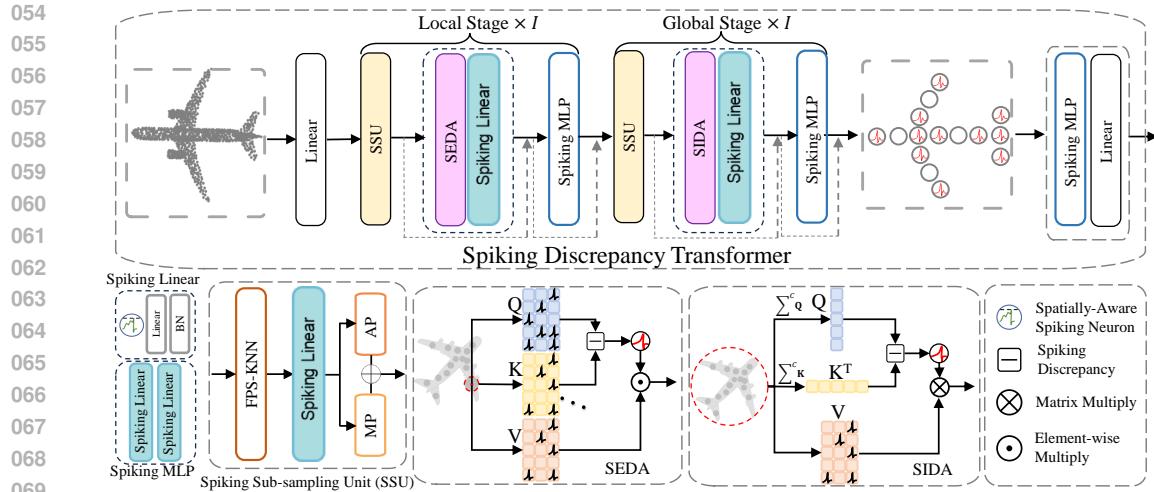


Figure 1: The overview of Spiking Discrepancy Transformer and illustration of key components.

to effectively integrate the biological characteristics and the spatial information. It is intriguing to explore the application of Spiking Transformers in the processing of point clouds.

However, using villa SSA and Spikformer Zhou et al. (2023c) to process 3D features is not ideal. There are primarily three challenges. Firstly, salient points representations located at object edges or at boundaries between different categories are critical for accurate prediction. However, SSA tends to focus on highly similar points, smoothing even neglecting salient features, consequently degrading performance. Secondly, unlike the smaller number of tokens in 2D visual tasks, point clouds usually consist of a large number of points, making the use of SSA to model global dependence computationally prohibitive. Furthermore, considering the redundancy in point cloud data, SSA is incapable of simultaneously capturing both local and global features. Overall, 3D features call for a redesigned, efficient attention mechanism that highlights discriminative (edge) features and seamlessly scales from local to global point-cloud feature modeling.

To address the above challenges, we propose a Spiking Discrepancy Attention Mechanism (SDAM), which uses the spiking differences between the Query and Key as the attention matrix to enhance the representation capability for complex spatial structures. It consists of Spiking Element Discrepancy Attention (SEDA) and Spiking Intensity Discrepancy Attention (SIDA), applied in the shallow and deep stages, respectively. The SEDA captures local feature relationships between central points and neighboring points through fine-grained element-wise spiking differences. In contrast, the SIDA models global dependencies using coarse-grained differences in spiking intensity among central points. Additionally, we design a Spatially-Aware Spiking Neuron that effectively encodes spatial information in the initial membrane potential, compensating for the loss of spatial information in spike representations. Ultimately, we integrate SDAM with Spatially-Aware Spiking Neuron into a hierarchical multi-stage local-global architecture, termed as Spiking Discrepancy Transformer, which is shown in Figure 1. The main contributions are as follows:

- We propose a Spiking Discrepancy Attention Mechanism (SDAM) tailored to the characteristics of point clouds. The mechanism includes Spiking Element Discrepancy Attention (SEDA) and Spiking Intensity Discrepancy Attention (SIDA), which effectively represent complex local-global spatial information.
- We design a Spatially-Aware Spiking Neuron that encodes spatial information in the initial membrane potential, thereby compensating for the loss of spatial information in spike representations.
- The Spiking Discrepancy Transformer achieves state-of-the-art performance among SNN-based approaches. Besides, our method's theoretical energy consumption is significantly lower compared to ANN-based approaches.

2 RELATED WORK

Deep SNNs and Spiking Transformers. Numerous studies focus on learning methods and architectures for deep SNNs. Spatio-temporal backpropagation (STBP) Wu et al. (2018) enables the direct training of SNNs via backpropagation across both spatial and temporal dimensions. Temporal

backpropagation Kheradpisheh & Masquelier (2020) calculates the gradients of spike timings with respect to the membrane potential at the moment of spike generation. Threshold-dependent batch normalization (tdBN) Zheng et al. (2021) facilitates the training of deeper SNNs. Additionally, SEW-ResNet Fang et al. (2021b) proposes a spiking element-wise residual mechanism to enhance the performance of deep SNNs. Spikformer Zhou et al. (2023c) is the first to transform all components of the Vision Transformer into a spike-based formulation, thereby pioneering the integration of SNNs with Transformer. Spike-driven Transformer Yao et al. (2024b) introduces a linear-complexity spike-driven self-attention for efficiency. The following works focus on structural enhancements Zhou et al. (2023a;b); Wang et al. (2023a); Zhou et al. (2024a;b), training methodologies Wang et al. (2023b), and applications across different tasks Bal & Sengupta (2024). Research on the application of Spiking Transformers across various fields is gradually unfolding.

Point Cloud Analysis. Point-based methods are pioneering in point cloud processing tasks, with numerous studies exploring 3D spatial convolutions Li et al. (2018); Yan et al. (2020), point cloud spatial encoding Mohammadi & Salarpour (2024), and network architecture design Ma et al. (2022). Recently, the application of Transformers in the point cloud have demonstrated significant potential, with the Point Transformer Guo et al. (2021); Zhao et al. (2021) being a notable milestone. To enhance computational efficiency, PatchFormer Zhang et al. (2022) proposes Patch Attention, Point Transformer V2 Wu et al. (2022) introduces Grouped Vector Attention, and Flatformer Liu et al. (2023) further proposes Flattened Window Attention. The Point Transformer V3 Wu et al. (2024c) achieves state-of-the-art performance across various tasks. In SNNs, Spiking PointNet Ren et al. (2023) incorporates spiking neurons into the PointNet framework, but its performance remains suboptimal. P2SResLNet Wu et al. (2024b) combines 3D kernel point convolutions with spiking neurons, and E-3DSNN Qiu et al. (2024a) introduces a Spike Sparse Convolution to efficiently extract sparse 3D features. However, these methods diverge from the biological simplicity and dynamics inherent in traditional SNNs. The ANN-to-SNN conversion approach Lan et al. (2023a) also yields subpar results. Spiking Point Transformer Wu et al. (2024a) relies on single local feature extraction and fails to capture the global characteristics, leading to performance degradation. Currently, there is an urgent need for a coherent design from spiking neurons to spiking attention to enhance the capabilities of the 3D Spiking Transformer.

3 METHOD

3.1 PRELIMINARIES

Spiking Neuron is the basic unit of SNNs. We select the typical hard-reset Leaky-Integrate-and-Fire (LIF) neuron Wu et al. (2018) as example,

$$H[t] = (1 - \frac{1}{\tau})V[t-1] + \frac{1}{\tau}X[t], \quad (1)$$

$$S[t] = \Theta(H[t] - V_{\text{th}}), \quad (2)$$

$$V[t] = H[t](1 - S[t]) + V_{\text{reset}}S[t], \quad (3)$$

where τ is the membrane time constant, and $X[t]$ is the input current received at the time step t . When the membrane potential $H[t]$ surpasses the threshold V_{th} , the spiking neuron will trigger a spike $S[t]$ to subsequent layers. The heaviside step function $\Theta(v)$ is defined as 1 for $v \geq 0$ and 0 for $v < 0$. $V[t]$ represents the post-spike membrane potential, which is either $H[t]$ if no spike is generated or is reset to V_{reset} upon a spike event. It is worth noting that $V[0]$ is typically considered to be zero, whereas different insights may apply in 3D tasks.

Spiking Self-Attention is different from vanilla self-attention Vaswani et al. (2017). Given the spike-form input \mathbf{X} , the Query \mathbf{Q} , Key \mathbf{K} , and Value \mathbf{V} are in spike form. Besides, it discards the softmax normalization for the attention map, which can be described by the following equation:

$$\mathbf{Q} = \mathcal{SN}_{\mathbf{Q}}(\text{L-BN}_{\mathbf{Q}}(\mathbf{X})), \mathbf{K} = \mathcal{SN}_{\mathbf{K}}(\text{L-BN}_{\mathbf{K}}(\mathbf{X})), \mathbf{V} = \mathcal{SN}_{\mathbf{V}}(\text{L-BN}_{\mathbf{V}}(\mathbf{X})), \quad (4)$$

$$\text{SSA}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \mathcal{SN}(\mathbf{Q}\mathbf{K}^T\mathbf{V} * s), \quad (5)$$

where \mathcal{SN} denotes the spiking neuron layer and L-BN represents that the features pass through Linear and Batch Normalization sequentially. s is the scaling factor.

3.2 SPIKING DISCREPANCY ATTENTION MECHANISM

The spatial features of unordered, irregular point clouds fundamentally differ from the semantic features of ordered, structured 2D visual data. SSA guides feature aggregation through dot product

similarity, allowing points with similar features to be assigned higher weights. However, in 3D scenes, discriminative edge regions often exhibit stark changes in local geometric features, resulting in lower feature similarity scores. The smooth aggregation of SSA can lead to a dilution of scores in these critical regions, subsequently causing edge blurring effects. While spiking-based modeling brings efficiency, it inevitably introduces information loss. The presence of channel-wise spiking dot product mismatches within SSA exacerbates this issue, further degrading its representation capability. Moreover, the dot product-based SSA does not inherently satisfy translation invariance, which is crucial for 3D tasks. In summary, 3D analysis requires an efficient attention mechanism that focuses on distinct features and easily adapts from local to global point-cloud modeling. We design a Spiking Discrepancy Attention Mechanism (SDAM) tailored for 3D analysis,

$$\text{SDAM}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \text{SD}(\mathbf{Q}, \mathbf{K}) \circ \mathbf{V}, \quad (6)$$

where SD is defined as the spiking discrepancy, which is a spike-driven feature metric and can be obtained through subtraction between spike sequences. \circ represents a spike-driven matrix operator which varies depending on the scope of the attention modeling. SD simulates the cortical neurons' response mechanism to asynchronous multi-channel spike misalignment through spike discrepancy sensitivity, where lateral inhibition of neighboring neuron activity enhances edge contrast. It also satisfies the translation invariance of spiking features, as shown in Table 1 by its ability to robustly recognize point clouds after spatial transformations. Inspired by the multi-stage hierarchical architecture, we extend SDAM into a hierarchical combination of Spiking Element Discrepancy Attention (SEDA) and Spiking Intensity Discrepancy Attention (SIDA). Specifically, SEDA captures the fine-grained spiking variation trends between the center point and its neighboring points within a local point cloud cluster, while SIDA depicts the coarse-grained significant differences at a macro scale among point cloud. The details will be elaborated in the following subsections.

3.3 SPIKING ELEMENT DISCREPANCY ATTENTION

As shown in Figure 1, the Spiking Element Discrepancy Attention (SEDA) explicitly addresses the limitation of geometric feature dilution in edge regions by leveraging channel-wise spiking difference sensitivity, a bio-inspired mechanism that mimics lateral inhibition in cortical neurons Mao & Massaquoi (2007).

