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Abstract
While deep learning on static graphs has been
revolutionized by standardized libraries like Py-
Torch Geometric and DGL, machine learning on
Temporal Graphs (TG), networks that evolve over
time, lacks comparable software infrastructure.
Existing TG libraries are limited in scope, fo-
cusing on a single method category or specific
algorithms. We introduce Temporal Graph Mod-
elling (TGM), a comprehensive framework for
machine learning on temporal graphs to address
this gap. Through a modular architecture, TGM
is the first library to support both discrete and
continuous-time TG methods and implements a
wide range of TG methods. The TGM framework
combines an intuitive front-end API with an opti-
mized backend storage, enabling reproducible re-
search and efficient experimentation at scale. Key
features include graph-level optimizations for of-
fline training and built-in performance profiling
capabilities. Through extensive benchmarking on
five real-world networks, TGM is up to 6 times
faster than the widely used DyGLib library on
TGN and TGAT models and up to 8 times faster
than the UTG framework for converting edges
into coarse-grained snapshots.

Code: tgm-team/tgm
Documentation: tgm.readthedocs.io

1. Introduction and Motivation
Temporal Graph Learning (TGL) has emerged as a crucial
paradigm for modeling complex, time-evolving systems by
capturing both spatial and temporal dependencies in dy-
namic networks (Cornell et al., 2025; Cao et al., 2020; Han
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Table 1. TGM uniquely combines support for both continuous-
time (CTDG) and discrete-time (DTDG) dynamic graphs with
scalability and a modular architecture.

Library CTDG DTDG Scalable Modular

TGM (ours) ✓ ✓ ✓ ✓
DyGLib ✓ × × ×
TGL ✓ × ✓ ×
TGLite ✓ × ✓ ✓
PyG Temporal × ✓ ✓ ✓

et al., 2014). The field has seen explosive growth driven
by high-impact applications across domains - from pow-
ering large-scale recommender systems (You et al., 2019)
and social network analysis (Qiu et al., 2018) to enabling
precise traffic forecasting (Yu et al., 2017; Li et al., 2018;
Jiang et al., 2021) and pandemic response (Kapoor et al.,
2020; Fritz et al., 2022; Lu et al., 2022). Unlike static
graph approaches, TGL methods explicitly model tempo-
ral dynamics, making them uniquely suited for real-world
systems where relationships evolve continuously. This ca-
pability has led to successful industrial deployments, such
as LinkedIn’s LiGNN system (Borisyuk et al., 2024) for
user recommendations and mobility modeling that informed
COVID-19 policy decisions (Chang et al., 2021).

However, the field’s rapid methodological advances have
outpaced its software infrastructure. While domains like
computer vision and natural language processing benefit
from mature, standardized libraries that accelerate both re-
search and deployment, temporal graph learning remains
fragmented. Researchers must often choose between im-
plementing methods from scratch or adapting incomplete
reference implementations, creating significant barriers to
reproducibility and innovation. Recent systems research
has produced valuable optimizations, from communication-
efficient batch pipelining (Gao et al., 2024) and workload
reduction techniques (Li et al., 2023) to redundancy-aware
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Figure 1. High-level data flow of temporal graph training. The input edge stream is first split into batches. Next, temporal neighbourhoods
are computed, and feature data for the relevant nodes is read from storage. Features are moved to the GPU and forwarded to a model for
computation.

training (Wang & Mendis, 2023), but these advances remain
isolated without a unified framework to integrate them.

We address this critical gap with TGM, a comprehensive
framework designed specifically for temporal graph learn-
ing research and applications. Drawing inspiration from
successful libraries like PyTorch Geometric, TGM separates
high-level modelling abstractions from optimized low-level
operations. This design enables researchers to focus on
algorithm development while leveraging efficient imple-
mentations of core operations like temporal message pass-
ing, dynamic graph sampling, and neighbourhood computa-
tion. Designed for offline training settings, TGM simplifies
preprocessing, enables flexible combinations of graph and
model components, and lowers the entry barrier for new
users. Its architecture promotes rapid prototyping, indepen-
dent backend optimization, and fine-grained performance
benchmarking, making it a robust platform for developing
and evaluating dynamic graph algorithms.

