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Abstract
Retrieval-augmented generation (RAG) is a well-suited technique
for retrieving privacy-sensitive Electronic Health Records (EHR). It
can serve as a key module of the healthcare copilot, helping reduce
misdiagnosis for healthcare practitioners and patients. However, the
diagnostic accuracy and specificity of existing heuristic-based RAG
models used in the medical domain are inadequate, particularly for
diseases with similar manifestations. This paper proposes MedRAG,
a RAG model enhanced by knowledge graph (KG)-elicited reason-
ing for the medical domain that retrieves diagnosis and treatment
recommendations based onmanifestations. MedRAG systematically
constructs a comprehensive four-tier hierarchical diagnostic KG en-
compassing critical diagnostic differences of various diseases. These
differences are dynamically integrated with similar EHRs retrieved
from an EHR database, and reasoned within a large language model.
This process enables more accurate and specific decision support,
while also proactively providing follow-up questions to enhance
personalized medical decision-making. MedRAG is evaluated on
both a public dataset DDXPlus and a private chronic pain diagnos-
tic dataset (CPDD) collected from our cooperated hospital, and its
performance is compared against various existing RAG methods.
Experimental results show that, leveraging the information inte-
gration and relational abilities of the KG, our MedRAG provides
more specific diagnostic insights and outperforms state-of-the-art
models in reducing misdiagnosis rates. Our code will be available
at https://github.com/username00-c/MedRAG.git

CCS Concepts
• Applied computing→ Health care information systems; •
Information systems→ Language models.
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1 Introduction
Diagnostic errors cause significant harm to healthcare systems
worldwide. In the United States, approximately 795,000 individuals
each year suffer permanent disability or death due to misdiagnosis
of dangerous diseases. These errors are predominantly attributed
to cognitive biases and judgmental mistakes [9, 37]. “Healthcare
Copilot” is a medical AI assistant designed to provide diagnostic
decision support, mitigating biases and increasing efficiency for
healthcare practitioners, while also empowering patients and im-
proving overall decision-making [1, 2, 28, 45, 46]. We conducted
interviews to gather requirements and suggestions from users of
the healthcare copilot. The results showed that one of the most im-
portant and challenging tasks for a healthcare copilot is to provide
an accurate diagnosis based on patient manifestations 1, followed by
offering appropriate treatment plans and medication recommenda-
tions based on the diagnosis. In addition, when patient information
is insufficient or the diagnosis is ambiguous, the healthcare copilot
should proactively offer precise follow-up questions to enhance the
decision-making process [3, 25, 38, 46, 66].

Retrieval-augmented generation (RAG) offers an advanced ap-
proach by utilizing domain-specific, private datasets to address
user queries without the need for additional model training [12,
17, 29]. This approach is well-suited for retrieving information
from privacy-sensitive Electronic Health Records (EHRs), and helps
healthcare professionals to reduce the risk of misdiagnosis as a
healthcare copilot [22, 59]. The existing medical RAG and LLMs
fine-tuned on medical datasets often rely on heuristic-based ap-
proaches, leading to incorrect or vague outputs, particularly when
diseases share similar manifestations, making differentiation diffi-
cult. [18, 24, 31, 58, 63, 67] as shown in Figure 1(a). To address this,
we introduceMedRAG, a framework that combines RAGwith a com-
prehensive diagnostic knowledge graph, enabling more accurate
reasoning and tailored treatment recommendations by grounding
predictions in structured, inferable medical data [21, 26, 34, 54].
This approach significantly enhances the reasoning ability of RAG,
enabling it not only to identify subtle diagnostic differences but also
to proactively infer relevant follow-up questions, further clarifying
ambiguous patient information, as shown in Figure 1(b).

Specifically, a diagnostic knowledge graph (KG) with a four-
tier hierarchical structure is constructed systematically through
advanced techniques, including disease clustering, hierarchical ag-
gregation and large language model augmentation. The diagnostic
differences KG searching module then identifies all critical diagnos-
tic differences KG related to the input patient by performing multi-
level manifestations matching within the diagnostic KG. Finally, a
KG-augmented RAG module synthesizes the retrieved EHRs and

1“Manifestations” typically include all observable signs and symptoms of a patient’s
condition, such as physical indicators (e.g., rash, fever), patient-reported symptoms
(e.g., pain, dizziness), and measurable clinical data (e.g., blood pressure, lab results).
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Questions

Query: Please provide diagnosis sugges�ons for the following pa�ent:
• Age: 74  • Func�onal status: able to walk short distances unaided, need help for longer distances.  • Descrip�on: Pain in the right 
lower back radia�ng down the right lower limb, with numbness in both feet [...].   