Unlike conventional dot-product similarity that prioritizes smooth feature aggregation, SEDA operates on a fundamental hypothesis: local geometric discriminability arises from spiking misalignment between neighboring points. The explanation is provided in the Appendix C. Formally, given a central query point spiking feature $\mathbf{q} \in \mathbb{S}^{T \times C}$, its n neighboring key points spiking feature set $\mathbf{k} = \{\mathbf{k}_j \in \mathbb{S}^{T \times C} \mid j = 1, 2, \dots, n\}$ and central value point spiking feature \mathbf{v} , where T represents time steps and C denotes the number of channels, SEDA computes pairwise multi-channel spiking discrepancy,

$$\mathbf{SD}_j = \mathbf{q} - \mathbf{k}_j, \quad (7)$$

$$\mathbf{SD}(\mathbf{q}, \mathbf{k}) = \mathcal{SN} \left(\sum_{j=1}^n \mathbf{SD}_j * s \right), \quad (8)$$

$$\mathbf{SEDA}(\mathbf{q}, \mathbf{k}, \mathbf{v}) = \mathbf{SD}(\mathbf{q}, \mathbf{k}) \odot \mathbf{v}, \quad (9)$$

where SD is denoted as spiking difference and \mathcal{SN} represents the spiking neuron. s is a synaptic scaling factor. \odot is the element-wise masking. $*$ means element-wise multiplication.

To intuitively demonstrate the spatial representation capability of SEDA, we perform t-SNE on the feature matrix obtained after applying SEDA and SSA on the ShapeNetPart Yi et al. (2016).

216 As shown in Figure 2, SEDA demonstrates
 217 superior geometric discriminability com-
 218 pared to SSA. Specifically, SEDA induces
 219 two critical clustering properties: 1) Intra-
 220 part feature compactness, where points be-
 221 longing to the same object part (e.g., chair
 222 legs or surfaces) form tightly cohesive clus-
 223 ters, and 2) Inter-part margin amplification,
 224 exhibiting enlarged separation distances be-
 225 tween clusters corresponding to distinct
 226 geometric components. In contrast, SSA
 227 features exhibit diffused distributions with
 228 overlapping clusters across object parts, in-
 229 dicating geometric ambiguity. These re-
 230 sults indicate that the network incorporat-
 231 ing SEDA successfully learns detailed spa-
 232 tial position features.

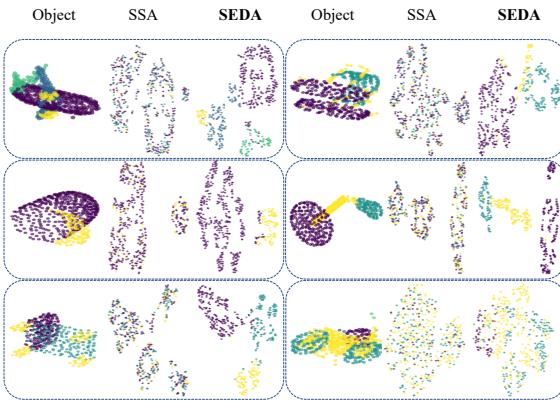


Figure 2: t-SNE visualization of SSA and SEDA. Points of different colors correspond to distinct components of the object. We compress the features produced by SSA and SEDA in the first stage of the network.

3.4 SPIKING INTENSITY DISCREPANCY ATTENTION

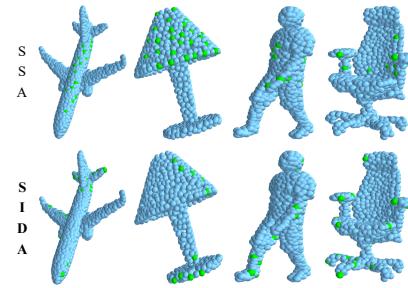
233 Building upon SEDA’s local geometric discriminability, we propose Spiking Intensity Discrepancy
 234 Attention (SIDA) to capture global structural patterns through spiking intensity divergence, as shown
 235 in Figure 1. Spiking intensity represents the cumulative value of spikes for the current position
 236 features in a purely additive form. Unlike SEDA that focuses on micro-scale spiking discrepancy
 237 between neighbors, SIDA operates on a macro-scale spatial hypothesis: topological significance
 238 emerges from population-level firing intensity contrast across different point cloud regions. The
 239 explanation is provided in the Appendix C. Formally, given the N -points global spiking feature
 240 $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{S}^{T \times N \times C}$, SIDA can be written as follows:

$$\text{SD}(\mathbf{Q}, \mathbf{K}) = \mathcal{SN}((\sum^C \mathbf{Q} - \sum^C \mathbf{K}^T) * s), \quad (10)$$

$$\text{SIDA}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \text{SD}(\mathbf{Q}, \mathbf{K}) \cdot \mathbf{V}. \quad (11)$$

241 By capturing global spiking intensity differences, SIDA effectively identifies macro-structural patterns
 242 in point clouds, particularly the overall geometric layout and key object components. Specifically,
 243 SIDA’s sensitivity to intensity differences addresses two critical challenges in spiking-based point
 244 cloud analysis:

245 1) The intrinsic information loss in spiking features
 246 may compromise accurate 3D perception, while spik-
 247 ing intensity offers a statistically robust solution for
 248 modeling 3D salient disparity regions. 2) The in-
 249 herent translation invariance of intensity divergence
 250 aligns seamlessly with 3D geometric priors, enhanc-
 251 ing the model’s ability to understand spatial struc-
 252 tures. To demonstrate that SIDA captures global
 253 features more effectively than SSA, we visualized
 254 the spiking point features, as shown in the Figure 3.
 255 SIDA produces sparse spike activations at critical
 256 locations of the point cloud skeleton, such as the wings,
 257 tail, and nose of an aircraft; the lampshade, lamp post,
 258 and lamp base of a lamp. In contrast, SSA focuses
 259 on less important regions or repeatedly emphasizes
 260 a particular component, such as the fuselage of an
 261 aircraft or only the lampshade of a lamp.



262 Figure 3: Visualization of SSA and SIDA feature
 263 map. The green point indicates each spike, while
 264 blue denotes silence. The feature map is derived
 265 from the spike matrix obtained after applying SSA
 266 or SIDA in the final stage.

267 The hierarchical synergy between SEDA and SIDA forms a bio-plausible computational mechanism
 268 for point cloud analysis. SEDA enhances local geometric discriminability in early stages, while
 269 SIDA models global topological structures through spiking intensity contrast in deep stages. This
 270 dual-attention framework enables the network to capture both fine-grained local details and global
 271 geometric relationships, improving object structure understanding.

270 3.5 SPATIALLY-AWARE SPIKING NEURON
271

272 Spiking features suffer from information loss when modeling complex spatial positions, and this issue
273 becomes more severe as the depth of the network increases. To this end, we propose a Spatially-Aware
274 Spiking Neuron (SASN) based on membrane potential dynamics, inspired by the characteristics of
275 neuronal membrane potential dynamics and the specific traits of 3D tasks. The Initial Membrane
276 Potential (IMP) affects neuronal dynamics Shen et al. (2024b). Therefore, embedding spatial
277 information into the IMP can enhance spatio-temporal perception.

278 Specifically, due to the decoupling of spatial point sampling from the neural network, we can encode
279 the selected point coordinates into the IMP of spiking neurons using trigonometric functions Zhang
280 et al. (2023b) in a non-learnable manner before the network processing stage. In the first time step,
281 according to Eq. 1, the membrane potential changes from $\frac{1}{\tau} X[1]$ to:

$$282 \quad 283 \quad H[1] = (1 - \frac{1}{\tau})P[0] + \frac{1}{\tau}X[1], \quad (12)$$

284 where $P[0]$ represents the value of the position encoding corresponding to the specific spiking neuron.
285 Details on IMP position encoding can be found in the Appendix A. SASN leverages the injection of
286 spatial information from the IMP to achieve the spatio-temporal information interaction in SNN-based
287 point cloud processing. SASN can directly replace conventional spiking neurons, and we also conduct
288 an ablation study on the insertion position.

289 3.6 OVERALL ARCHITECTURE
290

291 Based on the SEDA, SIDA and SASN, we construct a hierarchical Spiking Discrepancy Transformer
292 (SDT), which is shown in Figure 1. SDT is an encoder structure consisting of multiple stages that
293 progressively downsample and model the point set. Each stage contains the Spiking Sub-sampling
294 Unit (SSU) and SDT block. SSU performs point set sampling and embedding transformation. Point set
295 sampling involves downsampling and center-nearest point sampling, implemented using Farthest Point
296 Sampling (FPS) and K-Nearest Neighbors (KNN), respectively. FPS and KNN are common sampling
297 methods without training parameters. For stage l , the output of point set sampling includes the control
298 point features $\mathbf{X}_l \in \mathbb{R}^{T \times N \times C}$, corresponding neighboring point features $\mathbf{X}_l^k \in \mathbb{R}^{T \times N \times C \times k}$, and the
299 original coordinates $\mathbf{P}_l \in \mathbb{R}^{N \times 3}$. The embedding transformation is formulated as:

$$300 \quad \mathbf{X}'_l = \text{Linear}(\mathcal{S}\mathcal{N}(\text{CAT}(\mathbf{X}_l, \mathbf{X}_l^k))), \quad (13)$$

$$301 \quad \mathbf{Y}_l = \text{MP}(\mathbf{X}'_l) + \text{AP}(\mathbf{X}'_l), \quad (14)$$

302 where CAT represents aggregation. After aggregating, the spiking points are projected into the
303 neuron membrane potential \mathbf{X}'_l . Finally, by using Max-Average Pooling (MP, AP), we aggregate the
304 local features from the neighborhood onto \mathbf{Y}_l . Each SDT block contains SDAM and Multi-layer
305 Perceptron (MLP). First half of the stages employ the SEDA to extract local point cloud details
306 and the others utilize the SIDA to extract global point cloud information. For 3D classification, the
307 number of stages is set to 4. SDT by default employs the membrane potential shortcut residual Hu
308 et al. (2023). Additional architectural details are presented in Appendix B.

309 4 EXPERIMENTS
310311 4.1 EXPERIMENTAL SETTINGS
312

313 Building upon prior research in SNNs for point cloud analysis, we initially evaluate the performance
314 of the proposed SDT for 3D classification. This evaluation encompasses experiments on both
315 the synthetic ModelNet40 Wu et al. (2015) and the real-world ScanObjectNN Uy et al. (2019).
316 Furthermore, we showcase the versatility of SDT by extending its application to 3D semantic
317 segmentation and object part segmentation tasks. For semantic segmentation, we employ the Stanford
318 Large-Scale 3D Indoor Spaces (S3DIS) Armeni et al. (2016) which present significant challenges.
319 For object part segmentation, we utilize the ShapeNetPart Yi et al. (2016). To comprehensively assess
320 the performance of SDT, we compare it with both conventional ANN methods and cutting-edge SNN
321 approaches, including direct training methodologies and ANN-to-SNN conversion strategies. Finally,
322 we perform an ablation study to systematically analyze the contributions of individual components
323 within SDT, thereby validating the efficacy of our proposed framework.

324 **Implementation Details.** We implement SDT using PyTorch Paszke et al. (2019) on four RTX 4090
325 GPUs. For the neuron models, we utilize those provided by the SpikingJelly library Fang et al. (2023).

