
Representation Alignment and Adversarial Networks for Cross-lingual
Dependency Parsing

Anonymous ACL submission

Abstract

Thanks to the strong representation capability001
of pre-trained language models, dependency002
parsing in rich-resource language has achieved003
remarkable improvements. However, the pars-004
ing accuracy drops sharply when the model005
is transferred to low-resource language due006
to distribution shifts. To alleviate this issue,007
we propose a representation alignment and ad-008
versarial model to filter out useful knowledge009
from rich-resource language and ignore useless010
ones. Our proposed model consists of two com-011
ponents, i.e., an alignment network in the in-012
put layer for selecting useful language-specific013
representation features and an adversarial net-014
work in the encoder layer for augmenting the015
language-invariant contextualized features. Ex-016
periments on the benchmark datasets show that017
our proposed model outperforms RoBARTa-018
enhanced strong baseline models by 1.37 LAS019
and 1.34 UAS. Detailed analysis shows that020
both alignment and adversarial networks are021
equally important in alleviating the distribu-022
tion shifts problem and can benefit from each023
other. In addition, the comparative experiments024
demonstrate that both the alignment and ad-025
versarial networks can substantially facilitate026
extracting and utilizing relevant target language027
features, thereby increasing the adaptation ca-028
pability of our proposed model.029

1 Introduction030

Dependency parsing, as an important fundamental031

task of natural language processing, aims to iden-032

tify grammatical and syntax relationships between033

two words in the input sentence via a dependency034

tree. Figure 1 shows a dependency tree instance,035

where a dependency from the headword “voi (ele-036

phant)” to the modified word “thông minh (intelli-037

gent)” with the relation label “amod” means “thông038

minh (intelligent)” as an adjective modifies “voi039

(elephant)”. Dependency trees are widely applied040

to various artificial intelligence tasks, such as ma- 041

chine translation (Zhang et al., 2019), grammatical 042

error correction (Zhang et al., 2022), and informa- 043

tion extraction (Tian et al., 2022). 044

In the past decades, pre-trained language model 045

enhanced dependency parsers have achieved out- 046

standing performances in rich-resource languages 047

(Clark et al., 2018; Li et al., 2022; Nishida and 048

Matsumoto, 2022; Mohammadshahi and Hender- 049

son, 2021; Yan et al., 2020). Most significantly, 050

Dozat and Manning (2017) propose a BiAffine 051

parser that leverages multi-layer BiLSTMs to en- 052

code input sentences and a BiAffine operation to 053

compute scores, thus achieving better performance 054

on various languages. Then, Li et al. (2019) de- 055

velop a self-attentive BiAffine parser and further 056

improve the model performance with ELMo and 057

BERT representations. However, these model per- 058

formances drop sharply in low-resource languages 059

due to the lack of annotated data (Wang et al., 2020; 060

Effland and Collins, 2023; Rotman and Reichart, 061

2019; Vania et al., 2019). 062

As shown in Figure 1, both sentences from Viet- 063

namese and Chinese have a similar core grammat- 064

ical structure “subject-predicate-object”, but they 065

also have differences in the attributive positions 066

where Vietnamese adopts “post-modifier” while 067

Chinese is the opposite. Hence, how to construct 068

the discrepancy and similarity between different 069

languages becomes the key challenge for cross- 070

lingual dependency parsing (Ahmad et al., 2019; 071

Üstün et al., 2022; Ozaki et al., 2021; Liu et al., 072

2020; Xu and Koehn, 2021). A series of previous 073

works have explored feature transfer to improve 074

low-resource parsing. Most recently, Al Ghiffari 075

et al. (2023) propose a hierarchical transfer learning 076

(HTL) approach to exploit a source and an inter- 077

mediate language to improve the parsing accuracy 078

in low-resource languages. Similarly, Choudhary 079

and O’riordan (2023) incorporate linguistic typol- 080

ogy knowledge as an auxiliary task, further im- 081
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Figure 1: Examples of dependency tree from Universal Dependencies (UD) dataset, where the left sentence is
from the low-resource Vietnamese treebanks (VTB) and the right one is from the rich-resource simplified Chinese
treebanks (GSDSimp).