Our key contributions include:

• A standardized machine learning library for temporal
graphs that supports both continuous-time and discrete-
time methods, as well as both dynamic link-prediction
and node-property-prediction; the first of its kind.

• A carefully engineered API that decouples graph opera-
tions from model logic, enabling rapid experimentation
while maintaining high performance.

• Comprehensive profiling tools that expose system bottle-
necks and guide optimization efforts across the temporal
graph learning pipeline.

• Extensive experiments across five datasets, demonstrating
up to 6 times training efficiency gain over DyGLib for
CTDG methods and up to 8 times speedup over UTG
framework for the temporal coarsening procedure, often
used in DTDG methods.

TGM is open-source and actively maintained, with compre-
hensive documentation and examples. TGM is available at
https://github.com/tgm-team/tgm 1.

1pip install tgm-lib

2. Background and Related Work
This section provides a high-level overview of temporal
graph learning, including the two formulations of dynamic
graphs. For an overview of background concepts, we refer
readers to Appendix A.

Definition 2.1 (Continuous Time Dynamic Graph (CTDG)).
A CTDG G is represented as a stream of chronological edge
events: G = {(s0, d0, t0), (s1, d1, t1), ...}, where 0 ≤ t0 ≤
t1 ≤ ... are timestamps and si, di ∈ V represent source and
destination nodes for the temporal link si → di at time ti.

Definition 2.2 (Discrete Time Dynamic Graph (DTDG)).
A DTDG G is represented as a sequence of static graph
snapshots sampled at regularly-spaced time intervals: G =
{G0, G1, ..., }, where Gi = {Vi, Ei} is a static graph at
snapshot i. As described in (Huang et al., 2024), a DTDG
can be represented as a CTDG without loss of information
by mapping each link in a given snapshot to a stream of
events having the same time stamp.

Definition 2.3 (Dynamic Link Prediction). Given a dynamic
graph G, and an edge event (s, d, t), learn time-aware repre-
sentations hts, h

t
d ∈ Rd using only historical interactions in

G before time t to predict whether the link s→ d will exist
in G at time t.

Definition 2.4 (Dynamic Node Property Prediction). Given
a dynamic graph G, and an node s ∈ V and timestamp
t, learn time-aware representations hts ∈ Rd using only
historical interactions in G before time t to infer the state of
s in G at time t.

TG Training Data Flow An overview of the data flow
in temporal graph (TG) training is shown in Fig. 1. The
input dynamic graph is stored on CPU and iterated in mini-
batches. For each batch, temporal neighbourhoods are
computed on-the-fly to enable time-aware message pass-
ing. Once neighbourhoods are identified, the corresponding
node and edge features are materialized and transferred to
the GPU. These tensors are then forwarded through the
neural network for prediction.

Temporal Graph Libraries. Several libraries have been
proposed to support temporal graph learning, including
DyGLib (Yu et al., 2023b), TGL (Zhou et al., 2022),
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DistTGL (Zhou et al., 2023), TGLite (Wang & Mendis,
2024), and TSL (Cini & Marisca, 2022). While DyGLib
provides standard pipelines for continuous-time models, its
limited scalability, lack of modularity, and weak support for
discrete-time methods constrain its applicability (Gastinger
et al., 2024). Table 1 summarizes the important aspects of
these libraries. TGL and its distributed extension DistTGL
have advanced large-scale sampling and multi-GPU execu-
tion, but lack an accessible, researcher-oriented interface
and have seen limited recent updates. TGLite focuses on
message-flow modeling for continuous-time TGNNs, and
TSL addresses spatiotemporal methods on static graphs. In
contrast, TGM is designed to support both continuous- and
discrete-time paradigms with an emphasis on scalability,
modularity, and ease of use—making it a more extensible
and sustainable platform for TGL research and prototyping.
A more detailed discussion of related work is provided in
Appendix B.