324 Table 2: Performance and theoretical energy consumption on 3D classification. * means self implementation
325

326	Method	Type	Param(M)	ModelNet40			ScanObjectNN		
				OA(%)↑	mAcc(%)↑	Energy(mJ)↓	OA(%)↑	mAcc(%)↑	Energy(mJ)↓
327	PointNet Qi et al. (2017a) [CVPR17]	ANN	3.47	89.20	86.00	2.07	68.20	63.40	2.07
328	PointNet++ Qi et al. (2017b) [NeurIPS17]	ANN	1.74	91.90	89.10	18.72	77.90	75.40	18.71
329	KPConv Thomas et al. (2019) [ICCV19]	ANN	15.20	92.10	90.70	94.53	85.30	83.69	94.50
330	PointTransformer Zhao et al. (2021) [ICCV21]	ANN	9.58	93.70	90.60	84.64	86.01	84.10	84.07
331	PointMLP Ma et al. (2022) [ICLR22]	ANN	12.60	94.10	91.30	72.38	85.40	83.90	72.36
332	Point-GPT Chen et al. (2024) [NeurIPS23]	ANN	19.46	94.00	91.03	20.48	86.90	85.17	20.47
333	PointGT Zhang et al. (2024c) [TMM24]	ANN	-	92.60	90.00	-	86.50	84.90	-
334	PointNet-SNN Lan et al. (2023b) [ICCV23]	ANN-to-SNN	3.50	88.17	84.02	0.26	66.56	60.33	0.27
335	KPConv-SNN Wu et al. (2024b) [AAAI24]	ANN-to-SNN	15.20	70.50	67.60	-	43.90	38.70	-
336	Spiking PointNet Ren et al. (2023) [NeurIPS23]	SNN	3.50	88.61	84.20	0.24*	65.40	61.30	0.28*
337	P2SResNet Wu et al. (2024b) [AAAI24]	SNN	15.20	90.60	89.20	-	81.20	79.40	-
338	E-3DSNN Qiu et al. (2024a) [AAAI25]	SNN	3.27	91.70	88.40	1.76*	83.91*	81.92*	2.64*
339	SPT Wu et al. (2024a) [AAAI25]	SNN	9.64	91.43	89.39	13.3	82.23	80.12	13.5*
340	SDT (T=1)	SNN	2.25	92.18	88.92	0.45	85.25	83.20	0.61
341	SDT (T=4)	SNN	2.25	92.46	89.48	1.33	86.19	84.37	2.11

339 We construct the code framework
340 based on Zhang et al. (2023a).
341 Additionally, we specify the hyper-
342 parameters used in our experiments,
343 as summarized in Table 3. They are
344 based on the common practices in the
345 ANNs with slight adjustments. The
346 initial point number refers to the quan-
347 tity of point clouds fed into the net-
348 work during the training process. In addition, the theoretical energy consumption formulation is
349 provided in the Appendix D.

350 Table 3: Hyper-parameters of SDT on various datasets.

Parameter	ModelNet40	ScanObjectNN	S3DIS	ShapeNetPart
Learning Rate	$5e-2$	$1.5e-3$	$1e-2$	$2e-3$
Weight Decay	$1e-4$	$5e-2$	$1e-4$	$1e-4$
Batch Size	32	32	96	48
Training Epochs	300	300	100	200
Optimizer	SGD	AdamW	AdamW	Adam
Initial Point Number	1024	1024	24000	2048

351

4.2 3D CLASSIFICATION

352 **Data and Metric.** The ModelNet40 Wu et al. (2015) dataset contains 12,311 CAD models with
353 40 object categories. They are split into 9,843 models for training and 2,468 for testing. We follow
354 the data preparation procedure of Qi et al. Qi et al. (2017b) and uniformly sample the points from
355 each CAD model. While ModelNet40 is widely regarded as the standard benchmark for point cloud
356 analysis, its synthetic nature and the rapid advancement in point cloud methods may limit its relevance
357 for modern approaches. Therefore, we also evaluate our method on the ScanObjectNN benchmark Uy
358 et al. (2019). ScanObjectNN includes approximately 15,000 objects, categorized into 15 classes with
359 2,902 unique real-world object instances. This dataset presents significant challenges for point cloud
360 analysis due to factors such as background interference, noise, and occlusions. In our experiments,
361 we focus on the most challenging perturbed variant called PB_T50_RS. For evaluation metrics, we
362 use the mean Accuracy (mAcc) within each category and the Overall Accuracy (OA) over all classes.
363 The training and inference speed are provided in the Appendix E.1.

364 **Comparison with SNNs.** SDT significantly outperforms existing SNN approaches in Table 2. For
365 instance, the previous best model, E-3DSNN Qiu et al. (2024a), achieves 91.70% OA on ModelNet40
366 with 3.27M parameters, and SPT Wu et al. (2024a) reaches 82.23% OA on ScanObjectNN. In contrast,
367 with only 2.25M parameters, SDT surpasses these models by 0.76% on ModelNet40 and 3.96% on
368 ScanObjectNN, achieving both enhanced computational efficiency and improved performance.

369 **Comparison with ANNs.** As shown in Table 2, when compared to ANN-based methods such
370 as, PointMLP Ma et al. (2022), Point-GPT Chen et al. (2024), and PointGT Zhang et al. (2024c),
371 which utilize floating-point representations to encode richer information, SDT delivers competitive
372 performance with only a slight decrease in accuracy. Furthermore, our focus is on leveraging SDT
373 to minimize energy consumption during 3D point cloud processing while maintaining competitive
374 classification accuracy. SDT achieves overall accuracies of 92.46% and 86.19% on two benchmark
375 datasets, respectively, closely matching the performance of PointMLP (94.10%) and Point-GPT
376 (86.90%). Remarkably, SDT consumes only 1.8% of the energy consumption of PointMLP (1.33
377 mJ VS. 72.38 mJ) on ModelNet40, 10.3% of the Point-GPT (2.11 mJ VS. 20.47 mJ) on ScanOb-
378 jectNN. SDT also outperforms ANN-based models such as PointNet++ and KPConv, requiring fewer
379 parameters and less energy, demonstrating potential of SNNs for efficient 3D point cloud processing.

378

4.3 SEMANTIC AND OBJECT PART SEGMENTATION

379

Data and Metric. For the semantic segmentation task, we conduct experiments on S3DIS Armeni et al. (2016). The S3DIS dataset, designed for semantic scene parsing, consists of 271 rooms spanning six areas across three buildings. In accordance with prior works Tchapmi et al. (2017); Qi et al. (2017b); Zhao et al. (2021), area 5 is excluded from training and reserved for testing. Following the standard evaluation protocol Qi et al. (2017b), we employ mIoU, mean class-wise accuracy (mAcc), and overall point-wise accuracy (OA) as evaluation metrics. For the object part segmentation task, we use the ShapeNetPart Yi et al. (2016). It consists of 16,880 models from 16 shape categories, with 14,006 3D samples for training and 2,874 for testing. The number of parts for each category is between 2 and 6, with 50 different parts in total. We use the sampled point sets produced by Qi et al. Qi et al. (2017b) for a fair comparison with prior work. For evaluation metrics, we report category mIoU and instance mIoU.

390

Table 4: Semantic segmentation results on S3DIS, evaluated on Area 5.

Method	Type	OA(%)	mAcc(%)	mIoU(%)	ceiling	floor	beam	column	window	door	table	chair	sofa	bookcase	board	clutter	Param(M)	Energy(mJ)	
PointNet Qi et al. (2017a)	ANN	-	49.0	41.1	88.8	97.3	69.8	0.1	3.9	46.3	10.8	59.0	52.6	5.9	40.3	26.4	33.2	3.5	5.5
TangentConv Tatarichenko et al. (2018)	ANN	-	62.2	52.6	90.5	97.7	74.0	0.0	20.7	39.0	31.3	77.5	69.4	57.3	38.5	48.8	39.8	1.5	32.3
PointCNN Li et al. (2018)	ANN	85.9	63.9	57.3	92.3	98.2	79.4	0.0	17.6	22.8	62.1	74.4	80.4	31.7	66.7	62.1	56.7	46.2	324.5
PCNN Wang et al. (2018)	ANN	-	67.0	58.3	92.3	96.2	75.5	0.3	6.0	69.5	63.2	66.9	65.6	47.3	68.9	59.1	46.2	-	-
DDN Li et al. (2019)	ANN	-	70.8	60.1	93.6	96.7	72.3	0.1	41.5	48.2	57.7	57.7	88.3	46.9	67.0	61.3	33.6	9.3	97.2
PointWiseNet Li et al. (2019)	ANN	87.0	66.6	60.3	92.0	98.5	79.4	0.0	21.1	59.7	34.8	46.3	88.3	46.9	64.9	52.5	4.8	68.1	
HPEIN Jiang et al. (2019)	ANN	87.2	68.3	61.9	91.5	98.2	81.4	0.0	23.3	65.3	40.0	75.5	87.7	58.5	67.8	65.6	49.4	-	-
MinkowskiNet Choy et al. (2019)	ANN	-	71.7	65.4	91.8	98.7	86.2	0.0	34.1	48.9	62.4	81.6	89.8	47.2	74.4	58.6	-	-	-
KPConv Thomas et al. (2019)	ANN	-	72.8	67.1	92.8	97.3	82.4	0.0	23.9	58.0	69.0	81.5	91.0	75.4	75.3	66.7	58.9	20.4	136.5
PointTransformer Zhao et al. (2021)	ANN	90.8	76.5	70.4	94.0	98.5	86.3	0.0	38.0	63.4	74.3	89.1	82.4	74.3	80.2	76.0	59.3	7.6	76.8
PTV2 Wu et al. (2022)	ANN	91.1	77.9	71.6	-	-	-	-	-	-	-	-	-	-	-	-	12.8	400.1	
PTV3 Wu et al. (2024c)	ANN	91.7	79.0	73.6	92.4	98.3	86.6	0.0	55.8	63.7	77.1	83.8	93.3	79.1	79.4	85.4	61.7	46.2	687.7
E-3DSNN Qiu et al. (2024a)	SNN	89.8	73.3	67.4	95.3	98.5	82.3	0.0	28.0	55.8	71.5	81.2	89.8	69.2	76.4	67.0	61.6	10.9	14.4
SDT	SNN	90.1	76.8	69.6	93.8	98.5	84.8	0.0	42.1	57.0	69.7	77.6	91.3	76.1	74.1	79.3	59.9	10.7	7.3

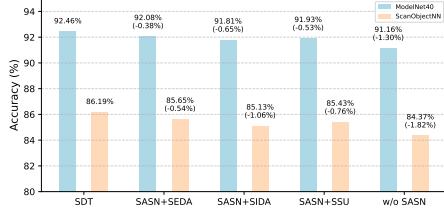
398

399

Performance Comparison. The results are presented in Table 4 and Table 5. We compare our work with the previous state-of-the-art ANN domain. Since no SNN has yet reported results on the S3DIS and ShapeNetPart datasets, we test the performance of the SNN state-of-the-art method E-3DSNN Qiu et al. (2024a). For effectiveness and fairness, we use the case where $T=1$. On the S3DIS, our model achieves a mIoU of 69.6%, while E-3DSNN arrives at only 67.4%. On the ShapeNetPart, our model achieves a 2.0% improvement in category mIoU and a 1.3% improvement in instance mIoU compared to E-3DSNN, obtaining the SOTA in the SNN area. Furthermore, our method has competitive performance, approaching the SOTA accuracy of 73.6% mIoU on S3DIS and 86.6% instance mIoU on ShapeNetPart achieved by ANN-based methods, while the energy consumption is only 1.06% (7.29mJ vs 687.68mJ) and 3.73% (4.74mJ vs 126.96mJ) of ANN-SOTAs. We provide the training curve on S3DIS in the Appendix E.3.

416

4.4 ABLATION STUDY



425

Figure 4: The ablation study for SASN. We observe that the incorporation of SASN into various modules consistently results in enhanced performance.

426

427

428

429

430

431

Ablation on Spatially-Aware Spiking Neuron. As shown in Figure 4, we investigate the effectiveness of integrating SASN into different components (two types of attention (SEDA and SIDA) and the downsampling block SSU). The baseline architecture uses Spiking Self-Attention (SSA) and the common LIF neurons. The results demonstrate that SASN enhances the model’s spatial perception

Table 5: Object Part Segmentation results on ShapeNetPart.

Method	Type	cat. mIoU(%)	ins. mIoU	Param(M)	Energy(mJ)
PointNet Qi et al. (2017a)	ANN	80.4	83.7	8.3	26.5
PCNN Wang et al. (2018)	ANN	81.8	85.1	-	-
PointNet++ Qi et al. (2017b)	ANN	81.9	85.1	1.7	22.5
DCGNN Wang et al. (2019)	ANN	82.3	85.1	1.5	23.1
SpiderCNN Xu et al. (2018)	ANN	81.7	85.3	2.2	41.4
PointConv Wu et al. (2019)	ANN	82.8	85.7	1.7	15.4
PointCNN Li et al. (2018)	ANN	84.6	86.1	46.4	328.7
KPConv Thomas et al. (2019)	ANN	85.1	86.4	20.7	144.5
PointTransformer Zhao et al. (2021)	ANN	83.7	86.6	7.8	127.0
PointMLP Ma et al. (2022)	ANN	84.6	86.1	5.2	54.2
PointGPT Chen et al. (2024)	ANN	84.1	86.2	6.8	102.3
E-3DSNN Qiu et al. (2024a)	SNN	81.7	83.8	4.9	8.8
SDT	SNN	83.7	85.1	4.6	4.7

Table 6: Ablation study on attention variants in different stages. The numbers marked in green and orange represent the use of SEDA and SIDA, respectively, in the corresponding stage. SSA denotes the framework where all stages employ the SSA, while “None” refers to remove attention mechanism.

