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ABSTRACT

We present a new gradient method for quadratic programming, named
EM(Eliminating Minor Component Values), which eliminate the component in
the direction of large eigenvalues when the current position is in the direction of
small eigenvalues, thereby reducing the increase in the component of large eigen-
values in the next iteration. Numerical experiments show that the EM method has
significant advantages over some commonly used optimization methods, such as
BB and CBB.

1 INTRODUCTION

In this paper, we present a gradient updating method for solving the unconstrained optimization
problem ,the purpose is to minimize an objective function

minf(x) =
1

2
xTAx− bTx (1)

where x ∈ Rn,b ∈ Rn,A ∈ Rn×n is a symmetric and positive definite matrix. The common solution
methods for solving Eq.(1) are iterarive methods of the following form

xk+1 = xk − αk∇f(xk) (2)

where αk is a steplenth,gradient descent method and its variants are the most common optimization
method.if we minimizes Eq.(1) with exact line search,then we get

αk =
∇fT

k ∇fk
∇fT

k A∇fk
=

gTk gk
gTk Agk

(3)

rk =
1

2αk
=

gTk Agk
2gTk gk

(4)

this method proposed by A.Cauchy (1847) is called steepest descent method ,so αSD
k is also called

Cauchy step length. the method’s convergence rate is very sensitive to ill condition number and may
be very slow ,when the f(x) is quadratic xk will satisfy the

f(xk+1)− f(x∗)

f(xk)− f(x∗)
≤ (

λ1 − λn

λ1 + λn
)2 (5)

During the iteration process, the SD method exhibits a zigzag phenomena which was explained by
Akaike (1959), J.BARZILAI & J.M.BORWEIN (1988) presented a nonmonotone steplength which
certain quisi-Newton method, it has two choice for ak,respectively:

αBB1
k =

sTk−1sk−1

sTk−1yk−1
(6)

1
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αBB2
k =

sTk−1yk−1

yTk−1yk−1
(7)

where sk−1 = xk − xk−1 and yk−1 = gk − gk−1 The BB step can be seen Cauchy step with
previous iteration. Barzilai and Borwein proved R-superlinear convergence rate in two dimension.
for general n dimensional convex quadratic case, the method is convergent too and has a properties of
R-linear rate of convergence(Yuan (2008) ). there are some optimization methods based on gradient,
YH (2003) decrease the gradient norm , Yuan (2006) and YH (2005) design a alternate steps , in
two dimension case, it could convergence 3 steps. Asmundis;Serafino (2013) propose SDA with a
fixed stepsiz in sussesive steps. and SDC (R.De Asmundisdi SerafinoD (2014)) adding Cauchy step
comparing SDA. Sun C (2020) propose new step size based on Cauchy stepsize. Kalousek(Z (2015))
select random stepsize at some range.Raydan M (2002) propose a relax method .Raydan M (2002)
introduce RSD which accelerates convergence by introducing a relaxation parameter between 0 and
2 in the standard Cauchy method, The CBB method is a nonmonotone approach that selects two
directions to synthesize a new direction, they also propose CBB method which is a combination of
the SD and BB method ,CBB method is essentially equivalent to the steepest descent method over
two consecutive steps. We conducted research on the reciprocal of the optimal step sizes of the SD
and CBB methods for r (where r can be seen as the gradient value projected onto each eigenvalue
component), We propose a method based on r, which involves selecting multiple fixed values of r
at positions with smaller r values during the iteration process. This approach aims to reduce the
increase in the direction of larger eigenvalues in the next iteration.

2 R ANYLSIS

Assuming the initial value is x0, we use the SD method for updating

xs0 = x0 − α0g0 (8)

than we search in the Ag0 direction and find the point xA0 , the vecotrs
−−→
x0x

s
0 and

−−−→
xs
0x

A
0 are perpendic-

ular. than we find the symmetric point x1 of xA0 with respect to xs0.it is obvious |x1x
s
0| = |xs