proving the low-resource dependency parsing per-082

formances. Although transfer learning from rich-083

resource to low-resource language has shown its084

promising advantages, how to further emphasize085

the helpful knowledge and filter out the harmful086

ones automatically is still an important problem.087

To address this issue, we propose a novel repre-088

sentation alignment and adversarial networks for089

cross-lingual dependency parsing. On the one hand,090

we propose an alignment network on the input091

layer to select useful language-specific word in-092

formation. On the other hand, a language-aware093

adversarial network is applied on the encoder layer094

to excavate potential language-invariant knowl-095

edge. Experiments on the benchmark dataset show096

that our proposed model achieves notable per-097

formance improvements, leading to new state-of-098

the-art results. Detailed analysis shows that align-099

ment and adversarial networks are complementary100

and can benefit from each other. In-depth com-101

parative experiments demonstrate that both align-102

ment and adversarial networks are equally impor-103

tant for filtering out effective knowledge from the104

source language. In addition, our codes are released105

at https://github.com/noteljj/align to facilitate106

future research.107

2 Related Work108

Cross-Lingual Dependency Parsing. Cross-109

lingual dependency parsing has emerged as a cru-110

cial component of natural language processing,111

with distinct methodologies contributing to its ad-112

vancement. Among these, three primary categories113

stand out: transfer learning, multilingual model114

adaptation, and subword representation alignment.115

Transfer learning techniques, epitomized by the116

work of Chen et al. (2019), Liu et al. (2023b) and117

Niu et al. (2022), leverage resources from rich-118

resource languages to improve parsing accuracy119

in low-resource languages, demonstrating the ver-120

satility of transferring syntactic knowledge across121

linguistic boundaries. In multilingual model adap-122

tation, researchers like Pfeiffer et al. (2021). Wang 123

et al. (2020) and Dione (2021) have adapted mul- 124

tilingual BERT models to enhance parsing perfor- 125

mance across various languages, illustrating the 126

power of transformer-based methods in handling 127

diverse linguistic environments. Meanwhile, the 128

subword representation alignment approach, as ex- 129

plored by Schuster et al. (2019); Yaari et al. (2022), 130

focuses on the fine-grained alignment of word or 131

subword representations between languages, ad- 132

dressing the challenge of representing low-resource 133

languages in pre-trained models. Collectively, these 134

approaches underscore the dynamism and complex- 135

ity of cross-lingual dependency parsing, highlight- 136

ing both its progress and the ongoing challenges 137

of syntactic alignment and resource disparity. This 138

landscape sets the stage for our investigation into 139

the effective transfer of subword representations 140

from Chinese to Vietnamese, a venture that seeks 141

to mitigate the representation gap for low-resource 142

languages and contribute to the evolving narrative 143

of linguistic adaptability in computational models. 144

Adversarial Learning. Adversarial learning has 145

become increasingly central in NLP, notably for its 146

role in fortifying model robustness and counteract- 147

ing data biases (Lowd and Meek, 2005), Zalmout 148

and Habash (2019) and Chen et al. (2021) have 149

demonstrated the efficacy of adversarial examples 150

in bolstering the resilience of NLP models to lin- 151

guistic variations and malicious attacks. Extending 152

this, Lu et al. (2023) and Zou et al. (2021) have 153

successfully integrated adversarial learning into 154

domain adaptation, effectively reducing domain- 155

specific biases. A recent novel approach by Han 156

et al. (2021) and Zhang et al. (2018) involves using 157

adversarial training to mitigate biases in training. 158

Additionally, the advent of adversarial data aug- 159

mentation, as investigated by Tan et al. (2022), has 160

shown promise in diversifying training datasets, 161

further enhancing model robustness. Despite these 162

advancements, adversarial learning still confronts 163

challenges in balancing model stability and per- 164
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formance, particularly when dealing with highly165