Answer 1: According to the symptoms you 
described, the diagnosis is scia�ca: [...]. 

Answer 2: The symptoms you describe are o�en 
caused by: low back pain: [...]; back pain: [...]; 
lumbar-related pain: [...]. 

Answer 3: Depending on the symptoms you 
describe, there are two poten�al diagnoses :
scia�ca: [...]; lumbar canal stenosis: [...].

MedRAG

Inaccuracy

Vagueness
Answer: According to the symptoms, there are two poten�al 
diagnoses: scia�ca: [...]; lumbar canal stenosis: [...].
You can further ask: whether standing increases pain 
compared to cycling.

Diagnostic KG Diagnostic Differences KG

Specificity

Elicited ReasoningSearching

  Accuracy

Heuristics

(a) (b)

Figure 1: (a) The existing RAG and LLMs rely on heuristic-based approaches, leading to incorrect or vague outputs, particularly
when diseases share similar manifestations (high lighted by green colour). (b) MedRAG is a RAG framework with KG-elicited
reasoning ability that can make accurate diagnostic decisions and generate highly specific diagnoses, along with proactively
providing follow-up questions when necessary.

the critical diagnostic differences KG to elicit the reasoning within a
large language model. This integration enhances the system’s abil-
ity to make precise and highly specific diagnostic decisions, while
also providing personalized treatment recommendations, medica-
tion guidance, and, when necessary, proactive follow-up questions.

We evaluate the general applicability of MedRAG by a public
dataset DDXPlus [14] and real-world clinical applicability by a pri-
vate chronic pain diagnostic dataset (CPDD). Performance is quan-
titatively compared against several popular state-of-the-art (SOTA)
RAG models, including FL-RAG [44] and DRAGIN [50]. We further
validate the generalization of MedRAG on widely-used open-source
LLMs, including Mixtral-8x7B[20] and Llama-3.1-Instruct[11], as
well as on some closed-source LLMs such as GPT-3.5-turbo[39],
GPT-4o[40]. Experimental results demonstrate that our model out-
performs existing RAG approaches in terms of diagnostic accuracy
and specificity. Additionally, MedRAG demonstrates robust gen-
eralization across various LLMs, and proves highly effective in
generating reasoning-based follow-up diagnostic questions. These
capabilities are particularly valuable for distinguishing between dis-
eases with similar manifestations. Based on extensive experiments,
our key contributions can be summarized as follows:

• We deliver two diagnostic knowledge graphs: one focused
on chronic pain and the other based on DDXPlus [14], a
large-scale synthesized dataset. These knowledge graphs
contain a rich hierarchical structure of diseases, along with
their key diagnostic differences. This comprehensive or-
ganization allows for enhanced precision in disease differ-
entiation and diagnosis, enabling better decision-making
support across various medical systems.

• Weproposed a novel RAG approach enhanced byKG-elicited
reasoning, which significantly improves RAG’s ability to
make accurate and highly specific diagnostic decisions. In
addition to supporting personalized treatment recommen-
dations and medication guidance, it proactively generates

follow-up questions when necessary. These enhancements
greatly optimize the decision-making process in complex
medical scenarios.

• Comprehensive experiments conducted on two datasets
demonstrate the superiority of our model over existing
RAG and LLM approaches. Additionally, the results high-
light its applicability across various backbone LLMs and
its effectiveness in proactively generating reasoning-based
diagnostic questions.

