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ABSTRACT

Spiking Transformer has sparked growing interest, with the Spiking Self-Attention
merging spikes with self-attention to deliver both energy efficiency and competitive
performance. However, existing work primarily focuses on 2D visual tasks, and
in the domain of 3D point clouds, the disorder and complexity of spatial informa-
tion, along with the scale of the point clouds, present significant challenges. For
point clouds, we introduce spiking discrepancy, measuring differences in spike
features to highlight key information, and then construct the Spiking Discrepancy
Attention Mechanism (SDAM). SDAM contains two variants: the Spiking Element
Discrepancy Attention captures local geometric correlations between central points
and neighboring points, while the Spiking Intensity Discrepancy Attention char-
acterizes structural patterns of point clouds based on macroscopic spike statistics.
Moreover, we propose a Spatially-Aware Spiking Neuron. Based on these, we
construct a hierarchical Spiking Discrepancy Transformer. Experimental results
demonstrate that our method achieves state-of-the-art performance within the Spik-
ing Neural Networks and exhibits impressive performance compared to Artificial
Neural Networks along with a few parameters and significantly lower theoretical
energy consumption.

1 INTRODUCTION

Spiking Neural Networks (SNNs), regarded as the third generation Neural Networks Maass (1997),
are characterized by their biological plausibility Roy et al. (2019), spike-driven characteristics, and low
power consumption. By emulating the dynamics of biological neurons, SNNs utilize asynchronous
binary spikes for information transmission, with the membrane potential updated only upon the
arrival of spikes. This unique feature allows SNNs to avoid unnecessary computations on zero values,
making them promising candidates on neuromorphic hardware, such as TrueNorth Merolla et al.
(2014) and Loihi Davies et al. (2018).

Researchers are making extensive efforts to enhance the performance of SNNs across various visual
tasks, including image classification Fang et al. (2021b;a); Guo et al. (2023); Meng et al. (2023); Xu
et al. (2024); Shen et al. (2024b), object detection Su et al. (2023); Luo et al. (2024); Qu et al. (2025),
and semantic segmentation Yao et al. (2024a). Recently, inspired by the impressive achievements
of vision transformers Dosovitskiy et al. (2021); Liu et al. (2021) in Artificial Neural Networks
(ANNs), attempts have been made to incorporate transformer-based architectures into SNNs. Notably,
Spikformer Zhou et al. (2023c) introduces Spiking Self-Attention (SSA) mechanism, while the Spike-
Driven Transformer Yao et al. (2024b) employs Spike-Driven Self-Attention. Other studies have
focused on structural enhancements Yao et al. (2021); Zhou et al. (2023a;b); Zhang et al. (2024b);
Qiu et al. (2024b); Deng et al. (2024); Qiu et al. (2025), training methodologies Wang et al. (2023b),
and applications across different tasks Bal & Sengupta (2024). However, these efforts are primarily
confined to 2D visual domains. The exploration of the Spiking Transformer in 3D point clouds
remains limited.

3D point clouds analysis is critical in autonomous driving Chen et al. (2017); Kidono et al. (2011);
Navarro-Serment et al. (2010), scene understanding Chen et al. (2019), and robotics Correll et al.
(2016). SNNs leverage sparse spike features to replace the dense features used in ANNs, resulting in
significant improvements in energy efficiency. However, the 3D point clouds exploration of SNNs
remains quite limited, with existing approaches Lan et al. (2023b); Ren et al. (2023); Wu et al.
(2024b) demonstrating inadequate performance. Furthermore, the architecture has yet to be designed
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Figure 1: The overview of Spiking Discrepancy Transformer and illustration of key components.

to effectively integrate the biological characteristics and the spatial information. It is intriguing to
explore the application of Spiking Transformers in the processing of point clouds.

However, using villina SSA and Spikformer Zhou et al. (2023c) to process 3D features is not ideal.
There are primarily three challenges. Firstly, salient points representations located at object edges
or at boundaries between different categories are critical for accurate prediction. However, SSA
tends to focus on highly similar points, smoothing even neglecting salient features, consequently
degrading performance. Secondly, unlike the smaller number of tokens in 2D visual tasks, point
clouds usually consist of a large number of points, making the use of SSA to model global dependence
computationally prohibitive. Furthermore, considering the redundancy in point cloud data, SSA
is incapable of simultaneously capturing both local and global features. Overall, 3D features call
for a redesigned, efficient attention mechanism that highlights discriminative (edge) features and
seamlessly scales from local to global point-cloud feature modeling.

To address the above challenges, we propose a Spiking Discrepancy Attention Mechanism (SDAM),
which uses the spiking differences between the Query and Key as the attention matrix to enhance the
representation capability for complex spatial structures. It consists of Spiking Element Discrepancy
Attention (SEDA) and Spiking Intensity Discrepancy Attention (SIDA), applied in the shallow and
deep stages, respectively. The SEDA captures local feature relationships between central points and
neighboring points through fine-grained element-wise spiking differences. In contrast, the SIDA
models global dependencies using coarse-grained differences in spiking intensity among central
points. Additionally, we design a Spatially-Aware Spiking Neuron that effectively encodes spatial
information in the initial membrane potential, compensating for the loss of spatial information in
spike representations. Ultimately, we integrate SDAM with Spatially-Aware Spiking Neuron into a
hierarchical multi-stage local-global architecture, termed as Spiking Discrepancy Transformer, which
is shown in Figure 1. The main contributions are as follows:

• We propose a Spiking Discrepancy Attention Mechanism (SDAM) tailored to the characteristics
of point clouds. The mechanism includes Spiking Element Discrepancy Attention (SEDA) and
Spiking Intensity Discrepancy Attention (SIDA), which effectively represent complex local-global
spatial information.

• We design a Spatially-Aware Spiking Neuron that encodes spatial information in the initial mem-
brane potential, thereby compensating for the loss of spatial information in spike representations.

• The Spiking Discrepancy Transformer achieves state-of-the-art performance among SNN-based
approaches. Besides, our method’s theoretical energy consumption is significantly lower compared
to ANN-based approaches.

2 RELATED WORK

Deep SNNs and Spiking Transformers. Numerous studies focus on learning methods and archi-
tectures for deep SNNs. Spatio-temporal backpropagation (STBP) Wu et al. (2018) enables the
direct training of SNNs via backpropagation across both spatial and temporal dimensions. Temporal
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backpropagation Kheradpisheh & Masquelier (2020) calculates the gradients of spike timings with
respect to the membrane potential at the moment of spike generation. Threshold-dependent batch
normalization (tdBN) Zheng et al. (2021) facilitates the training of deeper SNNs. Additionally,
SEW-ResNet Fang et al. (2021b) proposes a spiking element-wise residual mechanism to enhance the
performance of deep SNNs. Spikformer Zhou et al. (2023c) is the first to transform all components
of the Vision Transformer into a spike-based formulation, thereby pioneering the integration of SNNs
with Transformer. Spike-driven Transformer Yao et al. (2024b) introduces a linear-complexity spike-
driven self-attention for efficiency. The following works focus on structural enhancements Zhou et al.
(2023a;b); Wang et al. (2023a); Zhou et al. (2024a;b), training methodologies Wang et al. (2023b),
and applications across different tasks Bal & Sengupta (2024). Research on the application of Spiking
Transformers across various fields is gradually unfolding.
Point Cloud Analysis. Point-based methods are pioneering in point cloud processing tasks, with
numerous studies exploring 3D spatial convolutions Li et al. (2018); Yan et al. (2020), point cloud
spatial encoding Mohammadi & Salarpour (2024), and network architecture design Ma et al. (2022).
Recently, the application of Transformers in the point cloud have demonstrated significant potential,
with the Point Transformer Guo et al. (2021); Zhao et al. (2021) being a notable milestone. To
enhance computational efficiency, PatchFormer Zhang et al. (2022) proposes Patch Attention, Point
Transformer V2 Wu et al. (2022) introduces Grouped Vector Attention, and Flatformer Liu et al.
(2023) further proposes Flattened Window Attention. The Point Transformer V3 Wu et al. (2024c)
achieves state-of-the-art performance across various tasks. In SNNs, Spiking PointNet Ren et al.
(2023) incorporates spiking neurons into the PointNet framework, but its performance remains
suboptimal. P2SResLNet Wu et al. (2024b) combines 3D kernel point convolutions with spiking
neurons, and E-3DSNN Qiu et al. (2024a) introduces a Spike Sparse Convolution to efficiently extract
sparse 3D features. However, these methods diverge from the biological simplicity and dynamics
inherent in traditional SNNs. The ANN-to-SNN conversion approach Lan et al. (2023a) also yields
subpar results. Spiking Point Transformer Wu et al. (2024a) relies on single local feature extraction
and fails to capture the global characteristics, leading to performance degradation. Currently, there
is an urgent need for a coherent design from spiking neurons to spiking attention to enhance the
capabilities of the 3D Spiking Transformer.