Attention Type	Stage Index (1-4)	ModelNet40	ScanObjectNN
None	1,2,3,4	85.25%	78.04%
SSA	1,2,3,4	89.78%	83.20%
SEDA	1,2,3,4	92.34%	85.45%
SIDA	1,2,3,4	92.13%	84.73%
SEDA+SIDA	1,2,3,4	92.46%	86.19%

capabilities, particularly proving more effective in refining point cloud representations through SSU, SEDA, and SIDA. Besides, we compare other neurons with SASN in the Appendix E.5.

Ablation on Attentions and Hierarchical Framework. As shown in Table 6, rows 1-4 demonstrate that both SIDA and SEDA are more effective than vanilla SSA in modeling point clouds with nearly identical parameters. Rows 5 further indicate that, compared to using SIDA or SEDA individually, a multi-level architecture where SEDA is employed in the early stages to refine local point cloud representations and SIDA is utilized in the later stages to extract global information—achieves superior performance in point cloud processing. More results are provided in the Appendix E.2.

Table 7: Time Step Ablation.

Time Step	ModelNet40		ScanObjectNN	
	OA(%)	mAcc(%)	OA(%)	mAcc(%)
1	92.18	88.92	85.25	83.20
2	92.34	89.31	83.87	81.82
4	92.46	89.48	86.19	84.37
6	91.93	88.71	85.53	83.70

Table 8: Ablation study on network depth and width.

Depth	Width	Param(M)	ModelNet40		ScanObjectNN	
			OA(%)↑	Energy(mJ)↓	OA(%)↑	Energy(mJ)↓
2	[24, 48]	0.20	89.78	0.25	82.99	0.66
2	[48, 96]	0.32	90.21	0.35	83.96	0.79
2	[96, 192]	0.73	90.71	0.53	84.47	1.03
4	[24, 48, 96, 192]	0.72	91.87	0.89	85.43	1.66
4	[48, 96, 192, 384]	2.25	92.46	1.33	86.19	2.11
4	[96, 192, 384, 768]	8.07	92.69	4.56	86.45	7.85
6	[24, 48, 96, 192, 384, 768]	9.95	92.04	5.87	86.20	9.07
6	[48, 96, 192, 384, 768, 1536]	30.52	92.42	17.73	86.08	20.29

Time Step. As depicted in Table 7, increasing time steps T within a certain range improves accuracy. We set the maximum T to 6 in our study, the results are peaking at $T=4$ with 92.46% on the ModelNet40 and 86.19% on the ScanObjectNN. As discussed in Wu et al. (2024b), the results can be attributed to the scarcity of temporal cues in 3D datasets. Thus, increasing T might lead to redundant computations without enhancing informative representation. Small time steps may be suitable for practical applications.

Ablation on Network Depth and Width. Table 8 compares the parameter count, performance, and energy consumption of the SDT under varying depths and widths. The results demonstrate that excessively increasing either width or depth in point cloud tasks does not yield significant performance gains but escalates both model size and computational cost. Balancing the accuracy and efficiency, we adapt a configuration with 4-stage depth and [48, 96, 192, 384] for width.

Sparsity Analysis. As demonstrated in Table 9, we analyze the sparsity of each component in the SIDA and SEDA, and their sparsity further corroborates the low energy consumption of SDT.

Robustness Analysis. In the Appendix E.4 and E.6, we further analysis the robustness of SDT.

4.5 VISUALIZATION RESULTS

Figure 5 presents the Semantic Segmentation of SDT on the S3DIS dataset. The predictions exhibit a high degree of similarity to the ground truth, highlighting the effectiveness of our architecture in segmentation tasks. More visualization results are shown in the Appendix F.

Table 9: The Sparsity of each Attention Type. Q , K , V means Query, Key, Value Matrices, A means Attention Map, O means the results of Self-Attention.

Attention Type	Q(%)	K(%)	V(%)	A(%)	O(%)
SSA	3.12	5.54	9.46	6.82	5.90
SEDA	1.06	1.24	1.15	3.82	4.69
SIDA	1.55	1.48	1.56	3.75	4.93

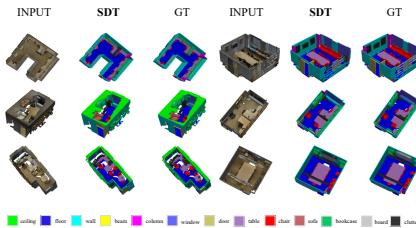


Figure 5: Visualization of segmentation on S3DIS. GT means the ground truth.

5 CONCLUSION

For 3D tasks, we design a Spiking Discrepancy Attention Mechanism (SDAM), which includes Spiking Element Discrepancy Attention and Spiking Intensity Discrepancy Attention to model local-global spatial features. A Spatially-Aware Spiking Neuron is designed to align with the SDAM. Based on these, we propose the hierarchical Spiking Discrepancy Transformer (SDT). SDT achieves SOTA performance within SNNs and exhibits theoretically lower energy consumption compared to ANNs. SDT can further solidify the foundation for exploring the application of SNNs in 3D tasks, and also promote the design of next-generation neuromorphic chips for point cloud processing. The limitations and future work are discussed in the Appendix G

486 REFERENCES
487

488 Iro Armeni, Ozan Sener, Amir R. Zamir, Helen Jiang, Ioannis Brilakis, Martin Fischer, and Silvio
489 Savarese. 3D semantic parsing of large-scale indoor spaces. In *CVPR*, 2016.

490 Malyaban Bal and Abhronil Sengupta. Spikingbert: Distilling bert to train spiking language models
491 using implicit differentiation. In *AAAI*, volume 38, pp. 10998–11006, 2024.

492 Guangyan Chen, Meiling Wang, Yi Yang, Kai Yu, Li Yuan, and Yufeng Yue. Pointgpt: Auto-
493 regressively generative pre-training from point clouds. In *NeurIPS*, volume 36, 2024.

494 Jingdao Chen, Zsolt Kira, and Yong K Cho. Deep learning approach to point cloud scene understand-
495 ing for automated scan to 3d reconstruction. *Journal of Computing in Civil Engineering*, 33(4),
496 2019.

497 Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia. Multi-view 3d object detection network for
498 autonomous driving. In *CVPR*, pp. 1907–1915, 2017.

499 Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d spatio-temporal convnets: Minkowski
500 convolutional neural networks. In *CVPR*, pp. 3075–3084, 2019.

501 Nikolaus Correll, Kostas E Bekris, Dmitry Berenson, Oliver Brock, Albert Causo, et al. Analysis and
502 observations from the first amazon picking challenge. *IEEE Transactions on Automation Science
503 and Engineering*, 15(1):172–188, 2016.

504 Mike Davies, Narayan Srinivasa, Tsung-Han Lin, et al. Loihi: A neuromorphic manycore processor
505 with on-chip learning. *IEEE Micro*, 38(1):82–99, 2018.

506 Shikuang Deng, Yuhang Wu, Kangrui Du, and Shi Gu. Spiking token mixer: An event-driven friendly
507 former structure for spiking neural networks. In A. Globerson, L. Mackey, D. Belgrave, A. Fan,
508 U. Paquet, J. Tomczak, and C. Zhang (eds.), *NeurIPS*, volume 37, pp. 128825–128846. Curran Asso-
509 ciates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/e8c20cafe841cba3e31a17488dc9c3f1-Paper-Conference.pdf.

510 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
511 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
512 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
513 In *ICLR*, 2021.

514 Wei Fang, Zhaofei Yu, Yanqi Chen, Timothée Masquelier, Tiejun Huang, and Yonghong Tian.
515 Incorporating learnable membrane time constant to enhance learning of spiking neural networks.
516 In *ICCV*, pp. 2661–2671, October 2021a.

517 Wei Fang, Zhaofei Yu, Yanqi Chen, et al. Deep Residual Learning in Spiking Neural Networks. In
518 *NeurIPS*, volume 34, pp. 21056–21069, 2021b.

519 Wei Fang, Yanqi Chen, Jianhao Ding, Zhaofei Yu, Timothée Masquelier, Ding Chen, Liwei Huang,
520 Huihui Zhou, Guoqi Li, and Yonghong Tian. Spikingjelly: An open-source machine learning
521 infrastructure platform for spike-based intelligence. *Science Advances*, 9(40):ead1480, 2023.
522 doi: 10.1126/sciadv.adi1480. URL <https://www.science.org/doi/abs/10.1126/sciadv.adi1480>.

523 Ankit Goyal, Hei Law, Bowei Liu, Alejandro Newell, and Jia Deng. Revisiting point cloud shape
524 classification with a simple and effective baseline. *ICLR*, 2021.

525 Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang Mu, Ralph R. Martin, and Shi-Min
526 Hu. Pct: Point cloud transformer. *Computational Visual Media*, 7(2):187–199, Apr 2021.
527 ISSN 2096-0662. doi: 10.1007/s41095-021-0229-5. URL <http://dx.doi.org/10.1007/s41095-021-0229-5>.

528 Yufei Guo, Yuanpei Chen, Liwen Zhang, Xiaode Liu, Yinglei Wang, Xuhui Huang, and Zhe
529 Ma. Im-loss: Information maximization loss for spiking neural networks. In S. Koyejo,
530 S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neu-
531 ral Information Processing Systems*, volume 35, pp. 156–166. Curran Associates, Inc.,

540 2022a. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/010c5ba0caf743fece8be02e7adb8dd-Paper-Conference.pdf.

541

542

543 Yufei Guo, Liwen Zhang, Yuanpei Chen, Xinyi Tong, Xiaode Liu, YingLei Wang, Xuhui Huang,
544 and Zhe Ma. Real spike: Learning real-valued spikes for spiking neural networks. In *Com-*
545 *puter Vision – ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022,*
546 *Proceedings, Part XII*, pp. 52–68, Berlin, Heidelberg, 2022b. Springer-Verlag. ISBN 978-3-
547 031-19774-1. doi: 10.1007/978-3-031-19775-8_4. URL https://doi.org/10.1007/978-3-031-19775-8_4.

548

549 Yufei Guo, Yuhang Zhang, Yuanpei Chen, Weihang Peng, Xiaode Liu, Liwen Zhang, Xuhui Huang,
550 and Zhe Ma. Membrane potential batch normalization for spiking neural networks. In *ICCV*, pp.
551 19363–19373, 2023. doi: 10.1109/ICCV51070.2023.01779.

552

553 Yufei Guo, Yuanpei Chen, Xiaode Liu, Weihang Peng, Yuhang Zhang, Xuhui Huang, and Zhe Ma.
554 Ternary spike: Learning ternary spikes for spiking neural networks. *Proceedings of the AAAI*
555 *Conference on Artificial Intelligence*, 38(11):12244–12252, Mar. 2024. doi: 10.1609/aaai.v38i11.
556 29114. URL <https://ojs.aaai.org/index.php/AAAI/article/view/29114>.

557

558 Mark Horowitz. 1.1 computing’s energy problem (and what we can do about it). In *2014 IEEE*
559 *International Solid-State Circuits Conference Digest of Technical Papers (ISSCC)*, pp. 10–14.
560 IEEE, 2014.

561

562 Yifan Hu, Lei Deng, Yujie Wu, Man Yao, and Guoqi Li. Advancing spiking neural networks towards
563 deep residual learning, 2023. URL <https://arxiv.org/abs/2112.08954>.

564

565 Haobo Jiang, Yaqi Shen, Jin Xie, Jun Li, Jianjun Qian, and Jian Yang. Sampling network guided
566 cross-entropy method for unsupervised point cloud registration. In *2021 IEEE/CVF International*
567 *Conference on Computer Vision (ICCV)*, pp. 6108–6117, 2021. doi: 10.1109/ICCV48922.2021.
568 00607.