2 Related Works
2.1 LLMs and RAG in Healthcare
Large Language Models (LLMs) have been increasingly applied to
healthcare tasks such as EHR analysis, clinical note generation,
virtual medical assistant, and clinical decision support [18, 22, 56,
63, 69]. While LLMs fine-tuned on medical datasets can handle
large amounts of unstructured clinical information. However, most
of these models are heuristic-based, with limitations such as gen-
erating incorrect or vague information and struggling to handle
complex patient cases [24, 63]. To address this, integrating external
information sources becomes essential to improve their contextual
accuracy. We adopt a Retrieval-Augmented Generation (RAG) ap-
proach [29]. RAG enhances LLMs by incorporating retrieved text
passages from external sources such as electronic health records,
medical papers, textbooks, and databases into their input, resulting
in significant improvements in knowledge-intensive tasks [4]. In
the field of healthcare, integrating retrieved information grounds
the predictions in current, verifiable medical data, resulting in more
accurate, specificity and context-aware outputs such as diagnostic
assessments and treatment recommendations. RAG typically em-
ploys a retrieve-and-read approach to retrieve information based
on the initial user query and an answer is generated using that
content [13, 16, 27, 48, 49, 70]. However, this simplicity restricts
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their ability to adapt to complex and evolving medical cases. En-
hanced RAGmodels aim to improve retrieval and generation quality
by integrating more sophisticated components such as retrievers,
re-rankers, filters, and readers [7, 23, 29, 35, 47, 64]. Despite these ad-
vancements, delivering accurate clinical decision support remains
challenging. The models often struggle to provide precise diagnoses,
particularly when diseases share similar manifestations, making
differentiation difficult. Our proposed MedRAG addresses these
challenges by systematically constructing a four-tier hierarchical
diagnostic knowledge graph to elicit reasoning for the generation
module of RAG. This approach enables the model to make accurate
diagnostic decisions and generate highly specific diagnoses along
with personalized treatment recommendations.

2.2 Knowledge Graph-enhanced LLMs and RAG
Recent studies have focused on creating strategies that integrate
knowledge graphs to enhance LLMs and RAG, enabling them to gen-
erate accurate and reliable medical responses. Compared to knowl-
edge contained in document repositories [19], knowledge graphs
offer structured and inferable information, making them more suit-
able for augmenting LLMs and RAG [21, 26, 30, 34, 54, 65, 72].
Several works [21, 33, 53, 60, 68, 73] propose training sequence-to-
sequence models from scratch, focusing on dialogue generation
by conditioning the output on entities extracted from knowledge
graphs. However, existing medical knowledge graphs [5, 15, 54, 71]
often fall short because they lack the detailed and structured in-
formation necessary for accurate diagnostic assistance, especially
when distinguishing between diseases with similar manifestations.
To overcome this limitation, we introduce MedRAG, a framework
that combines RAG with a comprehensive diagnostic knowledge
graph to enhance the reasoning ability of RAG in identifying sub-
tle differences in diagnoses. MedRAG allows physicians to input
patients’ medical records or manifestations. Our knowledge graph
is constructed based on patterns extracted from Electronic Health
Record (EHR) databases and augmented by LLMs, making it highly
scalable and adaptable to various medical specialties. It supports
customization with local databases, ensuring relevance to specific
clinical settings. We employ LLMs to enrich the knowledge graph
by providing detailed descriptions of the manifestations of each dis-
ease at the leaf nodes, including symptoms, affected areas, activity
limitations, and other pertinent features.

3 Preliminaries
Definition 3.1 (Diagnostic Knowledge Graph). Given an EHR

database 𝐷 and an LLMM𝑎 , our target is to construct a four-tier
hierarchical diagnostic knowledge graph G. A multi-hop path, from
the top level to the bottom level of G is represented as (𝐸𝐿1

𝑟𝑠←−−
𝐸𝐿2

𝑟𝑠←−− 𝐸𝐿3
𝑟𝑚−−→ 𝐸𝐿4 ). 𝐸𝐿3 is the set of all diseases (i.e. potential

diagnoses) names extracted from 𝐷 , 𝐸𝐿2 represents the set of sub-
categories of 𝐸𝐿3, and 𝐸𝐿1 is the set of broader categories of 𝐸𝐿2.
Each 𝑒𝐿𝑖 𝑗 is a disease name or a category name and 𝑒𝐿𝑖 𝑗 ∈ 𝐸𝐿𝑖 .
𝐸𝐿1 and 𝐸𝐿2 are generated by hierarchical aggregation in Section
4.1.1, they indicate the diseases with similar manifestations. 𝑟𝑠 is an
“is_a” relation, indicating a hierarchical or subordinate relation-
ship. 𝑟𝑚 is a “has_manifestation_of” relation between diseases

and their manifestations. 𝐸𝐿4 contains two subtypes: 𝐸𝐿4𝑎 , repre-
senting disease-specific features augmented by the LLMM𝑎, and
𝐸𝐿4𝑑 , representing features decomposed from the manifestations
extracted from the EHR database 𝐷 .

Definition 3.2 (Diagnostic Differences KG Searching). Given
a G and the input patient’s manifestations 𝑞, let 𝑒𝐿2𝑠 ∈ 𝐸𝐿2 denote
a certain subcategory identified through the method described
in Section 4.2.3 determined from 𝑞. The target is to extract the
diagnostic differences KG 𝐾 , related to 𝑒𝐿2𝑠 , from G.

