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Abstract
We propose a discrete time graphon game for-
mulation on continuous state and action spaces
using a representative player to study stochas-
tic games with heterogeneous interaction among
agents. This formulation admits both philosophi-
cal and mathematical advantages, compared to a
widely adopted formulation using a continuum of
players. We prove the existence and uniqueness of
the graphon equilibrium with mild assumptions,
and show that this equilibrium can be used to con-
struct an approximate solution for finite player
game on networks, which is challenging to an-
alyze and solve due to curse of dimensionality.
An online oracle-free learning algorithm is devel-
oped to solve the equilibrium numerically, and
sample complexity analysis is provided for its
convergence.

1. Introduction
Many real-world applications, such as flocking (Perrin et al.,
2021), epidemiology (Cui et al., 2022), and autonomous
driving (Huang et al., 2020) involve multiagent systems,
where agents optimize individual cumulative rewards by
selecting sequential actions in an (in)finite horizon, while
interacting strategically among one another. In discrete
time, such finite player games form Markov games (Littman,
1994; Solan & Vieille, 2015; Yang et al., 2018b). At a Nash
equilibrium (NE), nobody can improve her payoff by unilat-
erally switching her individual action policies. The NE is
challenging to solve when the population size grows due to
curse of dimensionality (Wang et al., 2020). To address such
a challenge, mean field formulations are proposed to model
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players interacting with others only via an aggregate popu-
lation, usually a population measure, instead of individual
states or actions directly.

Mean field games (MFGs) (Huang et al., 2006; Lasry &
Lions, 2007) is a type of mean field model which describes
the limiting behavior of its corresponding finite player game
as the number of players is large, and their analytical prop-
erties are now well-studied (Carmona & Delarue, 2018).
The model is build upon the assumption that the interac-
tion among players are homogeneous, in the sense that all
players follow the same state distribution. As one interacts
with the population only through the measure, all players
react in a same manner and considering one representative
is straightforward and appropriate.

As a generalization to MFGs, graphon mean field games
(GMFGs or graphon games) are developed (Caines &
Huang, 2021; Gao et al., 2021; Aurell et al., 2022; Cui
& Koeppl, 2022; Tangpi & Zhou, 2024) to tackle the lim-
iting behavior of finite player games with heterogeneous
agents who interact asymmetrically, deemed as games on
networks. In such network games, the interactions are given
by a weighted graph (network), where each player is rep-
resented by a vertex and the interaction intensities among
players are depicted by edge weights. Each player reacts to
an interaction-weighted average of other individuals’ em-
pirical state measure, which is made precise in Section 3.
As a limiting model, GMFGs models a continuum of play-
ers whose interaction intensities are given by a graphon
W ∈ L1[0, 1]

2, which is a natural limit of finite graphs and
can be deemed as a weighted graph on infinitely many ver-
tices labeled by the continuum [0, 1]. Rather than depending
on states of some specific individuals, a player in the game
reacts only to an average of the population state distribution,
which is weighted as individuals of different types (different
vertices in the graphon) exert heterogeneous influence on
the current player.

GMFGs cover a wider range of real-world applications
than MFGs, as it allows more flexibility with heteroge-
neous interaction. They are applicable to problems in fi-
nance, economics, and engineering, including for instance
high-frequency trading, social opinion dynamics and au-
tonomous vehicle driving. Because the equilibrium of GM-
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FGs may not be solved explicitly in general, recent years
have seen a growing trend of using learning methods for
equilibria. Compared to abundant studies on learning MFGs
(Cardaliaguet & Hadikhanloo, 2017; Yang et al., 2018a; Guo
et al., 2019; Elie et al., 2020; Perrin et al., 2020; 2021; 2022;
Laurière et al., 2022; Chen et al., 2023a;b;c), learning for
graphon games (Cui & Koeppl, 2022; Zhang et al., 2024b)
is relatively understudied.

A major roadblock in learning GMFGs lies in the fact that
there is no consensus on what a mathematically tractable
formulation of GMFGs should be, since it is not straight-
forward to describe the limiting behavior (or a common
population measure) of large number of heterogeneous play-
ers. There are mainly two types of formulations so far.
The first type, also the widely adopted one, models a game
for a continuum (uncountably infinite) of players with dis-
tinct types (Caines & Huang, 2021), so-called “continuum-
player” games (Carmona et al., 2021). In this formulation,
each player is assigned a controlled state process, which
evolves independently of other individuals’ state processes,
and optimize her own reward function.

Unfortunately, this formulation suffers from limitations.
Theoretically, the joint measurability of state dynamics with
respect to the player types and randomness under the usual
product space σ-algebra is not compatible with the indepen-
dence of their evolution, which potentially poses challenges
for the analytical investigation of solution properties (Ap-
pendix C.2); And practically, it is difficult to develop an
algorithm that directly solves a system of optimal control
problems for a continuum of players. Moreover, these stud-
ies could lack consistency between formulations (that model
infinitely many players) and algorithms (that only sample a
single representative agent).

To tackle the aforementioned challenges, a second kind
of formulation (Lacker & Soret, 2023) refers to a generic
representative player who represents all types of players
while interacting with the aggregate population. While the
state distribution for players of different type are different,
it is possible to fit their label-state pairs into a common
law on the product space of labels and state paths. This
formulation is amenable to theoretical guarantees and ease
the algorithmic design and implementation.

In this paper, we study discrete time graphon games of
the second formulation with rigorous analysis and learning
methods. We start from finite player games to motivate
graphon games, which in turn provide approximate equi-
libria for finite games in dense interaction networks. Sub-
sequently, GMFGs and graphon games always refer to the
representative-player formulation, unless otherwise speci-
fied.

Related work. A detailed comparison with the most rel-
evant studies on learning GMFGs is demonstrated in Ap-
pendix B. Continuum-player formulation: In discrete
time regime, (Cui & Koeppl, 2022) showed the existence
of Nash equilibrium and approximate equilibrium for finite
player games under Lipschitz transition kernel and graphon,
and (Zhang et al., 2024b) only showed the existence of
Nash equilibrium for GMFGs with entropic regularization.
Both studies assumed access to an oracle that returns the
population dynamics, and the latter further assumes access
to an action-value function oracle that returns the optimal
policies. Under these assumptions, (Zhang et al., 2024b)
provides a convergence rate of their algorithm, while (Cui &
Koeppl, 2022) only shows the asymptotic convergence. In
continuous time regime, (Caines & Huang, 2021) focused
on finite networks where each vertex represents a population.
(Gao et al., 2021; Aurell et al., 2022; Tangpi & Zhou, 2024)
studied linear quadratic games, and the latter two adopted
rich Fubini extensions to address the measurability issue.
Representative-player formulation: As the establisher and
the only work to the best of our knowledge, (Lacker & Soret,
2023) rigorously studied the equilibrium existence unique-
ness and approximate equilibrium in continuous-time, with
no discussion in algorithm implementation.

Contributions. Our major contributions are:

• We propose a general-purpose graphon game framework
on continuous state and action space with one represen-
tative player that admits great technical and philosophi-
cal advantages over the continuum-player formulation in
most prior work.

• We present an extensive self-contained analysis on the
equilibrium including existence, uniqueness, and approxi-
mate equilibrium to network games with weaker assump-
tions and novel proof techniques.

• We give a comprehensive discussion and clarification on
various aspects of graphon games, including but not lim-
ited to the MFG reformulation, overview on measurability
issue, convergence of graph sequence, and fixed point
iteration.

• We provide the first fully oracle-free online algorithm that
numerically solves the equilibrium, and showed a sample
complexity analysis for the ready-to-implement algorithm
with assumptions equivalent to or weaker than prior work.

• We conduct abundant numerical experiments with assess-
ments that demonstrate the validity of our algorithm de-
sign.

2. Preliminaries
2.1. Notation

Let E be any Polish space (complete separable metric topo-
logical space). We use P(E) to represent all the probability
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measures on E equipped with the weak topology, with⇒
being the weak convergence. LetM+(E) denote the space
of nonnegative Borel measures of finite variation. Denote
∥ · ∥TV the total variation norm. Given a random element
X valued in E, let L(X) ∈ P(E) be the probabilistic law
(distribution) of X . For any µ ∈ P(E), we write X ∼ µ if
L(X) = µ. For simplicity, we represent the integral with
⟨µ, ϕ⟩ =

∫
E
ϕdµ for µ ∈M+(E) and measurable ϕ.

Let Punif([0, 1] × E) denote a measure on product space
[0, 1] × E with uniform first marginal. We always con-
sider E to be a regular space, and thus each element
µ ∈ Punif([0, 1] × E) admits a disintegration duµu(dx)
where µu(dx) is a kernel [0, 1] → E uniquely defined for
Lebesgue almost every u.

2.2. Graphon

2.2.1. DEFINITION

A graphon W is an L1 integrable function : [0, 1]2 → R+.
It represents a graph with infinitely many vertices taking
labels in [0, 1], and the edge weight connecting vertex u and
v is given by W (u, v). It is a natural notion for the limit of
a sequence of graphs as the size of vertices grows.

Any finite graph can be expressed equivalently as a graphon:
given any graph on n ≥ 1 vertices with non-negative edge
weights, it can be equivalently expressed as a matrix ξ ∈
Rn×n

+ , where ξij is the edge weight between vertex i and j.
We define a step graphon associated with ξ, denoted as Wξ

on [0, 1]2 as below:

Wξ(u, v) :=

n∑
i,j=1

ξij1{u∈In
i ,v∈In

j }, (1)

where the interval of [0, 1] is divided into n bins with the
ith bin as Ini := [(i− 1)/n, i/n),∀i = 1, . . . , n− 1; Inn :=
[(n− 1)/n, 1].

2.2.2. GRAPHON OPERATOR

Given a Polish space E and any graphon W , the graphon
operator W, which maps a measure in Punif([0, 1]× E) to
a function [0, 1]→M+(E), is defined as follows (Lacker
& Soret, 2023): for any m ∈ Punif([0, 1]× E),

Wm(u) :=

∫
[0,1]×E

W (u, v)δxm(dv, dx), (2)

where δx is Dirac delta measure at x. Intuitively, let us as-
sume m admits disintegration m(du, dx) = dvmu(dx),
and W represents a graph with infinitely many ver-
tices where each vertex u ∈ [0, 1] bears a random
value on E with distribution mu. Then, Wm(u) =∫
[0,1]×E

W (u, v)δxmv(dx)dv is an average of the distri-
butions of the random values over all vertices, weighted
by edges with u as one end. Note that Wm(u) ∈ M+(E)
since the weighted average may no longer be a probability

measure.

2.2.3. STRONG OPERATOR TOPOLOGY

Now we define the convergence of graphons in strong oper-
ator topology. We abuse the notation by denoting the usual
integral operator W : L∞[0, 1]→ L1[0, 1],

Wϕ(u) :=

∫
[0,1]

W (u, v)ϕ(v)dv, ∀ϕ ∈ L∞[0, 1], (3)

and it should lead to no ambiguity as graphon operators
and integral operators have different domains. We say a
sequence of graphons Wn converges to a limit graphon W
in the strong operator topology if for any ϕ ∈ L∞[0, 1],
∥Wnϕ−Wϕ∥1 → 0, denoted as Wn →W . Convergence
in strong operator topology is usually weaker than conver-
gence in cut norm, see Appendix A.5.

3. Finite Player Games
3.1. Game Formulation

Consider a game with n ∈ N+ players. Let ξ ∈ Rn×n
+

be an interaction matrix with nonnegative entries, where
ξij is the interaction influence of player j onto player i
for i, j ∈ [n]. Let T ∈ N+ be terminal time of the game,
and T := {0, 1, 2, . . . , T − 1}. At each time t, denote
Xt = (X1

t , . . . , X
n
t ) ∈ (Rd)n the state dynamics of all the

players, i.e., each player’s state takes value in Rd for some
fixed d ≥ 1, and let C := (Rd)T+1 be the space of state
paths. For any x ∈ C, write xt the value of path at time
t. The initial states X0 follow a vector of initial measures
λ = (λ1, . . . , λn) ∈ (P(Rd))n. At each time every player
may choose an action from the action space A, and we
assume thatA ⊂ Rd is compact. LetAn be the collection of
all feedback policies T×(Rd)n → P(A), and each player’s
action follows a policy from this collection. For any policy
πi ∈ An chosen by player i, the state process of player i
evolves by a transition kernel P : T×Rd×M+(Rd)×A→
P(Rd) as follows

Xi
0 ∼ λi,

ait ∼ πi
t(Xt), Xi

t+1 ∼ Pt(X
i
t ,M

i
t , a

i
t),

for i = 1, . . . , n, where

M i :=
1

n

n∑
j=1

ξijδXj ∈M+(C)

is the weighted empirical neighborhood measure of player
i, and M i

t is the time t marginal of M i. The measure is
empirical as it is an average of the Dirac measures at the
realizations; in particular, M i is a random measure. For a
general matrix ξ, M i depicts the heterogeneous interaction:
for a player i, the influence ξij from player j is different
from the influence ξir from player r for r ̸= j. In the special
case where ξ is the adjacency matrix of an unweighted
complete graph, i.e., ξ has 0 on the diagonal and 1 off
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diagonal, the interactions become homogeneous, and M i

becomes the simple empirical measure of the states of all
other players.

At a given time step, each player chooses an action ac-
cording to her policy, and her state process X is a Markov
decision process (MDP), which now depends not only on
her current state and action, but also the empirical weighted
neighborhood measure. Note that at each time t, the policy
πi of player i may depend on each of other players’ state,
while the transition law P should only depend on other
players by an aggregation of their states, i.e., the empirical
weighted neighborhood measure.

At each time all players receive a running reward according
to some function f : T×Rd×M+(Rd)×A→ R, and they
receive a terminal reward at the terminal time T according
to some function g : Rd×M+(Rd)→ R. The objective of
player i is to maximize her expected accumulated reward

J i(π) := E

[∑
t∈T

ft(X
π,i
t ,Mπ,i

t , aπ,i
t ) + g(Xπ,i

T ,Mπ,i
T )

]
,

which is a function of the policy of all players π =
(π1, . . . , πn) ∈ (An)

n. We write Xπ,i, Mπ,i and aπ,i to
emphasize that the state dynamic of player i depends on π.

Definition 3.1. For any nonnegative vector ϵ =
(ϵ1, . . . , ϵn)∈Rn

+, an ϵ-equilibrium of an n-player game is
defined as π̂ = (π̂1, . . . , π̂n) ∈ (An)

n such that for any i,

J i(π̂) ≥ sup
π∈An

J i(π̂−i, π)− ϵi, (4)

where (π̂−i, π) denotes the vector π̂ with ith coordinate
replaced by π.

3.2. Mapping n-Player Indices onto a Continuous Label
Space

This part serves as a transition from finite player game
defined above, to its limiting system in the next section.
In the finite n-player game, we map the index of agent
i ∈ {1, · · · , n} onto a continuous label space [0, 1], by
assigning player i a label ui ∈ Ini := [(i−1)/n, i/n),∀i =
1, . . . , n− 1 and un ∈ Inn := [(n− 1)/n, 1].

We demonstrate that the empirical weighted neighborhood
measure M i can be expressed in terms of the graphon op-
erator. Let Wξ be the step graphon (1) associated with
interaction matrix ξ, then the interaction between player i
and j can be expressed by ξij = Wξ(ui, uj). Define the
empirical label-state joint measure

S :=
1

n

n∑
i=1

δ(ui,Xi) ∈ P([0, 1]× C), (5)

which is an empirical measure of the label-state pairs of all

players. Then we have for i = 1, . . . , n,

M i =
1

n

n∑
j=1

ξijδXj =

∫
W (ui, v)δxS(dv, dx) = WξS(ui). (6)

This demonstrates that the graphon operator is a general-
ization of the weighted neighborhood measure when there
are infinitely many players: with W being the interaction
among a continuum of players, and µ being their population
label-state joint measure, Wµ(u) is the weighted neighbor-
hood measure for the player of label u ∈ [0, 1].

4. Representative-Player Graphon Games
4.1. Game Formulation

Given a graphon W ∈ L1
+[0, 1]

2 representing the interac-
tion intensity among a continuum-type of players labeled in
[0, 1], with W (u, v) being the interaction intensity between
player u and player v, we define the graphon game associ-
ated with W for a single representative player as follows.
Let the state and action space be defined as in Section 3. Let
(Ω,F ,F,P) be a filtered probability space that supports an
F0-measurable random variable U uniform on [0, 1], and an
adapted Markov process X valued in Rd. We understand U
as the label for the representative player, and X as her state
dynamic. The initial label-state law of the representative
player is given by λ := L(U,X0) ∈ Punif([0, 1] × Rd).
The term “label-state” always refer to the joint measure
of a player’s label and state pair (U,X). As in mean
field games, we abstract all other players into a measure
µ ∈ Punif([0, 1] × C), i.e., each non-representative player
should admit µ as her label-state joint measure, and the
representative player only reacts to the population via this
measure. Let µ be fixed. Let µt ∈ Punif([0, 1]× Rd) be the
marginal of µ under image (u, x) 7→ (u, xt).

Let VU be the collection of all the open-loop policies, i.e.,
all the adapted process valued in P(A). Let AU denotes
the collection of all the closed-loop (Markovian) policies,
i.e., measurable functions T × [0, 1] × Rd → P(A). AU

is usually a proper subset of VU , unless the filtration is
generated by U and X . For any π ∈ VU , the label-state pair
(U,X) follows the transition dynamic (U,X0) ∼ λ and at
each t ∈ T,

at ∼ πt, Xt+1 ∼ Pt(Xt,Wµt(U), at),

for the same {Pt}t∈T as in the finite player game intro-
duced in Section 3. In words, the representative player
is uniformly assigned a label U at time 0, and her later
state transition depends on her current state, action and
weighted neighborhood measure Wµt(U) ∈ P(Rd). Re-
call (6) in the finite player case, µ is now a generaliza-
tion of S defined in (5) when there are infinitely many
types of players. We may consider the disintegration
µ(du, dx) = duµu(dx), where du is the Lebesgue mea-
sure and [0, 1] ∋ u 7→ µu ∈ P(C) is a probabilistic kernel.
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Then Wµ(u) =
∫
[0,1]

W (u, v)
∫
C δxµ

v(dx)dv. The inner
integral is the path measure of player v, and the outer inte-
gral depicts an average of state distributions over all labels v,
weighted by their interaction with the representative player
when her label is u ∈ [0, 1].

Let f : T×Rd×M+(Rd)×A→ R be the running reward
and g : Rd ×M+(Rd) → R be the terminal reward. The
objective of the representative player is to choose a policy
π ∈ VU to maximize

JW (µ, π) := E
[∑

t∈T

ft(X
π
t ,Wµt(U), aπ

t ) + g(Xπ
T ,WµT (U))

]
.

Note that the expectation is w.r.t. all random elements on
F , i.e., (U,X) and π, and we use Xπ , aπ to emphasize that
they depend on the policy π.

Definition 4.1. We say that the measure-policy pair
(µ̂, π̂) ∈ Punif([0, 1]× C)× VU is a W -equilibrium if

JW (µ̂, π̂) = sup
π∈VU

JW (µ̂, π), (7)

µ̂ = L(U,X π̂). (8)

µ̂, π̂ are called the equilibrium population measure and
equilibrium optimal policy respectively.