3. TGM Features
We present an overview of TGM’s key features, followed by
a detailed discussion of its core abstraction and operators.

Dataset Integration: TGM streamlines experimentation
by supporting standard dataset formats widely used in the
community. It offers seamless integration with the Tempo-
ral Graph Benchmark (Huang et al., 2023; Gastinger et al.,
2024), enabling direct loading of dynamic link prediction
and node property prediction datasets by name. Custom
datasets are also supported via CSV and Pandas (pandas de-
velopment team, 2020). Details provided in Appendix D.

Unified Temporal Graphs: Inspired by prior work on bridg-
ing snapshot and event-based dynamic graphs (Huang et al.,
2024), TGM supports both discrete and continuous-time
paradigms within a unified framework. Central to this is
the TimeDelta abstraction which manages timestamp in-
dexing, allowing both communities to build on a shared
foundation.

Model Support: TGM implements a range of temporal
graph learning methods, from simple baselines like Edge-
Bank (Poursafaei et al., 2022a), which exploits historical
edge patterns, to more expressive models like TGAT (da Xu
et al., 2020) and TGN (Rossi et al., 2020), which incor-
porate temporal attention and memory. Ongoing devel-
opment includes transformer-based models such as DyG-
Former (Yu et al., 2023a), and random walk-based models
like NAT (Luo & Li, 2022).

Test Suite, CI/CD & Performance Tools: TGM is devel-
oped with sound engineering practices, including unit and
integration tests in a CI/CD pipeline to ensure reliability and
reproducibility. We adopt semantic versioning to commu-
nicate changes clearly and catch regressions early. TGM

includes a performance module that tracks GPU usage and
throughput, with support for visualization tools like Snake-
viz (Davis, 2012) and FlameProf (Bobrov, 2017) to guide
informed optimization for evolving TGL workloads.

4. TGM Design
An overview of the TGM architecture is illustrated in Fig.
2, with a detailed description of each module provided in
the following sections.

Example Workflow. The following is an example workflow
of TGM on the tgbl-wiki dataset from TGB (Huang
et al., 2023).

1 from tgm import DGraph
2 from tgm.loader import DGDataLoader
3 from tgm.hooks import (
4 NegativeEdgeSamplerHook,
5 NeighborSamplerHook,
6 )
7

8 dg = DGraph("tgbl-wiki", split='train',
device="cuda")

9 hooks = [
10 NeighborSamplerHook(num_nbrs=20),

NegativeEdgeSamplerHook(dg.num_nodes),
11 ]
12 loader = DGDataLoader(dg, hook=hooks,

batch_size=200)
13

14 for batch in tqdm(loader):
15 pos_out, neg_out = model(batch)
16 loss.backward()

Storage Backend The TGM storage backend provides a
read-only, static interface for querying dynamic graph data-
timestamps, edge pairs, features, and node IDs. Optimized
for offline training, the backend uses caching to accelerate
access and supports extensibility for particular hardware or
access patterns (Zhang et al., 2021; Sha et al., 2017) in the
future. Our default implementation uses a chronologically
sorted COO format, enabling binary search over timestamps
and linear scans within time windows. A temporal index
cache further reduces query costs. We plan to add a Tempo-
ral Compressed Sparse Row (TCSR) backend (Zhou et al.,
2022), which organizes time-aware neighbour lists in con-
tiguous memory blocks. Though expensive to construct,
TCSR aligns with TGM’s immutable data assumption.