complex and nuanced linguistic data, underscoring166

the need for ongoing research and development in167

this dynamic area of NLP.168

Feature Alignment and Transfer. In the field169

of feature alignment and transfer, existing research170

can be categorized into deep learning-based meth-171

ods, instance-based methods, and model-based172

methods. Deep learning-based methods automati-173

cally learn feature mapping relationships between174

source and target domains through neural networks,175

such as aligning feature distributions in the space176

through adversarial training (Riemer et al., 2015),177

(Kumar et al., 2023) and (Hazem et al., 2022).178

Instance-based methods select and weight exam-179

ples from the source domain to have a greater im-180

pact in the target domain, like instance selection181

based on conditional adversarial learning (Basu182

Roy Chowdhury et al., 2019; Glavaš and Vulić,183

2020). Model-based methods focus on how to use184

the source domain’s model to assist learning in the185

target domain, such as progressive neural networks186

that learn to transfer knowledge across domains187

(Chawla and Yang, 2020; Liu et al., 2023a). These188

methods have their own advantages and can effec-189

tively improve the performance of cross-domain190

learning in different scenarios.191

3 Our Approach192

Considering not all rich-source language informa-193

tion is equally important for cross-lingual depen-194

dency parsing, we propose the alignment and adver-195

sarial networks for effective representation selec-196

tion. Concretely, we first leverage the multi-lingual197

pre-trained language model XLM-RoBERTa to im-198

prove the word representation capability of both199

source and target languages. Then, a representa-200

tion alignment network is applied on the input layer201

to emphasize useful language-specific information202

and ignore the harmful one. Next, we exploit an203

adversarial network on the encoder layer to en-204

hance language-invariant representations. Finally,205

all selected representations are utilized to search206

for the best dependency tree. Figure 2 illustrates the207

framework of our proposed model, which is orga-208

nized into three components, i.e., Input layer based209

on the alignment network, Encoder layer enhanced210

with an adversarial network, MLP and BiAffine211

layers.212

3.1 Input Layer Based on Representation 213

Alignment Network 214

Given an input sentence w1, w2, . . . , wn, the input 215

layer maps them into dense vectors x1,x2, . . . ,xn. 216

For the source language Chinese, we directly use 217

the normal embeddings as its input vectors. For 218

the target language Vietnamese, we exploit a repre- 219

sentation alignment network to select helpful Chi- 220

nese word information, further enhancing the Viet- 221

namese representation capability. 222

Input vectors for Chinese. As shown in Equa- 223

tion 1, each Chinese vector xch
i is the concatenation 224

of its word representation and corresponding char- 225

acter representation wordchar
i , where word repre- 226

sentation is the addition of XLM-RoBERTa rep- 227

resentation repXLM-R
i and a random initialization 228

word embedding embword
i . The character repre- 229

sentation wordchar
i is generated by a BiLSTM net- 230

work, which first encodes the constituent characters 231

of each word wch
i , and then combines the hidden 232

vectors of two directions (Lample et al., 2016). 233

xch
i =(repXLM-R

i + embword
i )⊕wordchar

i (1) 234

Input vectors for Vietnamese. Different from 235

Chinese input vectors, Vietnamese input vector 236

xvi
i utilizes an additional aligned representation 237

embvi-FT
i to fuse more useful Chinese word infor- 238

mation, which is calculated in Equation 2, 239

xvi
i =(embvi-FT

i + repXLM-R
i + embword

i )