0x
A
0 |,as

shown in Figure(1). In order to make the analysis more convenient and intuitive,considering a situ-
ation the objective function is a simple n dimensions hyper-ellipsoid stimulating Eq.(1)

f(x) =
n∑

i=1

a(i)x(i)2 (9)

r =

∑n
i=1 a

(i)3x(i)2∑n
i=1 a

(i)2x(i)2
=

∑n
i=1 a

(i)g(i)
2∑n

i=1 g
(i)2

(10)

where 0 < a(n) ≤ a(n−1) ≤ ...... ≤ a(1),a(1) ≫ a(n),g(i) = 2a(i)x(i)

xs0 = x0 −
∇f(x0)
2r0

(11)

xs
0
(i) = x

(i)
0 (1− a(i)

r0
) = x

(i)
0 µ

(i)
0 (12)

we define v0 = Ag0 , l0 = ∥x0x
s
0∥ , lA0 = ∥x0x

A
0 ∥, θ0 is the angle between g0 and v0 we have

cosθ0 =
gT0 v0

∥g0∥∥v0∥
= r0[

∑n
i=1 a

(i)2x
(i)
0

2

∑n
i=1 a

(i)4x
(i)
0

2 ]
1
2 (13)

∥v0∥
∥g0∥

= 2[

∑n
i=1 a

(i)2x
(i)
0

2

∑n
i=1 a

(i)4x
(i)
0

2 ]
1
2 (14)

lA0 = l0/cosθ0 =
(
∑n

i=1 a
(i)4x

(i)
0

2
)

1
2

r20
(15)

2
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Figure 1: SD and CBB

we have xA
0
(i)

= x0
(i)[1 − (a

(i)

r0
)2] because x1 is a symmetric points of xA

0 about xs
0, so x1 =

2xs
0 − xA

0 , x(i)
1 = x

(i)
0 (1− a(i)

r0
)2 = x

(i)
0 µ

(i)
0

2
g
(i)
1 = g

(i)
0 (1− a(i)

r0
)2 = g

(i)
0 µ

(i)
0

2

It is evident that x1 is the result obtained after applying the CBB method which is equivalent to
using SD method with the same steplenth in two consecutive iterations. From the above analysis
and Figure(1), we can see that the CBB update direction is symmetric to the Ag direction with the
current gradient as the axis.

3 FURTHER DISCUSSION

We will conduct a more in-depth investigation of the value of r based on the SD and CBB methods.

3.1 TWO DIMENSIONS CASE

For SD method,from Eq.(10) we have r0 =
a(1)g

(1)
0

2
+a(2)g

(2)
0

2

g
(1)
0

2
+g

(2)
0

2 ,

r1 =
a(1)g

(1)
0

2
(r0 − a(1))2 + a(2)g

(2)
0

2
(r0 − a(2))2

g
(1)
0

2
(r0 − a(1))2 + g

(2)
0

2
(r0 − a(2))2

=
a(2)g

(1)
0

2
+ a(1)g

(2)
0

2

g
(1)
0

2
+ g

(2)
0

2 (16)

we have r2 = r0, r0 + r1 = r1 + r2 = rk + rk+1 = a(1) + a(2),then we define e(i) = (1 −
a(i)

ru
)(1− a(i)

rd
),then e(1) = e(2) = e in two dimensions, r will immediately achieve stable state , so

x
(i)
2k = x

(i)
0 ek,g(i)2k = g

(i)
0 ek,g(1) and g(2) have the same decrease rate every two steps.

e =
(a(1) − a(2))2g

(1)
0

2
g
(2)
0

2

a(1)a(2)(g
(1)
0

4
+ g

(2)
0

4
) + (a(1)

2
+ a(2)

2
)g

(1)
0

2
g
(2)
0

2 =
(ν − 1)2

(1 + ν)2 + ν(µ− 1
µ )

2
(17)

where ν = a(1)

a(2) ,µ =
g
(1)
0

g
(2)
0

,when µ = 1(ν was set as fixed value), the e reaches the maximum. so

e = (ν−1)2

(ν+1)2 , r = a(1)+a(2)

2 ,this is the worst case, e is SD convergence speed and very close to 1.the

convergenc speed increase with the inreasing µ, so r = a(2) vµ
2+1

µ2+1

r and a(1) are coming close. the closer the r was to a(1), the smaller the e and the faster the conver-
gence. r decide the convergence speed, we can accelerate the convergence speed by adjustments to
r value.