Graph Views and Lazy Slice Tracking. TGM exposes
immutable graph views as the primary user interface. A
Graph View holds a reference to the storage backend and
contains a TimeDelta for temporal resolution, a Slice
Tracker for subgraph operations, and a local cache for
computed properties. The Slice Tracker records meta-
data about requested operations on the Graph View. Im-
mutability guarantees that views are safe for concurrent
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Figure 2. High-level TGM Architecture. Dotted lines denote lazy execution with shallow memory ownership. Solid arrows denote the
passage of ownership and data materialization on-device. Users load a dynamic graph into a storage backend and register message-passing
hooks. At runtime, the hooks execute and materialize the relevant sub-graph/feature vectors automatically when yielding a batch of data.
Caching layers in both view objects and storage prevent duplicate computational work.

access. Read-only queries are delegated to the backend and
automatically cached for efficiency. Subgraphs are lazily
materialized at runtime, enabling optimized query execu-
tion while abstracting system-level optimizations behind a
simple interface.

Temporal Index Management TGM uses a TimeDelta
abstraction to define temporal granularity—whether times-
tamps represent ordered indices or real durations (e.g., sec-
onds). This decouples time semantics from data layout and
informs access patterns and iteration. The dataloader lever-
ages TimeDelta to support batch iteration by event count
(e.g., 200 events) or fixed time windows (e.g., 500 ms), en-
abling batching strategies that align with GPU efficiency
or time-aware modelling, where event density varies—an
approach that has demonstrated improved performance in re-
cent dynamic link prediction tasks (Moritz Lampert, 2024).

Graph Hooks. TGM supports flexible prototyping via a
modular hook mechanism. Hooks are composable transfor-
mations applied to sliced graph views during data iteration,
enabling custom logic, such as memory updates or neigh-
bourhood sampling, without modifying core code. Hooks
we currently support include Materialize: converts a graph
slice into dense edge index/feature tensors, Negative Sam-
pling: generate negative edges for link prediction, and Tem-
poral Neighbourhood: retrieves node interaction histories
using online buffering or backend queries. We also implic-
itly include Device and Deduplication hooks. The former
pins and transfers materialized tensors to the target device,
enabling transparent device management for the user. The
latter constructs an inverse index between global and batch-
local node coordinates, reducing memory and computation
overhead—particularly for large batches with many dupli-
cate nodes. This inverse map allows users to seamlessly
reference global or batch-local node embeddings without
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Figure 3. TGM speedup when compared to the commonly used
DyGLib (Yu et al., 2023a) for CTDG method training.

any manual management.

Neural Layers & Runtime. TGM offers a PyTorch-
Geometric-style frontend featuring modular components
designed specifically for temporal graph learning, such as
time encoders, memory modules, attention layers, and link
decoders. Currently, it includes validated implementations
of temporal self-attention and time encoding, with addi-
tional components planned for future releases. As our li-
brary grows and more models are supported, we anticipate
expanding these components. Generic layers with broad ap-
plicability across multiple methods will be rigorously tested
and integrated into the core library, while less established
components will be added to an examples directory to en-
courage open research and keep the core library lean and
maintainable.

5. Experiments
Experimental Setting. To empirically evaluate TGM,
we benchmark several representative models from both
CTDG and DTDG categories across five real-world datasets
from (Poursafaei et al., 2022a). For CTDG methods, we
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include TGAT (da Xu et al., 2020) and TGN (Rossi et al.,
2020) while for DTDG methods, we include GCN (Kipf
& Welling, 2017), and GCLSTM (Chen et al., 2018). The
five benchmark datasets are Wikipedia, LastFM, Reddit,
Enron, and UCI whose statistics and details are provided in
Appendix D. Experiment details, model hyperparameters,
and computational resources are highlighted in Appendix E.
We focus on the dynamic link prediction task. Here, we
highlight the efficiency of TGM when compared with al-
ternative frameworks. Specifically, we compare against
DygLib, which has emerged as the de facto standard among
practitioners and researchers entering the field of temporal
graph learning due to its broad model coverage and acces-
sible design. Although more optimized frameworks exist,
they are often narrowly tailored to specific model classes or
graph settings and consequently exhibit lower adoption in
practice. Given that TGM is explicitly designed to support
a wide range of models and graph types while prioritizing
usability and reproducibility, we consider DygLib to be
the most appropriate baseline at this stage. As additional
performance enhancements are incorporated, we intend to
extend our benchmarking suite to include further special-
ized libraries. Test AUROC performance for all supported
methods are reported in Appendix E.