⊕wordchar
i

(2) 240

where embvi-FT
i is generated by our alignment 241

network and other representations are obtained sim- 242

ilarly to Chinese. 243

Alignment network. The key to our alignment 244

network is to enhance the Vietnamese word repre- 245

sentation capability by emphasizing useful Chinese 246

words and ignoring harmful ones. First, we con- 247

struct an alignment matrix based on a new high- 248

quality bilingual dictionary to map Vietnamese and 249

Chinese representations into a close space. 250

Since the bilingual dictionary significantly af- 251

fects the performance of our alignment matrix, we 252

adopt automatic generation and manual annotation 253

strategy to ensure the quality of the Vietnamese- 254

Chinese dictionary. Concretely, we first download 255

the dump data backup file from Wikipedia1 and a 256

1https://en.wikipedia.org/
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Figure 2: Framework of our proposed model.

simple bilingual dictionary2. Second, we use regu-257

lar expressions to iteratively match and extract the258

Vietnamese-Chinese alignment titles and subhead-259

ings. Third, the alignment word pairs are used to260

augment the original bilingual dictionary. Finally,261

the automatic generation dictionary is manually262

proofread by Vietnamese speakers, thus obtain-263

ing a high-quality Vietnamese-Chinese dictionary264

that contains about 20, 000 word pairs. based on265

the new dictionary, we use the pre-trained Fasttext266

models 3 to obtain Vietnamese matrix V ∈ Rn×d1267

and Chinese matrix C ∈ Rn×d1 where n is the268

number of our dictionary and d1 denotes the di-269

mension of Fasttext representations. Meanwhile,270

we exploit an orthogonal similarity transforma-271

tion to obtain our alignment matrix M ∈ Rd1×d1272

that can be regarded as a linear mapping between273

Vietnamese and Chinese based on the semantic274

similarity.275

Given a Vietnamese sentence, we first utilize276

Fasttext models to obtain word segmentation se-277

quences. Then, for each Vietnamese word, we se-278

lect multiple corresponding Chinese words based279

on our dictionary. Next, all selected words are dot-280

ted with an alignment matrix M , and L2 constraint281

is applied on them to yield stable and aligned word282

representations f̂i. The formula for this operation is283

as follows,284

2https://github.com/CPJKU/wechsel/tree/main/
dicts/data

3https://fasttext.cc/docs/en/crawl-vectors.html/

f̂i =
fi√∑n

i=1 f
2
i + ε

(3) 285

where fi represents the i-th word vector from the 286

FastText model, ε is a very small positive number 287

used to prevent division by zero. Considering each 288

Vietnamese word may align with several Chinese 289

words, we employ the cosine function to compute 290

semantic similarity as alignment weights. The for- 291

mulas are shown as follows, 292

Sch,vi
i,j =

(f̂i
ch
)T f̂j

vi

∥ f̂i
ch ∥∥ f̂j

vi ∥
wch,vi

i,j = exp(Sch,vi
i,j /τ)

(4) 293

where Sch,vi
i,j denotes the similarity score between 294

the Chinese word i and the Vietnamese word 295

j. τ denotes the temperature coefficient. wch,vi
i,j 296

is the corresponding weight. Finally, We con- 297

struct the final alignment Vietnamese represen- 298

tation embvi-FT
i using constrained word vectors 299

and alignment weights to emphasize useful words 300

and ignore harmful ones. The formula is as follows, 301

embvi-FT
i =

∑
ch∈Jvi w

ch,vi
i,j · f̂i

ch∑
ch∈Jvi w

ch,vi
i,j

(5) 302

where Jvi represents a collection of Chinese words 303

that exhibit the highest degree of similarity to a 304

Vietnamese word. 305
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3.2 Encoder Layer Enhanced with306