3 METHOD

3.1 PRELIMINARIES

Spiking Neuron is the basic unit of SNNs. We select the typical hard-reset Leaky-Integrate-and-Fire
(LIF) neuron Wu et al. (2018) as example,

H[t] = (1− 1

τ
)V [t− 1] +

1

τ
X[t], (1)

S[t] = Θ(H[t]− Vth), (2)
V [t] = H[t](1− S[t]) + VresetS[t], (3)

where τ is the membrane time constant, and X[t] is the input current received at the time step t.
When the membrane potential H[t] surpasses the threshold Vth, the spiking neuron will trigger a spike
S[t] to subsequent layers. The heaviside step function Θ(v) is defined as 1 for v ≥ 0 and 0 for v < 0.
V [t] represents the post-spike membrane potential, which is either H[t] if no spike is generated or
is reset to Vreset upon a spike event. It is worth noting that V [0] is typically considered to be zero,
whereas different insights may apply in 3D tasks.

Spiking Self-Attention is different from vanilla self-attention Vaswani et al. (2017). Given the
spike-form input X, the Query Q, Key K, and Value V are in spike form. Besides, it discards the
softmax normalization for the attention map, which can be described by the following equation:

Q = SNQ(L-BNQ(X)),K = SNK(L-BNK(X)),V = SNV(L-BNV(X)), (4)

SSA(Q,K,V) = SN (QKTV ∗ s), (5)
where SN denotes the spiking neuron layer and L-BN represents that the features pass through
Linear and Batch Normalization sequentially. s is the scaling factor.

3.2 SPIKING DISCREPANCY ATTENTION MECHANISM

The spatial features of unordered, irregular point clouds fundamentally differ from the semantic
features of ordered, structured 2D visual data. SSA guides feature aggregation through dot product
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similarity, allowing points with similar features to be assigned higher weights. However, in 3D
scenes, discriminative edge regions often exhibit stark changes in local geometric features, resulting
in lower feature similarity scores. The smooth aggregation of SSA can lead to a dilution of scores
in these critical regions, subsequently causing edge blurring effects. While spiking-based modeling
brings efficiency, it inevitably introduces information loss. The presence of channel-wise spiking dot
product mismatches within SSA exacerbates this issue, further degrading its representation capability.
Moreover, the dot product-based SSA does not inherently satisfy translation invariance, which is
crucial for 3D tasks. In summary, 3D analysis requires an efficient attention mechanism that focuses
on distinct features and easily adapts from local to global point-cloud modeling. We design a Spiking
Discrepancy Attention Mechanism (SDAM) tailored for 3D analysis,

SDAM(Q,K,V) = SD(Q,K) ◦V, (6)

where SD is defined as the spiking discrepancy, which is a spike-driven feature metric and
can be obtained through subtraction between spike sequences. ◦ represents a spike-driven
matrix operator which varies depending on the scope of the attention modeling. SD simu-
lates the cortical neurons’ response mechanism to asynchronous multi-channel spike misalign-
ment through spike discrepancy sensitivity, where lateral inhibition of neighboring neuron ac-
tivity enhances edge contrast. It also satisfies the translation invariance of spiking features, as
shown in Table 1 by its ability to robustly recognize point clouds after spatial transformations.

Table 1: Comparison of model performance degradation after
spatial transformations on the datasets. The types of spatial
transformations include random rotation, translation, and scal-
ing. PT refers to Point Transformer. OA and OAT respectively
represent the original accuracy and the accuracy on the trans-
formed datasets.

Models Modelnet40 ScanObjectNN
OA(%) OAT(%) OA(%) OAT(%)

PT Zhao et al. (2021)(ANN) 93.7 90.7(-3.0) 86.4 83.2(-3.2)
PTV3 Wu et al. (2024c)(ANN) 94.5 92.3(-2.2) 87.9 85.8(-2.1)
SSA Zhou et al. (2023c)(SNN) 89.8 86.2(-3.6) 83.2 80.4(-2.8)
SDAM(SNN) 92.5 91.2(-1.3) 86.2 85.0(-1.2)

Inspired by the multi-stage hierarchical ar-
chitecture, we extend SDAM into a hi-
erarchical combination of Spiking Ele-
ment Discrepancy Attention (SEDA) and
Spiking Intensity Discrepancy Attention
(SIDA). Specifically, SEDA captures the
fine-grained spiking variation trends be-
tween the center point and its neighboring
points within a local point cloud cluster,
while SIDA depicts the coarse-grained sig-
nificant differences at a macro scale among
point cloud. The details will be elaborated
in the following subsections.

3.3 SPIKING ELEMENT DISCREPANCY ATTENTION

As shown in Figure 1, the Spiking Element Discrepancy Attention (SEDA) explicitly addresses
the limitation of geometric feature dilution in edge regions by leveraging channel-wise spiking
difference sensitivity, a bio-inspired mechanism that mimics lateral inhibition in cortical neurons
Mao & Massaquoi (2007).

Unlike conventional dot-product similarity that prioritizes smooth feature aggregation, SEDA operates
on a fundamental hypothesis: local geometric discriminability arises from spiking misalignment
between neighboring points. The explanation is provided in the Appendix C. Formally, given a
central query point spiking feature q ∈ ST×C , its n neighboring key points spiking feature set
k = {kj ∈ ST×C | j = 1, 2, · · ·, n} and central value point spiking feature v, where T represents
time steps and C denotes the number of channels, SEDA computes pairwise multi-channel spiking
discrepancy,

SDj = q− kj, (7)

SD(q,k) = SN

 n∑
j=1

SDj ∗ s

 , (8)

SEDA(q,k,v) = SD(q,k)⊙ v, (9)

where SD is denoted as spiking difference and SN represents the spiking neuron. s is a synaptic
scaling factor. ⊙ is the element-wise masking. ∗ means element-wise multiplication.

To intuitively demonstrate the spatial representation capability of SEDA, we perform t-SNE on the
feature matrix obtained after applying SEDA and SSA on the ShapeNetPart Yi et al. (2016).
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Object             SSA               SEDA Object             SSA               SEDA

Figure 2: t-SNE visualization of SSA and SEDA. Points of
different colors correspond to distinct components of the ob-
ject. We compress the features produced by SSA and SEDA
in the first stage of the network.