CTDG Training Efficiency. To test the training efficiency
of TGM, we compare with the popular DyGLib library (Yu
et al., 2023a), designed only for CTDG methods. Fig. 3
shows the speedup of TGM when compared with DyGLib
across five datasets for both TGN and TGAT methods. No-
tably, on the Enron dataset, TGM achieves 6.1x speedup
with TGAT and 5.0x speedup with TGN. This shows that
modular and optimized framework in TGM has significantly
better efficiency than the DyGLib alternative.

Temporal Coarsening. As TGM decouples the time indices
from the data layout, TGM allows for efficient temporal
coarsening, the conversion from fine-grained edges into
coarse snapshots. Fig. 4 shows the temporal coarsening
time comparison between TGM and the alternative UTG
framework (Huang et al., 2024). Fig. 4 shows that TGM is
faster in temporal coarsening across all five datasets and 8
times faster on the UCI dataset. Temporal coarsening is an
essential operation for DTDG methods.

6. Conclusion and Future Work
TGM is a modular, efficient, and extensible framework
designed specifically for temporal graph learning, aiming
to accelerate research and enable reproducible experimen-
tation. By decoupling intuitive frontend interfaces from
an optimized backend, it lowers the barrier to innovation
while supporting SOTA methods. Looking ahead, our
roadmap includes both algorithmic and system-level im-
provements, such as native memory modules and expanded
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Figure 4. Comparison of temporal coarsening between the UTG
framework (Huang et al., 2024) and TGM.

model support. On the system side, we are developing a
high-performance TCSR backend, native GPU storage, a
C++ executor, and a runtime storage selector to adapt to
varying workloads. TGM is deeply rooted in open-source
principles.

Impact Statement
This work introduces TGM, a unified and open-source
framework that integrates continuous-time and discrete-time
paradigms in temporal graph learning (TGL). By decoupling
graph operations from model logic, TGM facilitates modular
development, rapid prototyping, and system-level introspec-
tion through built-in profiling tools. These capabilities lower
the barrier to entry for TGL research, particularly for those
without access to large-scale infrastructure. TGM is opti-
mized for single-GPU environments while remaining exten-
sible to larger-scale deployments, promoting reproducibility
and more equitable access to TGL experimentation across
the research community.

We aim to foster a collaborative ecosystem where re-
searchers and practitioners can contribute models, infras-
tructure, and ideas. By aligning with the open-source ML
community, we envision TGM as a foundational tool for
dynamic graph learning, bridging research and practice
through shared, extensible infrastructure.

Acknowledgements
This research was supported by the Canadian Institute for
Advanced Research (CIFAR AI chair program), the EP-
SRC Turing AI World-Leading Research Fellowship No.
EP/X040062/1 and EPSRC AI Hub No. EP/Y028872/1.
Shenyang Huang was supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC) Post-
graduate Scholarship Doctoral (PGS D) Award and Fonds
de recherche du Québec - Nature et Technologies (FRQNT)
Doctoral Award. This research was also enabled in part by
compute resources provided by Mila (mila.quebec).

5



TGM: A Modular Framework for Machine Learning on Temporal Graphs

References
Bobrov, A. Flameprof, 2017. URL https://github.
com/baverman/flameprof.

Borisyuk, F., He, S., Ouyang, Y., Ramezani, M., Du, P.,
Hou, X., Jiang, C., Pasumarthy, N., Bannur, P., Tiwana,
B., et al. Lignn: Graph neural networks at linkedin. In
Proceedings of the 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 4793–4803,
2024.

Cao, D., Wang, Y., Duan, J., Zhang, C., Zhu, X., Huang,
C., Tong, Y., Xu, B., Bai, J., Tong, J., et al. Spectral tem-
poral graph neural network for multivariate time-series
forecasting. Advances in neural information processing
systems, 33:17766–17778, 2020.