3
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(a) H(r) and its inverse function (b) The derivative of H(r)

Figure 2: CBB function,a1 = 10000, a2 = 0.1

For the CBB method, At the k-th iteration, if we treat rk as a continuous variable r,and regard rk+1

as a function H(r) of variable r ,then

H(r) =
a(1)(r − a(1))3 − a(2)(r − a(2))3

(r − a(1))3 − (r − a(2))3
(18)

By finding the fixed points of H(r),we can obtain the values rfix = a(1)+a(2)

2 . the derivative at the
fixed point is H(rfix)

′
= −3,therefore, it can be concluded that the fix point rfix is a repulsive

point. Meanwhile, the derivative value at the fixed point is a constant value of −3,which does not
change with a(1) and a(1). From Figure(2a), it can be observed that when r is small, the value of
H(r)is close to a(1). Similarly, when r is large,the value of H(r) is close to a(2),H(r)oscillates
rapidly towards a(1) and a(2). When the value of r is near the fixed point, H(r)oscillates more
slowly towards a(1) and a(2). From Figure(2b),Because the derivative of the H(r) function has a
large value at the equilibrium point, the change in r is very rapid. So in the two-dimensional case,
the value of r using the CBB method will quickly approach the two characteristic values. If the
current value of r is a characteristic value, the component in the direction of that characteristic value
will be eliminated after the next iteration, until the stopping condition is met.

3.2 N DIMENSIONS CASE

Acording to Nocedal J. (2022) and Asmundis;Serafino (2013) research, sum of two consecutive
the reciprocal of steps approach to the asymptotic value of toting up the maximum and minimum
eigenvalue in SD method(Forsythe (1968)) we will analyzed it from the perspective of r.

rSD
k+1 =

∑n
i=1 a

(i)g
(i)
k+1

2

∑n
i=1 g

(i)
k+1

2 =

∑n
i=1 a

(i)g
(i)
k

2
µ
(i)
k

2

∑n
i=1 g

(i)
k

2
µ
(i)
k

2 =

∑n
i=1 a

(i)g
(i)
k

2
W

(i)
k∑n

i=1 g
(i)
k

2
W

(i)
k

(19)

where µ
(i)
k = 1− a(i)

rk
,W (i)

k = (rk − a(i))2

rSD
k + rSD

k+1 =

n∑
i=1

n∑
j=1

g
(i)
k

2
g
(j)
k

2
A(a(i), a(j))

n∑
i=1

n∑
j=1

g
(i)
k

2
g
(j)
k

2
B(a(i), a(j))

(20)

then we can see A(a(i), a(j)) and B(a(i), a(j)) as the different weight of the numerator and de-
nominator of Eq(20).so the bigger the difference between the a(i)and a(j), the greater the weight
in a(i)and a(j). From Figure(3), x and y corresponding to larger values of A and B more center at
the top left corner area and the bottom right corner area. the x and y in other areas lead to smaller
value of A and B,so only the a(i) and a(j) locate in the maximum eigenvector direction area apporx-
imate a(1) and the minimum eigenvector direciton area apporximate a(n) have the biggest weight.So

4
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(a) A(x,y) (b) B(x,y)

Figure 3: A(x,y) and B(x,y), 0.01 ≤ x ≤ 1, 0.01 ≤ y ≤ 1

Eq(20) is mainly affected by the value at maximum eigenvalue ares and minimum eigenvalue area.
after a few step, the system will fall into a state of balance situation,so rk + rk+1 ≈ a(1) + a(n),
Similar to the 2-dimensional case, in an n dimensional scenario, the system will eventually settle
into an equilibrium state, oscillating back and forth between two values of r.

for CBB methods, each iteration can be viewd as two consecutive SD iterations. so we have

rCBB
k+1 =

∑n
i=1 a

(i)g
(i)
k+1

2

∑n
i=1 g

(i)
k+1

2 =

∑n
i=1 a

(i)g
(i)
k

2
µ
(i)
k

4

∑n
i=1 g

(i)
k

2
µ
(i)
k

4 =

∑n
i=1 a

(i)g
(i)
k

2
W

(i)
k

2

∑n
i=1 g

(i)
k

2
W

(i)
k

2 (21)