As shown in Figure 2, SEDA demonstrates
superior geometric discriminability com-
pared to SSA. Specifically, SEDA induces
two critical clustering properties: 1) Intra-
part feature compactness, where points be-
longing to the same object part (e.g., chair
legs or surfaces) form tightly cohesive clus-
ters, and 2) Inter-part margin amplification,
exhibiting enlarged separation distances be-
tween clusters corresponding to distinct
geometric components. In contrast, SSA
features exhibit diffused distributions with
overlapping clusters across object parts, in-
dicating geometric ambiguity. These re-
sults indicate that the network incorporat-
ing SEDA successfully learns detailed spa-
tial position features.

3.4 SPIKING INTENSITY DISCREPANCY ATTENTION

Building upon SEDA’s local geometric discriminability, we propose Spiking Intensity Discrepancy
Attention (SIDA) to capture global structural patterns through spiking intensity divergence, as shown
in Figure 1. Spiking intensity represents the cumulative value of spikes for the current position
features in a purely additive form. Unlike SEDA that focuses on micro-scale spiking discrepancy
between neighbors, SIDA operates on a macro-scale spatial hypothesis: topological significance
emerges from population-level firing intensity contrast across different point cloud regions. The
explanation is provided in the Appendix C. Formally, given the N -points global spiking feature
Q,K,V ∈ ST×N×C , SIDA can be written as follows:

SD(Q,K) = SN ((

C∑
Q−

C∑
KT ) ∗ s), (10)

SIDA(Q,K,V) = SD(Q,K) ·V. (11)

By capturing global spiking intensity differences, SIDA effectively identifies macro-structural patterns
in point clouds, particularly the overall geometric layout and key object components. Specifically,
SIDA’s sensitivity to intensity differences addresses two critical challenges in spiking-based point
cloud analysis:

S
S
A

S
I
D
A

Figure 3: Visualization of SSA and SIDA feature
map. The green point indicates each spike, while
blue denotes silence. The feature map is derived
from the spike matrix obtained after applying SSA
or SIDA in the final stage.

1) The intrinsic information loss in spiking features
may compromise accurate 3D perception, while spik-
ing intensity offers a statistically robust solution for
modeling 3D salient disparity regions. 2) The in-
herent translation invariance of intensity divergence
aligns seamlessly with 3D geometric priors, enhanc-
ing the model’s ability to understand spatial struc-
tures. To demonstrate that SIDA captures global
features more effectively than SSA, we visualized
the spiking point features, as shown in the Figure 3.
SIDA produces sparse spike activations at critical lo-
cations of the point cloud skeleton, such as the wings,
tail, and nose of an aircraft; the lampshade, lamp post,
and lamp base of a lamp. In contrast, SSA focuses
on less important regions or repeatedly emphasizes
a particular component, such as the fuselage of an
aircraft or only the lampshade of a lamp.

The hierarchical synergy between SEDA and SIDA forms a bio-plausible computational mechanism
for point cloud analysis. SEDA enhances local geometric discriminability in early stages, while
SIDA models global topological structures through spiking intensity contrast in deep stages. This
dual-attention framework enables the network to capture both fine-grained local details and global
geometric relationships, improving object structure understanding.
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3.5 SPATIALLY-AWARE SPIKING NEURON

Spiking features suffer from information loss when modeling complex spatial positions, and this issue
becomes more severe as the depth of the network increases. To this end, we propose a Spatially-Aware
Spiking Neuron (SASN) based on membrane potential dynamics, inspired by the characteristics of
neuronal membrane potential dynamics and the specific traits of 3D tasks. The Initial Membrane
Potential (IMP) affects neuronal dynamics Shen et al. (2024b). Therefore, embedding spatial
information into the IMP can enhance spatio-temporal perception.

Specifically, due to the decoupling of spatial point sampling from the neural network, we can encode
the selected point coordinates into the IMP of spiking neurons using trigonometric functions Zhang
et al. (2023b) in a non-learnable manner before the network processing stage. In the first time step,
according to Eq. 1, the membrane potential changes from 1

τX[1] to:

H[1] = (1− 1

τ
)P [0] +

1

τ
X[1], (12)

where P [0] represents the value of the position encoding corresponding to the specific spiking neuron.
Details on IMP position encoding can be found in the Appendix A. SASN leverages the injection of
spatial information from the IMP to achieve the spatio-temporal information interaction in SNN-based
point cloud processing. SASN can directly replace conventional spiking neurons, and we also conduct
an ablation study on the insertion position.

3.6 OVERALL ARCHITECTURE

Based on the SEDA, SIDA and SASN, we construct a hierarchical Spiking Discrepancy Transformer
(SDT), which is shown in Figure 1. SDT is an encoder structure consisting of multiple stages that
progressively downsample and model the point set. Each stage contains the Spiking Sub-sampling
Unit (SSU) and SDT block. SSU performs point set sampling and embedding transformation. Point set
sampling involves downsampling and center-nearest point sampling, implemented using Farthest Point
Sampling (FPS) and K-Nearest Neighbors (KNN), respectively. FPS and KNN are common sampling
methods without training parameters. For stage l, the output of point set sampling includes the centrol
point features Xl ∈ RT×N×C , corresponding neighboring point features Xk

l ∈ RT×N×C×k, and the
original coordinates Pl ∈ RN×3. The embedding transformation is formulated as:

X′
l = Linear(SN (CAT(Xl,X

k
l ))), (13)

Yl = MP(X′
l) + AP(X′

l), (14)

where CAT represents aggregation. After aggregating, the spiking points are projected into the
neuron membrane potential X′

l. Finally, by using Max-Average Pooling (MP, AP), we aggregate the
local features from the neighborhood onto Yl. Each SDT block contains SDAM and Multi-layer
Perceptron (MLP). First half of the stages employ the SEDA to extract local point cloud details
and the others utilize the SIDA to extract global point cloud information. For 3D classification, the
number of stages is set to 4. SDT by default employs the membrane potential shortcut residual Hu
et al. (2023). Additional architectural details are presented in Appendix B.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Building upon prior research in SNNs for point cloud analysis, we initially evaluate the performance
of the proposed SDT for 3D classification. This evaluation encompasses experiments on both
the synthetic ModelNet40 Wu et al. (2015) and the real-world ScanObjectNN Uy et al. (2019).
Furthermore, we showcase the versatility of SDT by extending its application to 3D semantic
segmentation and object part segmentation tasks. For semantic segmentation, we employ the Stanford
Large-Scale 3D Indoor Spaces (S3DIS) Armeni et al. (2016) which present significant challenges.
For object part segmentation, we utilize the ShapeNetPart Yi et al. (2016). To comprehensively assess
the performance of SDT, we compare it with both conventional ANN methods and cutting-edge SNN
approaches, including direct training methodologies and ANN-to-SNN conversion strategies. Finally,
we perform an ablation study to systematically analyze the contributions of individual components
within SDT, thereby validating the efficacy of our proposed framework.