569

570 Li Jiang, Hengshuang Zhao, Shu Liu, Xiaoyong Shen, Chi-Wing Fu, and Jiaya Jia. Hierarchical
571 point-edge interaction network for point cloud semantic segmentation. In *ICCV*, 2019.

572

573 Saeed Reza Kheradpisheh and Timothée Masquelier. Temporal backpropagation for spiking neural
574 networks with one spike per neuron. *International journal of neural systems*, 30(06):2050027,
575 2020.

576

577 Kiyosumi Kidono, Takeo Miyasaka, Akihiro Watanabe, Takashi Naito, and Jun Miura. Pedestrian
578 recognition using high-definition lidar. In *2011 IEEE Intelligent Vehicles Symposium (IV)*, pp.
579 405–410, 2011. doi: 10.1109/IVS.2011.5940433.

580

581 Yuxiang Lan, Yachao Zhang, Xu Ma, Yanyun Qu, and Yun Fu. Efficient converted spiking neural
582 network for 3d and 2d classification. In *ICCV*, pp. 9177–9186, 2023a. doi: 10.1109/ICCV51070.
583 2023.00845.

584

585 Yuxiang Lan, Yachao Zhang, Xu Ma, et al. Efficient converted spiking neural network for 3d and 2d
586 classification. In *ICCV*, pp. 9211–9220, 2023b.

587

588 Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhuan Di, and Baoquan Chen. Pointcnn: Convolution
589 on \mathcal{X} -transformed points. In *NIPS*, 2018.

590

591 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
592 Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In *ICCV*, pp.
593 10012–10022, 2021.

594

595 Zhijian Liu, Xinyu Yang, Haotian Tang, Shang Yang, and Song Han. Flatformer: Flattened window
596 attention for efficient point cloud transformer. In *CVPR*, 2023.

597

598 Xinhao Luo, Man Yao, Yuhong Chou, Bo Xu, and Guoqi Li. Integer-valued training and spike-driven
599 inference spiking neural network for high-performance and energy-efficient object detection. In
600 *ECCV*, 2024.

594 Xu Ma, Can Qin, Haoxuan You, Haoxi Ran, and Yun Fu. Rethinking network design and local
 595 geometry in point cloud: A simple residual mlp framework. In *ICLR*, 2022.
 596

597 Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models.
 598 *Neural networks*, 10(9):1659–1671, 1997.

599 Zhi-Hong Mao and Steve G. Massaquoi. Dynamics of winner-take-all competition in recurrent neural
 600 networks with lateral inhibition. *IEEE Transactions on Neural Networks*, 18(1):55–69, 2007. doi:
 601 10.1109/TNN.2006.883724.

602 Qingyan Meng, Mingqing Xiao, Shen Yan, Yisen Wang, Zhouchen Lin, and Zhi-Quan Luo. Towards
 603 memory- and time-efficient backpropagation for training spiking neural networks. In *ICCV*, pp.
 604 6143–6153, 2023. doi: 10.1109/ICCV51070.2023.00567.

605

606 Paul A Merolla, John V Arthur, Rodrigo Alvarez-Icaza, Andrew S Cassidy, Jun Sawada, et al. A
 607 million spiking-neuron integrated circuit with a scalable communication network and interface.
 608 *Science*, 345(6197):668–673, 2014.

609 Marzieh Mohammadi and Amir Salarpour. Point-gn: A non-parametric network using gaussian
 610 positional encoding for point cloud classification, 2024. URL <https://arxiv.org/abs/2412.03056>.

611

612 Luis E. Navarro-Serment, Christoph Mertz, and Martial Hebert. Pedestrian detection and tracking
 613 using three-dimensional ladar data. *The International Journal of Robotics Research*, 29(12):
 614 1516–1528, 2010. doi: 10.1177/0278364910370216.

615

616 Priyadarshini Panda, Sai Aparna Aketi, and Kaushik Roy. Toward scalable, efficient, and accurate deep
 617 spiking neural networks with backward residual connections, stochastic softmax, and hybridization.
 618 *Frontiers in Neuroscience*, 14:653, 2020.

619

620 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 621 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch: An imperative style,
 622 high-performance deep learning library. In *NeurIPS*, 2019.

623

624 Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets
 625 for 3d classification and segmentation. In *CVPR*, pp. 652–660, 2017a.

626

627 Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature
 628 learning on point sets in a metric space. In *NIPS*, volume 30, 2017b.

629

630 Guocheng Qian, Yuchen Li, Houwen Peng, Jinjie Mai, Hasan Hammoud, Mohamed Elhoseiny, and
 631 Bernard Ghanem. Pointnext: Revisiting pointnet++ with improved training and scaling strategies.
 632 In *NeurIPS*, 2022.

633

634 Xuerui Qiu, Man Yao, Jieyuan Zhang, Yuhong Chou, Ning Qiao, Shibo Zhou, Bo Xu, and Guoqi Li.
 635 Efficient 3d recognition with event-driven spike sparse convolution. *AAAI*, 2024a.

636

637 Xuerui Qiu, Rui-Jie Zhu, Yuhong Chou, Zhaorui Wang, Liang-jian Deng, and Guoqi Li. Gated
 638 attention coding for training high-performance and efficient spiking neural networks. In *AAAI*,
 639 volume 38, pp. 601–610, 2024b.

640

641 Xuerui Qiu, Malu Zhang, Jieyuan Zhang, Wenjie Wei, Honglin Cao, Junsheng Guo, Rui-Jie Zhu,
 642 Yimeng Shan, Yang Yang, and Haizhou Li. Quantized spike-driven transformer. In *ICLR*, 2025.
 643 URL <https://openreview.net/forum?id=5J9B7Sb8rO>.

644

645 Jinye Qu, Zeyu Gao, Tielin Zhang, Yanfeng Lu, Huajin Tang, and Hong Qiao. Spiking neural network
 646 for ultralow-latency and high-accurate object detection. *IEEE Transactions on Neural Networks
 647 and Learning Systems*, 36(3):4934–4946, 2025. doi: 10.1109/TNNLS.2024.3372613.

648

649 Dayong Ren, Zhe Ma, Yuanpei Chen, et al. Spiking pointnet: Spiking neural networks for point
 650 clouds. In *NeurIPS*, volume 36, 2023.

651

652 Roy, Kaushik, Jaiswal, Akhilesh, and Priyadarshini Panda. Towards spike-based machine intelligence
 653 with neuromorphic computing. *Nature*, 575(7784):607–617, 2019.

648 Hangchi Shen, Qian Zheng, Huamin Wang, and Gang Pan. Rethinking the membrane dynam-
 649 ics and optimization objectives of spiking neural networks. In A. Globerson, L. Mackey,
 650 D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neu-
 651 ral Information Processing Systems*, volume 37, pp. 92697–92720. Curran Associates, Inc.,
 652 2024a. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/a867a94a427bacbe3f4de16c7ac10ba8-Paper-Conference.pdf.

653

654 Hangchi Shen, Qian Zheng, Huamin Wang, and Gang Pan. Rethinking the membrane dynamics and
 655 optimization objectives of spiking neural networks. In A. Globerson, L. Mackey, D. Belgrave,
 656 A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *NeurIPS*, volume 37, pp. 92697–92720.
 657 Curran Associates, Inc., 2024b.

658

659 Qiaoyi Su, Yuhong Chou, Yifan Hu, Jianing Li, Shijie Mei, Ziyang Zhang, and Guoqi Li. Deep
 660 directly-trained spiking neural networks for object detection. In *ICCV*, pp. 6532–6542, 2023. doi:
 661 10.1109/ICCV51070.2023.00603.

662 Liyao Tang, Zhe Chen, Shanshan Zhao, Chaoyue Wang, and Dacheng Tao. All points matter: Entropy-
 663 regularized distribution alignment for weakly-supervised 3d segmentation. In *Thirty-seventh
 664 Conference on Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=utQms7PPx5>.

665

666 Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, and Qian-Yi Zhou. Tangent convolutions for dense
 667 prediction in 3d. In *CVPR*, 2018.

668

669 Lyne P. Tchapmi, Christopher B. Choy, Iro Armeni, JunYoung Gwak, and Silvio Savarese. Segcloud:
 670 Semantic segmentation of 3d point clouds. In *3DV*, 2017.

671

672 Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud, et al. Kpconv: Flexible and deformable
 673 convolution for point clouds. In *ICCV*, pp. 6411–6420, 2019.

674

675 Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua, et al. Revisiting point cloud classification:
 676 A new benchmark dataset and classification model on real-world data. In *ICCV*, pp. 1588–1597,
 677 2019.

678

679 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 680 Kaiser, and Illia Polosukhin. Attention is all you need. In *NeurIPS*, volume 30, 2017.

681

682 Shenlong Wang, Simon Suo, Wei-Chiu Ma, Andrei Pokrovsky, and Raquel Urtasun. Deep parametric
 683 continuous convolutional neural networks. In *CVPR*, 2018.

684

685 Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M. Solomon.
 686 Dynamic graph cnn for learning on point clouds. *TOG*, 2019.

687

688 Ziqing Wang, Yuetong Fang, Jiahang Cao, Qiang Zhang, Zhongrui Wang, and Renjing Xu. Masked
 689 spiking transformer. In *ICCV*, pp. 1761–1771, 2023a. doi: 10.1109/ICCV51070.2023.00169.

690

691 Ziqing Wang, Yuetong Fang, Jiahang Cao, Qiang Zhang, Zhongrui Wang, and Renjing Xu. Masked
 692 spiking transformer. In *ICCV*, pp. 1761–1771, 2023b.

693

694 Peixi Wu, Bosong Chai, Hebei Li, Menghua Zheng, Yansong Peng, Zeyu Wang, Xuan Nie, Yueyi
 695 Zhang, and Xiaoyan Sun. Spiking point transformer for point cloud classification. In *AAAI*, 2024a.

696

697 Qiaoyun Wu, Quanxiao Zhang, Chunyu Tan, Yun Zhou, and Changyin Sun. Point-to-spike residual
 698 learning for energy-efficient 3d point cloud classification. In *AAAI*, volume 38, pp. 6092–6099,
 699 2024b.

700

701 Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep convolutional networks on 3d point
 702 clouds. In *CVPR*, 2019.

703

704 Xiaoyang Wu, Yixing Lao, Li Jiang, Xihui Liu, and Hengshuang Zhao. Point transformer v2:
 705 Grouped vector attention and partition-based pooling. In *NeurIPS*, 2022.

706

707 Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu, Yu Qiao, Wanli Ouyang, Tong He,
 708 and Hengshuang Zhao. Point transformer v3: Simpler, faster, stronger. In *CVPR*, 2024c.

702 Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
 703 training high-performance spiking neural networks. *Frontiers in neuroscience*, 12:331, 2018.

704

705 Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaou Tang, and Jianxiong
 706 Xiao. 3d shapenets: A deep representation for volumetric shapes. In *CVPR*, 2015.

707

708 Mengting Xu, De Ma, HuaJin Tang, Qian Zheng, and Gang Pan. Feel-snn: Ro-
 709 bust spiking neural networks with frequency encoding and evolutionary leak factor.
 710 In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and
 711 C. Zhang (eds.), *NeurIPS*, volume 37, pp. 91930–91950. Curran Associates, Inc.,
 712 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/a73474c359ed523e6cd3174ed29a4d56-Paper-Conference.pdf.

713

714 Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and Yu Qiao. Spidercnn: Deep learning on point sets
 715 with parameterized convolutional filters. In *ECCV*, 2018.

716

717 Xu Yan, Chaoda Zheng, Zhen Li, Sheng Wang, and Shuguang Cui. Pointasnl: Robust point clouds
 718 processing using nonlocal neural networks with adaptive sampling. In *CVPR*, 2020.

719

720 Jiancheng Yang, Qiang Zhang, Bingbing Ni, Linguo Li, Jinxian Liu, Mengdie Zhou, and Qi Tian.
 721 Modeling point clouds with self-attention and gumbel subset sampling. In *CVPR*, 2019.