Adversarial Network307

Different from the traditional BiLSTM encoder, we308

employ an adversarial network above the encoder to309

ensure it imply more potential language-invariant310

knowledge.311

BiLSTM encoder. Following Dozat and Man-312

ning (2017), we also adopt a three-layer BiLSTM313

network as the encoder to generate original contex-314

tualized vectors. Since BiLSTM is able to encode315

the words in a sentence from two directions, each316

word can obtain contextualized information hi.317

hi = BiLSTM(xi, θBiLSTM) (6)318

where θBiLSTM is the BiLSTM parameters.319

Adversarial network. The adversarial network320

mainly contains three components, i.e., the shared321

BiLSTM encoder, the Gradient Reversal Layer322

(GRL), and a language classifier. First, Sentence323

from Chinese or Vietnamese are fed into the shared324

BiLSTM layer to obtain contextualized word rep-325

resentations h1,h2, . . . ,hn. Then, they pass the326

GRL which inverts the gradient during backpropa-327

gation, thus fostering BiLSTM to learn more shared328

features between Vietnamese and Chinese. The for-329

ward and backward propagation equations for GRL330

are as follows,331

GRLγ(hi) = hi

dGRLγ(hi)

d(hi)
= −γI

(7)332

where γ is a hyperparameter to balance the impact333

of adversarial learning and dependency parsing on334

the shared BiLSTM. Then, we use a multilayer335

perceptron (MLP) to compute the language distri-336

bution scores and a softmax function to obtain the337

language distribution probabilities. The formula is338

as follows,339

rei = softmax (MLP (hi)) (8)340

Finally, we employ a standard cross-entropy loss to341

optimize all parameters of the adversarial network,342

Ladv = − 1

n

n∑
i=1

m∑
j=1

(r̃ei,j)log ((rei,j)) (9)343

where m is the number of languages, n is the word344

number of input sentence, and r̃ei,j represents the345

gold-standard language distribution vector, where346

only one element is 1 corresponding to the language347

index where the sentence comes from.348

3.3 MLP and BiAffine Layer 349

The MLP layer employs the enhanced contextual- 350

ized vector hi as its input and reduce the dimen- 351

sion of hi, extracting its head representation rhi and 352

modifier representation rdi for each word wi. 353

rh
i = MLPh (hi)

rd
i = MLPd (hi)

(10) 354

where MLPh(∗) and MLPd(∗) have a single hid- 355

den layer with the ReLU activation function. Then, 356

a BiAffine computes score(i ← j) between the 357

current word wi and the other word wj . Simul- 358

taneously, score(i l←− j) is calculated by another 359

separated BiAffine layer as equation 11 360

score(i← j) =

[
rd
i

1

]T
U1r

h
j

score(i l←− j) = rh
jU2r

d
i + (rh

j⊕rd
i )U3 + b

(11) 361

where U1 U2, U3, and b are parameters. l denotes 362

the relation label. After obtaining the scores of de- 363

pendency arcs and dependency labels, we use the 364

typical Maximum Spanning Tree (MST) algorithm 365

to find the highest-score tree as our final parsing re- 366

sult. Finally, for each position i, if the gold-standard 367

head of word wi is word wj and its corresponding 368

gold relation label is l, the parsing loss is computed 369

as follows, 370

Lpar =− log
escore(i←j)∑

0≤k≤n,k ̸=i

escore(i←k)

− log
escore(i

l←−j)∑
l′∈L e

score(i
l′←−j)

(12) 371

where score(i ← k) denotes the dependency arc 372

score from head wi to modefier Wk. L refers to the 373

collection of all dependency labels l′. 374

3.4 Cyclic Cross-lingual Training 375

In this work, we propose a cyclic training strat- 376

egy to mitigate data imbalance between source and 377

target languages, as outlined in Algorithm 1. Con- 378

sidering the data scale of the source language is 379

much larger than the target one, we divide the first 380

n1 mini-batches of the source language as sf and 381

the last as sl where n1 is the mini-batch number of 382

the target language. During training, we take turns 383
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Algorithm 1: Cyclic Training Procedure

Input: Source language data S, target language data T
Hyper-parameters: Loss weight α, training iterations k
1: Initialize iter = 0
2: Repeat
3: Sample mini-batch x alternately from S or T
4: if x ∈ Sf :
5: Update parameter by minimizing Lpar + αLadv