Chang, S., Pierson, E., Koh, P. W., Gerardin, J., Redbird, B.,
Grusky, D., and Leskovec, J. Mobility network models of
covid-19 explain inequities and inform reopening. Nature,
589(7840):82–87, 2021.

Chen, D., Li, Y., He, Y., Jin, X., and Tang, J. Gc-lstm:
Graph convolution embedded lstm for dynamic link pre-
diction. In Proceedings of the 2018 IEEE International
Conference on Data Mining (ICDM), pp. 243–252. IEEE,
2018. doi: 10.1109/ICDM.2018.00038.

Cini, A. and Marisca, I. Torch Spatiotempo-
ral, 3 2022. URL https://github.com/
TorchSpatiotemporal/tsl.

Cornell, F., Smirnov, O., Gandler, G. Z., and Cao, L. On the
power of heuristics in temporal graphs. arXiv preprint
arXiv:2502.04910, 2025.

da Xu, chuanwei ruan, evren korpeoglu, sushant kumar, and
kannan achan. Inductive representation learning on tem-
poral graphs. In International Conference on Learning
Representations (ICLR), 2020.

Davis, M. Snakeviz, 2012. URL https://github.
com/jiffyclub/snakeviz.

Fritz, C., Dorigatti, E., and Rügamer, D. Combining graph
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A. Background
This section provides a high-level overview of temporal graph learning, including the two formulations of dynamic graphs,
everyday tasks, and associated model components. We follow the treatment in (Huang et al., 2024).

A.1. Temporal Graph Learning Methods

Given that our paper proposes a new framework, the focus is orthogonal to new learning methods and architectures.
Therefore, we only give a brief overview of the literature. Interested readers are encouraged to find more information in
surveys like (Longa et al., 2023; Giulio Rossetti, 2019; Shubham Gupta, 2022).

A.1.1. TEMPORAL MESSAGE PASSING

The temporal message passing framework is a neighbourhood aggregation scheme which recursively computes a latent
representation by forwarding messages to temporal neighbours. Formally, if N k(s) denotes the k-hop neighbourhood of
node s in the dynamic graph G, then the temporal neighbourhood N k

t (s) is given by restricting neighbours to edge events
chronologically before time t:

N k
t (s) = {(s, d, t′) ∈ N k(s) : t′ ≤ t} (1)

The combination of temporal and topological constraints makes efficient neighbourhood particularly challenging, requiring
complex hierarchical data structures and cache-aware programming to sustain high-throughput on GPU stream multiproces-
sors (Zhang et al., 2021; Sha et al., 2017). We bypass the insertion and deletion complexity by assuming the entire graph
structure is read-only. Temporal message proceeds by creating and passing messages between such sub-neighorhoods:

ms(t) = msg(hs(t), hd(t), es,d,t) (2)

m̂s(t) = agg({md(t) : d ∈ N k
t (s)}) (3)

hts = upd(hts, m̂s(t)) (4)

In particular, messages are created by concatenating embeddings, aggregating embeddings across temporal neighbourhoods,
then updating the new hidden representation. Such information flow occurs concurrently for each event in a batch of data.

A.1.2. TIME-ENCODING AND MEMORY-BASED LEARNING

Time-encoding based models use a shift-invariant model ψ : T → Rdt that maps a real-valued time stamp into a dt-
dimensional vector (e.g. TGAT (da Xu et al., 2020) use time-encoders like Time2Vec (Kazemi et al., 2019)). This encoding
is then passed through modified self-attention blocks or feedforward layers. Memory-based models, such as TGN (Rossi
et al., 2020), utilize a fixed-bandwidth memory module that compresses relevant information for each node and updates it
over time. EdgeBank (Poursafaei et al., 2022a) is a non-parametric, memory-based method that memorizes and predicts new
links at test time based on their occurrence in the training data.