722

723 Man Yao, Huanhuan Gao, Guangshe Zhao, Dingheng Wang, Yihan Lin, Zhaoxu Yang, and Guoqi
 724 Li. Temporal-wise attention spiking neural networks for event streams classification. In *ICCV*, pp.
 725 10221–10230, October 2021.

726

727 Man Yao, Guangshe Zhao, Hengyu Zhang, Yifan Hu, Lei Deng, Yonghong Tian, Bo Xu, and Guoqi
 728 Li. Attention spiking neural networks. *PAMI*, 45(8):9393–9410, 2023.

729

730 Man Yao, JiaKui Hu, Tianxiang Hu, Yifan Xu, Zhaokun Zhou, Yonghong Tian, Bo XU, and Guoqi
 731 Li. Spike-driven transformer v2: Meta spiking neural network architecture inspiring the design
 732 of next-generation neuromorphic chips. In *ICLR*, 2024a. URL <https://openreview.net/forum?id=1SIBN5Xyw7>.

733

734 Man Yao, Jiakui Hu, Zhaokun Zhou, Li Yuan, Yonghong Tian, Bo Xu, and Guoqi Li. Spike-driven
 735 transformer. *NeurIPS*, 36, 2024b.

736

737 Li Yi, Vladimir G Kim, Duygu Ceylan, I-Chao Shen, Mengyan Yan, Hao Su, Cewu Lu, Qixing
 738 Huang, Alla Sheffer, and Leonidas Guibas. A scalable active framework for region annotation in
 739 3d shape collections. *TOG*, 2016.

740

741 Michael Young and Edward Wasserman. Entropy and variability discrimination. *Journal of
 742 experimental psychology. Learning, memory, and cognition*, 27:278–93, 01 2001. doi:
 743 10.1037/0278-7393.27.1.278.

744

745 Cheng Zhang, Haocheng Wan, Xinyi Shen, and Zizhao Wu. Patchformer: An efficient point
 746 transformer with patch attention. In *CVPR*, 2022.

747

748 Dingxin Zhang, Jianhui Yu, Tengfei Xue, Chaoyi Zhang, Dongnan Liu, and Weidong Cai. Enhancing
 749 robustness to noise corruption for point cloud recognition via spatial sorting and set-mixing
 750 aggregation module. In *Asian Conference on Computer Vision*, 2024a.

751

752 Han Zhang, Chenlin Zhou, Liutao Yu, Liwei Huang, Zhengyu Ma, Xiaopeng Fan, Huihui Zhou,
 753 and Yonghong Tian. Sglformer: Spiking global-local-fusion transformer with high performance.
 754 *Frontiers in Neuroscience*, 18:1371290, 2024b.

755

756 Huang Zhang, Changshuo Wang, Long Yu, et al. Pointgt: A method for point-cloud classification
 757 and segmentation based on local geometric transformation. *TMM*, 26:8052–8062, 2024c.

758

759 Renrui Zhang, Liuhui Wang, Yali Wang, Peng Gao, Hongsheng Li, and Jianbo Shi. Parameter is not
 760 all you need: Starting from non-parametric networks for 3d point cloud analysis. In *CVPR*, 2023a.

761

762 Renrui Zhang, Liuhui Wang, Yali Wang, Peng Gao, Hongsheng Li, and Jianbo Shi. Starting from
 763 non-parametric networks for 3d point cloud analysis. In *CVPR*, pp. 5344–5353, 2023b.

756 Hengshuang Zhao, Li Jiang, Chi-Wing Fu, and Jiaya Jia. PointWeb: Enhancing local neighborhood
 757 features for point cloud processing. In *CVPR*, 2019.
 758

759 Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and Vladlen Koltun. Point transformer. In
 760 *ICCV*, pp. 16259–16268, 2021.
 761

762 Hanle Zheng, Yujie Wu, Lei Deng, Yifan Hu, and Guoqi Li. Going Deeper With Directly-Trained
 763 Larger Spiking Neural Networks. In *AAAI*, pp. 11062–11070, 2021.
 764

765 Chenlin Zhou, Liutao Yu, Zhaokun Zhou, Han Zhang, Zhengyu Ma, Huihui Zhou, and Yonghong
 766 Tian. Spikingformer: Spike-driven residual learning for transformer-based spiking neural network.
 767 *arXiv preprint arXiv:2304.11954*, 2023a.
 768

769 Chenlin Zhou, Han Zhang, Zhaokun Zhou, Liutao Yu, Zhengyu Ma, Huihui Zhou, Xiaopeng Fan,
 770 and Yonghong Tian. Enhancing the performance of transformer-based spiking neural networks by
 771 improved downsampling with precise gradient backpropagation. *arXiv preprint arXiv:2305.05954*,
 772 2023b.
 773

774 Chenlin Zhou, Han Zhang, Zhaokun Zhou, Liutao Yu, Liwei Huang, Xiaopeng Fan, Li Yuan, Zhengyu
 775 Ma, Huihui Zhou, and Yonghong Tian. Qkformer: Hierarchical spiking transformer using qk
 776 attention. In *NeurIPS*, 2024a.
 777

778 Zhaokun Zhou, Yuesheng Zhu, Chao He, Yaowei Wang, Shuicheng YAN, Yonghong Tian, and
 779 Li Yuan. Spikformer: When spiking neural network meets transformer. In *ICLR*, 2023c.
 780

781 Zhaokun Zhou, Yijie Lu, Yanhao Jia, Kaiwei Che, Jun Niu, Liwei Huang, Xinyu Shi, Yuesheng Zhu,
 782 Guoqi Li, Zhaofei Yu, and Li Yuan. Spiking transformer with experts mixture. In *NeurIPS*, 2024b.
 783 URL <https://openreview.net/forum?id=WcIeEtY3AG>.
 784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810
811 A DETAILS OF INITIAL MEMBRANE POTENTIAL812
813 We choose the x-coordinate x_j of the j -th point $p_j = (x_j, y_j, z_j) \in \mathbb{R}^3, j \in [1, N]$ in the N points
as an example.

814
815 $\mathbf{U}^x[j] = \text{IMP}(x_j), \mathbf{U}^x[j] \in R^{\frac{2C}{3}},$ (15)

816
817 $\mathbf{U}^x[j][m] = \begin{cases} \sin(x_j \cdot \alpha / (t \cdot \beta^{\frac{3m}{2C}})), m = 2n \\ \cos(x_j \cdot \alpha / (t \cdot \beta^{\frac{3m}{2C}})), m = 2n + 1 \end{cases}$ (16)

818
819 $\mathbf{U}[j] = \text{Concat}(\mathbf{U}^x[j], \mathbf{U}^y[j], \mathbf{U}^z[j]), \mathbf{U}[j] \in R^C.$ (17)

820
821 where C means the channels, $m \in [0, \frac{C}{3}]$, α and β control the amplitude and wavelength of the
822 trigonometric functions, respectively, and are set to 1000 and 100 in experiments. t is the current time
823 step, used to distinguish between different time points in the temporal dimension. Integrating the three
824 coordinates, p_j is encoded into $\mathbf{U}[j]$. The dimensional expanses from 3 to C . This parameter-free
825 positional encoding maps the point cloud locations into high-frequency feature information, serving
826 as the Initial Membrane Potential (IMP) for Spiking Neuron, which mitigates the SNN's inherent
827 information loss.

828 B ARCHITECTURE DETAILS

829
830 B.1 POINT CLOUD CLASSIFICATION831
832 Our Hierarchical Spiking Discrepancy Transformer (SDT) framework for point cloud classification
833 is shown in Fig. 1 in the main text. Herein, we provide additional details regarding the model. We
834 use four stages. Each SSU module reduces the cardinality of the point set to $\frac{1}{2}$ in each stage. The
835 K-Nearset Neighbor is set to 40. The initial encoding channels are set to 48, and the expansion in
836 each stage is [2, 2, 2, 1]. For classification, we also perform a global MAP (Max-Average Pooling)
837 over the pointwise features to get a global feature for the whole point set. This global feature is
838 passed through a Spiking MLP with a linear layer to get the global classification logits. We apply
839 SEDA in the first half stages and SIDA in the last half stages.840
841 B.2 POINT CLOUD SEGMENTATION842
843 For dense prediction tasks such as semantic segmentation, we adopt a U-Net in which the encoder
844 described in the main text is coupled with a Spiking Feature Propagation decoder Qian et al. (2022).
845 Consecutive stages in the decoder are connected by Spiking Points Propagation Unit. Their primary
846 function is to map features from the downsampled input point set P_2 onto its superset $P_1 \supset P_2$. To
847 this end, each input point feature is processed by a Spiking Linear layer, and then the features are
848 mapped onto the higher-resolution point set P_1 via trilinear interpolation. These interpolated features
849 from the preceding decoder stage are summarized with the features from the corresponding encoder
850 stage, provided via a membrane shortcut skip connection.851
852 For the segmentation head, the final decoder stage produces a feature vector for each point in the
853 input point set. We also apply a Spiking MLP and a Linear layer to map this feature to the final
854 logits. Besides, we use four stage for S3DIS Armeni et al. (2016) and ShapeNetpart Yi et al. (2016).
855 In the S3DIS dataset, each SSU module reduces the cardinality of the point set to $\frac{1}{4}$ in each stage.
856 The K-Nearset Neighbor is set to 32. The initial encoding channels are set to 48, and the expansion
857 in each stage is [2, 2, 2, 1]. Each stage contains [4, 7, 4, 4] Transformer blocks, respectively. We
858 apply SIDA in the final stage and SEDA in the other stages. In ShapeNetpart dataset, each SSU
859 module reduces the cardinality of the point set to $\frac{1}{4}$ in the first stage while $\frac{1}{2}$ in the other stages. The
860 K-Nearset Neighbor is set to 32. The initial encoding channels are set to 48, and the expansion in
861 each stage is [2, 2, 2, 1]. Each stage contains only one Transformer block. We apply SEDA in the
862 first half stages and SIDA in the last half stages.863
864 C THEORETICAL ANALYSIS OF HYPOTHESES IN SEC 3.2865
866 We provide a theoretical analysis of hypotheses in Sec 3.2. Prior ANN works have demonstrated that
867 topological complexity of point clouds can be quantified by entropy Young & Wasserman (2001);

864 Tang et al. (2023); Jiang et al. (2021). Second, in the work Guo et al. (2022a), it has been shown that
 865 the information in spiking features can likewise be measured by entropy. In ANNs, the variations in
 866 the coordinates of point clouds cause the extracted features within the point-cloud network to differ;
 867 similarly, in SNNs the spiking features exhibit the same situation. It shows that the geometric features
 868 are related to spiking features. Thus, we further explain the hypotheses from the perspective of local
 869 and global entropy.

870 For SEDA, we propose hypothesis: "local geometric discriminability arises from spiking misalignment
 871 between neighboring points" at line 157. The validity of the SEDA hypothesis can be supported by
 872 analyzing the entropy and information content of local geometric features based on spiking misalign-
 873 ment within neighborhoods. Let $q \in \mathbb{S}^{T \times C}$ be the spiking feature of a query point, and $\{\mathbf{k}_j\}_{j=1}^n$
 874 be the spiking features of its neighboring points. We define the multi-channel spiking difference as
 875 $SD_j = q - \mathbf{k}_j$, and measure its magnitude $d_j = SD_j$. Normalizing over the neighborhood yields a
 876 probability distribution:

$$877 \quad p_j = \frac{d_j}{\sum_{k=1}^n d_k}, \quad (18)$$

879 The local geometric entropy is then defined as:

$$880 \quad H_{\text{local}} = - \sum_{j=1}^n p_j \log p_j, \quad (19)$$

884 which quantifies the uncertainty of spiking misalignment distribution. A high entropy (nearly uniform
 885 p_j) indicates low geometric distinctiveness, while a low entropy (dominated by few large d_j) indicates
 886 salient local geometric features. Thus, the local geometric discriminability is inversely proportional
 887 to H_{local} and SEDA's purpose is to highlight the local geometric saliency.