6: elif x ∈ Sl:
7: Update parameter by minimizing Lpar

8: else x ∈ T :
9: Compute embvi−FT

i = alignment(θs)
11: Update parameters by minimizing Lpar + αLadv

12: iter + = 1
13: until iter = k or convergence

Table 1: Cyclic Cross-lingual Training Procedure.

to sample mini-batch x of source and target lan-384

guages. If x comes from the first part of the source385

language Sf , we update parsing and adversarial386

parameters by minimizing parsing and adversarial387

losses. While x belongs to Sl, we only update the388

parser parameters θ1 by minimizing the parsing389

loss. If x comes from the target language T , we390

compute an alignment representation embvi−FT
i391

via an alignment network. and update all parame-392

ters by minimizing parsing and adversarial losses.393

Finally, we iteratively train all the data until it con-394

verges or stops prematurely.395

Dataset Train Dev Test

GSDSimp 3,997 500 500
VTB 1,400 800 800

Table 2: Dataset statistics in sentence number.

4 Experiments396

4.1 Settings397

Datasets. To compare with previous work fairly,398

we use the shared multi-language Universal De-399

pendencies (UD) 2.12 treebank as our benchmark400

datasets 4. Concretely, we choose Chinese as our401

source language and Vietnamese as our target lan-402

guage. The detailed illustrations of our datasets are403

shown in Table 2.404

Evaluation. Following Hajic et al. (2009), we405

employ the Labeled Attachment Score (LAS) and406

Unlabeled Attachment Score (UAS) as our evalua-407

tion indicators. Each model is trained for at most408

1, 000 iterations, and the performance is evaluated409

on the dev data after each iteration for model selec-410

4https://universaldependencies.org/

tion. We stop the training if the peak performance 411

does not increase in 100 consecutive iterations. 412

Hyper-parameter choices. We mostly maintain 413

the hyper-parameter settings of Li et al. (2019), 414

such as MLP and BiAffine dimensions, dropout 415

ratios, and so on. The adversary loss weight α, 416

neighbor, and temperature, which are set as 1, 10, 417

and 0.1 respectively. The character embeddings are 418

initialized randomly with a dimension of 100. 419

Baseline. To validate the advantages and effec- 420

tiveness of our proposed model, we choose the 421

following approaches as our strong baselines. 422

• Pre-training method. BiAffine parser is first 423

proposed by Dozat and Manning (2017), and 424

then is widely used on various dependency 425

parsing tasks. Different from the original Bi- 426

Affine parser, we first exploit the Vietnamese 427

pre-trained language model XLM-RoBERTa- 428

base 5 to enhance the parsing performance. 429

Then, we pre-train the enhanced BiAffine 430

parser exclusively on the Vietnamese Univer- 431

sal Dependencies (UD) dataset, which is used 432

as our strong baseline model. 433

• Fine-tuning method. Shi et al. (2022) pro- 434

pose to fine-tune the basic model twice and 435

achieve selective differential privacy for large 436

language models. In this work, we also uti- 437

lize the idea of fine-tuning method to improve 438

the adaptation capability of the enhanced Bi- 439

Affine parser in Vietnamese. We first use the 440

Chinese dataset for initial training, and then 441

fine-tune the pre-trained model with the Viet- 442

namese dataset, thus transferring the syntactic 443

knowledge contained in the Chinese treebank 444

to Vietnamese. 445

• Adversarial learning method. Li et al. 446

(2021) apply the adversarial network on the 447

BiAffine parser, thus achieving impressive re- 448

sults on cross-domain dependency parsing. In 449

this work, we attempt to apply an adversarial 450

network on BiAffine parser to capture more 451

similarities between Chinese and Vietnamese. 452

4.2 Main Results 453

Table 3 displays the final results on our test data and 454

gives a detailed comparison with previous works. 455

First, we find that our model outperforms the “Ad- 456

versary” model, demonstrating that our alignment 457

5https://huggingface.co/xlm-roberta-base
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Model LAS UAS