Implementation Details. We implement SDT using PyTorch Paszke et al. (2019) on four RTX 4090
GPUs. For the neuron models, we utilize those provided by the SpikingJelly library Fang et al. (2023).
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Table 2: Performance and theoretical energy consumption on 3D classification. ∗ means self implementation

Method Type Param(M) ModelNet40 ScanObjectNN
OA(%)↑ mAcc(%) ↑ Energy(mJ) ↓ OA(%) ↑ mAcc(%) ↑ Energy(mJ) ↓

PointNet Qi et al. (2017a) [CVPR17] ANN 3.47 89.20 86.00 2.07 68.20 63.40 2.07
PointNet++ Qi et al. (2017b) [NeurIPS17] ANN 1.74 91.90 89.10 18.72 77.90 75.40 18.71
KPConv Thomas et al. (2019) [ICCV19] ANN 15.20 92.10 90.70 94.53 85.30 83.69 94.50

PointTransformer Zhao et al. (2021) [ICCV21] ANN 9.58 93.70 90.60 84.64 86.01 84.10 84.07
PointMLP Ma et al. (2022) [ICLR22] ANN 12.60 94.10 91.30 72.38 85.40 83.90 72.36

Point-GPT Chen et al. (2024) [NeurIPS23] ANN 19.46 94.00 91.03 20.48 86.90 85.17 20.47
PointGT Zhang et al. (2024c) [TMM24] ANN - 92.60 90.00 - 86.50 84.90 -

PointNet-SNN Lan et al. (2023b) [ICCV23] ANN-to-SNN 3.50 88.17 84.02 0.26 66.56 60.33 0.27
KPConv-SNN Wu et al. (2024b) [AAAI24] ANN-to-SNN 15.20 70.50 67.60 - 43.90 38.70 -

Spiking PointNet Ren et al. (2023) [NeurIPS23] SNN 3.50 88.61 84.20 0.24∗ 65.40 61.30 0.28∗

P2SResLNet Wu et al. (2024b) [AAAI24] SNN 15.20 90.60 89.20 - 81.20 79.40 -
E-3DSNN Qiu et al. (2024a) [AAAI25] SNN 3.27 91.70 88.40 1.76∗ 83.91∗ 81.92∗ 2.64∗

SPT Wu et al. (2024a) [AAAI25] SNN 9.64 91.43 89.39 13.3 82.23 80.12 13.5∗

SDT (T=1) SNN 2.25 92.18 88.92 0.45 85.25 83.20 0.61
SDT (T=4) SNN 2.25 92.46 89.48 1.33 86.19 84.37 2.11

Table 3: Hyper-parameters of SDT on various datasets.

Parameter ModelNet40 ScanObjectNN S3DIS ShapeNetPart

Learning Rate 5e− 2 1.5e− 3 1e− 2 2e− 3
Weight Decay 1e− 4 5e− 2 1e− 4 1e− 4
Batch Size 32 32 96 48
Training Epochs 300 300 100 200
Optimizer SGD AdamW AdamW Adam
Initial Point Number 1024 1024 24000 2048

We construct the code framework
based on Zhang et al. (2023a).
Additionally, we specify the hyper-
parameters used in our experiments,
as summarized in Table 3. They are
based on the common practices in the
ANNs with slight adjustments. The
initial point number refers to the quan-
tity of point clouds fed into the net-
work during the training process. In addition, the theoretical energy consumption formulation is
provided in the Appendix D.

4.2 3D CLASSIFICATION

Data and Metric. The ModelNet40 Wu et al. (2015) dataset contains 12,311 CAD models with
40 object categories. They are split into 9,843 models for training and 2,468 for testing. We follow
the data preparation procedure of Qi et al. Qi et al. (2017b) and uniformly sample the points from
each CAD model. While ModelNet40 is widely regarded as the standard benchmark for point cloud
analysis, its synthetic nature and the rapid advancement in point cloud methods may limit its relevance
for modern approaches. Therefore, we also evaluate our method on the ScanObjectNN benchmark Uy
et al. (2019). ScanObjectNN includes approximately 15,000 objects, categorized into 15 classes with
2,902 unique real-world object instances. This dataset presents significant challenges for point cloud
analysis due to factors such as background interference, noise, and occlusions. In our experiments,
we focus on the most challenging perturbed variant called PB T50 RS. For evaluation metrics, we
use the mean Accuracy (mAcc) within each category and the Overall Accuracy (OA) over all classes.
The training and inference speed are provided in the Appendix E.1.

Comparison with SNNs. SDT significantly outperforms existing SNN approaches in Table 2. For
instance, the previous best model, E-3DSNN Qiu et al. (2024a), achieves 91.70% OA on ModelNet40
with 3.27M parameters, and SPT Wu et al. (2024a) reaches 82.23% OA on ScanObjectNN. In contrast,
with only 2.25M parameters, SDT surpasses these models by 0.76% on ModelNet40 and 3.96% on
ScanObjectNN, achieving both enhanced computational efficiency and improved performance.

Comparison with ANNs. As shown in Table 2, when compared to ANN-based methods such
as, PointMLP Ma et al. (2022), Point-GPT Chen et al. (2024), and PointGT Zhang et al. (2024c),
which utilize floating-point representations to encode richer information, SDT delivers competitive
performance with only a slight decrease in accuracy. Furthermore, our focus is on leveraging SDT
to minimize energy consumption during 3D point cloud processing while maintaining competitive
classification accuracy. SDT achieves overall accuracies of 92.46% and 86.19% on two benchmark
datasets, respectively, closely matching the performance of PointMLP (94.10%) and Point-GPT
(86.90%). Remarkably, SDT consumes only 1.8% of the energy consumption of PointMLP (1.33
mJ VS. 72.38 mJ) on ModelNet40, 10.3% of the Point-GPT (2.11 mJ VS. 20.47 mJ) on ScanOb-
jectNN. SDT also outperforms ANN-based models such as PointNet++ and KPConv, requiring fewer
parameters and less energy, demonstrating potential of SNNs for efficient 3D point cloud processing.
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4.3 SEMANTIC AND OBJECT PART SEGMENTATION

Data and Metric. For the semantic segmentation task, we conduct experiments on S3DIS Ar-
meni et al. (2016). The S3DIS dataset, designed for semantic scene parsing, consists of 271
rooms spanning six areas across three buildings. In accordance with prior works Tchapmi et al.
(2017); Qi et al. (2017b); Zhao et al. (2021), area 5 is excluded from training and reserved for
testing. Following the standard evaluation protocol Qi et al. (2017b), we employ mIoU, mean
class-wise accuracy (mAcc), and overall point-wise accuracy (OA) as evaluation metrics. For
the object part segmentation task, we use the ShapeNetPart Yi et al. (2016). It consists of
16,880 models from 16 shape categories, with 14,006 3D samples for training and 2,874 for
testing. The number of parts for each category is between 2 and 6, with 50 different parts in
total. We use the sampled point sets produced by Qi et al. Qi et al. (2017b) for a fair compar-
ison with prior work. For evaluation metrics, we report category mIoU and instance mIoU.

Table 4: Semantic segmentation results on S3DIS, evaluated on Area 5.