888 For SIDA, we propose hypothesis: "topological significance emerges from population-level firing
 889 intensity contrast across different point cloud regions" at line 187. We formalize macro-scale
 890 hypothesis by introducing Global Center Entropy which is computed across multiple cluster center
 891 points. In SIDA, the spike intensity of a given central point m is equivalent to the spike firing rate p_m .
 892 We can normalize the firing rates of all points and subsequently compute the Global-Center-Entropy
 893 H_{global} of point cloud M ,

$$894 \quad q_m = \frac{\rho_m}{\sum_k \rho_k}, \quad (20)$$

$$895 \quad H_{\text{global}} = - \sum_{m=1}^M q_m \log q_m, \quad (21)$$

899 When the entropy H_{global} is smaller, it indicates that the feature information content of the point cloud
 900 is higher. This suggests that the network representation can capture the macro-level differences in
 901 the point cloud features. For SIDA's operation g_{mn} , $SD(m, n) = SN(\rho_m - \rho_n) \propto \frac{|q_m - q_n|}{\max_k q_k - \min_k q_k}$.
 902 $\frac{1}{H_{\text{global}}} \propto \sum_{m < n} SD(m, n)$. The total weight in SIDA is inversely proportional to H_{global} . SIDA
 903 assigns higher weights to centers with "large firing rate differences leading to lower entropy," thereby
 904 directly capturing the macro-level topological salience of the point cloud.

907 D THEORETICAL ENERGY CONSUMPTION

909 According to the general convention of SNNs Panda et al. (2020); Yao et al. (2023), we posit that the
 910 MAC and AC operations are executed on 45nm hardware Horowitz (2014), with energy consumption
 911 values of $EC_{\text{MAC}} = 4.6\text{pJ}$ and $EC_{\text{AC}} = 0.9\text{pJ}$ per operation, respectively. The theoretical Energy
 912 Consumption (EC) of ANNs can be derived as follows:

$$913 \quad EC_{\text{ANN}} = 4.6\text{pJ} \times \text{MACs}. \quad (22)$$

915 In SNNs, the AC operations can be obtained by multiplying the MAC operations by the firing rate f
 916 of input spikes and the simulation time step T ,

$$917 \quad ACs = \text{MACs} \times f \times T. \quad (23)$$

918 In SpikingPoint, the operations of the first layer are MACs to map the floating-point positions of
 919 the point cloud to spike features, while subsequent-layers operations are ACs for modeling sparse
 920 spiking-point features,
 921

$$922 \quad EC_{SP} = 4.6\text{pJ} \times \text{MACs}^1 + 0.9\text{pJ} \times \sum_{l=2}^L \text{ACs}^l, \quad (24)$$

$$923$$

$$924$$

925 where L denotes the number of linear layers in the SDT. Note that we ignore the energy of BN, as
 926 it can be incorporated into the linear layers during inference. Energy consumption for point cloud
 927 pre-processing is not accounted for, as it does not involve SNNs computations.
 928

930 E MORE EXPERIMENTAL RESULTS

931 E.1 TRAINING AND INFERENCE SPEED

934 Table 10: Performance and Speed comparison on the ScanObjectNN dataset. OA denotes Overall Accuracy.
 935

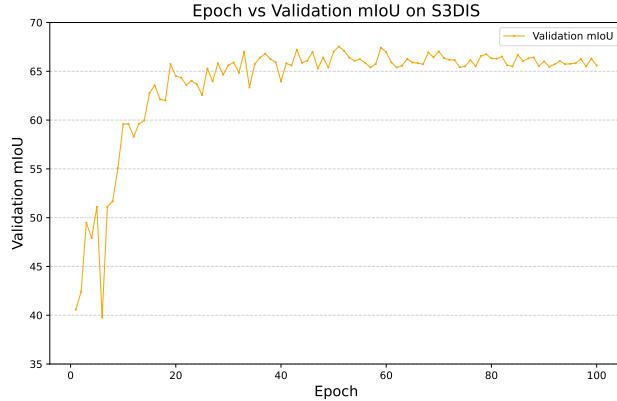
936 Model	Type	ScanObjectNN (OA(%))	Throughput (ins./sec.)
937 PointNet	ANN	68.20	4212
938 PointNet++	ANN	77.90	1872
939 KPConv	ANN	85.30	1281
940 PointTransformer	ANN	86.01	188
941 PointMLP	ANN	85.40	191
942 Point-GPT	ANN	86.90	134
943 PointGT	ANN	86.50	—
944 PointNext	ANN	87.70	2040
945 PointNet-SNN	ANN-to-SNN	66.56	4188
946 KPConv-SNN	ANN-to-SNN	43.90	1267
947 Spiking PointNet	SNN	65.40	1391
948 P2SResLNet	SNN	81.20	—
949 E-3DSNN	SNN	83.91	245
950 SPT	SNN	82.23	168
951 SDT (ours)	SNN	86.19	279

952 As shown in Table 10, we analyze the runtime performance of various models on ScanObjectNN,
 953 along with their corresponding training and inference speeds. Our model, SDT, achieves state-of-the-
 954 art performance among SNNs while maintaining a competitive operational speed. When performing
 955 inference on GPUs, SNNs do not exhibit a clear throughput advantage over ANNs. However, SNNs
 956 are typically deployed on neuromorphic hardware, which significantly accelerates their execution and
 957 makes inference faster compared to ANNs.
 958

959 Table 11: More ablation study on various spiking attentions implemented on different stages. The numbers
 960 marked in green and orange represent the use of SEDA and SIDA, respectively, in the corresponding stage. SSA
 961 denotes the framework where all stages employ the SSA, while "None" refers to the framework where all stages
 962 consist solely of MLPs without any attention mechanism.
 963

962 Attention Type	Stage Index (1-4)	ModelNet40	ScanObjectNN
963 None	1,2,3,4	85.25%	78.04%
964 SSA	1,2,3,4	89.78%	83.20%
965 SEDA	1,2,3,4	92.34%	85.45 %
966 SIDA	1,2,3,4	92.13%	84.73%
967 SEDA+SIDA	1,2,3,4	92.46%	86.19%
968 SIDA+SEDA	1,2,3,4	92.09%	85.05%
969 SEDA+SIDA	1,2,3,4	92.22%	85.34%
970 SEDA+SIDA	1,2,3,4	92.34%	85.22%
971 SIDA+SEDA	1,2,3,4	91.81%	84.94%
	1,2,3,4	91.41%	84.49%

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986



987 Figure 6: Visualization of training curve on the S3DIS dataset. GT means the ground truth. We choose the
988 validation miou in each epoch as y-axis.

990 E.2 ABLATION ON ATTENTIONS AND HIERARCHICAL FRAMEWORK

992 As shown in Table 11, rows 7,8 demonstrate that the SEDA and SIDA both play crucial roles.
993 Excessive reliance on SEDA for extracting local information or on SIDA for extracting global
994 information can lead to performance degradation. Rows 6, 9-10 shows that SEDA and SIDA cannot
995 be inverted; extracting global information first and then focusing on local details is counterintuitive,
996 and experiments have also demonstrated that this approach leads to a significant performance
997 degradation. This further validates the effectiveness of SDT.

999 E.3 EPOCH-ACCURACY CURVE

1001 To further illustrate the performance of SDT, we present the validation mIoU curve on the S3DIS
1002 dataset, demonstrating the variation with increasing epochs, as shown in Figure 6. Tab. 4 in the main
1003 text reports the test mIoU results.

1004 E.4 CROSS-DATASET RESULTS

1006 Table 12: Cross-dataset Results on Point Cloud Classification

1009 Architecture	Train: ModelNet40 1010 Test: ScanObjectNN	Train: ScanObjectNN 1011 Test: ModelNet40
1011 PointNet Qi et al. (2017a)	31.1	50.9
1012 SpiderCNN Xu et al. (2018)	30.9	46.6
1013 PointNet++ Qi et al. (2017b)	32.0	47.4
1014 DGCNN Wang et al. (2019)	36.8	54.7
1015 PointCNN Li et al. (2018)	24.6	49.2
1016 SimpleView Goyal et al. (2021)	40.5	57.9
1017 SDT	51.3	66.2

1018 According to the experiments in work Goyal et al. (2021), we design cross-dataset evaluations based
1019 on our SDT. Our results surpass those of prior SNN-based point-cloud methods. This demonstrate
1020 that our SDT network exhibits strong cross-dataset generalization.

1022 E.5 ABLATION ON NEURON TYPES

1024 As shown in Table 13, we conduct experiments under the setting T=4. Our SASN outperforms
1025 the neurons you highlighted on both ModelNet40 and ScanObjectNN, indicating that the spatial
information encoded in SASN is better suited to point-cloud tasks.

1026

Table 13: Ablation on various Neuron

1027

1028

Neuron Type	ModelNet40	ScanObjectNN
	OA(%) / mAcc(%)	OA(%) / mAcc(%)
SASN	92.46/89.48	86.19/84.37
IMP Shen et al. (2024a)	91.69/88.34	84.56/82.44
RealSpike Guo et al. (2022b)	91.88/88.69	85.01/83.45
TernarySpike Guo et al. (2024)	91.45/88.21	84.91/83.22
MultiSpike Qiu et al. (2024a)	91.96/89.01	85.34/83.81

1035

1036

E.6 ROBUSTNESS ABLATION STUDY

1038

1039

Table 14: Robustness Performance Comparison of SDT, SEDA, SIDA, SSA and ANN-based models

1040

1041

1042

1043

1044

1045

1046

1047

1048

Models	Type	ACC _{clean}	ACC _{noise}	Uniform	Gaus.	Impulse	Upsamp.	Bg.
PointNet Qi et al. (2017a)	ANN	90.7	67.3	87.6	85.6	70.9	86.0	6.4
PointNet++ Qi et al. (2017b)	ANN	93.0	78.5	79.6	83.6	64.9	82.8	81.4
DGCNN Wang et al. (2019)	ANN	92.6	74.3	85.4	83.4	75.1	80.9	46.9
PointMLP Ma et al. (2022)	ANN	93.5	63.1	77.2	67.4	59.8	61.3	49.7
PCT Guo et al. (2021)	ANN	92.9	71.9	87.9	86.1	60.9	82.6	42.1
Point Transformer Zhao et al. (2021)	ANN	93.7	78.0	89.9	88.2	69.9	74.3	67.7
PTV3 Wu et al. (2024c)	ANN	94.5	86.0	91.3	90.0	77.4	86.8	84.4
SSA Zhou et al. (2023c)	SNN	89.8	86.9	88.8	89.0	86.4	84.8	85.7
SEDA	SNN	92.3	90.0	91.0	91.0	91.6	87.4	88.7
SIDA	SNN	92.1	87.8	90.4	90.0	89.3	84.2	85.3
SDT	SNN	92.5	90.4	91.2	91.5	91.8	88.2	89.2

1049

Here, we analyze the noise robustness of the Spiking Discrepancy Attention Mechanism and its corresponding two attention variants, SEDA and SIDA. We compare them with SSA, as well as with the ANN-based models, especially Point-Transformer and Point-Transformer v3, as shown in Table 14. Following the ModelNet40-C Goyal et al. (2021) benchmark and previous work Zhang et al. (2024a), our model is trained on the clean ModelNet40 dataset Wu et al. (2015) and evaluated using its corrupted test sets. ModelNet40-C is constructed by applying various corruptions to the ModelNet40 test set, encompassing 15 distinct corruption types categorized into Density, Noise, and Transformation, each with five variations. Furthermore, each corruption type includes five severity levels. For our assessment, we focused on the noise category, specifically selecting Uniform, Gaussian, Impulse, Upsampling, and Background corruptions. We also use the overall accuracy for performance evaluation. The results demonstrate that SNNs combined with the Transformer architecture exhibit superior noise robustness. Within the category of SNNs, our designed SEDA and SIDA demonstrate enhanced noise robustness compared to the original SSA.

1061

1062

Table 15: Ablation studies and hyperparameter analysis on ModelNet40 and ScanObjectNN.