Intuitively, the game is formulated for a representative
player, while all other players are abstracted into a label-
state joint measure µ. The representative player interacts
with the population only through the weighted neighbor-
hood measure Wµ(U), according to which she takes action
to optimize her reward. The proposed graphon game is
a strict generalization of MFGs, and it degenerates to an
MFG when the graphon W ≡ 1. This is made precise in
Appendix A.3. We will give a comprehensive comparison
between our formulation and the continuum-player graphon
game in Appendix C.
Remark 4.2. We define an infinite horizon version of
graphon game with time-invariant dynamics and rewards
in Appendix A.1. The analysis in the rest of this section
could be easily adapted to the infinite horizon formulation
by eliminating the time dependency of functions.
Remark 4.3 (GMFG as MFG with augmented state space).
The graphon games defined here could be transformed into
classical MFGs with an augmented state space, by impos-
ing the label space [0, 1] as an additional dimension to the
state space. However, this does not simplify the analysis
or proof, and it is not appropriate to adapt existing MFG
results directly (See Appendix A.2).

4.2. Existence of Equilibrium

Assumption 4.4. 1. The action space A is a compact sub-
space of Rd.

2. The running rewards {ft}t∈T and terminal reward g are
bounded and jointly continuous.

3. The initial distribution λ ∈ Punif([0, 1] × Rd) admits
disintegration λ(du, dx) = duλu(dx), and the following
collection of measures is tight1:

{λu}u∈[0,1] ⊂ P(Rd).

4. For each t ∈ T, the following collection of measures is
tight:
ζt := {Pt(x,m, a)}(x,m,a)∈Rd×M+(Rd)×A ⊂ P(Rd).

5. For each t ∈ T, Pt(x,m, ·) is continuous in A for every
(x,m) ∈ Rd ×M+(Rd).

An example case where Assumption 4.4(3, 4) are trivially
satisfied is that there exists some compact subspaceX ⊂ Rd

such that the collection ζt are uniformly supported on X ,
i.e., the Markov process X takes values in the state space
X . Also note that we do not assume the graphon W to be
continuous.

Theorem 4.5. Suppose Assumption 4.4 holds. Then there
exists a W -equilibrium (µ̂, π̂). Moreover, the equilibrium
optimal policy π̂ can be chosen to be a closed-loop policy.

The theorem is proved with probabilistic compactification
and Kakutani-Fan-Glicksberg fixed point theorem in Ap-
pendix E.

4.3. Uniqueness of Equilibrium

Assumption 4.6. 1. The state transition law P does not
depend on the measure argument. Then it reads Pt :
Rd ×A→ P(Rd) for t ∈ T.

2. For each t ∈ T, the running reward ft is separa-
ble in the measure and action argument: there exists
f1t : Rd ×M+(Rd) → R and f2t : Rd × A → R such
that ft(x,m, a) = f1t (x,m) + f2t (x, a).

3. The optimal policy is unique. More specifically, for each
µ ∈ Punif([0, 1]×C), the supremum supπ∈VU

JW (µ, π)
is attained uniquely.

4. The functions f1t and g satisfy the Larsy-Lions Mono-
tonicity condition, in the following sense: for any
m1,m2 ∈ Punif([0, 1]× Rd), and t ∈ T,∫

[0,1]×Rd

(
g(x,Wm1(u))− g(x,Wm2(u))

)
(m1 −m2)(du, dx) ≤ 0,∫

[0,1]×Rd

(
f1t (x,Wm1(u))− f1t (x,Wm2(u))

)
(m1 −m2)(du, dx) ≤ 0.

Assumption 4.6 are the graphon game analogies to the clas-
sic uniqueness assumptions for mean field games, see for ex-

1Recall the definition of tightness: for arbitrary index set I and
Polish space E, a collection of probability measures {Pi}i∈I ⊂
P(E) is tight if for any ϵ > 0, there exists some compact measur-
able subset K ⊂ E such that infi∈I Pi(K) > 1− ϵ.
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ample, (Carmona & Delarue, 2018, Section 3.4) and (Lacker,
2018, Section 8.6).

Theorem 4.7. Suppose Assumptions 4.4 and 4.6 hold. Then
the graphon game admits a unique W -equilibrium.

The proof follows a standard argument in MFG literature,
see Appendix F.

4.4. Approximate Equilibrium for Finite Player Games

Let π̂ : T× [0, 1]×Rd → P(A) be the equilibrium optimal
closed-loop policy of the graphon game associated with
graphon W , and we construct an n-player game policy from
π̂ as follows. Assign player i the policy

πn,un,i(t, x1, . . . , xn) := π̂(t, uni , xi), (9)

and πn,un

:= (πn,un,1, . . . , πn,un,n) ∈ (An)
n. Define

ϵni (u
n) := sup

β∈An

Ji(π
n,un,−i, β)− Ji(πn,un

), (10)

and ϵn(un) := (ϵn1 (un), . . . , ϵnn(un)). ϵni (un) is the largest
reward improvement player i could achieve by changing her
own policy, when all other players follow policies πn,un

.
By definition 3.1, πn,un

is an ϵn(un)-equilibrium of the n-
player game. We need the following additional assumptions.

Assumption 4.8. 1. ξn ∈ Rn×n
+ is a sequence of matrix

with 0 diagonals such that Wξn →W in strong operator
topology, and

lim
n→∞

1

n3

n∑
i,j=1

(ξnij)
2 = 0. (11)

2. For each t ∈ T, the transition dynamic Pt : Rd ×
M+(Rd) × A → P(Rd) is jointly continuous for all
t ∈ T.

The next main result demonstrates that the n-player game
policy πn,un

constructed from the graphon game equilib-
rium optimal policy π̂ forms an approximate equilibrium,
and it converges to the true equilibrium in an average sense
as the number of players n→∞.

Theorem 4.9. Suppose Assumptions 4.4 and 4.8 hold. For
each n ∈ N+, let Un := (Un

1 , . . . , U
n
n ) where Un

i ∼
unif(Ini ) and Un

i is independent of Un
j for i ̸= j. Then

we have

lim
n→∞

1

n

n∑
i=1

E[ϵni (Un)] = 0. (12)

The proof is in Appendix G. Equation (12) can be equiv-
alently written as ϵnIn(Un) → 0 in probability, where
In ∼ unif([n]). Intuitively, for randomly assigned labels
Un, and a player In uniformly chosen on [n], the error is
small. As the number of player n → ∞, the collection
of Un and player label In such that the error cannot be
controlled becomes a measure 0 set.

Remark 4.10. Equation (11) is a very mild graph denseness
condition and is satisfied by many commonly-encountered
finite graphs. The assumption Wξn →W also poses dense-
ness restrictions on the underlying graphs of interaction
matrix ξn, as the existence of a graphon limit implicitly
implies that the sequence of finite graphs are dense enough.
We give some examples and a detailed discussion on dense
graph sequences in Appendix A.5.

5. Learning Scheme and Sample Complexity
We now develop a scheme for learning the stationary equi-
librium of infinite-horizon graphon games (Appendix A.1).
Throughout the section we assume finite state space X and
action space A.

5.1. Finite Classes of Label Space

To handle the continuous label space algorithmically, one
generally needs function approximation techniques such as
linear function approximation or neural networks, which is
beyond the scope of this work. For the development and
analysis of our algorithms, we discretize the label space
[0, 1] into D classes of types of players U ⊂ [0, 1] such that
|U| = D <∞. We denote U := {u1, . . . , uD}, and define
projection mapping ΠD : [0, 1] → U . Denote the inverse
image Iud

:= Π−1
D (ud) ⊂ [0, 1]. A simple example is the

uniform quantization: [0, 1] is divided intoD bins {IDd }Dd=1,
and ΠD maps each bin to its midpoint:

ΠD(u) =

D∑
i=1

2i− 1

2D
1{u∈ID

i }. (13)

As we are only able to learn measures on the finite dis-
cretization U , we define ΠD : P(X )U → Punif([0, 1]×X )
as follows: for any M = {Mud}Dd=1, ΠDM is the mea-
sure Leb ⊗ ν, where ν is a probabilistic kernel given by
ν(u) :=

∑D
d=1M

ud1{u∈Iud
}.

5.2. Approximate Fixed-Point Iteration

Our learning scheme follows fixed-point iteration (FPI),
which is widely used for learning (G)MFGs (Guo et al.,
2019; Cui & Koeppl, 2022; Zhang et al., 2024b). An FPI rep-
resents an update of the game: given the population measure,
the representative player first finds the optimal policy in re-
action to this population, i.e., Γ1 : Punif([0, 1]×X )→ AU ,
Γ1(µ) := argmaxπ∈AU

JW (µ, π). As everyone in the pop-
ulation reacts similarly, the population is then updated
to the induced state distribution of the acquired policy,
i.e., Γ2 : AU × Punif([0, 1] × X ) → Punif([0, 1] × X ),
Γ2(π, µ) := L(U,Xπ). Then, the FPI is given by Γ(µ) :=
Γ2(Γ1(µ), µ), and the equilibrium population measure µ̂
satisfies µ̂ = Γ(µ̂). However, the FPI operators can be hard
to implement. As the environment (P and f ) is unknown,
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Γ1 and Γ2 are not directly accessible and need to be approx-
imated. The general approximate FPI scheme is presented
in Algorithm 1.

Algorithm 1 provides a general framework that can incorpo-
rate various learning algorithms for the two evaluation steps
as subroutines, with (i) and (ii) approximating Γ1 and Γ2

respectively. If access to a state process generator (called an
oracle) is assumed, we may generate the state variable under
any control and population measure for arbitrary times, and
Algorithm 1 recovers the algorithms used in prior work (Cui
& Koeppl, 2022; Zhang et al., 2024b).

Algorithm 1 Approximate FPI for GMFGs

Initialize policy estimate {π0
d}Dd=1 and population esti-

mate {M0
d}Dd=1 for all label classes d ∈ [D]

for k ← 0 to K − 1 do
for d← 1 to D do

(i) Evaluate approximate optimal policy πk+1
d in re-

action to Mk (ii) Evaluate approximate population
measure Mk+1

d induced by πk+1
d

end for
end for
Return

{
πK
d

}
and {MK

d }

We next provide the first non-asymptotic analysis for D-
class FPI scheme given the following assumptions.

Assumption 5.1. 1. The transition kernel and reward func-
tion are uniformly LP , Lf Lipschitz w.r.t. the measure
argument respectively2:
sup
x,a
|f(x,m1, a)− f(x,m2, a)|≤Lf∥m1 −m2∥TV,

sup
x,a
∥P (x,m1, a)− P (x,m2, a)∥TV≤LP ∥m1 −m2∥TV.

2. There exists Ld such that
sup

u,v∈[0,1]

|W (u, v)−W (ΠD(u), v)| ≤ Ld/D.

3. The FPI operator Γ is a contraction mapping: there exists
κ ∈ (0, 1) such that ∥Γ(µ1)−Γ(µ2)∥TV ≤ (1−κ)∥µ1−
µ2∥TV for any µ1, µ2 ∈ P([0, 1]×X ).

Assumption 5.1(2) ensures label classes U are a good ap-
proximation of the label space [0, 1]. An example that sat-
isfies this is the uniform quantization ΠD in (13) if the
graphon is Lipschitz continuous in the first argument. The
contraction mapping along with the Lipschitzness assump-
tions are limited but unfortunately necessary in the complex-
ity analysis. We give a brief discussion on this assumption
and different types of fixed-point theorems in Appendix A.6.

Suppose Assumption 5.1 holds, Algorithm 1 with exact

2Finite signed measures on finite space can be equivalently
expressed as a vector, and the total variation norm is equivalent to
the ℓ1 norm.

evaluation steps needs at most D = O(κ−1ϵ−1) classes and
K = O(κ−1 log ϵ−1) iterations to achieve an ϵ-approximate
equilibrium. This claim is formalized in Theorem 5.4.

5.3. Online Oracle-Free Learning

An oracle is defined to be a state process generator that
could return the distribution of a player’s next state, or a
device that could collect the next state for a large number of
players at the same time regardless of communication costs
and asynchronous delays. An oracle-free algorithm (Angiuli
et al., 2022) is one that does not involve an oracle. In the
following, we present an online oracle-free subroutine for
the approximate evaluation steps in Algorithm 1 by specify-
ing a concrete implementation of the two evaluation steps
(i) and (ii). Specifically, we use SARSA (Sutton & Barto,
2018), a value-based reinforcement learning method, for
policy estimation, and Markov chain Monte Carlo (MCMC)
for population estimation.

For policy estimation, we maintain a Q-function: U × X ×
A→ R, with entry Qd(x, a) estimating the expected return
starting with the state-action pair (x, a) conditional on label
being ud. Let Q be the collection of all Q-functions. To
obtain the policy from a Q-function, we assume access to
a Lipschitz continuous policy operator Γπ : Q → AU , i.e.,
for any Q1, Q2 ∈ Q, there exists a constant Lπ such that

sup
u,x
∥(Γπ(Q1)−Γπ(Q2))(u, x)∥TV≤Lπ∥Q1−Q2∥2 . (14)

An example policy operator satisfying (14) is the softmax
function, with its temperature parameter controlling the
constant Lπ (Gao & Pavel, 2017). Given Γπ, SARSA con-
verges to the Q-function corresponding to the optimal policy
in Γπ(Q) ⊂ AU (Zou et al., 2019).
Remark 5.2. Utilizing a Lipschitz continuous policy opera-
tor, Γ1 returns the optimal Q-function instead of a policy;
and Assumption 5.1(3) can be relaxed to only requiring
Γ1 and Γ2 to be Lipschitz continuous with constants L1

and L2. Then, we can choose a sufficiently smooth policy
operator such that LπL1L2 < 1, making the FPI operator
Γ(µ) := Γ2(Γπ(Γ1(µ)), µ) contractive.

For population estimation, we maintain an M-function:
U → P(X ), with entry Md estimating the population mea-
sure of the representative player conditional on label ud.
Since U ×X ×A is a finite space, both Q- and M-functions
can be represented by tables. Being fully online, SARSA
and MCMC can update the Q- and M-functions using the
same online samples without the need of any oracle. Specif-
ically, we execute H updates for the evaluation subroutine
of Algorithm 1. At each step τ = 0, . . . ,H − 1, the rep-
resentative agent with label ud at xτ samples its action
aτ ∼ Γπ(Q

k,τ
d ), reward rτ = f(xτ ,WΠDM

k,0(ud), aτ ),
next state xτ+1 ∼ P (xτ ,WΠDM

k,0(ud), aτ ), and next
action aτ+1 ∼ Γπ(Q

k,τ
d ). Using these observations, the Q-
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and M-functions are updated simultaneously as follows:
Qk,τ+1

d (xτ , aτ )←(1− ατ )Q
k,τ
d (xτ , aτ )

+ ατ

(
rτ + γQk,τ

d (xτ+1, aτ+1)
)
,

Mk,τ+1
d ←(1− βτ )Mk,τ

d + βτδxτ+1 ,
(15)

where the Q- and M-functions are indexed by the outer it-
eration k and the inner evaluation step t, and ατ and βτ
are step sizes. Substituting the Q-function Qk,τ

d with the
optimal Q-function Qµk,τ

associated with the population
measure µk,τ = ΠDM

k,τ , we recover the FPI scheme in
Algorithm 1. Substituting (i) and (ii) in Algorithm 1 with
H updates using Equation (15), we obtain the first fully
online algorithm for learning GMFGs. Notably, our method
is oracle-free in the sense that we do not assume access to an
optimal policy calculator or a state process generator. Addi-
tionally, in contrast to FPI-like methods in prior work where
(i) and (ii) in Algorithm 1 are executed sequentially, Equa-
tion (15) updates both policy and population concurrently
using the same samples, enhancing the sample efficiency.
Algorithm 2 in Appendix H is an example of a concrete
realization of the aforementioned ideas.

As our method is fully online, we need the following ergod-
icity assumption (Zou et al., 2019).
Assumption 5.3. For any π ∈ Γπ(Q) and M ∈ P(X )U ,
the Markovian state dynamic is ergodic: there exists ν ∈
Punif(U × X ) and c1 > 0, c2 ∈ (0, 1) such that

sup
x
∥L(Xτ |X0 = x)− ν∥TV ≤ c1cτ2 ,

where the dynamic of X is determined by policy π and
neighborhood measure WΠDM .

Finally, we give the sample complexity of our algorithm.
Theorem 5.4. Let µ̂ be the stationary equilibrium measure
of the infinite horizon GMFG. Suppose Assumptions 5.1
and 5.3 hold. For any initial estimate M0,0 ∈ P(X )U ,
Algorithm 1, combined with Equation (15) and step sizes
ατ , βτ ≍ 1/τ , finds an ϵ-approximate equilibrium distribu-
tion MK,H such that E∥ΠDM

K,H − µ̂∥TV ≤ ϵ, with the
number of iteration being at most

K = O
(
κ−1 log ϵ−1

)
, D = O

(
κ−1ϵ−1

)
,

H = O
(
κ−3ϵ−3 log ϵ−1

)
,

giving a total sample complexity of O
(
κ−5ϵ−4 log2 ϵ−1

)
.

We present a paraphrase of Theorem 5.4 in Theorem H.3
that incorporates the dependence on constants in Assump-
tions 5.1 and 5.3. The proof as well as more details of our
method are deferred to Appendix H.

6. Numerical Experiments
In this section, we apply our learning algorithm to three
graphon game examples, namely, Flocking-, SIS- and Invest-

Graphon. We first briefly introduce each game scenario,
and present only the algorithm performance and graphon
mean field equilibrium (GMFE) for Flocking-Graphon due
to space limit. The problem formulation of each game is
in Appendix I. The detailed numerical results are in Ap-
pendix J, including algorithm performance (e.g., exploitabil-
ity, convergence) and visualizations for GMFE. All numeri-
cal experiments are conducted on Mac Air M2.

Flocking-Graphon The Flocking-Graphon game (Lacker
& Soret, 2023) studies the flocking behavior in a system
where each agent makes decisions on its velocity, which in
turn determines its position. We consider the game with
X = [0, 1], and a time horizon T = [0, 1], under proper
discretization. An agent with label u and position x ran-
domly picks its velocity at time t according to the policy
πt(u, x) ∈ P(A) for action space A = [0, 1]. Each agent
aims to minimize its own running cost determined by the ve-
locity control and the agent’s deviation from the population.

SIS-Graphon The SIS-Graphon game (Cui & Koeppl,
2022) models an epidemic scenario where agents can choose
taking precautions to avoid being infected. The infected
probability is determined by the agents’ action (i.e., take
precaution or not) and the number of infected neighbors.

Invest-Graphon In the Invest-Graphon game model (Cui
& Koeppl, 2022), each firm aims to maximize its own profit,
which is determined by the firm’s investment strategies and
other firms’ product quality.

Figure 1. Algorithm performance (Flocking-Graphon)
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We test four types of graphons: uniform attachment
graphon (Wunif(u, v) = 1−max(u, v)), ranked attachment
graphon (Wrank(u, v) = 1 − uv), Erdös-Rényi graphon
(Wer(u, v) = p) and threshold graphon (Wthresh(u, v) =
1u+v<1). Figure 1 demonstrates the algorithm perfor-
mance to solve the Flocking-Graphon. The x-axis de-
notes the epoch index k. We visualize the convergence
gaps |µ(k)−µ(k−1)|, |π(k)−π(k−1)|, and the W1-distances
|µ(k) − µ∗|, |π(k) − π∗|, which measures the closeness be-
tween the benchmark solution (π∗, µ∗) and results at each
epoch. The benchmark solution is obtained by the equiv-
alent class method in (Cui & Koeppl, 2022). The results
show that it takes around 50 epochs for our algorithm to
converge. The convergence performance remains consistent
for all four graphons.