Results of previous works
UDPipe (2019) 62.56 70.38
UDify(2019) 66.00 74.11
UDPipe2.0+WCBF(2019) 65.41 72.94
TOWER (2021a) 63.50 72.40

Pre-training 67.61 75.47
Fine-tuning 68.09 75.93
Adversary 68.47 76.39
Our model 68.98 76.81

Table 3: Main results on the Vietnamese UD test dataset.
network can emphasize useful language-specific458

representations from the source language and ig-459

nore the harmful ones, thus further improving the460

cross-lingual dependency parsing accuracy. Sec-461

ond, compared with the “Fine-tuning” model, the “462

Adversary” model achieves better performance, re-463

vealing that an adversarial network can extract po-464

tential language-invariant knowledge to construct465

the in-depth relationship between source and target466

languages. Finally, we can see that our proposed467

model outperforms all strong baselines, indicat-468

ing that our proposed representation alignment and469

adversarial networks are extremely useful for cross-470

language dependency parsing.471

We also compare with previous works in the472

top block. Kondratyuk and Straka (2019) first pro-473

pose the UDpipe model, which integrates a tok-474

enizer, morphological analyzer, POS tagger, lem-475

matizer, and dependency parser into a single model476

for comprehensive natural language processing.477

Then, they propose a UDify framework based on a478

multilingual BERT self-attention model with tag-479

ging and parser joint training, which fine-tunes480

a multilingual pre-trained model with 104 lan-481

guages to improve parsing accuracy. Straka et al.482

(2019) enhance the UDPipe model by incorpo-483

rating various embeddings, including BERT and484

Flair. Lastly, Glavaš and Vulić (2021b) propose a485

TOWER model, which uses hierarchical language486

clustering to improve the low-resource dependency487

parsing performance. Compared with these works,488

we find that our model can achieve the best perfor-489

mance with only a single target language, highlight-490

ing the efficiency and powerful parsing capabilities491

of our proposed model.492

4.3 Ablation Study493

Results of ablation studies are shown in Table 4.494

First, we find that removing either the adversarial495

network or the representation alignment network 496

can lead to a decrement in parsing performance. 497

This outcome suggests that each module plays a 498

crucial role in mitigating the potential conflicts 499

arising from direct language transfer. Second, re- 500

moving adversarial and alignment modules simul- 501

taneously leads to a significant decline in depen- 502

dency parsing accuracy, revealing that the two mod- 503

ules are complementarity and benefit from each 504

other. Most notably, the performance deteriorates 505

to its lowest when the source language is excluded 506

altogether, affirming that the source language en- 507

compasses valuable information beneficial for the 508

target language. This observation not only empha- 509

sizes the importance of preserving source language 510

features but also reinforces the necessity of their 511

strategic filtration. 512

Model LAS UAS

Our model 68.98 76.81
w/o Adv 68.71 76.53
w/o Ali 68.47 76.39
w/o Adv & Ali 68.09 75.93
w/o Adv & Ali & Ch 67.61 75.47

Table 4: Ablation study on reducing the component of
our model on test data, where “w/o Adv”, “w/o Ali”,
and “w/o Ch” mean removing the adversarial network,
representation alignment network or the Chinese UD
training dataset.
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Figure 3: LAS regarding diverse sentence lengths.
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Figure 4: UAS regarding diverse sentence lengths.
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4.4 Error Analysis513