Let’s analyze the values of r before and after consecutive iterations. Unlike the 2-dimensional
case, H(r) is not a deterministic function of r in n-dimensional space.However, we can observe
the relationship between consecutive r values during the process of the CBB method.From Figure
4(b), it can be seen that H(r) almost covers the entire space. However, it has a main trajectory
similar to the two-dimensional case. Meanwhile, most of the points are located in the upper-left and
lower-right corners. This implies that if the current value of r is small or large, the value of r after
the next iteration will become large or small, respectively. If the value of rk is large, the weight
corresponding to the larger eigenvalues will relatively decrease, while the weight corresponding
to the smaller eigenvalues will relatively increase, causing the value of rk+1 to shift towards the
direction of smaller eigenvalues.If the value of rk is small, the weight corresponding to the smaller
eigenvalues will relatively decrease, while the weight corresponding to the larger eigenvalues will
relatively increase, causing the value of rk+1 to shift towards the direction of larger eigenvalues.
As shown in the Figure(5), just like the previous analysis, the r value of the SD method oscillates
between two relatively determined values of size, while the r value of the CBB method alternates
between large and small values. As shown in the Figure(6) , The distribution of r values for the SD
method are concentrated at two fixed values, whereas the CBB method has a distribution across all
values, with a higher concentration in the directions of the maximum and minimum eigenvalues and
a lower concentration in the directions of intermediate eigenvalues.

From Eqs.(19) and (21) , We can regard µ(i) as the weights of different gradients. r value will
seesaw between larger eigenvalue area and smaller eigenvalue area generally.the component of small
eigenvalue determine the convergence rate and is hard to reduce .for SD method,r will stabilize in
two certain value which means to be relatively fixed decrase rate. Comparing the SD method ,the
CBB method’s r value have more wider range change , and have higher descent rate in the direction
of small eigenvalue also.

4 OUR METHOD

According to the previous analysis , if the current r value is very small, there will be a substantial
increase in the direction of the larger eigenvalue during the next iteration. Assuming that the con-
dition number k is a value much greater than 1 . If the r value is close to the smallest eigenvalue

5
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(a) SD (b) CBB

Figure 4: SD and CBB H(r) value

Figure 5: SD and CBB r value

a(n), according to the SD method, the value after the next iteration in the direction of the largest
eigenvalue a(1) will be k times its previous value, whereas for the CBB method, it will be k2 times,
Simultaneously, all components will experience substantial growth, even though the original values
of these components are not large. If the current r value is small, as can be deduced from its calcu-
lation formula, the components outside the direction of the small eigenvalues will also be extremely
small. We refer to these smaller components as spikes. If these spikes can be effectively eliminated
prior to the next iteration, it would be beneficial to the overall computation process.

We refer to the interval from a(n) and 1
2 (a

(1) + a(n)) as the lower half-interval, and the interval
from 1

2 (a
(1)+ a(n)) to a(1) as the upper half-interval.Assuming that a(1) is much larger than an and

(a) SD (b) CBB

Figure 6: SD and CBB r value distribution

6
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a(n) is close to 0 , the lower half-interval can be approximated as from 0 to 1
2a

(1), and the upper
half-interval can be approximated as from 1

2a
(1) to a(1).

When the r falls into the upper half-interval, the growth rates in all eigenvalue directions are less
than 1, with those in the direction of the smaller eigenvalues being close to 1. However, when the
r falls into the lower half-interval, the growth rates may exceed 1, potentially significantly so in the
direction of the larger eigenvalues.

To eliminate these spikes, we apply different treatments to two distinct intervals.for the upper half-
interval interval, we selectively choose some r values to reduce the components in the direction of
the larger eigenvalues. we evenly space out m values, and it can be understood that iterating m times
is equivalent to a polynomial of degree m.