Figure 2. GMFE (Flocking-Graphon)

Figure 2 shows the obtained GMFE for Flocking-Graphon.
We visualize the policy and state density of the agent with
label U = 1 at equilibrium in a 3D plot. The x-axis denotes
the space domain X , and the y-axis is the time horizon T.
Agent with each label is initialized at t = 0 uniformly over
X . Note that the GMFE is time-dependent, which is ob-
tained by adapting our learning algorithm to solve graphon
games with finite horizons (See Algorithm 3 in Appendix H).
The z-axis is the spatial-temporal velocity control αt(1, x)
and population density µt(1, x) of the agent with label 1.
The numerical results show that GMFEs associated with

Wunif and Wthresh are similar. The flock behavior, i.e., the
phenomenon that players gather together without central
planning at some location as time goes by, occurs at posi-
tion x = 0.6 and the population density µ reaches a red peak
around 0.35 with velocity around 0.2. When the agent’s ve-
locity reaches the maximum velocity αmax = 1 (dark red),
the population quickly dissipates (dark blue) and no flock
behavior occurs.

7. Conclusion
We offer a new general formulation of graphon games
with one representative player in continuous state and ac-
tion space. A comprehensive analysis on the equilibrium
properties is proved with assumptions milder than previous
work. We present a general approximate fixed-point itera-
tion framework, and design an oracle-free algorithm along
with the sample complexity analysis.

Impact Statement
This work is motivated by the theoretical challenges in the
analysis of graphon games. As a generalization to mean
field games, graphon games is capable of modeling het-
erogeneous interactions among gaming participants, and
this flexibility allows it to cover a broader range of appli-
cations in finance, economics, engineering, including for
example high-frequency trading, social opinion dynamics
and autonomous vehicle driving. By addressing rigorously
the technical issues faced by games on networks, this work
proposes a conceptually and mathematically concise formu-
lation. The analysis provides concrete theoretical foundation
for the mathematical properties, on top of which the algo-
rithms empower the solvability of the system. With the
comprehensive and self-consistent technical analysis, this
work is capable of modeling system with large amount of
agents and remain computationally efficient.
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solution of a stochastic differential equation. The Annals
of Applied Probability, pp. 1584–1628, 2013.

Caines, P. E. and Huang, M. Graphon mean field games and
their equations. SIAM Journal on Control and Optimiza-
tion, 59(6):4373–4399, 2021.

Cardaliaguet, P. and Hadikhanloo, S. Learning in mean field
games: the fictitious play. ESAIM: Control, Optimisation
and Calculus of Variations, 23(2):569–591, 2017.

Carmona, R. and Delarue, F. Probabilistic Theory of Mean
Field Games with Applications I. Springer, 2018.

Carmona, R., Cooney, D. B., Graves, C. V., and Laurière, M.
Stochastic graphon games: I. the static case. Mathematics
of Operations Research, 47(1):750–778, 2021.

Chen, X., Fu, Y., Liu, S., and Di, X. Physics-informed
neural operator for coupled forward-backward partial dif-
ferential equations. In ICML Workshop on the Synergy of
Scientific and Machine Learning Modeling, 2023a.

Chen, X., Liu, S., and Di, X. A hybrid framework of rein-
forcement learning and physics-informed deep learning
for spatiotemporal mean field games. In Proceedings
of the 2023 International Conference on Autonomous
Agents and Multiagent Systems, pp. 1079–1087, 2023b.

Chen, X., Liu, S., and Di, X. Learning dual mean field
games on graphs. In Proceedings of the 26th European
Conference on Artificial Intelligence, ECAI, 2023c.

Cui, K. and Koeppl, H. Approximately solving mean field
games via entropy-regularized deep reinforcement learn-
ing. In International Conference on Artificial Intelligence
and Statistics, 2021.

Cui, K. and Koeppl, H. Learning graphon mean field games
and approximate Nash equilibria. In International Con-
ference on Learning Representations, 2022.

Cui, K., KhudaBukhsh, W. R., and Koeppl, H. Hyper-
graphon mean field games. Chaos: An Interdisciplinary
Journal of Nonlinear Science, 32(11), 2022.

Delattre, S., Giacomin, G., and Luçon, E. A note on dy-
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Organization of Appendix
The appendix is outlined as follows.

Appendix A is a discussion section serving as a supplement to the concepts in the main paper. The topics include: the
infinite horizon version of graphon game formulation (Appendix A.1), formulating the graphon game into a mean field game
with augmented state space (Appendix A.2), the degeneration of graphon game to mean field games with trivial graphon
(Appendix A.3), time-variant interaction intensities (Appendix A.4), dense graph sequences and examples (Appendix A.5),
fixed point theorems and the contraction mapping assumption (Appendix A.6).

Appendix B provides a list of tables where we compare our novelties and improvements to prior work.

In Appendix C, we define the continuum-player formulation (Appendix C.1) and discuss in detail the aforementioned
measurability issue residing in continuum-player formulation in Appendix C.2. We then give a toy example in Appendix D
to demonstrate the difference of the two formulations.

The following three sections are dedicated to the proof of analysis properties. The existence of equilibrium (Theorem 4.5) is
proved in Appendix E. The uniqueness of equilibrium (Theorem 4.7) is proved in Appendix F. The approximate equilibrium
(Theorem 4.9) is proved in Appendix G.

In Appendix H.1 we give a concrete realization of algorithm discussed in Section 5.3, and the rest of Appendix H is dedicated
to the proof of the sample complexity of learning algorithms (Theorem 5.4). Finally, we give the detailed problem setups for
the numerical examples in Appendix I, and show the numerical results in Appendix J.

A. Additional Discussion
A.1. Infinite Horizon Formulation

In this section we define the infinite horizon version of the representative-player graphon game, as appose the finite horizon
version defined in Section 4.1. All analysis results in Section 4 regarding existence, uniqueness and approximate equilibrium
holds by adjusting the assumptions accordingly.

Let the graphon W ∈ L1
+[0, 1]

2 be given and fixed. Let (Ω,F ,F,P) be a filtered probability space that support an F0-
measurable random variable U uniform on [0, 1], and a Markov process X valued in Rd. We understand U as the label for
the representative player, and X as her state dynamic. Let the flow of label-state joint measures be µ ∈ Punif([0, 1]× C),
where the path space C =

∏∞
i=0 Rd is now a countable product of Rd. µt ∈ Punif([0, 1]× Rd) is the marginal under image

(u, x) 7→ (u, xt). Let the initial joint law λ := L(U,X0) ∈ Punif([0, 1]× Rd) be given.

We still let AU denotes the collection of time-variant closed-loop (Markovian) policies N+ × [0, 1]×Rd → P(A). For any
π ∈ AU , (U,X) follows the transition dynamic

(U,X0) ∼ λ,
at ∼ πt(U,Xt), Xt+1 ∼ P (Xt,Wµt(U), at),

at any time t ∈ N+. Note that the transition law P is time-invariant. Let f : Rd×M+(Rd)×A→ R be the running reward
and γ ∈ (0, 1) be a known discount factor. The objective of the representative player is to choose π ∈ AU to maximize

JW (µ, π) = E
[ ∞∑

t=0

γtf(Xπ
t ,Wµt(U), at)

]
.

Definition A.1. We say that (µ̂, π̂) ∈ Punif([0, 1]× C)×AU is a W -equilibrium if

JW (µ̂, π̂) = sup
π∈VU

JW (µ̂, π),

µ̂ = L(U,X π̂) .

If we do not fix an initial distribution λ, we may define a stationary equilibrium which is time independent:

12
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Definition A.2. We say that (µ̂, π̂) ∈ Punif([0, 1]× Rd)×AU is a stationary W -equilibrium if

JW (µ̂, π̂) = sup
π∈AU

JW (µ̂, π),

µ̂ = L(U,X π̂
t ), ∀t ≥ 0,

where AU now denotes the collection of time-invariant closed-loop policies [0, 1]× Rd → P(A).

Note that we need an additional ergodicity assumption of the Markov chain to show the existence of stationaryW -equilibrium
with the same proof argument in Appendix E, i.e., the Markov chain admits a stationary distribution under any policy. A
sufficient condition for ergodicity is given in Assumption 5.3.

A.2. Game with Augmented State Space

We give another view of a graphon game by reformulating it into a mean field game with an augmented state space. We
view the label U as a coordinate of the state, and it remains at the same value a.s. Let Xt =

(
U
Xt

)
∈ Rd+1, where the

state process space is augmented by one additional dimension. Any fixed µ ∈ Punif([0, 1]× C) can now be equivalently
regarded as an element in P(Cd+1) where Cd+1 = (Rd+1)T+1 is the augmented path space. More specifically, we denote
µt := µ ◦ (U,Xt)

−1 ∈ P(Rd+1), where ◦ is the pushforward. Given any graphon closed-loop policy π ∈ AU , define a
mean field closed-loop policy π and a mean field Markovian transition law P as follows. For every x =

(
u
x

)
∈ Rd+1,

πt(x)(da) := πt(u, x)(da),

P t(x,m, a)(dy) := δu(dv)Pt(x,Wm(u), a)(dy), ∀y =

(
v

y

)
,

respectively and let λ(dy) := λ(dv, dy) for any y =
(
v
y

)
be the mean field initial condition. Then X satisfies the dynamic

X0 ∼ λ,
at ∼ πt(Xt), Xt+1 ∼ P t(x, µt, at).

Define similarly for every x =
(
u
x

)
∈ Rd+1 the reward functions

f t(x,m, a) := ft(x,Wm(u), a),

g(x,m) := g(x,Wm(u)),

for all t ∈ T. The objective is recast into

J(π) := E

[∑
t∈T

f t(X
π

t , µt, at) + g(X
π

T , µT )

]
.

Thus, we have obtained a classic mean field game problem associated with the new coefficients λ, P t, f t, g. Note that they
are implicitly dependent on W .

However, it is worth noticing that in most of the proofs for graphon games, this translation into mean field games with
augmented state space does not simplify the mathematical analysis, and it is not appropriate to adapt the mean field game
results directly. There are two main reasons (Lacker & Soret, 2023):

Firstly, it requires the graphon W ∈ L1
+[0, 1]

2 to be continuous. To see this, recall that most of the results for classic mean
field games assume the joint continuity of reward function, see e.g., (Carmona & Delarue, 2018; Lacker, 2018). In particular,
f t(x,m, a) := ft(x,Wm(u), a) is assumed to be continuous in the augmented state variable x = (u, x)⊤. This requires
that the graphon operator Wµ viewed as a function

[0, 1] ∋ u 7→Wµ(u) ∈M+(E)

13
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should be continuous, for any µ ∈ Punif([0, 1]×E), which is satisfied by a continuous graphon. However, the graphon is in
general not a continuous function. Indeed, many commonly encountered convergent graph sequence tends to a discontinuous
graphon limit, see for instance examples in (Lovász, 2012, Section 11.4).

Second, in the analysis of approximate equilibrium, the model setting for the finite player game does not fit into this
augmented state space framework. Consider an n-player game associated with interaction matrix ξ ∈ Rn×n

+ , and assign
player i the label ui ∈ Ini . Recall the setting for finite player games in Section 3, the running reward can be written as
ft(X

i
t ,WξSt(ui), a

i
t), where S is the empirical label-state measure defined in (5). On the other hand, let X

i

t =
(
ui

Xi
t

)
, and

the running cost of player i in the aformentioned augmented state space framework is

f t(X
i
, St, a

i
t) := ft(X

i,WSt(ui), a
i
t),

which is different from the original problem, as in the finite player game the graphon W needs to be replaced with the step
graphon Wξ. However, it is not possible to incorporate this change in the augmented state space framework. As a result the
augmented state space transformation fails to provide an approximate equilibrium result, which is a strong justification of
the reasonableness of graphon game formulation.

In the continuous time setting (Lacker & Soret, 2023), the augmented state space formulation provides an equivalent
forward-backward PDE system for the graphon game, and thus provides another perspective to the problem formulation.

Actually the continuum-player graphon games may be transformed to a mean field game with augmented state space
similarly, and many previous studies on continuum-player formulation relied on this (Cui & Koeppl, 2022; Zhang et al.,
2024b) to show existence of equilibrium. However, they not only suffer from the two limitations mentioned above, but also
encounter a critical measurability issue that representative-player formulation does not have, and this leads to difficulties in
the proof. We will discuss this point in detail in Appendix C.

A.3. Degeneration to Mean-Field Games under a Trivial Graphon

When the graphon W ≡ 1, the interactions among players are symmetric, and we illustrate that our graphon game
formulation degenerates to the classic mean field game.

Let the initial distribution λ, which is a product measure with the path space marginal λ◦, be given. Fix a population measure
µ ∈ Punif([0, 1] × C) and assume it takes the product measure form: µ(du, dx) = du × ν(dx) for some ν ∈ P(C). The
graphon operator applied on µ degenerates to ν:

Wµ(u) =

∫
[0,1]×C

δxµ(dv, dx) =

∫
C
δxν(dx) = ν, ∀u ∈ [0, 1].

For any closed-loop policy π ∈ AU that depends only on the state variable, i.e., π is a function T× Rd → P(A), (U,X)
follows the transition dynamic: U ∼ unif[0, 1], X0 ∼ λ◦ and

at ∼ πt, Xt+1 ∼ Pt(Xt, νt, at).

Note that U and X are now independent. The objective of the representative player becomes

JW (ν, π) = E
[∑

t∈T
ft(X

π
t , νt, at) + g(Xπ

T , νT )

]
,

where the expectation is w.r.t X only, thanks to the independence between U and X . In this way our label-state graphon
game formulation degenerates to a classic mean field game problem. The equilibrium measure and controls indeed does not
depend on the label, and thus it is safe to restrict to µ being a product measure and policies not depending on label at the
beginning.

A.4. Time-Variant Interaction Intensity

It is possible to consider time-variant interaction intensities in our framework when the time horizon is finite. In the definition
of finite player games (Section 3), we may replace ξ with a sequence of matrix {ξt}Tt=0, where ξt is the interaction intensity
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of the n players at time t. The empirical weighted neighborhood measure of player i then becomes M i
t = 1

n

∑n
i=1 ξ

t
ijδXj

t
,

and it can be equivalently written as WξtSt(ui), in the notation of Section 3.

In the graphon game setting (Section 4.1), we may work on a sequence of graphon {Wt}Tt=0, where Wt is the interaction
among a continuum-type of players at time t. Note that the sequence {Wt}Tt=0 should be non-random. By replacing every
Wµt with Wtµt, it is ready to check that the existence (Section 4.2) and uniqueness (Section 4.3) results still hold. As for
the approximate equilibrium result (Section 4.4), we may change Assumption 4.8(1) into the following: Wξn,t →Wt, and

lim
n→∞

sup
t∈T

1

n3

n∑
i,j=1

(ξn,tij )2 = 0..

Then the approximate equilibrium result still holds. We present the main paper in terms of a time-invariant graphon W to
avoid distraction from the main point we want to address.

A.5. Graph Sequence and the Convergence Assumption 4.8

Conceptually, a graph is dense if nearly every pair of vertices are connected by an edge. However, rigorously, the denseness
of graph is ill-defined, and different results require different denseness conditions.

We first demonstrate that assumption (11) is indeed very mild. We may write Tr((ξn)2) =
∑

i,j=1(ξ
n
ij)

2 where Tr(·) is
the trace, and this is referred as second moment of square matrix. Here are several examples on commonly-encountered
interaction matrix on networks.

Complete graph. Let ξnij = 1 for each i ̸= j, and thus ξn is the adjacency matrix of a complete graph, and this recovers the
mean field case where the players interact symmetrically. We have Wξn ≡ 1 for all n, and thus Wξn →W for W ≡ 1. We
have

1

n3

n∑
i,j=1

(ξnij)
2 ≤ 1

n
→ 0.

Threshold graph. Consider a threshold graph on n vertices where vertex i and j are connected by an edge if i+ j < n, and
let ξnij = 1i+j<n. It is easy to see that Wξn converges in cut norm to a limit defined by W (u, v) := 1u+v<1. It is ready to
check that (11) is satisfied.

Random walk on graph. Consider a graph on n vertices where vertex i has degree dni . Let ξnij =
n
dn
i
1i∼j , where 1i∼j is 1

if i and j are connected by an edge and 0 otherwise. Then ξ/n is a Markovian transition matrix of the random walk on the
graph. We have

1

n3

n∑
i,j=1

(ξnij)
2 =

1

n

n∑
i,j=1

1

(dni )
2
1i∼j =

1

n

n∑
i=1

1

dni
,

and the assumption holds if
∑n

i=1
1
dn
i
→ 0. Intuitively this means the average of degrees diverges. In particular, if

dn1 = · · · = dnn = dn, ξn becomes an interaction matrix on a dn-regular graph, and we just need 1
dn
→ 0, i.e., the degree dn

diverges to satisfy (11). However, not even every sequence of regular graphs has a graphon limit, and we will discuss this
below.

Erdös-Rényi graph. Consider an Erdös-Rényi graph Gn(pn) (Erdős & Rényi, 1959) on n vertices, where every edge is
connected with Bernoulli(pn). Let ξnij =

1
pn

1i∼j , it is not hard to show that (11) holds in probability as long as npn →∞.
We understand npn as the expected degree of any vertex, and this is an important quantity of Erdös-Rényi graphs that
also implies connectivity (Erdős & Rényi, 1960). Moreover, when pn → p for some p ∈ (0, 1), Wξn →W for W ≡ 1 in
probability.

All examples mentioned above merely requires a diverging-average-degree type condition to be considered dense enough
for our results to hold. These denseness conditions are attracting more and more awareness in the stochastic community and
particularly in the studies of stochastic differential equation dynamics and heterogeneous propagation of chaos on networks
(Delattre et al., 2016; Jabin et al., 2021; Bris & Poquet, 2022).
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The assumption Wξn → W is also a denseness condition as the existence of a graphon limit implicitly implies that the
converging graph sequence is generally dense. Actually in the sparse setting, vertices in a local neighborhood interact
strongly with each other and do not become negligible as the number of vertices goes to infinity (Lacker et al., 2023). The
propagation of chaos results also fail in this regime. Nevertheless, not every dense graph sequence admits a graphon limit,
since the sequence is also required to preserve similar network structures. This can be formalized by graph homomorphism
(Lovász, 2012, Chapter 5).

It is worth noticing that a sequence of sparse graphs may converge if they are sampled from the limiting graphon. There are
studies (Fabian et al., 2023) adopting this setting. However conceptually this means the finite player games are constructed
from the graphon game, which is different from the view we take, that graphon games are motivated by finite player games.

Finally, we demonstrate that the convergence of graphon in strong operator topology is weaker than converging in other
norm. Recall the definition of integral operator in (3):

Wϕ(u) :=

∫
[0,1]

W (u, v)ϕ(v)dv, ∀ϕ ∈ L∞[0, 1],

which maps L∞[0, 1] to L1[0, 1]. The integral operator norm is given by ∥W∥∞→1 := sup∥ϕ∥∞≤1 ∥Wϕ∥1, where ∥ · ∥p is
the Lp norm. It is known to be equivalent to the cut norm (Lovász, 2012, Lemma 8.11) by

∥W∥□ ≤ ∥W∥∞→1 ≤ 4∥W∥□ (16)

where the cut norm of a graphon is defined by

∥W∥□ := sup
S,T⊂[0,1]

∣∣∣∣∫
S×T

W (u, v)dudv

∣∣∣∣ ,
for measurable subsets S, T . It is immediate from (16) that the convergence in strong operator topology is weaker than
converging in the cut norm. Indeed, Wn converging to W in L1 also implies Wn →W , see Lemma E.3.