A.1.3. NEIGHBORHOOD SAMPLING

A key graph operation involves downsampling the temporal neighbourhood N k
t (s) to a fixed size. This enables hardware

optimization and reduces memory requirements. Existing libraries typically implement the following samplers:

• Uniform Sampler: Uniformly down-sample from all possible neighbours.
• Weighted Sampler: Assigns lower sampling probability to temporally distant neighbours.
• Recency Sampler: A FIFO-queue based data structure that stores each node’s most recent k events.

TGM supports all sampler types, but the focus is given to recency and uniform samplers since they are the canonical methods
in the literature. Due to the sampling operations, data access patterns are inhomogeneous, making coalesced memory access
challenging. Therefore, most methods operate under the paradigm of hybrid CPU-GPU layouts (Gao et al., 2024) where
features and graph indices are stored and sampled on CPU, then materialized and moved on-device. Figure 1 shows the
high-level data flow during training.
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B. Additional Related Works
DyGLib (Yu et al., 2023b): DyGLib offers standardized pipelines and evaluation scripts for several TGL methods, but its
focus on continuous-time models limits support for discrete-time approaches and hampers scalability on large datasets
(Gastinger et al., 2024). Its non-modular codebase also makes extensions difficult, contributing to low development activity.
In contrast, OpenDG supports both temporal paradigms and is built for scalability, offering a more sustainable foundation
for the TGL community.

TGL (Zhou et al., 2022): OpenDG builds on the scalability advances of TGL, which introduced an efficient temporal
neighbourhood sampler capable of handling billion-scale graphs. While TGL has not been updated in relatively long period
of time (over two years) and lacks a researcher-oriented interface, OpenDG addresses these gaps with a user-friendly API
and a design centered on extensibility.

DistTGL (Zhou et al., 2023): DistTGL extends TGL to GPU clusters using batch pre-fetching and pipelining to reduce
communication overhead, making it ideal for production deployments. In contrast, OpenDG targets research and prototyping
on single-node GPU setups, prioritizing usability, extensibility, and rapid development of TGL methods.

TGLite (Wang & Mendis, 2024) TGLite is a lightweight framework for continuous-time TGNNs, offering abstractions and
performance optimizations for message-flow modelling. While complementary, OpenDG extends support to discrete-time
models and plans to integrate TGLite’s redundancy-aware optimizations to enhance performance.

TSL (Cini & Marisca, 2022): TSL is a well-maintained library for spatiotemporal methods on static graphs. In contrast,
OpenDG targets dynamic graphs with evolving topologies, requiring specialized data structures, pipelines, and models to
address their unique challenges.

C. Additional Results

Table 2. Test set Mean Average Precision (mAP) scores for discrete-time and continuous-time models across five datasets. Reported
numbers are means over 5 runs with 2σ error bars corresponding to a 96% confidence interval.

Category Model Enron LastFM Reddit UCI Wikipedia

CTDG
Edgebank 0.854± 0.002 0.832± 0.001 0.957± 0.000 0.755± 0.002 0.906± 0.000

TGAT 0.729± 0.009 0.648± 0.019 0.952± 0.010 0.749± 0.090 0.855± 0.014

TGN 0.732± 0.017 0.662± 0.041 0.936± 0.020 0.719± 0.082 0.864± 0.011

DTDG
GCN 0.627± 0.016 0.597± 0.007 0.987± 0.002 0.651± 0.015 0.847± 0.005

GC-LSTM 0.642± 0.015 0.632± 0.009 0.657± 0.072 0.529± 0.037 0.713± 0.289

D. Dataset Details
In this work, we conduct experiments on Wikipedia (obtained from the TGB (Huang et al., 2023), where the dataset can be
downloaded along with the package from TGB website), Reddit, LastFM, UCI, and Enron datasets (obtained from (Pour-
safaei et al., 2022b); these can be downloaded from https://zenodo.org/records/7213796#.Y8QicOzMJB2).
These datasets span a variety of real-world domains, providing a broad testbed for evaluating temporal graph models. Detailed
information about these datasets are as follows.