Method Type OA(%) mAcc(%) mIoU(%) ceiling floor wall beam column window door table chair sofa bookcase board clutter Param(M) Energy(mJ)

PointNet Qi et al. (2017a) ANN – 49.0 41.1 88.8 97.3 69.8 0.1 3.9 46.3 10.8 59.0 52.6 5.9 40.3 26.4 33.2 3.5 5.5
TangentConv Tatarchenko et al. (2018) ANN – 62.2 52.6 90.5 97.7 74.0 0.0 20.7 39.0 31.3 77.5 69.4 57.3 38.5 48.8 39.8 1.5 32.3
PointCNN Li et al. (2018) ANN 85.9 63.9 57.3 92.3 98.2 79.4 0.0 17.6 22.8 62.1 74.4 80.6 31.7 66.7 62.1 56.7 46.2 324.5
PCCN Wang et al. (2018) ANN – 67.0 58.3 92.3 96.2 75.9 0.3 6.0 69.5 63.5 66.9 65.6 47.3 68.9 59.1 46.2 - -
PAT Yang et al. (2019) ANN – 70.8 60.1 93.0 98.5 72.3 1.0 41.5 85.1 38.2 57.7 83.6 48.1 67.0 61.3 33.6 9.3 97.2
PointWeb Zhao et al. (2019) ANN 87.0 66.6 60.3 92.0 98.5 79.4 0.0 21.1 59.7 34.8 76.3 88.3 46.9 69.3 64.9 52.5 4.8 68.1
HPEIN Jiang et al. (2019) ANN 87.2 68.3 61.9 91.5 98.2 81.4 0.0 23.3 65.3 40.0 75.5 87.7 58.5 67.8 65.6 49.4 - -
MinkowskiNet Choy et al. (2019) ANN – 71.7 65.4 91.8 98.7 86.2 0.0 34.1 48.9 62.4 81.6 89.8 47.2 74.9 74.4 58.6 - -
KPConv Thomas et al. (2019) ANN – 72.8 67.1 92.8 97.3 82.4 0.0 23.9 58.0 69.0 81.5 91.0 75.4 75.3 66.7 58.9 20.4 136.5
PointTransformer Zhao et al. (2021) ANN 90.8 76.5 70.4 94.0 98.5 86.3 0.0 38.0 63.4 74.3 89.1 82.4 74.3 80.2 76.0 59.3 4.9 76.8
PTv2 Wu et al. (2022) ANN 91.1 77.9 71.6 - - - - - - - - - - - - - 12.8 400.1
PTv3 Wu et al. (2024c) ANN 91.7 79.0 73.6 92.4 98.3 86.6 0.0 55.8 63.7 77.1 83.8 93.3 79.1 79.4 85.4 61.7 46.2 687.7

E-3DSNN Qiu et al. (2024a) SNN 89.8 73.3 67.4 95.3 98.5 82.3 0.0 28.0 55.8 71.5 81.2 89.8 69.2 76.4 67.0 61.6 10.9 14.4
SDT SNN 90.1 76.8 69.6 93.8 98.5 84.8 0.0 42.1 57.0 69.7 77.6 91.3 76.1 74.1 79.3 59.9 10.7 7.3

Table 5: Object Part Segmentation results on ShapeNetPart.

Method Type cat. mIoU(%) ins. mIoU Param(M) Energy(mJ)

PointNet Qi et al. (2017a) ANN 80.4 83.7 8.3 26.5
PCCN Wang et al. (2018) ANN 81.8 85.1 - -
PointNet++ Qi et al. (2017b) ANN 81.9 85.1 1.7 22.5
DGCNN Wang et al. (2019) ANN 82.3 85.1 1.5 23.1
SpiderCNN Xu et al. (2018) ANN 81.7 85.3 2.2 41.4
PointConv Wu et al. (2019) ANN 82.8 85.7 1.7 15.4
PointCNN Li et al. (2018) ANN 84.6 86.1 46.4 328.7
KPConv Thomas et al. (2019) ANN 85.1 86.4 20.7 144.5
PointTransformer Zhao et al. (2021) ANN 83.7 86.6 7.8 127.0
PointMLP Ma et al. (2022) ANN 84.6 86.1 5.2 54.2
PointGPT Chen et al. (2024) ANN 84.1 86.2 6.8 102.3

E-3DSNN Qiu et al. (2024a) SNN 81.7 83.8 4.9 8.8
SDT SNN 83.7 85.1 4.6 4.7

Performance Comparison. The results
are presented in Table 4 and Table 5. We
compare our work with the previous state-
of-the-art ANN domain. Since no SNN
has yet reported results on the S3DIS and
ShapeNetPart datasets, we test the perfor-
mance of the SNN state-of-the-art method
E-3DSNN Qiu et al. (2024a). For effective-
ness and fairness, we use the case where
T=1. On the S3DIS, our model achieves
a mIoU of 69.6%, while E-3DSNN arrives
at only 67.4%. On the ShapeNetPart, our
model achieves a 2.0% improvement in category mIoU and a 1.3% improvement in instance mIoU
compared to E-3DSNN, obtaining the SOTA in the SNN area. Furthermore, our method has competi-
tive performance, approaching the SOTA accuracy of 73.6% mIoU on S3DIS and 86.6% instance
mIoU on ShapeNetPart achieved by ANN-based methods, while the energy consumption is only
1.06% (7.29mJ vs 687.68mJ) and 3.73% (4.74mJ vs 126.96mJ) of ANN-SOTAs. We provide the
training curve on S3DIS in the Appendix E.3.

4.4 ABLATION STUDY

SDT SASN+SEDA SASN+SIDA SASN+SSU w/o SASN
80
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92.46% 92.08%
(-0.38%) 91.81%

(-0.65%)
91.93%
(-0.53%) 91.16%

(-1.30%)

86.19% 85.65%
(-0.54%) 85.13%

(-1.06%)
85.43%
(-0.76%) 84.37%

(-1.82%)

ModelNet40
ScanObjectNN

Figure 4: The ablation study for SASN. We observe
that the incorporation of SASN into various modules
consistently results in enhanced performance.

Table 6: Ablation study on attention variants in differ-
ent stages. The numbers marked in green and orange
represent the use of SEDA and SIDA, respectively, in
the corresponding stage. SSA denotes the framework
where all stages employ the SSA, while ”None” refers
to remove attention mechanism.

Attention Type Stage Index (1-4) ModelNet40 ScanObjectNN

None 1,2,3,4 85.25% 78.04%
SSA 1,2,3,4 89.78% 83.20%

SEDA 1,2,3,4 92.34% 85.45 %
SIDA 1,2,3,4 92.13% 84.73%

SEDA+SIDA 1,2,3,4 92.46% 86.19%

Ablation on Spatially-Aware Spiking Neuron. As shown in Figure 4, we investigate the effective-
ness of integrating SASN into different components (two types of attention (SEDA and SIDA) and
the downsampling block SSU). The baseline architecture uses Spiking Self-Attention (SSA) and the
common LIF neurons. The results demonstrate that SASN enhances the model’s spatial perception
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capabilities, particularly proving more effective in refining point cloud representations through SSU,
SEDA, and SIDA. Besides, we compare other neurons with SASN in the Appendix E.5.
Ablation on Attentions and Hierarchical Framework. As shown in Table 6, rows 1-4 demonstrate
that both SIDA and SEDA are more effective than vanilla SSA in modeling point clouds with nearly
identical parameters. Rows 5 further indicate that, compared to using SIDA or SEDA individually,
a multi-level architecture where SEDA is employed in the early stages to refine local point cloud
representations and SIDA is utilized in the later stages to extract global information—achieves
superior performance in point cloud processing. More results are provided in the Appendix E.2.

Table 7: Time Step Ablation.

Time Step ModelNet40 ScanObjectNN
OA(%) mAcc(%) OA(%) mAcc(%)

1 92.18 88.92 85.25 83.20
2 92.34 89.31 83.87 81.82
4 92.46 89.48 86.19 84.37
6 91.93 88.71 85.53 83.70

Table 8: Ablation study on network depth and width.