A.6. Fixed Point Theorems and Strong Assumptions for Sample Complexity Analysis

There are two main stream fixed point theorems. The first type is based on contraction mapping, that if an operator is
contraction in norm, then it admits a fixed point. An example of this category is the well-known Banach fixed point
theorem. The second type, on the other hand, is usually based on the compact properties of the range space and operator,
this includes Brouwer’s fixed point theorem (compact, convex range space and continuous operators), Schauder’s fixed point
theorem (closed, bounded, convex range space and compact operators), and Kakutani-Fan-Glicksberg fixed point theorem
for set-value functions, which is the one we will use in the proof of equilibrium existence (Appendix E). Compact-based
fixed point theorems require weaker assumptions, but they fail to indicate how to find a fixed point rather than telling its
theoretical existence.

Contraction based fixed point theorems usually need stronger assumptions, and the contraction in norm property is hard to
verify practically. However, it provides clear approaches to find the fixed point when one exists: starting from an appropriate
initial point, we may iteratively apply the operator and the result is guaranteed to converge to a fixed point. This iteration
comes naturally from the forward-backward structure of games: players give their best response, and the population changes
according to everyone’s best response.

Many algorithms on mean field type games are based on the contraction fixed point theorem and iteration (Guo et al.,
2019; Cui & Koeppl, 2022), including our work. These algorithms usually try to approximate the contraction mapping
with estimations (since the environment is usually unknown) in order to demonstrate the convergences of algorithm.
Thus, the contraction mapping and Lipschitzness assumptions are unfortunately necessary in the complexity analysis (see
Assumption 5.1(3)), even though we do not make such assumptions in the pure mathematical analysis in Section 4.

There is a trade-off between the nice properties of the algorithm and a relatively weaker assumption. In our work, we focus
on an algorithm that is online and oracle-free with convergence guarantees, which is proved based on existing complexity
results of stochastic approximation methods that require stronger assumptions (see for example Lemma H.5 and Lemma H.6).
On the other end of the trade-off, we may consider algorithms that require weaker assumptions, but do not enjoy theoretical
convergence guarantees. Designing sharper quantitative convergence result for stochastic approximation methods is beyond
the scope of this work.
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B. Comparison of Related Work
In this section we give a comparison with related prior studies on discrete time and representative-player graphon games.
The comparison is facilitated from four aspects: the problem formulation (Table 1), the analysis results showed (Table 2),
the assumptions needed for existence and approximate equilibrium (Table 3), and the properties of the proposed learning
algorithms (Table 4).

Table 1. Comparison of formulation
Reference Player-type Time domain State space Action space Entropic regularization
(Cui & Koeppl, 2022) Continuum Discrete Finite Finite ✗

(Fabian et al., 2023)3 Continuum Discrete Finite Finite ✗

(Zhang et al., 2024b) Continuum Discrete Compact Finite ✓

(Lacker & Soret, 2023) Representative Continuous Rd Compact ✗

This paper Representative Discrete Rd Compact ✗

Table 2. Comparison of analysis results
Reference Existence Uniqueness Approximate Equilibrium
(Cui & Koeppl, 2022) ✓ ✗ ✓

(Fabian et al., 2023) ✓ ✗ ✓

(Zhang et al., 2024b) ✓ ✓ ✗

(Lacker & Soret, 2023) ✓ ✓ ✓

This paper ✓ ✓ ✓

Table 3. Comparison of analysis assumptions
Reference Existence assumptions Approx. eqbm. assumptions
Perspective Graphon Transition kernel Reward function Transition kernel Graphon convergence
(Cui & Koeppl, 2022) Jointly Lipschitz Jointly Lipschitz Jointly Lipschitz Jointly Lipschitz In cut norm
(Fabian et al., 2023) Jointly Lipschitz Jointly Lipschitz Jointly Lipschitz Jointly Lipschitz In cut norm
(Zhang et al., 2024b) Jointly cont. Jointly cont. Jointly cont. NA NA
This paper L1-integrable Cont. in action Jointly cont. Jointly cont. In strong operator norm

Table 4. Comparison of algorithm analysis

Reference Oracle-free MFG criterion Graphon
Complexity

analysis

(Cui & Koeppl, 2022) ✓ Contractive Block-wise jointly Lipschitz ✗

(Fabian et al., 2023) ✗ Monotone Block-wise jointly Lipschitz ✗

(Zhang et al., 2024b) ✗ Monotone Jointly Lipschitz ✓–4
This paper ✓ Contractive Assumption 5.1(2) ✓

As a comparison with the Lacker & Soret’s pioneering work in representative graphon game (2023), the discrete time game
model proposed in this paper is more realistic and strongly associated with the applications and lends itself well to stochastic
algorithm design as existing algorithms and analytical results for stochastic approximation methods are mostly given on a
discrete time domain.

In addition, the discrete time formulation, defined with transition kernels directly, covers a broader range of state dynamics.
Consider a partition of the continuous-time domain [0, T ] into N + 1 time slices with a time step ∆ := T/N , and
tk := k∆, then the SDE can be discretized on the time slices {tk}Nk=0, resulting in a discrete time Markov process. In

3We note that (Fabian et al., 2023) considers a sparse type of graphon convergence with a factor that mitigates the sparseness, and
adopts a sampling regime where the finite player interactions are sampled from a graphon. This is different from the other work where the
graphon games are considered to be the limit model of finite player network games.

4The sample complexity in (Zhang et al., 2024b) is partial, as it only accounts for the backward procedure, i.e., the best response of
players to a fixed population distribution, without discussing the complexity of obtaining an estimate of the induced population measure in
the forward procedure.
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other words, every state Ito’s process of the form dXs = b(s,Xs, αs)ds+ σ(s,Xs)dBs can be discretized into the form
Xk+1 ∼ Pk(Xk,Wµk(U), αk) for some Markovian transition kernel Pk. On the other hand, not every discrete time Markov
process (with a general transition kernel Pk) has a continuous time analog in the form of an Ito’s process. It is actually a
trade-off: we sacrifice information on time domain by evaluating the state process only on discrete time slices rather than a
complete path on [0, T ], but our framework may cover a broader range of possible state dynamics.

C. Comparing Representative-Player Games and Continuum-player Games
C.1. Continuum-Player Graphon Games

In this section we give a review on continuum-player graphon games in previous work. Consider a game with a continuum of
players, labeled with u ∈ [0, 1], and we assume the label space [0, 1] is equipped with Borel-σ-algebra and Lebesgue measure.
Each player u admits a state process Xu valued in Rd. Fix a population measure, which is a collection µ = {µu}u∈[0,1],
and it is usually assumed that u 7→ µu is a probabilistic kernel, i.e., u 7→ µu(B) is a measurable function for any Borel
subset B ⊂ C. Let A be the collection of all the feedback (closed-loop) policies T× Rd → P(A), and assume player u
adopts a policy πu ∈ A. The state process follows

Xu
0 ∼ λu,

aut ∼ πu
t (X

u
t ), Xu

t+1 ∼ Pt(X
u
t ,Wµt(u), at),

for some initial condition λu ∈ P(Rd). Here we regard µ as a measure constructed by du× µu(dx), where the assumption
µ being a kernel come into place. It is also common to write Wµt(u) as

∫
[0,1]

W (u, v)µv
t dv.

Note that all the players’ state dynamics are independent, in the following sense: for every u ∈ [0, 1], Xu is independent of
Xv for every v ∈ [0, 1]. Indeed, this independence leads to a significant measurability issue that many proofs ignore, and
we will give a detailed discussion in Appendix C.2.

Each player u aims to maximize an objective function

Ju(µ, πu) := E
[∑

t∈T
ft(X

u,πu

t ,Wµt(u), a
u
t ) + g(Xu,πu

T ,WµT (u))

]
,

where we denote Xu,πu

to emphasize the process Xu is controlled by policy πu. The equilibrium is defined as a pair
(µ̂, π̂) := ({µ̂u}u∈[0,1], {π̂u}u∈[0,1]) ∈ P(C)[0,1] ×A[0,1] such that

Ju(µ̂, π̂u) = sup
π∈A

Ju(µ̂, π),

µ̂u = L(Xu,π̂u

),

for almost every u ∈ [0, 1]. This is called “continuum-player formulation” since it involves a continuum of players.

C.2. Technical: The Non-Measurability Issue

Mathematically, the continuum-player formulation suffers from significant measurability difficulties. For completeness, we
first cite (Sun, 2006, Proposition 2.1) as follows:

Proposition C.1. Consider index space (I, I, λ) and probability space (Ω,F , P ). Consider function f : I × Ω→ E for
some Polish space E. Suppose f is measurable on the product space (I × Ω, I ⊗ F , λ ⊗ P ), equipped with the usual
product σ-algebra, and for λ-almost every j ∈ I , fj is independent of fi for λ-almost every i ∈ I . Then, for λ-almost every
i ∈ I , fi is a constant random variable.

Intuitively, the product σ-algebra I ⊗ F fails to support a large amount of information when we require both the joint
measurability of f , and the independence between fi and fj . This would lead to a problem when we consider a continuum
of players, even if the state space is a finite space rather than Rd, and even for a static game.

More precisely, let (Ω,F ,F,P) be a probability space that supports a collection of stochastic processes {Xu : u ∈ [0, 1]},
where Xu is a process on {0, 1, . . . , T} valued in X (which could be Rd or a finite state space). Xu represents the state
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process of player with label u. From time t − 1 to t, {Xu
t } are generated independently for every u ∈ [0, 1], and thus

the mapping (u, ω)→ Xu(ω) is not measurable on the typical product σ-algebra; similarly, (u, ω) 7→ aut (X
u
t (ω)) is not

measurable. This measurability issue leads to significant difficulties in the proof, as the objective reward function may
involve these mappings. For instance, as one attempts to transform the continuum-player graphon game into a mean field
game with augmented state space, the objective becomes

E
∫
[0,1]

[∑
t∈T

f t

((
u

Xu,πu

t

)
, µt, at

)
+ g

((
u

Xu,πu

T

)
, µT

)]
du,

where the integral with respect to (u, ω) over [0, 1]× Ω is not well-defined since the integrand is not measurable. A similar
argument demonstrates why we cannot aggregate the objective of all the players in a continuum-player graphon game,
where the integral

∫
[0,1]

Ju(µ, πu)du is not well-defined. Thus, the continuum-player graphon game is not mathematically
equivalent to our representative-player formulation.

This technical issue can be addressed by carefully enlarging the σ-algebra with rich Fubini extensions (Sun, 2006, Section
2), allowing it to hold more information while ensuring the joint measurability and independence (Aurell et al., 2022; Tangpi
& Zhou, 2024). However, this approach is restricted to linear-quadratic problems.

On the contrary, our graphon game formulation considers only one representative player. Recall that for any µ ∈
Punif([0, 1] × C), the conditional law of X given U yielded by disintegration is a uniquely defined Lebesgue almost
surely. Thus, it encodes less information by only considering almost every label u, but this provides great technical
convenience and allows us to consider the game for one representative player (Lacker & Soret, 2023).

C.3. Philosophical: Clarification on the Representative Player

As demonstrated above, the representative-player graphon game we present in Section 4.1 and the continuum-player graphon
game in Appendix C.1 are not mathematically equivalent.

Conceptually, our representative-player formulation inherits the spirit of mean field games. We recall that there is only
one representative player in the mean field game, and all other players are abstracted into a population measure in P(C).
Similarly, our game formulation is for one representative player, and the difference is that now the representative player is
in addition assigned a random label, while all other players are abstracted into a label-state joint population measure on
Punif([0, 1]× C).

In other words, our graphon game formulation is defined directly for a representative player as in classic mean field games.
This should be distinguished from reformulating a continuum-player graphon game into an MFG with augmented state
space (in a similar way of Appendix A.2), which is a proof technique to adapt existing MFG results into a graphon game
setting, and it is possible to avoid this technique as in our proofs. Using this technique does not change the fact that the
problems remain for a continuum of players: the theorems are stated for the proposed continuum-player graphon game, and
the measurability issue is not avoided. Thus, we do not regard this concept as “representative-player”.

As a comparison, using one representative to define a graphon game directly at the beginning, as in (Lacker & Soret, 2023)
and this paper, brings novelty compared to prior work. This is similar to the concept that classic MFG literature defines a
game for a representative player from the start, rather than modelling a game for a continuum of players and using techniques
to reformulate it in the proofs.

D. A Toy Example on the Difference between Two Formulations
In this section we compare two types of graphon game formulations on a toy example, inspired by the motivating example
in (Cui & Koeppl, 2021). The two types of formulations of graphon games lead to the same equilibrium in this particular
one-shot game, while the representative-player graphon game is simpler in formulation. When a finite player game contains
larger and continuous state and action spaces with more complex settings, our formulation would demonstrate more
advantages in both analysis and computation. Note that this toy example focuses on demonstrating the difference in
formulation, and the measurability issue mentioned in Appendix C.2 is not the main point here as the example is simple
enough to be solved explicitly, and no technical proofs are involved.

The interaction is defined by a threshold graph, where ξnij = 1i+j<n. It is easy to see that Wξn converges in cut norm to a
limit defined by W (u, v) := 1u+v<1. Note that this graphon is discontinuous.
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D.1. n-player Game

Consider a one-shot (single-stage) game for n players, and let the state and action space be X = A = {−1, 1}, understood
as left and right. Each player simultaneously chooses either left or right, and is punished by the weighted average of
proportion of players that chose the same action. Precisely,

ai =

{
1 w.p. pi;
−1 w.p. 1− pi, Xi = ai,

where pi is the probability player i choose right (state 1), and this characterizes the policy. Let p = (p1, . . . , pn) and let the
terminal reward be g(x,m) = −⟨m, 1x⟩, where 1x is the indicator function. Player i aims to maximize

J i(p) = −E
( n∑

j=1

ξnij1Xi=Xj

)

= −
n−i∑
j=1

(
pipj + (1− pi)(1− pj)

)
.

It can be verified that one equilibrium is given by p1 = · · · = pn = 1
2 .

D.2. Representative-Player Formulation

Consider a one-shot game for a single player, and let the state and action space be X = A = {−1, 1}. Any population
measure µ ∈ Punif([0, 1] × X ) can be characterized by a function q(u) := µ(u, {1}), ∀u ∈ [0, 1]. Let this population
measure be fixed. The graphon operator is given by

Wµ(u) =

∫
[0,1]

W (u, v)(q(v)δ1 + (1− q(v))δ−1)dv ∈ M+({−1, 1}),

where δ is Dirac delta measure. The player is randomly assigned a label U ∼ unif[0, 1], and let π be her policy. Equivalently
the policy can be characterized by p(u) := π(u)({1}). Then she follows the dynamic

a =

{
1 w.p. p(U);
−1 w.p. 1− p(U),

X = a.

The objective is

J(q, p) = −E
(
⟨Wµ(U), 1X⟩

)
= −E

(∫
[0,1]

W (U, v)(q(v)1X=1 + (1− q(v))1X=−1)dv

)
= −

∫
u+v<1

(q(v)p(u) + (1− q(v))(1− p(u)))dvdu.

Solving this as a calculus of a variation problem provides a necessary condition
∫ u

0
q(v)dv = 1

2 , ∀u ∈ [0, 1], and thus the
equilibrium is given by p(u) = 1

2 for a.e. u, and q(v) = 1
2 for a.e. v.

D.3. Continuum-Player Formulation

Consider a static game for a continuum of players with the same setting, and let the population measure be q := {qu}u∈[0,1]

for qu = µu({1}). Each player u ∈ [0, 1] admits a policy πu as the probability choosing 1, so we may write pu := πu({1})
and denote p := {pu}u∈[0,1]. Then the player u chooses the action

au =

{
1 w.p. pu;
−1 w.p. 1− pu, Xu = au,
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and optimize the objective

Ju(q, pu) = −E
(
⟨Wµ(u), 1X⟩

)
= −E

(∫
[0,1]

W (u, v)(qv1X=1 + (1− qv)1X=−1)dv

)
= −

∫ 1−u

0

(qvpu + (1− qv)(1− pu))dv.

It is immediate that the equilibrium is given by pu = 1
2 , and qv = 1

2 for almost every u, v. Note that the measurability issue
is not a concern for this specific example, since it can be solved directly and thus doesn’t involve technical analysis.

E. Proof for Existence
E.1. Preliminary Lemmas

Lemma E.1 ((Lacker, 2015, Lemma A.2)). Let X1 and X2 be Polish spaces. Define the coordinate projections Πi :
X1 × X2 → Xi for i = 1, 2. Then a set S ⊂ P(X1 × X2) is tight if and only if the sets S1 = {µ ◦ Π−1

1 : µ ∈ S} and
S2 = {µ ◦Π−1

2 : µ ∈ S} are tight in P(X1) and P(X2) respectively.

Lemma E.2 ((Lacker, 2015, Corollary A.5)). Let E,F,G be complete, separable metric spaces. ϕ : E × F × G → R
is a bounded measurable function, with ϕ(x, ·, ·) being jointly continuous for any x ∈ E. Then the following mapping is
continuous:

G× P(E × F ) ∋ (z, P ) 7→
∫
E×F

ϕ(x, y, z)P (dx, dy).

Lemma E.3. Let Wn,W be graphons. If Wn L1−→W , then, Wn −→W .

Proof. Given any ψ ∈ L∞[0, 1],

∥Wnψ −Wψ∥1 =

∫
[0,1]

∣∣∣Wnψ(u)−Wψ(u)
∣∣∣du

=

∫
[0,1]

∣∣∣ ∫
[0,1]

Wn(u, v)ψ(v)−W (u, v)ψ(v)dv
∣∣∣du

≤ ∥ψ∥∞
∫
[0,1]2

∣∣∣Wn(u, v)−W (u, v)
∣∣∣dvdu

= ∥ψ∥∞∥Wn −W∥1 −→ 0.

Lemma E.4 ((Lacker & Soret, 2023, Lemma 4.2)). ] Let E be any Polish space, and W be any graphon.

1. For a.e. u ∈ [0, 1], the following map is continuous:

Punif([0, 1]× E) ∋ µ 7→Wµ(u) ∈M+(E).

2. Suppose the map [0, 1] ∋ u 7→W(u, v)dv ∈M+([0, 1]) is continuous, then for any µ ∈ Punif([0, 1]× E),

[0, 1] ∋ u 7→Wµ(u) ∈M+(E)

is continuous.
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Lemma E.5. Let E,F be complete, separable metric space, and F is a regular measurable space. Consider a sequence of
probability measures on the product space {νn} ⊂ P(E × F ). Suppose that νn admits disintegration

νn(dx, dy) = µn(dx)K(x, dy),

for some common kernel K, which is continuous as a mapping E → P(F ), i.e., any sequence xn → x implies Kxn
⇒ Kx.

Then if νn ⇒ ν, ν admits a disintegration ν(dx, dy) = µ(dx)K(x, dy) for some µ ∈ P(E).

Proof. Let Π1 be the projection to first coordinate, which is a continuous mapping. By the continuous mapping theorem,
the pushforward of a weak convergence measure sequence under continuous mapping converge weakly:

µn := νn ◦Π−1
1 ⇒ ν ◦Π−1

1 =: µ.