Sentence length. Figure 3 and Figure 4 present the514

LAS and UAS scores regarding diverse sentence515

lengths. First, it is clear that all models perform bet-516

ter with shorter sentences. For sentences under 10517

words, the LAS and UAS scores hover around 73518

and 82, respectively. However, there is a noticeable519

drop of over 9 points in scores for sentences approx-520

imately 30 words in length, indicating that the pars-521

ing difficulty is sharply improved with the increase522

in sentence length. Then, we can see that the “Pre-523

training” model records the lowest scores across all524

length categories. Notably, incorporating the Chi-525

nese corpus enhances its performance across most526

lengths, except for the 10-word category, The rea-527

son may be that pronounced structural disparities528

between short Chinese and Vietnamese sentences.529

Finally, our model significantly mitigates the per-530

formance decline observed with the “Fine-tuning”531

model, achieving substantial improvements across532

all sentence lengths.533

DEP
Precision (%)

Pre-training Fine-tuning Our

amod 67.45 63.78 67.97
cc 87.34 86.74 88.64
ccomp 54.33 54.64 56.45
compound 73.03 73.47 74.75
conj 63.69 64.50 66.60
cop 81.35 81.94 82.05
discourse 44.12 53.57 52.78
mark 73.00 73.33 73.58
nmod 70.84 71.99 73.12
nsubj 83.42 83.47 83.85
obj 79.86 81.17 81.67
root 79.64 79.71 80.14

Table 5: Precisions of dependency labels on different
models.

Dependency labels. Table 5 presents the pre-534

cisions of main dependency labels on different535

models. These models include the Chinese train-536

ing dataset to analyze inter-language connections.537

First, the “Pre-training” model registers the lowest538

scores across all dependency labels. Then, the “539

Fine-tuning” model achieves better performance on540

most dependency labels. The reason may be that541

the dependency trees in the target language contain542

abundant language-specific syntax information. Fi-543

nally, our proposed model consistently obtains the544

highest scores on almost all labels, further proving545

the effectiveness of our proposed model. 546
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Figure 5: Precision of diverse models regarding different
binned head absolute distances with punctuation.

Absolute distance. Figure 5 shows the effects 547

of absolute distances from the head word to the 548

modifier word on dev data. First, the “Pre-training” 549

model achieves the lowest performance at most ab- 550

solute distances, revealing that not all knowledge 551

of source language is equally important to improve 552

cross-lingual dependency performance. Second, 553

compared with the “Pre-training” model, the “Fine- 554

tuning” model achieves better performance at dis- 555

tances above 6, demonstrating that target language 556

data can facilitate our model to capture the long 557

dependency relationship. Finally, our model sub- 558

stantially enhances performances on all absolute 559

distances, highlighting the importance of filtering 560

source language information. 561

5 Conclusion 562

We propose a feature selection approach to empha- 563

size useful representative features and ignore the 564

useless ones, thus improving the performance of 565

cross-lingual dependency parsing. our model not 566

only exploits a representation alignment network 567

that selectively filters advantageous source lan- 568

guage representations at the input layer but also uti- 569

lizes an adversarial network to strengthen context- 570

invariant features within the encoding layer. Exper- 571

iments on a benchmark dataset illustrate that our 572

proposed model significantly outperforms several 573

strong baseline models. Detailed comparative ex- 574

periments show that both the alignment and adver- 575

sarial networks can substantially facilitate extract- 576

ing and utilizing relevant target language features, 577

thereby increasing the adaptation capability of our 578

model. Furthermore, in-depth analysis reveals that 579

our model achieves notable improvements in pars- 580

ing long-distance dependencies and exhibits ro- 581

bustness capabilities, confirming its comprehensive 582

applicative value in cross-lingual settings. 583
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Limitations584

Our proposed representation alignment and adver-585

sarial networks require a high-quality bilingual dic-586

tionary to facilitate language associations through587

matrix alignment. Hence, when there exists a bilin-588

gual dictionary, our method can be easily adapted589

to other cross-lingual dependency parsing tasks.590

Meanwhile, our constructed Vietnamese-Chinese591

bilingual dictionary will be released to facilitate592

future researches.593
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