Definition 3.3 (RAG). We define a typical retrieval-augmented
generation approach for generating diagnostic reports in two phases:
algorithm R for the retrieval phase and LLMM𝑔 for the generative
phase. A prompt 𝑝𝑛𝑎𝑖𝑣𝑒 is used to guideM𝑔 to generate the final
report. Given a 𝑞, 𝐷 and embedding model E, R retrieves top-𝑘
relevant documents 𝑑𝑟 , and thenM𝑔 generates answer 𝐴 with 𝑞,
𝑑𝑟 and prompt 𝑝𝑛𝑎𝑖𝑣𝑒 as shown in Equation 1 and 2:

𝑑𝑟 = R(𝑞, 𝐷, E), (1)

𝐴 =M𝑔 (𝑞, 𝑑𝑟 , 𝑝𝑛𝑎𝑖𝑣𝑒 ). (2)

4 Methods
In this section, we elaborate on the details of our proposedMedRAG,
and the overall framework is illustrated in Figure 2. MedRAG in-
cludes five modules:

• Input: The input to MedRAG is the description of patient
manifestations, which can be either structured EHR or un-
structured text descriptions.

• Output: The output of MedRAG includes the diagnoses,
treatment recommendations, medication guidance and follow-
up questions when necessary.

• Diagnostic Knowledge Graph Construction: This mod-
ule constructs a four-tier hierarchical diagnostic knowledge
graph systematically. First, potential diagnoses and corre-
sponding manifestations are extracted from an EHR data-
base to form a four-tier disease KG through clustering and
hierarchical aggregation. Then, an LLM is used to augment
the graph with critical diagnostic differences, transforming
it into a diagnostic KG.

• Diagnostic Differences KG Searching: This module iden-
tifies key diagnostic differences by decomposing patient
manifestations into clinical features, such as symptoms and
locations, through medical chunking. Then, the extracted
features are embedded and matched with relevant diag-
nostic differences via multi-level matching and upward
traversal within the diagnostic KG.

• KG-elicited Reasoning RAG: This module comprises a
document retriever and a KG-elicited reasoning LLM engine.
The retriever selects top-k relevant EHRs based on patient
embeddings and integrates them with critical diagnostic
differences KG to trigger reasoning in the LLM, generating
final diagnoses and providing medical recommendations.

Next, we will provide a detailed explanation of each phase in the
following subsections.

3
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Figure 2: The overall framework of MedRAG. MedRAG first extracts patient (red node) manifestations from structured or
unstructured input, and decomposes different clinical features. These features are embedded and matched with a diagnostic
KG to identify critical diagnostic differences KG. MedRAG’s KG-elicited reasoning RAG module retrieves relevant EHRs and
integrates themwith these diagnostic differences KG to trigger reasoning in an LLM. This reasoning generates precise diagnoses,
treatment recommendations, and follow-up questions.

4.1 Diagnostic Knowledge Graph Construction
To enhance the reasoning capabilities and fill the knowledge gaps
of the RAG, we propose constructing a diagnostic knowledge graph
G tailored to the medical domain of a specific EHR database. The
construction of the diagnostic knowledge graph draws inspiration
from the hierarchical structure of the World Health Organization’s
International Classification of Diseases, 11th Edition (ICD-11) [43] 2.

4.1.1 Disease Knowledge Graph Construction. The forms and rep-
resentations of the diseases in an EHR database are diverse, we
first unify the set of original disease descriptions 𝐸𝐿3𝑟𝑎𝑤 by disease
clustering to 𝐸𝐿3. The most common disease name within each
cluster is regarded as the final disease name and is assigns to all
other diseases in the cluster, as shown in Equation 3:

𝐸𝐿3 = C(𝐸𝐿3𝑟𝑎𝑤 , E), (3)

where C represents the clustering model applied to 𝐸𝐿3, E is an
embedding model.

Then we use the unified 𝐸𝐿3 to construct a four-tier hierarchical
disease knowledge graph through hierarchical aggregation. This

2The specific classification principles of our diagnostic KG and ICD-11 are different.
Our approach classifies and organizes diseases based on the similarity of their manifes-
tations, rather than ICD-11’s traditional classification based on diagnostic categories.
As a result, while the hierarchical concept is similar, the ICD-11 structure cannot be
directly applied to our model.

graph integrates the relationships between diseases and their po-
tential categories, with each disease aggregated into a subcategory
and category. We define the disease knowledge graph as G𝐷 where
G𝐷 ⊂ G aggregated by Θ and LLMMℎ , as shown in Equation 4:

G𝐷 = Θ(𝐸𝐿𝑖 ,Mℎ, E), 𝑖 = 3, 2. (4)

In the first phase, we apply LLM-based topic aggregation using
Mℎ , which extracts the most relevant topics from 𝐸𝐿3 to aggregate
subcategories. These subcategory topics are then further aggregated
into higher-level categories, forming the hierarchical structure from
subcategories to broader categories. Next, hierarchical clustering
is applied to assign diseases in 𝐸𝐿3 into aggregated subcategory
topics and then subtopics to topics.