Suppose ν admits disintegration ν(dx, dy) = µ(dx)K̄(x, dy) for some K̄. Given any bounded and jointly continuous
ϕ : E × F → R, the mapping E ∋ x 7→

∫
F
ϕ(x, y)K(x, dy) ∈ R is bounded and continuous since for any xn → x,∣∣∣∣∫

F

ϕ(xn, y)K(xn, dy)−
∫
F

ϕ(x, y)K(x, dy)

∣∣∣∣
≤
∣∣∣∣∫

F

ϕ(xn, y)K(xn, dy)−
∫
F

ϕ(x, y)K(xn, dy)

∣∣∣∣+ ∣∣∣∣∫
F

ϕ(x, y)K(xn, dy)−
∫
F

ϕ(x, y)K(x, dy)

∣∣∣∣ ,
which converges to 0. Finally, ⟨νn, ϕ⟩ → ⟨ν, ϕ⟩, and on the other hand,

⟨νn, ϕ⟩ =
∫
E×F

ϕ(x, y)K(x, dy)µn(dx) −→
∫
E×F

ϕ(x, y)K(x, dy)µ(dx),

which holds for any bounded continuous ϕ. We conclude that K is a version of K̄.

E.2. Existence of Equilibrium

Given any function ϕ : E × A→ F for Polish space E,F and a measure π ∈ P(A), we may also abuse the notation by
writing ϕ as a function E × P(A)→ F , defined by ϕ(x, π) = ⟨π, ϕ(x, ·)⟩ for each x ∈ E.

Throughout the proof we fix a graphon W , and denote V = P(A)T the space of all policies. We fix an arbitrary policy
π ∈ V , and construct the label-state joint measure of the representative player controlled by π as follows. Recall that at time
t given U = u,Xt = x, αt = a, the law of next state Xt+1 follows the probabilistic kernel [0, 1]× Rd ×A→ Rd:

L(Xt+1|Xt = x, Ut = u, αt = a)(dy) = Pt(dy|x,Wµt(u), a), ∀y ∈ Rd,

and the control process αt follows

L(αt)(da) = πt(da), ∀a ∈ A.

We may thus consider

P̂π,µ
t (dy|u, x) := L(Xt+1|Xt = x, Ut = u)(dy) =

∫
A

Pt(dy|x,Wµt(u), a)πt(da), ∀y ∈ Rd,

and we use the superscript to emphasize that the law is controlled by the policy π. Note that VU ∋ π 7→ P̂π,µ
t (u, x) ∈ P(Rd)

is measurable. The collection of kernels {P̂π
t }t∈T (recall T = {0, 1, . . . , T − 1}) along with the initial law λ implies a

label-state joint law in Punif([0, 1]× C)

P̂π,µ(du, dx) := L(U,X)(du, dx) = λ(du, dx0)
∏
t∈T

P̂π,µ
t (dxt+1|u, xt), ∀(u, x) ∈ [0, 1]× C,

which is the label-state joint measure of the representative player, when her state dynamic is controlled by π. Since the
space [0, 1]× C is a standard measurable space, this is understood as a regular version of the kernel from V to [0, 1]× C.
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Lemma E.6. Under Assumption 4.4(5), for any µ ∈ Punif([0, 1] × C), π 7→ P̂π,µ is continuous. In particular, πt 7→
P̂π,µ
t (u, x) is continuous for every (u, x) ∈ [0, 1]× Rd.

Proof. Let {πn} ⊂ V be any sequence of policies such that πn ⇒ π for some π ∈ V . For any ϕ : [0, 1]× C → R bounded
continuous,∫

[0,1]×C
ϕ(u, x)P̂πn,µ(du, dx)

=

∫
[0,1]×Rd

[ ∫
AT

∫
(Rd)T

ϕ(u, x0, . . . , xT )
∏
t∈T

Pt(dxt+1|xt,Wµt(u), at)π
n(da0, . . . , daT−1)

]
λ(du, dx0)

=:

∫
[0,1]×Rd

[ ∫
AT

ψ(a0, . . . , aT−1)π
n(da0, . . . , daT−1)

]
λ(du, dx0),

where

ψ(a0, . . . , aT−1) :=

∫
(Rd)T

ϕ(u, x0, . . . , xT )
∏
t∈T

Pt(dxt+1|xt,Wµt(u), at).

We know that at 7→ Pt(dxt+1|xt,Wµt(u), at) is continuous for each t ∈ T by Assumption 4.4(5), and since (Rd)T is
separable, with the standard measure theory argument for weak convergence on a product space, for instance, (Billingsley,
1995, Chapter 2), the map ψ is continuous. Thus, ⟨πn, ψ⟩ → ⟨π, ψ⟩, and∫

[0,1]×C
ϕ(u, x)P̂πn,µ(du, dx)

−→
∫
[0,1]×Rd

[ ∫
AT

ψ(a0, . . . , aT−1)π(da0, . . . , daT−1)
]
λ(du, dx0)

=

∫
[0,1]×C

ϕ(u, x)P̂π,µ(du, dx).

Define the probability space Ω := V × [0, 1]× C, equipped with the product σ-algebra. A typical element of Ω is (π, u, x),
where we understood them as a policy, a label of the representative player, and the player’s path, respectively. Let the
coordinate maps be Λ, U,X respectively. The filtration is given by Ft = σ{Λ|[t]×A, U, {Xs}0≤s≤t}.

The collection of admissible lawsR(µ) is defined as the set

R(µ) := {R ∈ P(Ω) : R admits disintegration R(dπ, du, dx) = RΛ(dπ)P̂
π,µ(du, dx) for some RΛ ∈ P(V)}.

Define a random variable Ξµ : Ω→ R by

Ξµ(π, u, x) :=
∑
t∈T

∫
A

ft(Wµt(u), xt, a)πt(da) + g(xT ,WµT (u)) (17)

where µt is the marginal obtained as the image by (u, x) 7→ (u, xt). In particular, given a policy π ∈ V , let
R(π)(dπ̃, du, dx) := δπ(dπ̃)P̂

π̃,µ(du, dx) be an element of R(µ), where δ is the Dirac measure. It holds that the ob-
jective can be rewritten as

JW (µ, π) = ⟨R(π),Ξµ⟩.

Thus, the expectation ⟨R,Ξµ⟩ is a reformulation of the objective, and a single player’s objective is to find the collection of
measures that maximize this expectation:

R∗(µ) := {R∗ ∈ R(µ) : ⟨R∗,Ξµ⟩ ≥ ⟨R,Ξµ⟩, ∀R ∈ R(µ)} (18)
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Define the correspondence (i.e., set valued function, see (Aliprantis & Border, 2006) for an overview) Φ : P([0, 1]× C)→
2P([0,1]×C), given by

Φ(µ) := {R ◦ (U,X)−1 : R ∈ R∗(µ)}.

The existence of W−equilibrium is divided into two steps: we first show the existence of an optimizer to the optimization
problem (18) over the probability measures, i.e.,R∗(µ) is non-empty for any µ; Next, to obtain a W−equilibrium, we aim
to find a fixed point for the correspondence Φ.

Proposition E.7. For any µ ∈ Punif([0, 1]× C), the following optimization problem admits an optimizer:

sup
R∈R(µ)

⟨R,Ξµ⟩.

Proof. We want to show that R 7→ ⟨R,Ξµ⟩ is a continuous mapping on compact space, and thus the maximum of this
mapping is attained. With a direct application of Lemma E.2, we immediately conclude that the following map is jointly
continuous:

Gr(R) ∋ (µ,R) 7−→ ⟨R,Ξµ⟩ ∈ R, (19)

where Gr denotes the graph of an operator.

It remains to prove thatR(µ) is compact. First we want to showR(µ) is tight for any µ. By Lemma E.1, it suffices to show
that the following sets are tight: {R ◦X−1 : R ∈ R(µ)}, {R ◦ U−1 : R ∈ R(µ)}, and {R ◦ Λ−1 : R ∈ R(µ)}. The last
two follows immediately from the fact that [0, 1] and A are compact spaces.

Fix any ϵ′ > 0, we could always find some ϵ such that (1− ϵ)T+1 > 1− ϵ′. By Assumption 4.4(3) and 4.4(4), let {Kt}t∈T
be compact subsets of Rd such that

inf
u∈[0,1]

λu(K0) > 1− ϵ, inf
P̃t∈ζt

P̃t(Kt+1) > 1− ϵ, ∀t ∈ T.

Define K =
∏T

t=0Kt, which is a compact subset of C. For every R ∈ R(µ), let P̂π,µ(du, dx)RΛ(dπ) be its disintegration.
Then,

(R ◦X−1)(K) = R(V × [0, 1]×K)

=

∫
V×[0,1]×C

1K(x)P̂π,µ(du, dx)RΛ(dπ)

=

∫
V

∫
[0,1]×Rd

[ T−1∏
t=0

∫
A

∫
Rd

1Kt+1(xt+1)Pt(dxt+1|xt,Wµt(u), a)πt(da)
]
1K0(x0)λ(du, dx0)RΛ(dπ)

≥
∫
V

∫
[0,1]

[ T−1∏
t=0

∫
A

(1− ϵ)πt(da)
] ∫

Rd

1K0
(x0)λ

u(dx0)duRΛ(dπ)

≥
∫
V

∫
[0,1]

(1− ϵ)T+1duRΛ(dπ)

= (1− ϵ)T+1 > 1− ϵ′.

Thus, we have infR∈R(µ)(R ◦X−1)(K) > 1− ϵ′, which implies the tightness of {R ◦X−1 : R ∈ R(µ)}. Note that if the
state space X of dynamic X is compact, then {R ◦X−1 : R ∈ R(µ)} being tight is immediate. By Prokhorov’s theorem,
R(µ) is precompact.

We conclude by showing that R(µ) is closed. Let {Rn} ⊂ R(µ), and Rn ⇒ R. Indeed, each Rn admits disintegration
Rn

Λ(dπ)P̂
π,µ(du, dx) for some Rn

Λ ∈ P(V), and the kernel π 7→ P̂π,µ is continuous by Lemma E.6. Then Lemma E.5
implies that R admits disintegration RΛ(dπ)P̂

π,µ(du, dx) and thus R ∈ R(µ).
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Next we show that the correspondence Φ admits a fixed point, and thus the graphon game admits a W -equilibrium.
Proposition E.8. There exists a fixed point µ̂ for the correspondence Φ.

Proof. We aim to apply the Kakutani-Fan-Glicksberg fixed point theorem, which is a classic fixed point theorem for
correspondences, see for instance (Aliprantis & Border, 2006, Theorem 17.55). We need to show the existence of a
nonempty, convex, and compact K ⊂ P([0, 1]× C), such that

1. Φ(µ) ⊂ K for each µ ∈ K.

2. Φ(µ) is nonempty and convex for each µ ∈ K.

3. The graph Gr(Φ) = {(µ, µ′) : µ ∈ K,µ′ ∈ Φ(µ)} is closed.

We start from defining K. Note that λ is a fixed initial measure. Let

K := {λ⊗
T−1∏
t=0

P̂t : P̂t ∈ conv(ζt)},

where conv(·) denotes the closed convex hull of a set, and ⊗ is the combinations of probabilistic kernels on the product
space. K is obviously non-empty. By construction, K is the finite Cartesian product of convex sets, and thus K is convex.
To show K is compact, it suffices to show conv(ζt) is compact for each t ∈ T, since Tychonoff’s theorem asserts that an
arbitrary product of compact spaces is again compact. This is true because ζt is tight, and thus precompact by Prokhorov’s
theorem, and the closed convex hull of a precompact set is compact in a locally convex Hausdorff space. Again, if the value
space X of X is compact, let K = P([0, 1]× C) and K is compact automatically.

For each R ∈ R(µ), let it admit the disintegration R = RΛ ⊗ P̂ :

RΛ(dπ)P̂
π,µ(du, dx) =

[
λ(du, dx0)

T−1∏
t=0

∫
A

Pt(dxt+1|xt,Wµt(u), a)πt(da)
]
RΛ(dπ).

We claim that for any t ∈ T,

P̂π,µ
t (dxt+1|u, xt) =

∫
A

Pt(dxt+1|xt,Wµt(u), a)πt(da) ∈ conv(ζt),

since it is the limit of convex combinations of Pt(·|xt,Wµt(u), a) ∈ ζt. Thus, for any (π, µ) ∈ V × Punif([0, 1]× C), the
measure P̂π,µ ∈ Punif([0, 1]× C) belongs to K. The pushforward of R onto the (U,X) coordinate is

(R ◦ (U,X)−1)(du, dx) =

∫
V
P̂π,µ(du, dx)RΛ(dπ),

which is also the limit of a sequence of convex combinations of P̂π,µ(du, dx), indexed by π. Thus, by the closeness and
compactness of K, R ◦ (U,X)−1 ∈ K, and thus Φ(µ) ⊂ K.

To show the convexity of Φ(µ), we start with showing R(µ) is convex since for any R1 = R1
Λ ⊗ P̂ and R2 = R2

Λ ⊗ P̂
and λ ∈ [0, 1], λR1 + (1− λ)R2 = (λR1

Λ + (1− λ)R2
Λ)⊗ P̂ ∈ R(µ). Convexity ofR∗(µ) follows from the linearity of

R 7→ ⟨P,Ξµ⟩ and the convexity ofR(µ), and thus the convexity of Φ(µ) follows from the linearity of mapR 7→ R◦(U,X)−1

and the convexity ofR∗(µ).

It remains to show the closeness of the graph of Φ. We first show the closeness of the following set:

{(µ,R) : µ ∈ K,R ∈ R∗(µ)}.

Let µn ⇒ µ and Rn ⇒ R with µn, µ ∈ K, Rn ∈ R∗(µn), and R ∈ R. To show that R ∈ R∗(µ), we use the continuity
condition (19), and for any R′ ∈ R,

⟨R,Ξµ⟩ = lim
n→∞

⟨Rn,Ξ
µn⟩ ≥ lim

n→∞
⟨R′,Ξµn⟩ = ⟨R′,Ξµ⟩.

Thus, ⟨R,Ξµ⟩ ≥ ⟨R′,Ξµ⟩ for any R′ ∈ R. The by the continuity of R 7→ R ◦ (U,X)−1 and compactness of K, we have
the closeness of Gr(Φ).
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E.3. Closed-Loop Equilibrium Optimal Policy

In this section we show the second part of theorem 4.5, that the equilibrium optimal open-loop policy can be made
closed-loop.

Proposition E.9. Let µ ∈ Punif([0, 1]×C), and R ∈ R(µ). Then, there exists a closed-loop optimal policy, in the following
sense: there exists a measurable function π : T× [0, 1]× Rd → P(A), and R0 ∈ R(µ), such that

1. R0(Λt(da) = πt(U,Xt)(da), ∀t ∈ T) = 1,

2.
∫
Ω
ΞµdR0 ≥

∫
Ω
ΞµdR,

3. R0 ◦ (U,Xt)
−1 = R ◦ (U,Xt)

−1, ∀t ∈ T.

Corollary E.10. There exists a closed-loop equilibrium optimal policy to the graphon game.

Proof. We first find a space (Ω1,F1, R1) supporting a random variable U1, an adapted process X1 valued in Rd, and a
P(A)-valued adapted process Λt such that

(U1, X1
0 ) ∼ λ, X1

t+1 ∼ Pt(X
1
t ,Wµt(U

1),Λt),

R1 ◦
(
U,X1

)−1
= µ.

The existence of such a space is guaranteed by the reasoning in Appendix E.2. We claim that there exists a measurable
π : T× [0, 1]× Rd → P(A) such that

πt(U
1, X1

t ) = ER1

(Λt |U1, X1
t ), R1 − a.s. ∀t ∈ T.

More precisely, for every bounded measurable ϕ : [0, 1]× Rd ×A→ R,∫
A

ϕ(U1, X1
t , a)πt(U

1, X1
t )(da) = ER1

(∫
A

ϕ(U1, X1
t , a)Λt(da)

∣∣∣U1, X1
t

)
, R1 − a.s.,∀t ∈ T.

Define a collection of measures, {ηt}t∈T, ηt ∈ P([0, 1]× Rd ×A) by

ηt(C) := ER1

[∫
A

1C(t, U
1
t , X

1
t , a)Λt(da)

]
.

Let ηt admit disintegration ηt(du, dx, da) = η′t(du, dx)πt(u, x)(da), where η′t is the marginal of ηt onto [0, 1]× Rd. Note
that actually η′t(du, dx) = µt, since for any measurable F ⊂ [0, 1]× Rd,

η′t(F ) = ηt(F ×A) = ER1

[∫
A

1F (U
1
t , X

1
t )1A(a)Λt(da)

]
= ER1 [

1F (U
1
t , X

1
t )
]
= ⟨R1 ◦ (U,X1)−1, 1F ⟩.

Fix an arbitrary t, for any bounded measurable h : ×[0, 1]× Rd → R,

ER1

[
h(U1, X1

t )

∫
A

ϕ(U1, X1
t , a)πt(U

1, X1
t )(da)

]
=

∫
[0,1]×Rd

h(u, x)

∫
A

ϕ(u, x, a)πt(u, x)(da)η
′
t(du, dx)

=

∫
[0,1]×Rd×A

h(u, x)ϕ(u, x, a)ηt(du, dx, da)

= ER1

[
h(U1, X1

t )

∫
A

ϕ(U1, X1
t , a)Λt(da)

]
.
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By definition of conditional expectation, the claim follows.

Construct another probability space (Ω2,F2, R2) as follows: Let Ω2 = [0, 1]× C, U2 and X2 are the coordinate maps, and

R2 := R1 ◦
(
U1, X1

)−1
= µ.

In the rest of the proof, we aim to show that U2 and X2 follow the dynamic

(U2, X2
0 ) ∼ λ, X2

t+1 ∼ Pt(X
2
t ,Wµt(U

2), πt(U
2, X2

t )).

Fix any bounded continuous ψ : Rd → R. For any measurable h : [0, 1]× Rd → R+,

ER2 [
h(U2, X2

t )ψ(X
2
t+1)

]
= ER1 [

h(U1, X1
t )ψ(X

1
t+1)

]
= ER1

[
h(U1, X1

t )ER1

(∫
A

∫
Rd

ψ(y)Pt(Wµt(U
1), X1

t , a)(dy)Λt(da)
∣∣∣U1, X1

t

)]
= ER1

[
h(U1, X1

t )

∫
A

∫
Rd

ψ(y)Pt(Wµt(U
1), X1

t , a)(dy)πt(U
1, X1

t )(da)

]
= ER2

[
h(U2, X2

t )

∫
A

∫
Rd

ψ(y)Pt(Wµt(U
2), X2

t , a)(dy)πt(U
2, X2

t )(da)

]
.

By definition of conditional expectation, we claim that

ER2 [
ψ(X2

t+1) |U2, X2
t

]
=

∫
A

∫
Rd

ψ(y)P (t, U2,Wµt(U
2), X2

t , a)(dy)πt(U
2, X2

t )(da).

Note that this holds for any bounded continuous ψ. Finally, letR0 := R2◦({πt(U2, X2
t )}t∈T , U

2, X2)−1, thenR0 ∈ R(µ),
and the objective value is preserved:∫

Ω

ΞµdR0 = ER2

[∑
t∈T

∫
A

f(t, U2, X2
t ,Wµt(U

2), a)π(t, U2, X2
t )(da) + g(X2

T ,WµT (U
2))

]

= ER1

[∑
t∈T

∫
A

f(t, U1, X1
t ,Wµt(U

1), a)πt(U
1, X1

t )(da) + g(X1
T ,WµT (U

1))

]

= ER1

[∑
t∈T

∫
A

f(t, U1, X1
t ,Wµt(U

1), a)Λt(da) + g(X1
T ,WµT (U

1))

]

=

∫
Ω

ΞµdR.