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Analysis Type	Item	Value	ModelNet40	ScanObjectNN
			OA(%) / mAcc(%)	OA(%) / mAcc(%)
Ours (Default)			92.46/89.48	86.19/84.37
Spike Generation	Poisson Encoding	-	92.23/89.18	85.89/84.15
	Decay Factor	0.25	92.43/89.51	86.22/84.21
Neuron Hyperparameters		1.0	92.75/89.77	85.89/84.41
	Threshold	0.5	92.56/89.91	85.91/84.02
		1.5	92.26/89.11	86.01/84.17
Surrogate Function	Sigmoid		92.13/88.94	85.85/83.69
	SoftSign		91.99/88.41	85.56/83.91
Spike Perturbations	Random Drop	-	91.87/89.01	85.89/84.31
	Random Flip	-	91.56/88.39	85.23/83.45
	Random Noise	-	91.72/88.52	85.71/83.75

Besides, we conduct more comprehensive robustness evaluations under various scenarios in Table 15: altering the spike encoding—i.e., spike generation settings (Poisson Encoding), the spiking-neuron hyperparameters (Decay Factor, Threshold and Surrogate Function), and noise scenarios (perturbations and transformations in the spike feature). The “Spike Perturbations” refer to perturbations applied to the spiking features within the attention mechanism. “Random Drop” denotes the random dropping

1080 of spike features during inference. "Random Flip" denotes the random flipping of spike features
 1081 during inference. "Random Noise" denotes the addition of random noise to the spike features during
 1082 inference. For hyperparameters, SDT adopts rate coding for spike generation, a neuron threshold of
 1083 1.0, a decay factor of 0.5, and uses Atan as the surrogate function. The results demonstrate that the
 1084 SDT design is relatively robust to various hyperparameters and noisy scenarios, exhibiting strong
 1085 generalization.

1086 F MORE VISUALIZATION RESULTS

1089 F.1 VISUALIZATION OF SEDA

1091 In Figure 7, we show more t-SNE visualization of spiking features, further proving that SEDA
 1092 demonstrates superior geometric discriminability compared to the SSA.

1094 F.2 VISUALIZATION OF SIDA

1096 In Figure 8, we show more spiking point features of SIDA and SSA to show that SIDA captures
 1097 global features more effectively than SSA.

1099 F.3 VISUALIZATION OF S3DIS RESULTS

1100 In Figure 9, we show more Semantic Segmentation results on the S3DIS dataset.

1102 F.4 VISUALIZATION OF SDAM AND SSA ATTENTION MAPS

1104 In Figure 10, we compare the attention map distributions of SSA versus SDAM (SEDA and SIDA).
 1105 The visualization results demonstrate that SDAM is capable of better capturing global point cloud
 1106 information, particularly regarding the geometric distinguishability of edge features. This further
 1107 validates the effectiveness of SDAM compared to SSA in point cloud tasks.

1109 G LIMITATIONS AND FUTURE WORKS

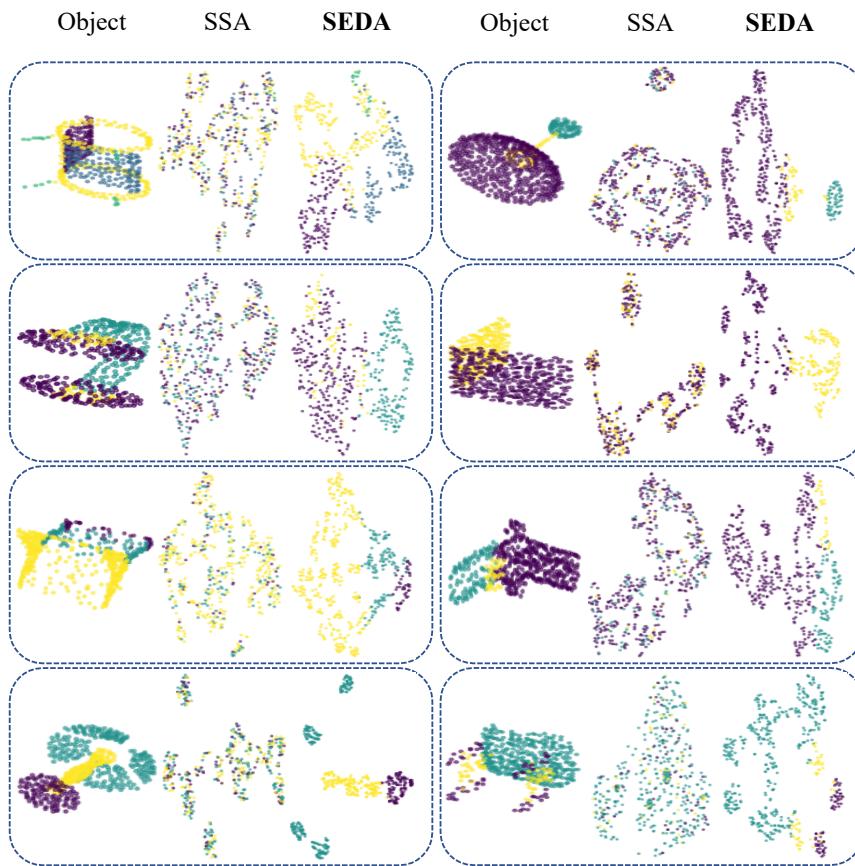
1111 As mentioned in Section 3.2, our SDAM and SDT are specifically designed for point cloud analysis.
 1112 In the domains of images and text, these mechanisms may require further refinement to enhance their
 1113 generalization capabilities. Future works will focus on designing SNNs for point cloud analysis in
 1114 larger, open-world scenarios.

1116 H USE OF LLMs

1118 We declare that the LLMs are used solely to aid or polish the writing and are not involved in the
 1119 development of the main methodology or comparative experiments.

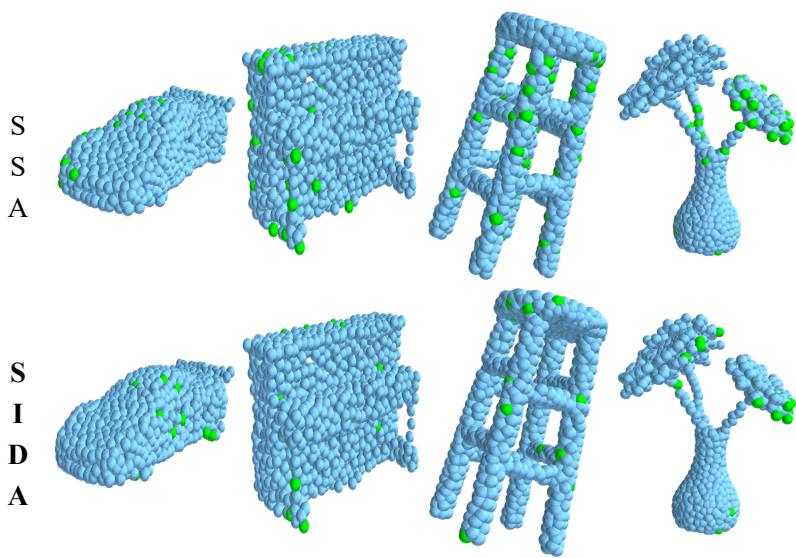
1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133

1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164

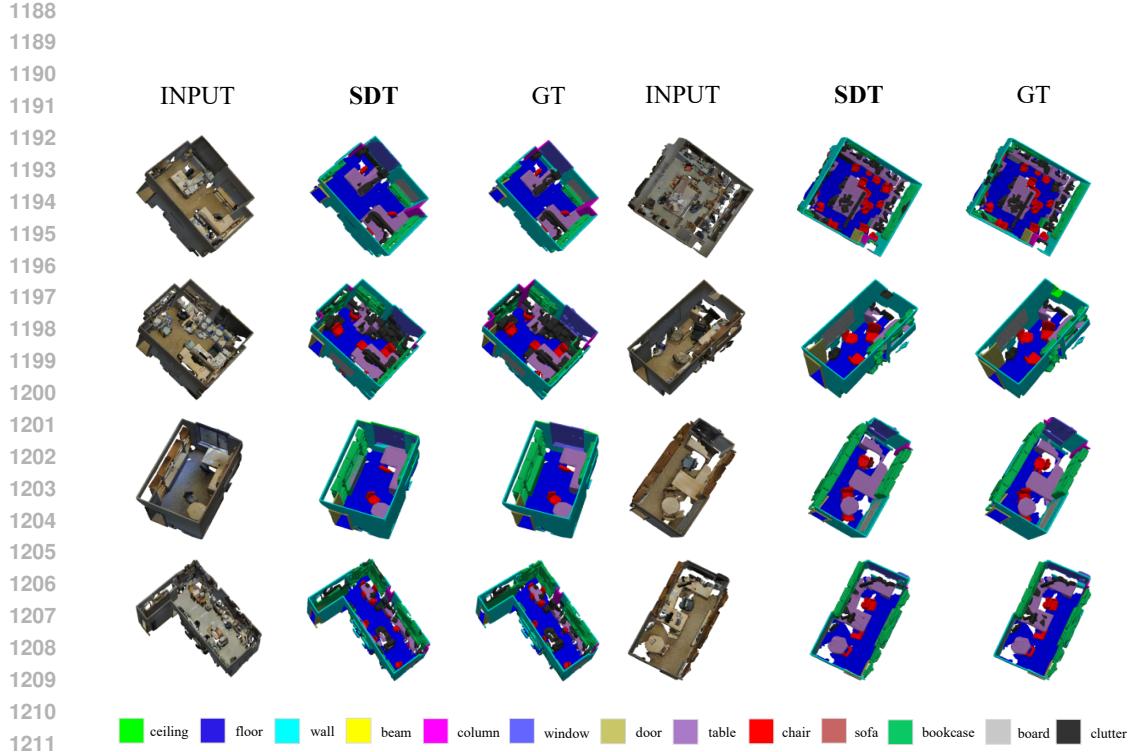


1165 Figure 7: t-SNE visualization of SSA and SEDA. We utilize the feature maps obtained after the first stage of
 1166 SSA or SEDA in the network and subsequently compress them into a two-dimensional plane using t-SNE.

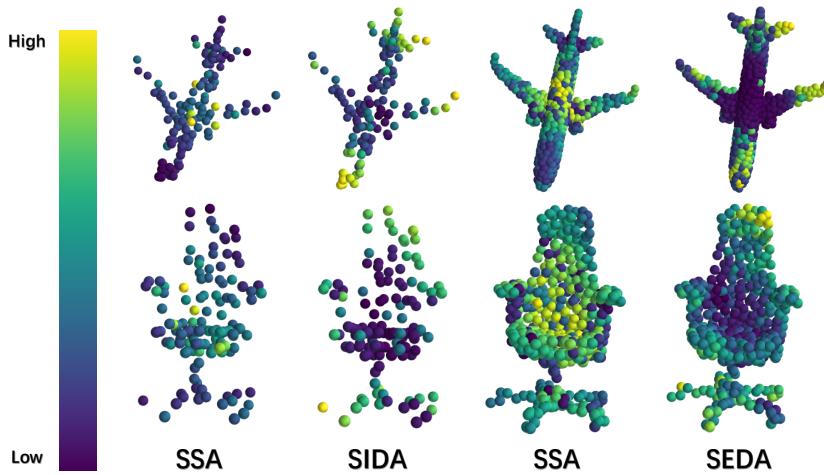
1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187



1188 Figure 8: Visualization of SSA and SIDA feature map. The green point indicates each spike, while blue denotes
 1189 silence. The feature map is derived from the spike matrix obtained after applying SSA or SIDA in the final stage.



1213 Figure 9: Visualization of semantic segmentation results on the S3DIS dataset. GT means the ground truth. We
 1214 selected six representative scenarios for validation.



1234 Figure 10: Visualization of SSA and SDAM Attention Map. High values indicate elevated attention levels,
 1235 while low values suggest reduced focus. We observe that SSA tends to prioritize regions with high similarity,
 1236 specifically the denser areas of the point cloud. However, these regions often fail to yield effective features for
 1237 classification. In contrast, SDAM (comprising SEDA and SIDA) gravitates towards regions with significant dis-
 1238 parity—specifically areas exhibiting geometric discriminability. Features derived from these regions prove to be
 1239 highly effective for identifying point cloud categories. This demonstrates that the difference-based measurement
 1240 employed in SDAM is more effective for point cloud analysis than the similarity-based measurement used in
 1241 SSA.