This approach leverages LLM’s powerful semantic understand-
ing and topic extraction capability, allowing for a more nuanced
categorization of diseases in topic aggregation. By applying hier-
archical clustering to the LLM-based topics, diseases in 𝐸𝐿3 are
aggregated into a hierarchical structure. Hierarchical aggregation
introduces multiple layers of granularity to 𝐸𝐿3, ensuring that dis-
eases with different manifestations are properly categorized.

To effectively utilize historical diagnoses from 𝐷 as accurate rep-
resentations of disease manifestations, we decompose their mani-
festations of the diseases in 𝐸𝐿3, parsing them into discrete features
𝐸𝐿4𝑑 . Every single feature like symptom, location, or activity lim-
itation from each 𝑒𝐿3𝑖 is created as a node 𝑒𝐿4𝑑𝑖 ∈ 𝐸𝐿4. This final

4
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decomposition results in the comprehensive disease knowledge
graph G𝐷 , capturing both disease category information derived
from hierarchical aggregation and their associated features.

4.1.2 Knowledge Graph Manifestation Augmentation. The knowl-
edge in G𝐷 only contains information from 𝐷 , which is insuffi-
cient to accurately diagnose all diseases, particularly when dis-
tinguishing between diseases with similar clinical manifestations.
Therefore, the integration of external knowledge is essential. To
complement the diagnostic knowledge graph with essential knowl-
edge that is not present in 𝐷 , we augment external knowledge
𝐸𝐿4 to G𝐷 that aids in distinguishing diseases with similar man-
ifestations. We traverse all disease 𝑒𝐿3𝑖 and employ a prompt 𝑝𝑎
specially tailored for searching and generating the nuances of the
diseases on an LLM denoted byM𝑎 . As shown in Equation 5, each
generated diagnostic key difference node 𝑒𝐿4𝑎𝑖 𝑗 is then connected
to its corresponding 𝑒𝐿3𝑖 with relationship 𝑟𝑚 . Thus we obtain
a chain 𝐸𝐿3

𝑟𝑚−−→ 𝐸𝐿4𝑎 . For example, we generate a manifestation
and relation to disease node 𝑙𝑢𝑚𝑏𝑎𝑟𝑠𝑝𝑜𝑛𝑑𝑦𝑙𝑜𝑠𝑖𝑠 and form a chain: <
𝑙𝑢𝑚𝑏𝑎𝑟_𝑠𝑝𝑜𝑛𝑑𝑦𝑙𝑜𝑠𝑖𝑠, ℎ𝑎𝑠_𝑠𝑦𝑚𝑝𝑡𝑜𝑚, 𝑠𝑡𝑖 𝑓 𝑓 𝑛𝑒𝑠𝑠_𝑜𝑟_𝑝𝑎𝑖𝑛_𝑖𝑛_𝑡ℎ𝑒_𝑙−
𝑜𝑤𝑒𝑟_𝑏𝑎𝑐𝑘 >.

{𝑒𝐿3𝑖 }
𝑛
𝑖=1

M𝑎 (𝑝𝑎,𝑒𝐿3𝑖 )−−−−−−−−−−−→ {𝑒𝐿4𝑎𝑖 𝑗 }
𝑛,𝑚𝑖

𝑖=1, 𝑗=1, (5)

𝐸𝐿4 = 𝐸𝐿4𝑑 ∪ 𝐸𝐿4𝑎, (6)

G = G𝐷 ∪𝐸𝐿3 {𝐸𝐿3 ∪ 𝐸𝐿4}
𝑛
𝑖=1, (7)

whereM𝑎 and 𝑝𝑎 represent the large language model for disease
manifestation augmentation and its prompt respectively.

The finalized four-tier hierarchical diagnostic knowledge graph
G is formed by integrating the disease knowledge graph G𝐷 with
𝐸𝐿4 combined with 𝐸𝐿4𝑎 and 𝐸𝐿4𝑑 , as shown in Equation 6 and 7.