Remark E.11. The proof is closely based on (Lacker, 2015), which utilized a remarkable result called Markovian projection
theorem (or Mimicking theorem), originated from (Brunick & Shreve, 2013). However, the discrete time setting greatly
simplifies the proof and just the definition of conditional expectation would work.

F. Proof for Uniqueness
Let (µ, π) and (ν, ρ) be two different W -equilibria, and their Markovian state dynamic being Xπ and Xρ respectively. By
construction, the processes π and ρ must be different, since otherwise Xπ and Xν would be the same, and then µ and ν will
be the same as well. Therefore, by the uniqueness of optimal policy, we have

JW (µ, π)− JW (µ, ρ) > 0 and JW (ν, ρ)− JW (ν, π) > 0.
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Note that the inequalities are strict. Adding them result in

JW (µ, π)− JW (ν, π)− (JW (µ, ρ)− JW (ν, ρ)) > 0 (20)

Since the Markovian dynamic does not depend on the measure argument, when the population measure is µ, the dynamic
controlled by policy ρ is the same pathwise as Xρ. This is not true if the assumption is not satisfied, since

Xπ
t+1 ∼ Pt(X

π
t ,Wµt(U), πt), Xρ

t+1 ∼ Pt(X
ρ
t ,Wνt(U), ρt),

and under population measure µ, the process controlled by ρ follows the dynamic X
′

t+1 ∼ Pt(X
′

t ,Wµt(U), ρt), which is
not the same as Xρ. Continue with the proof,

JW (µ, π)− JW (ν, π) = E
[∑

t∈T

(
f1t (X

π
t ,Wµt(U))− f1t (Xπ

t ,Wνt(U))
)

+
∑
t∈T

(
f2t (X

π
t , π)− f2t (Xπ

t , π)
)
+ g(Xπ

T ,WµT (U))− g(Xπ
T ,WνT (U))

]
=
∑
t∈T

∫
[0,1]×Rd

[
f1t (x,Wµt(u))− f1t (x,Wνt(u))

]
µt(du, dx)

+

∫
[0,1]×Rd

[
g(x,WµT (u))− g(x,WνT (u)

]
µT (du, dx).

Similarly,

JW (µ, ρ)− JW (ν, ρ) =
∑
t∈T

∫
[0,1]×Rd

[
f1t (x,Wµt(u))− f1t (x,Wνt(u))

]
νt(du, dx)

+

∫
[0,1]×Rd

[
g(x,WµT (u))− g(x,WνT (u)

]
νT (du, dx).

Taking difference and by the assumed Larsy-Lions monotonicity,

JW (µ, π)− JW (ν, π)− (JW (µ, ρ)− JW (ν, ρ))

=
∑
t∈T

∫
[0,1]×Rd

[
f1t (x,Wµt(u))− f1t (x,Wνt(u))

]
(µt − νt)(du, dx)

+

∫
[0,1]×Rd

[
g(x,WµT (u))− g(x,WνT (u)

]
(µT − νT )(du, dx)

≤ 0.

However, this contradicts (20), and we conclude that µ and ν should be the same.

G. Proof for Approximate Equilibrium
G.1. Comparable Dynamics

Define Ini := [(i − 1)/n, i/n) for i = 1, . . . , n − 1, Inn := [(n − 1)/n, 1], and In := In1 × · · · × Inn . Let (µ, π) be a
W -equilibrium, and X be the Markov chain controlled by policy π. Let Xu denote the state process conditional on U = u.

Fix ∀n ∈ N, and any un = (un1 , . . . , u
n
n) ∈ [0, 1]n. Assign player i the policy

π̂n,un,i(t, x1, . . . , xn) := π(t, uni , xi).

Let X̂n,un

= (X̂n,un,1, . . . , X̂n,un,n) be the state dynamic of all the players:

X̂n,un,i
t+1 ∼ Pt(X̂

n,un,i
t , M̂n,un,i

t , π̂n,un,i
t (X̂n,un

t )), X̂n,un,i
0 ∼ λun

i
,
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where

M̂n,un,i :=
1

n

n∑
r=1

ξnirδX̂n,un,r ,

and M̂n,un,i
t is the time t marginal. Let X̂n,un,β,j denote the dynamic of player j when she changes her policy from π̂n,un,j

to β. More specifically, player j follows

X̂n,un,β,j
t+1 ∼ Pt(X̂

n,un,j
t , M̂

n,un,(β,j),j
t , βt), X̂n,un,β,j

0 ∼ λun
j
,

and all other player i ̸= j follows

X̂n,un,i
t+1 ∼ Pt(X̂

n,un,i
t , M̂

n,un,(β,j),i
t , π̂n,un,i

t (Xn,un,β,j
t )), X̂n,un,i

0 ∼ λun
i
,

where the empirical neighborhood measure is

M̂n,un,(β,j),i :=
1

n

∑
r ̸=j

ξnirδX̂n,un,r + ξijδX̂n,un,β,j

 ,

and Xn,un,β,j denotes the vector Xn,un

with the jth element replaced by X̂n,un,β,j .

For any u ∈ [0, 1],we define Xπ,u to be the process with marginal U = u, controlled by policy π, i.e.,

Xπ,u
t+1 ∼ Pt(X

π,u
t ,Wµt(u), π(t, u,X

π,u
t )) Xπ,u

0 ∼ λu.

Proposition G.1. Assume Assumption 4.8 holds. Let h : [0, 1]× Rd ×M+(Rd)→ R be a bounded measurable function
such that h(u, ·, ·) is jointly continuous on Rd ×M+(Rd) for each fixed u. Then for each t ∈ T,

1

n

n∑
i=1

E[h(Un
i , X̂

n,Un,i
t , M̂n,Un,i

t )]→ E[h(U,Xt,Wµt(U))]. (21)

Proof. Expand the underlying probability space such that it supports independent random elements (Un
i , Y

n,i), ∀i ∈ [n],
independent of X̂n,un

and (U,X), and the law satisfies

L(Y n,i|Un
i = u) = L(X|U = u), ∀u ∈ Ini .

Equivalently, this means for any u ∈ Ini , the conditional law satisfies

Y n,i
t+1|(Un

i = u) ∼ P (t, Y n,i
t ,Wµt(u), πt(u, Y

n,i
t )).

In particular for every measurable ϕ : [0, 1]× C → R,

⟨µ, ϕ⟩ = Eϕ(U,X) =
1

n

n∑
i=1

Eϕ(Un
i , Y

n,i). (22)

Define the empirical neighborhood measure:

Mn,i :=
1

n

n∑
j=1

ξnijδY n,j =
1

n

n∑
j=1

Wξn(U
n
i , U

n
j )δY n,j ,

and the empirical label-state joint measure:

µn :=
1

n

n∑
j=1

δ(Un
i ,Y n,i).
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The theorem is then shown in the following two stages:

1

n

n∑
i=1

E[h(Un
i , X̂

n,Un,i
t , M̂n,Un,i

t )]→ 1

n

n∑
i=1

E[h(Un
i , Y

n,i
t ,Mn,i

t )]→ E[h(U,Xt,Wµt(U))].

Step i. We first show that Wξnµ
n(U) ⇒ Wµ(U) in probability. Fix a bounded continuous function ϕ : Rd → [−1, 1],

it suffices to show ⟨Wξnµ
n(U), ϕ⟩ → ⟨Wµ(U), ϕ⟩ in probability. This is divided into two substeps. We first claim that

⟨Wξnµ
n(U), ϕ⟩ − E[⟨Wξnµ

n(U), ϕ⟩|U ]→ 0 in probability. Note that

⟨Wξnµ
n(u), ϕ⟩ = 1

n

n∑
j=1

Wξn(u, U
n
j )ϕ(Y

n,i).

For u ∈ Ini , by the independence of Y n,i,

var(⟨Wξnµ
n(U), ϕ⟩|U = u) = var(

1

n

n∑
j=1

ξnijϕ(Y
n,i)) ≤ 1

n2

n∑
j=1

(ξnij)
2.

Then, by Assumption (11),

E
[
(⟨Wξnµ

n(U), ϕ⟩ − E[⟨Wξnµ
n(U), ϕ⟩|U ])2

]
= E [var(⟨Wξnµ

n(U), ϕ⟩|U)]

=

n∑
i=1

∫
In
i

var(⟨Wξnµ
n(U), ϕ⟩|U = u)du

≤ 1

n3

n∑
i,j=1

(ξnij)
2 → 0.

Thus, the convergence is in L2. In the second substep we show that E[⟨Wξnµ
n(U), ϕ⟩|U ]→ ⟨Wµ(U), ϕ⟩ in probability.

By the independence of (Un
i , Y

n,i),

E[⟨Wξnµ
n(U), ϕ⟩|U = u] = E[

1

n

n∑
j=1

Wξn(u, U
n
j )ϕ(Y

n,i)]

= E[Wξn(u, U)ϕ(X)]

=

∫
[0,1]

Wξn(u, v)E[ϕ(X)|U = v]dv,

where we used the identity (22). Similarly,

⟨Wµ(u), ϕ⟩ = E[W (u, U)ϕ(X)] =

∫
[0,1]

W (u, v)E[ϕ(X)|U = v]dv.

Thus,

E [|E[⟨Wξnµ
n(U), ϕ⟩|U ]− ⟨Wµ(U), ϕ⟩|] =

∫
[0,1]

∣∣∣∣∣
∫
[0,1]

(Wξn(u, v)−W (u, v))E[ϕ(X)|U = v]dv

∣∣∣∣∣ du
= ∥(Wξn −W)ϕ∥L1[0,1] .

By the assumption that Wξn → W in the strong operator topology, the right-hand side goes to 0 and thus
E[⟨Wξnµ

n(U), ϕ⟩|U ]→ ⟨Wµ(U), ϕ⟩ in L1. This concludes the first step.
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Step ii. We next show by induction the following holds for each t ∈ T:

1

n

n∑
i=1

E[h(Un
i , X̂

n,Un,i
t , M̂n,Un,i

t )]→ 1

n

n∑
i=1

E[h(Un
i , Y

n,i
t ,Mn,i

t )]. (23)

This is trivially true at time 0, since X̂n,Un,i are initialized independently, we have L(Un
i , X̂

n,Un,i
0 ) = L(Un

i , Y
n,i
0 ), and

thus

1

n

n∑
i=1

E[h(Un
i , X̂

n,Un,i
0 , M̂n,Un,i

0 )] =
1

n

n∑
i=1

E[h(Un
i , Y

n,i
0 ,Mn,i

0 )].

Now assume (23) holds for time t− 1. We have

1

n

n∑
i=1

(
E[h(Un

i , X̂
n,Un,i
t , M̂n,Un,i

t )]− E[h(Un
i , Y

n,i
t ,Mn,i

t )]
)

≤ 1

n

n∑
i=1

(
E[h(Un

i , X̂
n,Un,i
t , M̂n,Un,i

t )]− E[h(Un
i , X̂

n,Un,i
t ,Mn,i

t )]
)

︸ ︷︷ ︸
I

+
1

n

n∑
i=1

(
E[h(Un

i , X̂
n,Un,i
t ,Mn,i

t )]− E[h(Un
i , Y

n,i
t ,Mn,i

t )]
)

︸ ︷︷ ︸
II

.

Denote Fn
t := σ({Un

i }ni=1, {X̂n,Un,i
s }ni=1, {Y n,i

s }ni=1, s ≤ t). For term I, we note that X̂n,Un,i
t and X̂n,Un,j

t are indepen-
dent conditional on Fn

t−1, and

E[h(Un
i , X̂

n,Un,i
t , M̂n,Un,i

t )− h(u, X̂n,Un,i
t ,Mn,i

t ) | Fn
t−1, X̂

n,Un,i
t ]

=

∫
(Rd)n−1

h

(
Un
i , X̂

n,Un,i
t ,

1

n

n∑
j=1

ξnijδxj

)∏
j ̸=i

P̂n,Un,j
t−1 (dxj)

−
∫
(Rd)n−1

h

(
Un
i , X̂

n,Un,i
t ,

1

n

n∑
j=1

ξnijδyj

)∏
j ̸=i

Pn,j
t−1(dy

j),

where we use a shorthand notation:

P̂n,Un,i
s := Ps(X̂

n,Un,i
s , M̂n,Un,i

s , πs(U
n
i , X̂

n,Un,i
s )),

Pn,i
s := Ps(Y

n,i
s ,Wµs(U

n
i ), πs(U

n
i , Y

n,i
s )).

More specifically, define the function h
′
: [0, 1]× Rd ×M+(Rd) as follows:

h
′
(u, x,m) :=

∫
(Rd)n−1

h

(
Un
i , X̂

n,Un,i
t ,

1

n

n∑
j=1

ξnijδxj

)∏
j ̸=i

Pt−1(x,m, πt−1(u, x))(dx
j).

Then

I =
1

n

n∑
i=1

(
h

′
(Un

i , X̂
n,Un,i
t−1 , M̂n,Un,i

t−1 )− h
′
(Un

i , Y
n,i
t−1,Wµt−1(U

n
i ))

)
.

Similarly for II, note that Y n,i are independent; we have

E[h(u, X̂n,Un,i
t ,Mn,i

t )− h(Un
i , Y

n,i
t ,Mn,i

t ) | Fn
t−1, Y

n,j
t , j ̸= i]

=

∫
(Rd)n−1

h(Un
i , x

i,Mn,i
t )P̂n,Un,i

t−1 (dxi)− h(Un
i , y

i,Mn,i
t )Pn,i

t−1(dy
i).
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By defining the function h
′′
: [0, 1]× Rd ×M+(Rd) as follows:

h
′′
(u, x,m) :=

∫
(Rd)n−1

h(u, xi,Mn,i
t )Pt−1(x,m, πt−1(u, x))(dx

i),

we get

II ≤ 1

n

n∑
i=1

(
h

′′
(Un

i , X̂
n,Un,i
t−1 , M̂n,Un,i

t−1 )− h
′′
(Un

i , Y
n,i
t−1,Wµt−1(U

n
i ))

)
.

Note that by the assumption that h and P are continuous, h
′
(t, ·, ·) and h

′′
(t, ·, ·) are jointly continuous for every t ∈ T.

Combining I and II, by the tower property,

1

n

n∑
i=1

(
E[h(Un

i , X̂
n,Un,i
t , M̂n,Un,i

t )]− E[h(Un
i , Y

n,i
t ,Mn,i

t )]
)

≤ I + II

≤ 1

n

n∑
i=1

E[(h
′
+ h

′′
)(Un

i , X̂
n,Un,i
t−1 , M̂n,Un,i

t−1 )]− 1

n

n∑
i=1

E[(h
′
+ h

′′
)(Un

i , Y
n,i
t−1,M

n,i
t−1)]︸ ︷︷ ︸

I′

+
1

n

n∑
i=1

E[(h
′
+ h

′′
)(Un

i , Y
n,i
t−1,M

n,i
t−1)]−

1

n

n∑
i=1

E[(h
′
+ h

′′
)(Un

i , Y
n,i
t−1,Wµt−1(U

n
i ))]︸ ︷︷ ︸

II′′

.

By our assumption on time t − 1, I′ → 0. In Step i we proved that Wξnµ
n(U) → Wµ(U). It is straightforward

to show Wξnµ
n(Un

i ) → Wµ(Un
i ) with the same line of reasoning. Rewrite Wξnµ

n(Un
i ) = Mn,i, we actually have

Mn,i →Wµ(Un
i ) in probability. Combined with the boundedness of integrand, the convergences is in L1 and thus II′ → 0.

Step iii. Finally, we aim to show,

1

n

n∑
i=1

Eh(Un
i , Y

n,i,Mn,i)→ E[h(U,X,Wµ(U))].

This is justified with similar argument as in (Lacker & Soret, 2023, Theorem 6.1), and this concludes the theorem.

G.2. Proof of Theorem 4.9

Recall the definition of ϵn(un) in Definition 3.1; we have

ϵni (u
n) := sup

β∈An

Ji(π
n,un,1, . . . , πn,un,i−1, β, πn,un,i+1, . . . , πn,un,n)− Ji(πn,un

)

≤ sup
β∈An

∆n,i
1 (β,un) + sup

β∈An

∆n,i
2 (β,un) + sup

β∈An

∆n,i
3 (β,un) + ∆n,i

4 (un) + ∆n,i
5 (un),

32



Graphon Mean Field Games with a Representative Player: Analysis and Learning Algorithm

where

∆n,i
1 (β,un) := E

[∑
t∈T

f i(t, X̂n,un,β,i
t , M̂

n,un,(β,i),i
t , βt) + g(X̂n,un,β,i

T , M̂
n,un,(β,i),i
T )

]

− E

[∑
t∈T

f i(t, X̂n,un,β,i
t ,Wµt(u

n
i ), βt) + g(X̂n,un,β,i

T ,WµT (u
n
i ))

]
,

∆n,i
2 (β,un) := E

[∑
t∈T

f i(t, X̂n,un,β,i
t ,Wµt(u

n
i ), βt) + g(X̂n,un,β,i

T ,WµT (u
n
i ))

]

− E

[∑
t∈T

f i(t,X
β,un

i
t ,Wµt(u

n
i ), βt) + g(X

β,un
i

T ,WµT (u
n
i ))

]
,

∆n,i
3 (β,un) := E

[∑
t∈T

f i(t,X
β,un

i
t ,Wµt(u

n
i ), βt) + g(X

β,un
i

T ,WµT (u
n
i ))

]

− E

[∑
t∈T

f i(t,Xun
i ,Wµt(u

n
i ), πt(u

n
i , X̂

n,un,i
t )) + g(Xun

i ,WµT (u
n
i ))

]
,

∆n,i
4 (un) := E

[∑
t∈T

f i(t,Xun
i ,Wµt(u

n
i ), πt(u

n
i , X̂

n,un,i
t )) + g(Xun

i ,WµT (u
n
i ))

]

− E

[∑
t∈T

f i(t, X̂n,un,i
t ,Wµt(u

n
i ), πt(u

n
i , X̂

n,un,i
t )) + g(X̂n,un,i

T ,WµT (u
n
i ))

]
,

∆n,i
5 (un) := E

[∑
t∈T

f i(t, X̂n,un,i
t ,Wµt(u

n
i ), πt(u

n
i , X̂

n,un,i
t )) + g(X̂n,un,i

T ,WµT (u
n
i ))

]

− E

[∑
t∈T

f i(t, X̂n,un,i
t , M̂n,un,i

t , πt(u
n
i , X̂

n,un,i
t )) + g(X̂n,un,i

T , M̂n,un,i
T )

]
.

βt in these formulae is short for βt(X̂
n,un,β,i

t ), for a closed-loop control β : T× Rd → P(A).
Lemma G.2 ((Lacker & Soret, 2023, Lemma 5.1)). Fix µ ∈ Punif([0, 1] × C), u ∈ [0, 1]. For any policy π ∈ A1 and
m ∈ P(Rd), define

Xm,π
t+1 ∼ P (t,X

m,π
t ,Wµt(u), π(t,X

m,π
t )), Xm,π

0 ∼ m,

and

Ju,m
W (µ, π) := E

[∑
t∈T

f(t,Xm,π
t ,Wµt(u), π(t,X

m,π
t )) + g(Xm,π

T ,WµT (u))

]
.