Depth Width Param(M) ModelNet40 ScanObjectNN
OA(%)↑ Energy(mJ) ↓ OA(%) ↑ Energy(mJ) ↓

2 [24, 48] 0.20 89.78 0.25 82.99 0.66
2 [48, 96] 0.32 90.21 0.35 83.96 0.79
2 [96, 192] 0.73 90.71 0.53 84.47 1.03
4 [24, 48, 96, 192] 0.72 91.87 0.89 85.43 1.66
4 [48, 96, 192, 384] 2.25 92.46 1.33 86.19 2.11
4 [96, 192, 384, 768] 8.07 92.69 4.56 86.45 7.85
6 [24, 48, 96, 192, 384, 768] 9.95 92.04 5.87 86.20 9.07
6 [48, 96, 192, 384, 768, 1536] 30.52 92.42 17.73 86.08 20.29

Time Step. As depicted in Table 7, increasing time steps T within a certain range improves accuracy.
We set the maximum T to 6 in our study, the results are peaking at T=4 with 92.46% on the
ModelNet40 and 86.19% on the ScanObjectNN. As discussed in Wu et al. (2024b), the results can be
attributed to the scarcity of temporal cues in 3D datasets. Thus, increasing T might lead to redundant
computations without enhancing informative representation. Small time steps may be suitable for
practical applications.
Ablation on Network Depth and Width. Table 8 compares the parameter count, performance,
and energy consumption of the SDT under varying depths and widths. The results demonstrate
that excessively increasing either width or depth in point cloud tasks does not yield significant
performance gains but escalates both model size and computational cost. Balancing the accuracy and
efficiency, we adapt a configuration with 4-stage depth and [48, 96, 192, 384] for width.
Sparsity Analysis. As demonstrated in Table 9, we analyze the sparsity of each component in the
SIDA and SEDA, and their sparsity further corroborates the low energy consumption of SDT.
Robustness Analysis. In the Appendix E.4 and E.6, we further analysis the robustness of SDT.

4.5 VISUALIZATION RESULTS

Figure 5 presents the Semantic Segmentation of SDT on the S3DIS dataset. The predictions exhibit
a high degree of similarity to the ground truth, highlighting the effectiveness of our architecture in
segmentation tasks. More visualization results are shown in the Appendix F.

Table 9: The Sparsity of each Attention Type. Q,
K, V means Query, Key, Value Matrices, A means
Attention Map, O means the results of Self-Attention.

Attention Type Q(%) K(%) V(%) A(%) O(%)

SSA 3.12 5.54 9.46 6.82 5.90
SEDA 1.06 1.24 1.15 3.82 4.69
SIDA 1.55 1.48 1.56 3.75 4.93

ceiling wall beam column window door table chair sofafloor bookcase board clutter

INPUT                SDT                   GT INPUT                SDT                   GT

Figure 5: Visualization of segmentation on S3DIS. GT
means the ground truth.

5 CONCLUSION

For 3D tasks, we design a Spiking Discrepancy Attention Mechanism (SDAM), which includes
Spiking Element Discrepancy Attention and Spiking Intensity Discrepancy Attention to model local-
global spatial features. A Spatially-Aware Spiking Neuron is designed to align with the SDAM.
Based on these, we propose the hierarchical Spiking Discrepancy Transformer (SDT). SDT achieves
SOTA performance within SNNs and exhibits theoretically lower energy consumption compared to
ANNs. SDT can further solidify the foundation for exploring the application of SNNs in 3D tasks,
and also promote the design of next-generation neuromorphic chips for point cloud processing. The
limitations and future work are discussed in the Appendix G
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A DETAILS OF INITIAL MEMBRANE POTENTIAL

We choose the x-coordinate xj of the j-th point pj = (xj , yj , zj) ∈ R3, j ∈ [1, N ] in the N points
as an example.

Ux[j] = IMP(xj),U
x[j] ∈ R

2C
3 , (15)

Ux[j][m] =

{
sin

(
xj · α/(t · β

3m
2C )

)
,m = 2n

cos
(
xj · α/(t · β

3m
2C )

)
,m = 2n+ 1

(16)

U[j] = Concat(Ux[j],Uy[j],Uz[j]),U[j] ∈ RC . (17)

where C means the channels, m ∈ [0, C
3 ], α and β control the amplitude and wavelength of the

trigonometric functions, respectively, and are set to 1000 and 100 in experiments. t is the current time
step, used to distinguish between different time points in the temporal dimension. Integrating the three
coordinates, pj is encoded into U[j]. The dimensional expanses from 3 to C. This parameter-free
positional encoding maps the point cloud locations into high-frequency feature information, serving
as the Initial Membrane Potential (IMP) for Spiking Neuron, which mitigates the SNN’s inherent
information loss.

B ARCHITECTURE DETAILS

B.1 POINT CLOUD CLASSIFICATION

Our Hierarchical Spiking Discrepancy Transformer (SDT) framework for point cloud classification
is shown in Fig. 1 in the main text. Herein, we provide additional details regarding the model. We
use four stages. Each SSU module reduces the cardinality of the point set to 1

2 in each stage. The
K-Nearset Neighbor is set to 40. The initial encoding channels are set to 48, and the expansion in
each stage is [2, 2, 2, 1]. For classification, we also perform a global MAP (Max-Average Pooling)
over the pointwise features to get a global feature for the whole point set. This global feature is
passed through a Spiking MLP with a linear layer to get the global classification logits. We apply
SEDA in the first half stages and SIDA in the last half stages.

B.2 POINT CLOUD SEGMENTATION

For dense prediction tasks such as semantic segmentation, we adopt a U-Net in which the encoder
described in the main text is coupled with a Spiking Feature Propagation decoder Qian et al. (2022).
Consecutive stages in the decoder are connected by Spiking Points Propagation Unit. Their primary
function is to map features from the downsampled input point set P2 onto its superset P1 ⊃ P2. To
this end, each input point feature is processed by a Spiking Linear layer, and then the features are
mapped onto the higher-resolution point set P1 via trilinear interpolation. These interpolated features
from the preceding decoder stage are summarized with the features from the corresponding encoder
stage, provided via a membrane shortcut skip connection.

For the segmentation head, the final decoder stage produces a feature vector for each point in the
input point set. We also apply a Spiking MLP and a Linear layer to map this feature to the final
logits. Besides, we use four stage for S3DIS Armeni et al. (2016) and ShapeNetpart Yi et al. (2016).
In the S3DIS dataset, each SSU module reduces the cardinality of the point set to 1

4 in each stage.
The K-Nearset Neighbor is set to 32. The initial encoding channels are set to 48, and the expansion
in each stage is [2, 2, 2, 1]. Each stage contains [4, 7, 4, 4] Transformer blocks, respectively. We
apply SIDA in the final stage and SEDA in the other stages. In ShapeNetpart dataset, each SSU
module reduces the cardinality of the point set to 1

4 in the first stage while 1
2 in the other stages. The

K-Nearset Neighbor is set to 32. The initial encoding channels are set to 48, and the expansion in
each stage is [2, 2, 2, 1]. Each stage contains only one Transformer block. We apply SEDA in the
first half stages and SIDA in the last half stages.

C THEORETICAL ANALYSIS OF HYPOTHESES IN SEC 3.2

We provide a theoretical analysis of hypotheses in Sec 3.2. Prior ANN works have demonstrated that
topological complexity of point clouds can be quantified by entropy Young & Wasserman (2001);
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Tang et al. (2023); Jiang et al. (2021). Second, in the work Guo et al. (2022a), it has been shown that
the information in spiking features can likewise be measured by entropy. In ANNs, the variations in
the coordinates of point clouds cause the extracted features within the point-cloud network to differ;
similarly, in SNNs the spiking features exhibit the same situation. It shows that the geometric features
are related to spiking features. Thus, we further explain the hypotheses from the perspective of local
and global entropy.