• Wikipedia is a bipartite interaction network that captures temporal editing activity on Wikipedia over one month. The
nodes represent Wikipedia pages and their editors, and the edges indicate timestamped edits. Each edge is associated with
a 172-dimensional LIWC feature vector derived from the edited text.

• Reddit models user-subreddit posting behavior over one month. Nodes are users and subreddits, and edges represent
posting requests made by users to subreddits, each associated with a timestamp. Each edge is associated with a 172-
dimensional LIWC feature vector based on post contents.

• LastFM is a bipartite user–item interaction graph where nodes represent users and songs. Edges indicate that a user
listened to a particular song at a given time. The dataset includes 1000 users and the 1000 most-listened songs over a
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Table 3. Dataset statistics.

Dataset # Nodes # Edges # Unique Edges # Unique Steps Surprise Duration

Wikipedia 9,227 157,474 18,257 152,757 0.108 1 month
Reddit 10,984 672,447 78,516 669,065 0.069 1 month
LastFM 1,980 1,293,103 154,993 1,283,614 0.35 1 month
UCI 1,899 26,628 20,296 58,911 0.535 196 days
Enron 184 10,472 3,125 22,632 0.253 3 years

Table 4. Hyperparameters used for each model

Parameter Edgebank TGAT TGN GCN GCLSTM

Batch Size 200 200 200 Hourly Hourly
Epochs – 10 10 10 10
Learning Rate – 1e-4 1e-4 1e-4 1e-4
Dropout – 0.1 0.1 0.1 –
Number of Heads – 2 2 – –
Number of Neighbors – 20 20 – –
Embedding Dimension – 100 100 128 128
Time Dimension – 100 100 – –
Sampling Strategy – Recency Recency – –
Memory Mode Unlimited – – – –
Number of Layers – – – 2 2

one-month period. This dataset is not attributed.
• UCI is an anonymized online social network from the University of California, Irvine. Nodes represent students, and

edges represent timestamped private messages exchanged within an online student community. The dataset does not
contain node or edge attributes.

• Enron is a temporal communication network that is based on email correspondence over a period of three years. Nodes
represent employees of the ENRON energy company, while edges correspond to timestamped emails. The dataset does
not include node or edge features.

E. Compute Resources and Experiment Details
Compute: Each experiment was conducted on an Ubuntu 20.04 system with 8GB RAM, 2 isolated AMD EPYC 7502 CPU
cores, and a single A100 GPU; we used SLURM to isolate environments and ensure no concurrent jobs were running.

Experiment Details: All models use default dataset splits from similar to the TGB benchmark (Huang et al., 2023; Gastinger
et al., 2024). Hyperparameters for each model are shown in Tables 4. For event-based models (Edgebank, TGAT, TGN),
training follows the native temporal structure. For discrete models (GCN, GCLSTM), we discretize data into hourly intervals
and drop empty batches.

Test Performances. Table 5 shows the test AUROC scores for both discrete-time and continuous-time models across five
real-world datasets. It shows that CTDG methods such as TGAT and TGN tend to achieve better performance than DTDG
methods as they handles finer time granularities better.
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Table 5. Test Set AUROC scores for discrete-time and continuous-time models across five real world datasets. Reported numbers are
means over 5 runs with 2σ error bars corresponding to a 96% confidence interval.

Category Model Enron LastFM Reddit UCI Wikipedia

CTDG Edgebank 0.887± 0.001 0.873± 0.000 0.957± 0.000 0.760± 0.001 0.907± 0.000

TGAT 0.791± 0.006 0.673± 0.021 0.939± 0.013 0.696± 0.123 0.833± 0.013

TGN 0.797± 0.012 0.678± 0.032 0.919± 0.024 0.656± 0.135 0.844± 0.007

DTDG
GCN 0.639± 0.023 0.627± 0.009 0.987± 0.004 0.636± 0.024 0.834± 0.011

GC-LSTM 0.661± 0.020 0.689± 0.017 0.638± 0.041 0.526± 0.041 0.711± 0.312
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