If π ∈ AU is an optimal policy, in the sense that JW (µ, π) ≥ JW (µ, β) for all β ∈ AU , then

Ju,λu

W (µ, πu) = sup
β∈A1

Ju,λu

W (µ, β), (24)

where πu(t, x) := π(t, u, x).

Remark G.3. With a similar notation as in the proof for equilibrium existence (Appendix E.2), we may denote

Ru,λu(µ) := {R ∈ R(µ) ⊂ P(V × [0, 1]× C) : R ◦ U−1 = δun
i
, R ◦X−1

0 = λu}.
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The joint law L(π, u,Xλu,π) ∈ Ru,λu
(µ), and for any β ∈ VU , L(β, u,Xλu,β) ∈ Ru,λu

(µ); note that β can be any
open-loop policy. Thus, (24) can be rewritten as5

⟨L(π, u,Xλu,π),Ξµ⟩ ≥ ⟨R,Ξµ⟩, ∀R ∈ Ru,λu
(µ),

where Ξµ is defined in (17). This view simplifies the analysis of the following lemma.

Lemma G.4. supβ∈An
∆n,i

3 (β,un) ≤ 0 for a.e. un ∈ [0, 1]n and all i ∈ [n].

Proof. By construction, L(Xun
i ) = L(Xλun

i
,πun

i ), then the second term of ∆n,i
3 (β,un) is actually J

un
i ,λun

i

W (µ, πu). On the
other hand, the joint law L(β, uni , Xβ,un

i ) ∈ Run
i ,λun

i
(µ). Thus, by Remark G.3, we deduce

sup
β∈An

∆n,i
3 (β,un) ≤ sup

β∈A1

J
un
i ,λun

i

W (µ, π∗
u)− J

un
i ,λun

i

W (µ, π∗
u).

Following (24) in Lemma G.2, the right-hand side is ≤ 0 for a.e. un ∈ [0, 1]n and all i ∈ [n].

Taking average, we have

1

n

n∑
i=1

ϵni (u
n) ≤ 1

n

n∑
i=1

sup
β∈An

∆n,i
1 (β,un) +

1

n

n∑
i=1

sup
β∈An

∆n,i
2 (β,un) +

1

n

n∑
i=1

∆n,i
4 (un) +

1

n

n∑
i=1

∆n,i
5 (un). (25)

By Assumption 4.4, it’s straightforward to see that {L(X̂n,un,β,i) : (n,un, β, i) ∈ N+ × In × V × [n]} is a tight collection
of measures in P(C). Let K ⊂ C be a compact subset such that supn,un,β,i P(X̂n,un,β,i /∈ K) ≤ η for some fixed η > 0.
Define function h1 : [0, 1]×M+(C)→ R by

h1(u,m) :=
∑
t∈T

sup
a∈A

sup
z∈K

(
|f(t, zt,Wµt(u), a)− f(t, zt,mt, a)|+ |g(zT ,WµT (u))− g(zT ,mT )|

)
.

Similarly, define

h2(u, x) :=
∑
t∈T

sup
a∈A

sup
z∈K

( ∣∣Ef i(t, zt,Wµt(u), a)− f i(t, xt,Wµt(u), a)
∣∣− |Eg(zT ,WµT (u))− g(xT ,WµT (u))|

)
.

Function h1 and h2 are bounded measurable since f and g are bounded continuous (Aliprantis & Border, 2006, Theorem
18.19). Moreover, it follows from the compactness of A and K that h1(u, ·) is continuous onM+(C) for a.e. u, and h2(u, ·)
is continuous on E for a.e. u. Note that (h1, h2)(U,Xt,Wµ(U)) = 0. We may thus use h1 to bound ∆1 and ∆5, use h2 to
bound ∆2 and ∆4. To address the region outside K, let C be a constant such that max(|f |, |g|) ≤ C, and (25) becomes

1

n

n∑
i=1

ϵni (u
n) ≤ 2

n

n∑
i=1

E
[
h1(u

n
i , M̂

n,un,i
t )

]
+

2

n

n∑
i=1

E
[
h2(u

n
i , X̂

n,un,i
t )

]
+ 8ηC.

By Proposition G.1,

E

[
1

n

n∑
i=1

ϵni (U
n)

]
≤ 2

n

n∑
i=1

E
[
h1(U

n
i , M̂

n,Un,i
t )

]
+

2

n

n∑
i=1

E
[
h2(U

n
i , X̂

n,Un,i
t )

]
+ 8ηC

−→ 2E [h1(U,Wµt(U))] + 2E [h2(U,Xt)] + 8ηC

= 8ηC.

The proof for theorem 4.9 is concluded by letting η → 0.

5Indeed, it might not be directly obvious why ⟨L(π, u,Xλu,π),Ξµ⟩ ≥ ⟨R,Ξµ⟩ holds for all R ∈ Ru,λu(µ), since R might induce
open-loop policies while the supremum in (24) is over A1. This actually can be showed rigorously, however, and the reader may refer to
(Lacker & Soret, 2023, Lemma 5.1) for a proof.
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H. Proof for Online Learning Sample Complexity
H.1. A Concrete Algorithm Realization

For clarity, we present Algorithm 1 cobined with subroutine (15) in Algorithm 2.

Algorithm 2 Oracle-free Learning for GMFG

Initialize Q0,0 = {Q0,0
d }Dd=1 and M0,0 = {M0,0

d }Dd=1

for k ← 0 to K − 1 do
for d← 1 to D do

Sample initial state x0 ∼Mk,0
d , action a0 ∼ Γπ(Q

k,0
d )

for τ ← 0 to H − 1 do
Sample reward rτ = f(xτ ,WΠDM

k,0(ud), aτ ), next state xτ+1 ∼ P (xτ ,WΠDM
k,0(ud), aτ ), and action

aτ+1 ∼ Γπ(Q
k,τ
d )

Update Q-function:
Qk,τ+1

d (xτ , aτ )← (1− ατ )Q
k,τ
d (xτ , aτ ) + ατ

(
rτ + γQk,τ

d (xτ+1, aτ+1)
)

Update population measure:
Mk,τ+1

d ← (1− βτ )Mk,τ
d + βτδxτ+1

end for
Let Qk+1,0

d = Qk,H
d and Mk+1,0

d =Mk,H
d

end for
end for
Return policy π(K) := Γπ(ΠDQ

K,0) and population measure µ(K) := ΠDM
K,0, where QK,0 = {QK,0

d }Dd=1 and
MK,0 = {MK,0

d }Dd=1

Algorithm 3 is adapted from Algorithm 2 to solve GMFGs with finite time horizons.

Algorithm 3 Oracle-free Learning for Finite Horizon GMFG

Initialize Q0,0:T = {Q0,0:T
d }Dd=1 and M0,0:T = {M0,0:T

d }Dd=1 where T is the time horizon
for k ← 0 to K − 1 do

for d← 1 to D do
Sample initial state x0 ∼Mk,0

d and action a0 ∼ Γπ(Q
k,0
d )

for t← 0 to T − 1 do
Sample reward rt = f(xt,WΠDM

k,t(ud), at), next state xt+1 ∼ P (xt,WΠDM
k,t(ud), at), and action at+1 ∼

Γπ(Q
k,t+1
d )

Update population measure:
Mk,t+1

d ← (1− βk)Mk,t
d + βkδxt+1

Update Q-function:
Qk,t

d (xt, at)← (1− αk)Q
k,t
d (xt, at) + αk

(
rt + γQk,t+1

d (xt+1, at+1)
)

end for
end for

end for
Return policy π(K) := Γπ(ΠDQ

K,0:T ) and population measure µ(K) := ΠDM
K,0:T , where QK,0:T = {QK,0:T

d }Dd=1

and MK,0:T = {MK,0:T
d }Dd=1

The difference between two algorithms lies in the learning rate. In Algorithm 3, the learning rate has to capture each time
step t in the time horizon T . Therefore, we have βk = 1

1+#(t,k) and αk = 1
1+#(x,a,t,k) , where #(t, k) counts the number

of visits to time step t up to epoch k. #(x, a, t, k) counts the number of visits to tuple (x, a, t) up to epoch k.
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H.2. Discretization of Label Space

Recall that for the sample complexity analysis, we consider a finite state space X and action space A. Also recall that
U := {u1, . . . , uD} is the discretization of label space, and ΠD : [0, 1] → U is the projection mapping. For notation
consistency, we use a tilde above any function (operator, measure, set, etc.) defined on [0, 1] to denote their counterparts
defined on U , and a hat over an operator to denote the algorithmic approximation of it. We define the operator ΠD which
maps operators defined on U to operators defined on [0, 1]: for any operator ϕ̃ defined on U ,

ΠDϕ̃(u) :=

D∑
d=1

ϕ̃(ud)1{u∈Iud
}.

In particular, for µ̃ = {µ̃ud}Dd=1 ∈M(X )U , we regard ΠDµ̃ as both the kernel ν : [0, 1]→M(X ) given by

ν(u) :=

D∑
d=1

µ̃ud1{u∈Iud
},

and also a measure in Munif([0, 1] × X ), constructed by Leb ⊗ ν. Here we denoteM(X ) the collection of all Borel
measures with finite variation on X , andMunif([0, 1] × X ) the collection of all Borel measures with finite variation on
[0, 1]×X with uniform first marginal.

In addition to ΠD, we define a set value mapping Π†
D : U → 2[0,1] by Π†

D(ud) = Id for any ud ∈ U . The operator Π†
D

maps operators defined on [0, 1] to operators defined on U . For any operator ϕ defined on [0, 1],

Π†
Dϕ(ud) := ϕ(ud), ud ∈ U .

Note that Π†
DΠD = IdU , while the inverse is not necessarily true.

Lemma H.1. The operator norm of ΠD :M(X )U →Munif([0, 1] × X ) is bounded by 1, where we equip the product
spaceM(X )U with the norm ∥µ̃∥ = supud∈U ∥µ̃ud∥TV.

Proof. It holds for any µ̃ ∈M(X )U that

∥ΠDµ̃∥TV = sup
∥ϕ∥∞≤1

∣∣∣ ∫
[0,1]×X

ϕ(u, x)ΠDµ̃(du, dx)
∣∣∣

≤
D∑

d=1

sup
∥ϕ∥∞≤1

∫
Iud

∣∣∣ ∫
X
ϕ(u, x)µ̃ud(dx)

∣∣∣du
≤

D∑
d=1

∫
Iud

∥µ̃ud∥TVdu ≤ sup
ud∈U

∥µ̃ud∥TV = ∥µ̃∥.

The following lemma ensures that U is a good approximation of the label space.
Lemma H.2. Suppose Assumption 5.1(2) holds. For any µ ∈ Punif([0, 1]×X ), we have

sup
u∈[0.1]

∥Wµ(u)−Wµ(ΠD(u))∥TV ≤
Ld

D
.

Proof. Recall the definition of total variation norm,

sup
u∈[0,1]

∥Wµ(u)−Wµ(ΠD(u))∥TV =sup
u

sup
∥ϕ∥∞≤1

∣∣∣∣∣
∫
[0,1]×X

(W (u, v)−W (ΠD(u), v))ϕ(x)µ(dv, dx)

∣∣∣∣∣
≤ sup

u

∫
[0,1]

∣∣∣(W (u, v)−W (ΠD(u), v))
∣∣∣dv

≤Ld

D
,

where the last inequality follows from Assumption 5.1(2).
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H.3. Best Response and Induced Population Operator

Recall Q is the collection of all [0, 1] × X × A → R functions, for any µ ∈ Punif([0, 1] × X ), the Bellman (optimality)
operator Tµ : Q → Q is defined by

Tµq(u, x, a) = f(x,Wµ(u), a) + γ⟨P (x,Wµ(u), a), sup
a∈A

q(u, ·, a)⟩,

for any q ∈ Q. It is known that Tµ is a γ-contraction mapping, thus a unique fixed point exists, denoted as Qµ. The state
value function is vµ(u, x) := supa∈AQ

µ(u, x, a).

BR and IP operator. The FPI Γ, given by Γ(µ) = Γ2(Γ1(µ), µ), can be alternatively decomposed into the best response
(BR) w.r.t. the current population and the induced population (IP) w.r.t. the current policy. Define the BR operator
ΓBR : Punif([0, 1]×X )→ Q by ΓBR(µ) = Qµ where Qµ is the fixed point of Tµ.

The IP operator ΓIP : Q× Punif([0, 1]× X ) → Punif([0, 1]× X ) is defined by ΓIP(Q,µ) = L(U,X) where X follows
the Markov transition with population measure µ, and under policy Γπ(Q).

Actually, Γπ ◦ ΓBR(µ) = Γ1(µ), and ΓIP(Q,µ) = Γ2(Γπ(Q), µ), and we have Γ(µ) = Γ2(Γ1(µ), µ) = ΓIP(ΓBR(µ), µ).
However, both ΓBR and ΓIP are defined in terms of Q, where the label space [0, 1] is continuous. Thus, we define the
following operators with Q-functions on U .

Discretized BR and IP operator. Let Q̃ be the collection of all L2-integrable U × X ×A→ R functions, we define the
discretized BR operator Γ̃BR : Punif([0, 1]×X )→ Q̃ by Γ̃BR(µ) = Q̃µ which solves the equation

Q̃µ(ud, x, a) = f(x,Wµ(ud), a) + γ⟨P (x,Wµ(ud), a), sup
a∈A

Q̃µ(ud, ·, a)⟩, ∀ud ∈ U .

Γ̃BR returnsD best responses for labels in U w.r.t. population distribution µ. In particular, Q̃µ andQµ coincide at U×X ×A.

The discretized IP operator Γ̃IP : Q̃× Punif([0, 1]×X )→ P(X )U is defined by Γ̃IP(Q̃, µ) = L(U,X) where X follows
the Markov transition with population measure µ, and under policy Γπ(Q̃), conditional on U ∈ U . In other words, it is the
induced state distribution on P(X )U for the D classes.

For notation simplicity, we denote ΓIPΓBR(µ) = ΓIP(ΓBR(µ), µ), similarly for Γ̃IPΓ̃BR.

Algorithm operator. Finally, the algorithm operator Γ̂ : P(X )U → P(X )U is defined by

Γ̂ : {Mk,0
d }

D
d=1 7→ {M

k,H
d }Dd=1.

It returns the updated D-class population measure after an outer iteration of Algorithm 2, consisting of H online stochastic
updates to the D-class Q- and M-value functions.

Given the initial D-class population estimate M0 := {M0,0
d }Dd=1 ∈ P(X )U , we can express Algorithm 2 as

ΠDΓ̂KM0 = ΠD

(
Γ̂Π†

DΠD

)K
M0 =

(
ΠDΓ̂Π†

D

)K
ΠDM0. (26)

H.4. Sample Complexity Analysis

Recall that in Assumptions 5.1 and 5.3, LP , Lf are the Lipschitz constants of transition kernel and reward function, Ld is
the constant controlling graphon discretization error, κ is the contraction factor of one step FPI, and c1, c2 are the constants
associated with the ergodicity. We now give a paraphrase of Theorem 5.4 which includes the dependence of sample
complexity on these assumed constants.
Theorem H.3. Let µ̂ be the stationary equilibrium measure of the infinite horizon GMFG. Suppose Assumptions 5.1 and 5.3
hold. For any initial estimate M0,0 ∈ P(X )U , the sample complexity of Algorithm 2 is given by

E
∥∥ΠDM

K,H − µ̂
∥∥2 ≤ O( exp(−κK)E

∥∥M0,0 − µ̂
∥∥2

+
1

κ2

( |X |A|L2
πL

2
fL

2
dσ

2 (1− γ + |f |∞)
2

(1− γ)4D2
+
L2
PL

2
dσ

2

D2
+
D|X |2|A||f |2∞L2

πσ
2 logH

θ2(1− γ)4H

))
,

(27)
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where σ := n̂+ c1c
n̂
2/(1− c2), n̂ =

⌈
logc2 c

−1
1

⌉
, and

θ := inf
(u,x,a)∈[0,1]×X×A

inf
q∈Q

µq(u, x)Γπ(q
u)[a |x] > 0

is the lower bound of the probability of visiting any label-state-action tuple under the steady distribution µq ∈ Punif([0, 1]×
X ) induced by any value function q.

Our analysis follows the following illustration:

ΠDΓ̂KM0︸ ︷︷ ︸
Algorithm 2

approximates−−−−−−−→
(
ΠDΓ̃IPΓ̃BR

)K
ΠDM0︸ ︷︷ ︸

Finite-label FPI

approximates−−−−−−−→ (ΓIPΓBR)
K
ΠDM0︸ ︷︷ ︸

FPI

,

and we first give the one-step approximation error of Algorithm 2.

Proposition H.4 (One-step approximation error). For any ν ∈ ΠDP(X )U , we have

E
∥∥∥(ΓIPΓBR −ΠDΓ̂Π†

D

)
ν
∥∥∥2
TV

= O

(
D logH

H
+

1

D2

)
.

Proof. Consider the decomposition

E
∥∥∥(ΓIPΓBR −ΠDΓ̂Π†

D

)
ν
∥∥∥2
TV
≤3E

∥∥∥ΓIP

(
ΓBR −ΠDΓ̃BR

)
ν
∥∥∥2
TV︸ ︷︷ ︸

G1

+ 3E
∥∥∥(ΓIPΠD −ΠDΓ̃IP

)
Γ̃BRν

∥∥∥2
TV︸ ︷︷ ︸

G2

+ 3E
∥∥∥ΠD

(
Γ̃IPΓ̃BR − Γ̂Π†

D

)
ν
∥∥∥2
TV︸ ︷︷ ︸

G3

.

Note that the kernel resulting from disintegration is only Lebesgue a.e. defined. However, we only consider those
ν ∈ ΠDP(X )U , i.e., there exists some M ∈ P(X )U such that ν = ΠDM , and thus Π†

Dν = M is unique without
ambiguity.

Let q := ΓBRν and µ := ΓIP(q, ν) = ΓIPΓBRν. Similarly, let q̃ := Γ̃BRν and µ̃ := ΓIP(ΠD q̃, ν) = ΓIP(ΠDΓ̃BRν, ν). To
distinguish, µ, µ̃ ∈ Punif([0, 1]×X ), q ∈ Q, q̃ ∈ Q̃. Then, we have

√
G1 = ∥µ− µ̃∥TV ≤ sup

∥ϕ∥∞≤1

∫
[0,1]

∣∣∣ ∫
X
ϕ(u, x)(µu − µ̃u)(dx)

∣∣∣du
≤
∫
[0,1]

∥µu − µ̃u∥TVdu

≤ sup
u∈[0,1]

∥µu − µ̃u∥TV .

Since µu and µ̃u are the law of process X|U = u with the same transition kernel, by (Zhang et al., 2024a, Lemma 4), we
have for almost every u,

∥µu − µ̃u∥TV ≤ Lπσ ∥q(u, ·)− q̃(ΠD(u), ·)∥2 ≤ Lπσ
√
|X ||A| ∥q(u, ·)− q̃(ΠD(u), ·)∥∞ ,

which gives
sup

u∈[0,1]

∥µu − µ̃u∥TV ≤ Lπσ
√
|X ||A| ∥q −ΠD q̃∥∞ .
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Therefore, by Lemma H.7, we get

G1 ≤
|X ||A|L2

πL
2
dσ

2((1− γ)Lf + γ∥f∥∞LP )
2

(1− γ)4D2
. (28)

For G2, by Lemma H.6, we have

G2 ≤
L2
PL

2
Dσ

2

D2
. (29)

And Lemma H.5 gives

G3 = O

(
D|X |2|A|∥f∥2∞L2

πσ
2 logH

θ2(1− γ)4H

)
. (30)

Plugging the above bounds on G1, G2, and G3 into gives the desired result.