For SEDA, we propse hypothesis: ”local geometric discriminability arises from spiking misalignment
between neighboring points” at line 157. The validity of the SEDA hypothesis can be supported by
analyzing the entropy and information content of local geometric features based on spiking misalign-
ment within neighborhoods. Let q ∈ ST×C be the spiking feature of a query point, and {kj}nj=1
be the spiking features of its neighboring points. We define the multi-channel spiking difference as
SDj = q − kj , and measure its magnitude dj = SDj . Normalizing over the neighborhood yields a
probability distribution:

pj =
dj∑n
k=1 dk

, (18)

The local geometric entropy is then defined as:

Hlocal = −
n∑

j=1

pj log pj , (19)

which quantifies the uncertainty of spiking misalignment distribution. A high entropy (nearly uniform
pj) indicates low geometric distinctiveness, while a low entropy (dominated by few large dj) indicates
salient local geometric features. Thus, the local geometric discriminability is inversely proportional
to Hlocal and SEDA’s purpose is to highlight the local geometric saliency.

For SIDA, we propse hypothesis: ”topological significance emerges from population-level firing
intensity contrast across different point cloud regions” at line 187. We formalize macro-scale
hypothesis by introducing Global Center Entropy which is computed across multiple cluster center
points. In SIDA, the spike intensity of a given central point m is equivalent to the spike firing rate pm.
We can normalize the firing rates of all points and subsequently compute the Global-Center-Entropy
Hglobal of point cloud M ,

qm =
ρm∑
k ρk

, (20)

Hglobal = −
M∑

m=1

qm log qm, (21)

When the entropy Hglobal is smaller, it indicates that the feature information content of the point cloud
is higher. This suggests that the network representation can capture the macro-level differences in
the point cloud features. For SIDA’s operation gmn, SD(m,n) = SN(ρm − ρn) ∝ |qm−qn|

maxk qk−mink qk
.

1
Hglobal

∝
∑

m<n SD(m,n). The total weight in SIDA is inversely proportional to Hglobal. SIDA
assigns higher weights to centers with ”large firing rate differences leading to lower entropy,” thereby
directly capturing the macro-level topological salience of the point cloud.

D THEORETICAL ENERGY CONSUMPTION

According to the general convention of SNNs Panda et al. (2020); Yao et al. (2023), we posit that the
MAC and AC operations are executed on 45nm hardware Horowitz (2014), with energy consumption
values of ECMAC = 4.6pJ and ECAC = 0.9pJ per operation, respectively. The theoretical Energy
Consumption (EC) of ANNs can be derived as follows:

ECANN = 4.6pJ× MACs. (22)

In SNNs, the AC operations can be obtained by multiplying the MAC operations by the firing rate f
of input spikes and the simulation time step T ,

ACs = MACs × f × T. (23)
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In SpikingPoint, the operations of the first layer are MACs to map the floating-point positions of
the point cloud to spike features, while subsequent-layers operations are ACs for modeling sparse
spiking-point features,

ECSP = 4.6pJ× MACs1 + 0.9pJ×
L∑

l=2

ACsl, (24)

where L denotes the number of linear layers in the SDT. Note that we ignore the energy of BN, as
it can be incorporated into the linear layers during inference. Energy consumption for point cloud
pre-processing is not accounted for, as it does not involve SNNs computations.

E MORE EXPERIMENTAL RESULTS

E.1 TRAINING AND INFERENCE SPEED

Table 10: Performance and Speed comparison on the ScanObjectNN dataset. OA denotes Overall Accuracy.

Model Type ScanObjectNN (OA(%)) Throughput (ins./sec.)
PointNet ANN 68.20 4212
PointNet++ ANN 77.90 1872
KPConv ANN 85.30 1281
PointTransformer ANN 86.01 188
PointMLP ANN 85.40 191
Point-GPT ANN 86.90 134
PointGT ANN 86.50 –
PointNext ANN 87.70 2040
PointNet-SNN ANN-to-SNN 66.56 4188
KPConv-SNN ANN-to-SNN 43.90 1267
Spiking PointNet SNN 65.40 1391
P2SResLNet SNN 81.20 –
E-3DSNN SNN 83.91 245
SPT SNN 82.23 168
SDT (ours) SNN 86.19 279

As shown in Table 10, we analyze the runtime performance of various models on ScanObjectNN,
along with their corresponding training and inference speeds. Our model, SDT, achieves state-of-the-
art performance among SNNs while maintaining a competitive operational speed. When performing
inference on GPUs, SNNs do not exhibit a clear throughput advantage over ANNs. However, SNNs
are typically deployed on neuromorphic hardware, which significantly accelerates their execution and
makes inference faster compared to ANNs.

Table 11: More ablation study on various spiking attentions implemented on different stages. The numbers
marked in green and orange represent the use of SEDA and SIDA, respectively, in the corresponding stage. SSA
denotes the framework where all stages employ the SSA, while ”None” refers to the framework where all stages
consist solely of MLPs without any attention mechanism.

Attention Type Stage Index (1-4) ModelNet40 ScanObjectNN
None 1,2,3,4 85.25% 78.04%
SSA 1,2,3,4 89.78% 83.20%

SEDA 1,2,3,4 92.34% 85.45 %
SIDA 1,2,3,4 92.13% 84.73%

SEDA+SIDA 1,2,3,4 92.46% 86.19%
SIDA+SEDA 1,2,3,4 92.09% 85.05%
SEDA+SIDA 1,2,3,4 92.22% 85.34%
SEDA+SIDA 1,2,3,4 92.34% 85.22%
SIDA+SEDA 1,2,3,4 91.81% 84.94%
SIDA+SEDA 1,2,3,4 91.41% 84.49%
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Figure 6: Visualization of training curve on the S3DIS dataset. GT means the ground truth. We choose the
validation miou in each epoch as y-axis.

E.2 ABLATION ON ATTENTIONS AND HIERARCHICAL FRAMEWORK

As shown in Table 11, rows 7,8 demonstrate that the SEDA and SIDA both play crucial roles.
Excessive reliance on SEDA for extracting local information or on SIDA for extracting global
information can lead to performance degradation. Rows 6, 9-10 shows that SEDA and SIDA cannot
be inverted; extracting global information first and then focusing on local details is counterintuitive,
and experiments have also demonstrated that this approach leads to a significant performance
degradation. This further validates the effectiveness of SDT.

E.3 EPOCH-ACCURACY CURVE

To further illustrate the performance of SDT, we present the validation mIoU curve on the S3DIS
dataset, demonstrating the variation with increasing epochs, as shown in Figure 6. Tab. 4 in the main
text reports the test mIoU results.

E.4 CROSS-DATASET RESULTS

Table 12: Cross-dataset Results on Point Cloud Classification

Architecture Train: ModelNet40 Train: ScanObjectNN
Test: ScanObjectNN Test: ModelNet40

PointNet Qi et al. (2017a) 31.1 50.9
SpiderCNN Xu et al. (2018) 30.9 46.6
PointNet++ Qi et al. (2017b) 32.0 47.4
DGCNN Wang et al. (2019) 36.8 54.7
PointCNN Li et al. (2018) 24.6 49.2
SimpleView Goyal et al. (2021) 40.5 57.9

SDT 51.3 66.2

According to the experiments in work Goyal et al. (2021), we design cross-dataset evaluations based
on our SDT. Our results surpass those of prior SNN-based point-cloud methods. This demonstrate
that our SDT network exhibits strong cross-dataset generalization.