In our case, We divide the space into 5 equal parts, which results in 6 values, namely a(1),
0.9a(1),0.8a(1), 0.7a(1), 0.6a(1), and 0.5a(1), the corresponding descending function is

g(x) =(1− x

a(1)
)(1− x

0.9a(1)
)(1− x

0.8a(1)
)(1− x

0.7a(1)
)(1− x

0.6a(1)
)(1− x

0.5a(1)
)

= 0.1512(1− y)(0.9− y)(0.8− y)(0.7− y)(0.6− y)(0.5− y)
(22)

where y = x
a(1) , within this interval, the maximum absolute value of g(x) after iterating 6 times is

approximately 0.000142128,If we use the CBB method, it is equivalent to squaring g(x), resulting
in a maximum value of 2.0200368384e-8 , this indicate a significant decline.

For the lower half-interval, we employ a strategy that ensures both a decrease in the components
along the smaller eigenvalues and prevents the substantial growth in the direction of the larger
eigenvalues mentioned earlier during the next iteration. this needs to satisfy the following condi-
tion |(1 − x

r )(1 − x
s )| < 1 , Since two consecutive iterations correspond to a quadratic equation,

the absolute value of the parabolic vertex and the maximum eigenvalue direction should be less
than 1. Therefore, we set the value at the vertex to -1 and at the point of the maximum eigen-
value to 1, ensuring the satisfaction of the limiting condition. We strive to minimize the com-
ponents along the direction of the smaller eigenvalues, thus r should ideally be as close to a(n)

as possible. However, if r is too small, it can lead to substantial growth in the direction of the
larger eigenvalues. Through our calculations, we obtain r = 0.146(a(1) + a(n)) ≈ 0.1465a(1) and
r = 0.8535(a(1) + a(n)) ≈ 0.8535a(1). the corresponding descending fuction is

h(x) = (1− x

0.8535a(1)
)(1− x

0.1465a(1)
) = 7.998 ∗ (0.8535− y)(0.1465− y) (23)

where y = x
a(1) ,by combining g(x) and h(x), we obtain the final descending function e(x) =

g(x)h(x) After the above treatment, e(x) have effectively removed the spikes of the eigenvectors
outside the direction of the small eigenvalues, especially in the upper half-interval. This would make
the current value of r become smaller, with the larger components being very small. Therefore, even
if we use the current smaller r value twice in succession, there will not be a significant increase.
Generally speaking, the primary effects are twofold: on the one hand, it eliminates the noise in the
direction of the large eigenvalues; on the other hand, it shifts the value of r towards the direction of
the small eigenvalues.

5 EXPERIMENT

Considering an example as follow

f(x) =
20000∑
i=1

a(i)x(i)2 (24)

, where the sequence {a(i)} is arithmetic progression and 0.1 ≤ a(i) ≤ 10000, {x(i)
0 } is a random

number between 0.2569 and 9999.6123.

We compared this algorithm with the RSD method, BB method, CBB method, SD method . For the
EM method, we set the jump points rj to be 10, respectively.After the iterations, the minimum gradi-
ent norm values for the five methods are 6583.5315,0.0005,2.1152e-09,8.3415e-40 and 2.7352e-75,
respectively.The results showed that the EM method is effcient for large scale problems. In second

7
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(a) upper half-interval decrease rate (b) lower half-interval decrease rate

Figure 7: g(x) and h(x) decrease functions

(a) random x value from 0.1 to 10000

(b) fixed x value 10000

Figure 8: Comparison of 5 methods
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experiment we We choose the initial value of {x(i)
0 } to be the same, which is 10000.The results are

similar to the previous case, As shown in Figure(8), in the initial period, due to the large magnitude
of each component, the EM method will experience a significant increase in the large characteristic
components after a jump, which in turn leads to a significant increase in the overall gradient norm
value.As the number of iterations continues to increase, both the BB and RSD methods will exhibit
a relatively slow overall decline. The SD method will hardly change. After accumulating over a
period of time, the CBB method shows a significant drop, which gives it an advantage compared
to the aforementioned methods.while the EM method will show a significant downward trend after
each jump.we report with circles the iteratios in which the current eigenvalue satisfies the condition.

6 CONCLUSION

When the current value of r is at an extremely small eigenvalue, we achieve a significant decrease
in the upper half of the eigenvalue spectrum and the maximum possible decrease in the lower half
by selecting multiple different r values within the intervals of large and small eigenvalues. In the
future, we aim to improve the convergence speed by selecting more efficient descent functions.
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