Combining Proposition H.4 and the contraction assumption of FPI (Assumption 5.1(3)), we are able to show Theorem H.3
recursively.

Proof of Theorem H.3. In this proof, we omit the subscript of the total variation norm for simplicity. We denote Mk =
Mk,0 = {Mk,0

d }Dd=1 and µk := ΠDMk for k = 0, . . . ,K. Note that Mk = Γ̂kM0. By (26) and the definition of the
equilibrium population measure µ̂, we have

E ∥µK − µ̂∥2 = E
∥∥∥ΠDΓ̂KM0 − µ̂

∥∥∥2 = E
∥∥∥ΠDΓ̂Π†

DµK−1 − ΓIPΓBRµ̂
∥∥∥2 , (31)

Then, by Young’s inequality, we have

E
∥∥∥ΠDΓ̂Π†

DµK−1 − ΓIPΓBRµ̂
∥∥∥2

=E
∥∥∥(ΠDΓ̂Π†

D − ΓIPΓBR

)
µK−1 + ΓIPΓBR(µK−1 − µ̂)

∥∥∥2
≤(1 + 1/κ)E

∥∥∥(ΠDΓ̂Π†
D − ΓIPΓBR

)
µK−1

∥∥∥2 + (1 + κ)E ∥ΓIPΓBR(µK−1 − µ̂)∥2 . (32)

Applying Proposition H.4 for the first term and the contracting FPI assumption for the second term in (32), we get

E
∥∥∥ΠDΓ̂Π†

DµK−1 − ΓIPΓBRµ̂
∥∥∥2 ≤(1 + 1/κ) ·O

(
D

H
+

1

D2

)
+ (1 + κ)(1− κ)2E ∥µK−1 − µ̂∥2

≤ 1

κ
·O
(
D

H
+

1

D2

)
+ (1− κ)E ∥µK−1 − µ̂∥2 .

Recursively applying the above inequality to Equation (31) gives

E ∥µK − µ̂∥2 ≤(1− κ)KE ∥µ0 − µ̂∥2 +
K∑

k=1

(1− κ)k 1
κ
·O
(
D

H
+

1

D2

)
= O

(
exp(−κK)E ∥µ0 − µ̂∥2 +

1

κ2
O
(D
H

+
1

D2

))
,

which indicates (27) by substituting the shorthand notation O
(
D
H + 1

D2

)
with the explicit bounds of G1, G2, G3 in (28),

(29), (30) respectively. Therefore, to find an approximation equilibrium population measure µK such that E∥µK − µ̂∥ ≤ ϵ
for some error ϵ, we need at most

K = O(κ−1 log ϵ−1), D = O(κ−1ϵ−1), H = O(κ−3ϵ−3 log ϵ−1).
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H.5. Auxiliary Lemmas

The following lemmas address G3, G2, and G1 in Proposition H.4 respectively.
Lemma H.5 (Online learning approximation error). Suppose Assumption 5.3 holds. With step sizes of ατ , βτ ≍ 1/τ , for
any M ∈ P(X )U , we have

E
∥∥∥ΠD

(
Γ̃IPΓ̃BRΠD − Γ̂

)
M
∥∥∥2
TV

= O

(
D∥f∥2∞L2

πσ
2|X |2|A| logH

θ2(1− γ)4H

)
.

Proof. We first denote µ̃ = {µ̃ud}Dd=1 := Γ̃IPΓ̃BRΠDM and M̃ = {M̃ud} := Γ̂M . Then, we know that µ̃ud is the
stationary distribution of the MDP dynamic with population measure ΠDM and policy Γπ(Γ̃BRΠDM), conditional on
U = ud at time 0. In other words, the measure argument of reward function and transition kernel is WΠDM(ud), and the
process is controlled by policy Γπ(Γ̃BRΠDM)(ud, ·), which is the optimal policy.

This is the same MDP in Algorithm 2 for label ud. Thus, by (Zhang et al., 2024a, Lemma 3), for any ud ∈ U , we have

E
∥∥∥µ̃ud − M̃ud

∥∥∥2
2
= O

(
∥f∥2∞L2

πσ
2|X ||A| logH

θ2(1− γ)4H

)
,

where σ := n̂+ c1c
n̂
2/(1− c2), n̂ =

⌈
logc2 c

−1
1

⌉
, and

θ := inf
(u,x,a)∈[0,1]×X×A

inf
q∈Q

µq(u, x)Γπ(q
u)[a |x] > 0.

Therefore, by Lemma H.1, we have

E
∥∥∥ΠD

(
µ̃− M̃

)∥∥∥2
TV
≤ E

∥∥∥µ̃− M̃∥∥∥2
TV
≤ D sup

ud∈U
E
∥∥∥µ̃ud − M̃ud

∥∥∥2
TV

≤D|X | sup
ud∈U

E
∥∥∥µ̃ud − M̃ud

∥∥∥2
2

=O

(
D∥f∥2∞L2σ2|X |2|A| logH

θ2(1− γ)4H

)
,

where we recall the total variation of measure on finite space is equivalent to l1 norm of the density vector.

Lemma H.6 (Population discretization error). For any population distribution µ ∈ Punif([0, 1] × X ) and any D-class
Q-value function q̃ ∈ Q̃, we have ∥∥∥ΠDΓ̃IP (µ, q̃)− ΓIP (µ,ΠD q̃)

∥∥∥
TV
≤ σLPLd

D
.

Proof. We first denote ν̃ := Γ̃IP (µ, q̃) and ν := ΓIP (µ,ΠD q̃).

Let ν admits disintegration duνu(dx). By construction, for a.e. u ∈ Id, conditional on U = u, ν̃ud and νu are the invariant
measures of two Markov processes that follow the same policy Γπ(q̃

ud), but w.r.t. different neighborhood measure. By
(Mitrophanov, 2005, Corollary 3.1), for the same σ in Lemma H.5, we have for a.e. u ∈ Id,∥∥ν̃ud − νu

∥∥
TV
≤ σ sup

x,a
∥P (x,Wµ(ud), a)− P (x,Wµ(u), a)∥TV

≤ σLP ∥Wµ(ud)−Wµ(u)∥TV ≤
σLPLd

D
,

Thus, ∥∥ΠDν̃ − ν
∥∥
TV

= sup
∥ϕ∥∞≤1

∣∣∣ ∫
[0,1]×X

ϕ(u, x)(ΠDν̃ − ν)(du, dx)
∣∣∣

≤
D∑

d=1

sup
∥ϕ∥∞≤1

∫
Iud

∣∣∣ ∫
X
ϕ(u, x)

(
ν̃ud(dx)− νu(dx)

)∣∣∣du
≤

D∑
d=1

∫
Iud

×X

∥∥ν̃ud − νu
∥∥
TV
du ≤ σLPLd

D
.
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Lemma H.7 (Population discretization error). For any population distribution µ ∈ Punif([0, 1]×X ), let q∗ := ΓBRµ and
q̃∗ := Γ̃BRµ. We have

sup
µ
∥q∗ −ΠD q̃∗∥∞ ≤

Ld((1− γ)Lf + γ∥f∥∞LP )

(1− γ)2D
.

Proof. We defined a generalized state value function associated with a policy ρ : [0, 1]×X → P(A) by

vρu0 (u1, u2, x) = E
[∑
τ≥0

γτf(X
ρu0
τ ,Wµ(u2), α

ρu0
τ )

∣∣∣Xρu0
0 = x, U = u1

]
.

With a slight abuse of notation, we denote

qρu0 (u1, u2, x, a) := f(x,Wµ(u2), a) + γ⟨P (x,Wµ(u1), a), v
ρu0 (u1, u2, ·)⟩,

where ρu0 is to fix u0 as the first argument of ρ, i.e., ρu0(x) = ρ(u0, x). In words, vρu0 (u1, u2, x) and qρu0 (u1, u2, x, a)
are generalization of typical value function and Q functions, where the policy follows label u0, state transition follows u1,
and the reward follows u2.

Note that q∗ ∈ Q, and q̃∗ ∈ Q̃. Let π = Γπ(q∗). By definitions of ΓBR and Γ̃BR, we know that

q∗(u, x, a) = qπu(u, u, x, a)⇐⇒ vπu(u, u, x) = sup
a∈A

q∗(u, x, a),

q̃∗(ud, x, a) = qπud (ud, ud, x, a)⇐⇒ vπud (ud, ud, x) = sup
a∈A

q̃∗(ud, x, a), 1 ≤ d ≤ D.

Note that q∗ and q̃∗ coincide on the space U × X ×A by definitions. On ([0, 1]\U)×X ×A, the Q-function q∗ is strictly
larger than ΠD q̃∗ by its optimality. With this in mind, by the definition of the L∞ norm, we have

∥q∗ −ΠD q̃∗∥∞ = sup
x,a

sup
1≤d≤D

sup
u∈Iud

(
q∗(u, x, a)−ΠD q̃∗(u, x, a)

)
= sup

x,a
sup

1≤d≤D
sup

u∈Iud

(
qπu(u, u, x, a)− qπud (ud, ud, x, a)

)
,

where

qπu(u, u, x, a)− qπud (ud, ud, x, a) ≤
∣∣∣qπu(u, u, x, a)− qπu(u, ud, x, a)

∣∣∣︸ ︷︷ ︸
I

+
∣∣∣qπu(u, ud, x, a)− qπu(ud, ud, x, a)

∣∣∣︸ ︷︷ ︸
II

+
(
qπu(ud, ud, x, a)− qπud (ud, ud, x, a)

)
︸ ︷︷ ︸

III

.

Term I. we use the Lipschitzness of the reward function, and obtain

I ≤
∣∣∣f(x,Wµ(u), a)− f(x,Wµ(ud), a)

∣∣∣+ γ
∣∣∣⟨P (x,Wµ(u), a), vπu(u, u, ·)− vπu(u, ud, ·)⟩

∣∣∣
≤ Lf∥Wµ(u)−Wµ(ud)∥TV

+ γ

〈
P (x,Wµ(u), a) , E

[∑
τ≥0

γτ
∣∣∣f(Xπu

τ ,Wµ(u), απu
τ )− f(Xπu

τ ,Wµ(ud), α
πu
τ )
∣∣∣∣∣∣∣Xπu

0 = ·, U = u

]〉

≤ Lf∥Wµ(u)−Wµ(ud)∥TV + γ

〈
P (x,Wµ(u), a) , E

[∑
τ≥0

γτLf∥Wµ(u)−Wµ(ud)∥TV

∣∣∣∣Xπu
0 = ·, U = u

]〉
≤ Lf

1− γ
∥Wµ(u)−Wµ(ud)∥TV

≤ LfLd

(1− γ)D
.
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Term II. we first define iteratively the measure of state-action pair at time t ≥ 1 under any policy ρu : X → P(A) as

P ρu

t (x0,m, a0) := L(Xρu

t , αρu

t |X
ρu

0 = x0, α
ρu

0 = a0)

=

∫
X 2×A2

[
δxt
δat
ρu,xt

(dat)P (xt−1,m, at−1)(dxt)
]
P ρu

t−1(x0,m, a0)(dxt−1, dat−1)

∈ P(X ×A).

We claim that for any ρu : X → P(A), any (x0, a0) ∈ X ×A, any m1,m2 ∈ P(X ) and any time t ≥ 1,

∥P ρu

t (x0,m1, a0)− P ρu

t (x0,m2, a0)∥TV ≤ tLP ∥m1 −m2∥TV. (33)

It is trivial that

P ρu

1 (x0,m, a0) = P (x0,m, a0)

is uniformly Lipschitz in measure argument under assumption Assumption 5.1. Assuming (33) holds for t− 1, we now
show it holds for t with the add-and-subtract trick again.

∥P ρu

t (x0,m1, a0)− P ρu

t (x0,m2, a0)∥TV

≤ sup
∥ϕ∥∞≤1

∫
A×X 2

ϕ(at, xt)ρu,xt
(dat)

[
Pxt−1,m1,at−1

(dxt)P
ρu

t−1(x0,m1, a0)(dxt−1, dat−1)

− Pxt−1,m2,at−1
(dxt)P

ρu

t−1(x0,m2, a0)(dxt−1, dat−1)

]
≤ sup

∥ϕ∥∞≤1

∫
A×X 2

ϕ(at, xt)ρu,xt(dat)

[
Pxt−1,m1,at−1 − Pxt−1,m2,at−1

]
(dxt)P

ρu

t−1(x0,m1, a0)(dxt−1, dat−1)

+ sup
∥ϕ∥∞≤1

∫
A×X 2

ϕ(at, xt)ρu,xt
(dat)Pxt−1,m2,at−1

(dxt)

[
P ρu

t−1(x0,m1, a0)− P ρu

t−1(x0,m2, a0)

]
(dxt−1, dat−1)

≤ (t− 1)LP ∥m1 −m2∥TV + LP ∥m1 −m2∥TV

= tLP ∥m1 −m2∥TV.

With this claim, we have

II ≤
∣∣∣qπu(u, ud, x, a)− qπu(ud, ud, x, a)

∣∣∣
≤
∑
t≥0

γt
∣∣∣∣〈Pπu

t (x,Wµ(u), a)− Pπu
t (x,Wµ(ud), a) , f(·,Wµ(ud), ·)

〉∣∣∣∣
≤
∑
t≥0

γt∥f∥∞∥Pπu
t (x,Wµ(u), a)− Pπu

t (x,Wµ(ud), a)∥TV

≤ LP ∥f∥∞∥Wµ(u)−Wµ(ud)∥TV

∑
t≥0

tγt

≤ γ∥f∥∞LPLd

(1− γ)2D
.

Term III. It is immediate that

III = qπu(ud, ud, x, a)− qπud (ud, ud, x, a) ≤ 0,

as πud
is the optimizer of vπud (ud, ud, ·).

Finally, we conclude

∥q∗ −ΠD q̃∗∥∞ ≤
Ld((1− γ)Lf + γ∥f∥∞LP )

(1− γ)2D
.
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I. Experiment Setup
I.1. Experiment 1: Flocking-Graphon

The Flocking-Graphon game studies the flocking behavior, i.e., the phenomenon that agents gather together at some location
as time goes by, in a large populations (of animals). Its modeling finds applications in psychology, animation, social science,
or swarm robotics (Perrin et al., 2021). Each player in the game makes decisions regarding velocity control to avoid its
own deviation from the centroid of the population, and the desirable outcome (i.e., equilibrium reached by the population)
reveals how a consensus can be reached in a group without centralized decision-making.

We consider a flocking game (Lacker & Soret, 2023) on one-dimensional space X = R, and each agent is allowed to control
its velocity in the compact action space A ⊂ R. The transition dynamic is defined to be a continuous time state process,
given by:

dxt = αtdt+ σdBt,

,where xt ∈ X . αt is the velocity control at time t, and we usually consider it to be a closed loop control, i.e., αt = αt(x)
for function α, which represents the velocity at position x at time t. Bt is a one-dimensional Brownian motion. The player
aims to optimize the following objective

JW (µ, α) := −E
[ ∫ T

0

α2
tdt+ c

∣∣xT −Gµ(U)
∣∣2],

where c > 0 is a constant, and

Gµ(u) := ⟨WµT (u), Id⟩ =
∫
[0,1]×R

W (u, v)xµT (dv, dx),

with Id being the identity mapping. Gµ(u) is interpreted as the centroid of the population over the space domain X . More
specifically, Gµ(u) is the average of the state distribution of the population µ, weighted from the perspective of player with
label u. Intuitively, the running cost arises from change in the velocity, and the terminal cost is associated with deviation
from the centroid at terminal time.

I.2. Experiment 2: SIS-Graphon

(Cui & Koeppl, 2022) considers a game that models pandemic evolution. It admits state space X = {xS , xI} where xS
represents a safe state, and xI represents an infection state. The action space is taken to be A = {aU , aD}, where aU
represents keeping interaction with others and aD represents taking a quarantine. The terminal time is set to T = 50. The
transition probability is

P(xS |xI ,m, a) =
1

2
∀(m, a) ∈M+(X )×A

P(xI |xS ,m, aU ) =
4

5
m(xI) ∀m ∈M+(X )

P(xI |xS ,m, aD) = 0 ∀m ∈M+(X ).

An infected agent may turn safe with half probability each time step, regardless of the action. The probability a safe agent is
infected is proportion to the infected individuals in her neighborhood when she keeps interaction with others, and is 0 when
she takes a quarantine. The reward function is given by

f(x,m, a) = −2 · 1xI
(x)− 0.5 · 1aD

(a).

An agent takes cost from both being infected and taking quarantine action.
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I.3. Experiment 3: Investment-Graphon

In the Investment-Graphon game (Cui & Koeppl, 2022), the terminal time is set to T = 50. Each agent is viewed as a firm,
and let X = {0, 1, . . . , 9} be the quality of products this firm provides. With action space given by A = {aI , aO}, the
transition kernel is defined by

P(x+ 1|x,m, aI) =
9− x
10

∀m ∈M+(X )

P(x|x,m, aI) =
1 + x

10
∀m ∈M+(X )

P(x|x,m, aO) = 1 ∀m ∈M+(X ).

We Interpret aI as investment, and aO as not investing. A firm may improve the product quality by investing, and the
probability of a successful investment decrease as the current quality is already high. Initially, every firm starts from quality
0. The reward function is given by

f(x,m, a) =
0.3x

1 +
∑

x′∈X x
′m(x′)

− 2 · 1aI
(a).

A firm’s profit is proportion to the quality of product, and decrease with the average product quality within its neighborhood.

J. Experiment Results
In this section, we present detailed numerical results for three graphon games utilized in the main body. The experiment
results include algorithm performance (convergence gap, W1-distance, exploitability) and GMFE.

Figure 3. Flocking-Graphon: Algorithm performance. We demonstrate the convergence gap (top), W1-distance (middle) and exploitabil-
ity (bottom) corresponding to four types of graphs. The exploitability indicates how an agent can improve be deviating from the policy
used by the rest of the population. Mathematically, the exploitability is calculated as |Jµ

π − Jµ
π∗(µ)|. It measures the gap between the

policy adopted by the population and the best policy that an agent can achieve in response to the population state.
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Figure 4. Flocking-Graphon: GMFE. Top: The velocity control at position x = 0. The x-axis denotes the time horizon and the y-axis
denotes the velocity at equilibrium. The color bar denotes the label state. Bottom: The expected position x across the time. It can be
regarded as the centroid of the population.

Figure 5. SIS-Graphon: Algorithm performance. We demonstrate the convergence gap (top), W1-distance (middle) and exploitability
(bottom) corresponding to four types of graphs.
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Figure 6. SIS-Graphon: GMFE. Top: The probability of taking precautions when healthy. The results for graphs Wunif , Wrank and Wer

is consistent with (Cui & Koeppl, 2022). We add the results for graph Wthresh. It is shown that the GMFE with Wthresh is similar to
Wunif . Bottom: The population being infected. Agents with a higher u have fewer connections with others. It means they are less likely
infected by the population in a comparison to others. Thus, they take fewer precautions.

Figure 7. Invest-Graphon: Algorithm performance. We demonstrate the convergence gap (top), W1-distance (middle) and exploitability
(bottom) corresponding to four types of graphs.
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Figure 8. Invest-Graphon: GMFE. Top: the probability of investing on product quality when x = 0. Bottom: The expected product
quality across the time.
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