E.5 ABLATION ON NEURON TYPES

As shown in Table 13, we conduct experiments under the setting T=4. Our SASN outperforms
the neurons you highlighted on both ModelNet40 and ScanObjectNN, indicating that the spatial
information encoded in SASN is better suited to point-cloud tasks.
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Table 13: Ablation on various Neuron

Neuron Type ModelNet40 ScanObjectNN
OA(%)/mAcc(%) OA(%)/mAcc(%)

SASN 92.46/89.48 86.19/84.37
IMP Shen et al. (2024a) 91.69/88.34 84.56/82.44
RealSpike Guo et al. (2022b) 91.88/88.69 85.01/83.45
TernarySpike Guo et al. (2024) 91.45/88.21 84.91/83.22
MultiSpike Qiu et al. (2024a) 91.96/89.01 85.34/83.81

E.6 ROBUSTNESS ABLATION STUDY

Table 14: Robustnss Performance Comparison of SDT, SEDA, SIDA, SSA and ANN-based models

Models Type ACCclean ACCnoise Uniform Gaus. Impulse Upsamp. Bg.

PointNet Qi et al. (2017a) ANN 90.7 67.3 87.6 85.6 70.9 86.0 6.4
PointNet++ Qi et al. (2017b) ANN 93.0 78.5 79.6 83.6 64.9 82.8 81.4
DGCNN Wang et al. (2019) ANN 92.6 74.3 85.4 83.4 75.1 80.9 46.9
PointMLP Ma et al. (2022) ANN 93.5 63.1 77.2 67.4 59.8 61.3 49.7
PCT Guo et al. (2021) ANN 92.9 71.9 87.9 86.1 60.9 82.6 42.1
Point Transformer Zhao et al. (2021) ANN 93.7 78.0 89.9 88.2 69.9 74.3 67.7
PTV3 Wu et al. (2024c) ANN 94.5 86.0 91.3 90.0 77.4 86.8 84.4

SSA Zhou et al. (2023c) SNN 89.8 86.9 88.8 89.0 86.4 84.8 85.7
SEDA SNN 92.3 90.0 91.0 91.0 91.6 87.4 88.7
SIDA SNN 92.1 87.8 90.4 90.0 89.3 84.2 85.3
SDT SNN 92.5 90.4 91.2 91.5 91.8 88.2 89.2

Here, we analyze the noise robustness of the Spiking Discrepancy Attention Mechanism and its
corresponding two attention variants, SEDA and SIDA. We compare them with SSA, as well as
with the ANN-based models, especially Point-Transformer and Point-Transformer v3, as shown in
Table 14. Following the ModelNet40-C Goyal et al. (2021) benchmark and previous work Zhang
et al. (2024a), our model is trained on the clean ModelNet40 dataset Wu et al. (2015) and evaluated
using its corrupted test sets. ModelNet40-C is constructed by applying various corruptions to the
ModelNet40 test set, encompassing 15 distinct corruption types categorized into Density, Noise,
and Transformation, each with five variations. Furthermore, each corruption type includes five
severity levels. For our assessment, we focused on the noise category, specifically selecting Uniform,
Gaussian, Impulse, Upsampling, and Background corruptions. We also use the overall accuracy
for performance evaluation. The results demonstrate that SNNs combined with the Transformer
architecture exhibit superior noise robustness. Within the category of SNNs, our designed SEDA and
SIDA demonstrate enhanced noise robustness compared to the original SSA.

Table 15: Ablation studies and hyperparameter analysis on ModelNet40 and ScanObjectNN.

Analysis Type Item Value ModelNet40 ScanObjectNN
OA(%)/mAcc(%) OA(%)/mAcc(%)

Ours (Default) 92.46/89.48 86.19/84.37
Spike Generation Poisson Encoding - 92.23/89.18 85.89/84.15

Neuron Hyperparameters

Decay Factor 0.25 92.43/89.51 86.22/84.21
1.0 92.75/89.77 85.89/84.41

Threshold 0.5 92.56/89.91 85.91/84.02
1.5 92.26/89.11 86.01/84.17

Surrogate Function Sigmoid 92.13/88.94 85.85/83.69
SoftSign 91.99/88.41 85.56/83.91

Spike Perturbations
Random Drop - 91.87/89.01 85.89/84.31
Random Flip - 91.56/88.39 85.23/83.45

Random Noise - 91.72/88.52 85.71/83.75

Besides, we conduct more comprehensive robustness evaluations under various scenarios in Table 15:
altering the spike encoding—i.e., spike generation settings (Poisson Encoding), the spiking-neuron hy-
perparameters (Decay Factor, Threshold and Surrogate Function), and noise scenarios (perturbations
and transformations in the spike feature). The ”Spike Perturbations” refer to perturbations applied to
the spiking features within the attention mechanism. ”Random Drop” denotes the random dropping
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of spike features during inference. ”Random Flip” denotes the random flipping of spike features
during inference. ”Random Noise” denotes the addition of random noise to the spike features during
inference. For hyperparameters, SDT adopts rate coding for spike generation, a neuron threshold of
1.0, a decay factor of 0.5, and uses Atan as the surrogate function. The results demonstrate that the
SDT design is relatively robust to various hyperparameters and noisy scenarios, exhibiting strong
generalization.

F MORE VISUALIZATION RESULTS

F.1 VISUALIZATION OF SEDA

In Figure 7, we show more t-SNE visualization of spiking features, further proving that SEDA
demonstrates superior geometric discriminability compared to the SSA.

F.2 VISUALIZATION OF SIDA

In Figure 8, we show more spiking point features of SIDA and SSA to show that SIDA captures
global features more effectively than SSA.

F.3 VISUALIZATION OF S3DIS RESULTS

In Figure 9, we show more Semantic Segmentation results on the S3DIS dataset.

F.4 VISUALIZATION OF SDAM AND SSA ATTENTION MAPS

In Figure 10, we compare the attention map distributions of SSA versus SDAM (SEDA and SIDA).
The visualization results demonstrate that SDAM is capable of better capturing global point cloud
information, particularly regarding the geometric distinguishability of edge features. This further
validates the effectiveness of SDAM compared to SSA in point cloud tasks.

G LIMITATIONS AND FUTURE WORKS

As mentioned in Section 3.2, our SDAM and SDT are specifically designed for point cloud analysis.
In the domains of images and text, these mechanisms may require further refinement to enhance their
generalization capabilities. Future works will focus on designing SNNs for point cloud analysis in
larger, open-world scenarios.

H USE OF LLMS

We declare that the LLMs are used solely to aid or polish the writing and are not involved in the
development of the main methodology or comparative experiments.
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  Object            SSA           SEDA   Object            SSA           SEDA

Figure 7: t-SNE visualization of SSA and SEDA. We utilize the feature maps obtained after the first stage of
SSA or SEDA in the network and subsequently compress them into a two-dimensional plane using t-SNE.
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Figure 8: Visualization of SSA and SIDA feature map. The green point indicates each spike, while blue denotes
silence. The feature map is derived from the spike matrix obtained after applying SSA or SIDA in the final stage.
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Figure 9: Visualization of semantic segmentation results on the S3DIS dataset. GT means the ground truth. We
selected six representative scenarios for validation.

SSASSA SIDASIDA SSASSA SEDASEDA

HighHigh

LowLow

Figure 10: Visualization of SSA and SDAM Attention Map. High values indicate elevated attention levels,
while low values suggest reduced focus. We observe that SSA tends to prioritize regions with high similarity,
specifically the denser areas of the point cloud. However, these regions often fail to yield effective features for
classification. In contrast, SDAM (comprising SEDA and SIDA) gravitates towards regions with significant dis-
parity—specifically areas exhibiting geometric discriminability. Features derived from these regions prove to be
highly effective for identifying point cloud categories. This demonstrates that the difference-based measurement
employed in SDAM is more effective for point cloud analysis than the similarity-based measurement used in
SSA.
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