4.2 Diagnostic Differences KG Searching
4.2.1 Decomposition of Manifestations. Given 𝑞 as a query, which
is a description of the patient’s manifestations, we perform sentence
trunking on 𝑞 to decompose the manifestation into more detailed
features, denoted as 𝑓1, 𝑓2, . . . , 𝑓𝑛 ∈ 𝑞. We define a mapping function
to describe the process, shown in Equation 8:

𝑞
𝜙
−→ {𝑓1, 𝑓2, . . . , 𝑓𝑛}. (8)

4.2.2 Clinical Features Matching. Given a 𝑞, we compute the se-
mantic similarity score 𝑠𝑖𝑚 between 𝑓𝑖 and 𝑒𝐿4𝑑𝑖 , shown in Equa-
tion 9:

𝑠𝑖𝑚𝑖 𝑗 = S(𝑓𝑖 , 𝑒𝐿4𝑑 𝑗
, E), (9)

where S is similarity model and E is embedding model applied to
𝑓𝑖 and 𝑒𝐿4𝑑 𝑗

before similarity calculation.
For each patient feature 𝑓𝑖 , we retrieve the top-𝑚 most similar

𝑒𝐿4𝑑 𝑗
, where 𝑚 denotes the number of closest matches selected.

Totally, the system retrieves 𝑛 ×𝑚 matching nodes in the G. To
address the scenario where a 𝑓𝑖 has no closely matching counterpart
in 𝐸𝐿4𝑑 , we introduce an indicator function 𝛿 (𝑠𝑖𝑚𝑖 𝑗 , 𝑡𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔) to
filter irrelevant matches:

𝛿 (𝑠𝑖𝑚𝑖 𝑗 , 𝑡𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔) =
{
𝑠𝑖𝑚𝑖 𝑗 if 𝑠𝑖𝑚𝑖 𝑗 > 𝑡𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔

0 otherwise,
(10)

𝑇 =

𝑛⋃
𝑖=1

{
𝑒𝐿4𝑑 𝑗

| 𝑗 ∈ arg 𝑚max
𝑗′∈{1,..., |𝐸𝐿4𝑑 | }

𝛿 (𝑠𝑖𝑚𝑖 𝑗 , 𝑡𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔)
}

(11)

where 𝑇 represents the set of nodes 𝑒𝐿4𝑑 𝑗
that satisfy the condition

𝑠𝑖𝑚𝑖 𝑗 > 𝑡𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 . The indicator function 𝛿 ensures that only 𝑒𝐿4𝑑 𝑗

with a similarity score above the threshold are selected into 𝑇 .
Through clinical features matching, we successfully matched 𝑞 to
the most relevant clinical feature nodes in G.

4.2.3 Upward Traversal. To precisely match the patient’s most rele-
vant 𝑒𝐿2𝑠 , we employ upward traversal which determines the closest
disease subcategory by aggregating votes based on the shortest path
distances between 𝑡𝑖 ∈ 𝑇 and 𝑒𝐿2𝑗 in the graph.

For 𝑡𝑖 , we calculate the shortest path to each disease subcategory
𝑒𝐿2𝑗 by upward traversing through the graph. Denote the shortest
path distance between 𝑡𝑖 to 𝑒𝐿2𝑗 as 𝑃 (𝑡𝑖 , 𝑒𝐿2𝑗 ). If 𝑒𝐿2𝑖𝑘 represents
the closest disease subcategory node for the current 𝑡𝑖 , the vote
count for 𝑒𝐿2𝑖𝑘 is incremented by one. We then accumulate the
votes for each 𝑒𝐿2𝑖𝑘 during the reversal and identify the node with
the highest vote count as the 𝑒𝐿2𝑠 . This voting process is formalized
through the indicator function 𝜒 , defined as follows:

𝜒 (𝑡𝑖 , 𝑒𝐿2𝑖𝑘 ) =
{
1 if 𝑒𝐿2𝑖𝑘 = argmin𝑒𝐿2𝑗 𝑃 (𝑡𝑖 , 𝑒𝐿2𝑗 ),
0 otherwise

(12)

𝑒𝐿2𝑠 = argmax
𝑒𝐿2𝑖𝑘

∑︁
𝑡𝑖 ∈𝑇

𝜒 (𝑡𝑖 , 𝑒𝐿2𝑖𝑘 ), (13)

Taking this 𝑒𝐿2𝑠 as the parent node, we traverse downward to-
wards 𝐸𝐿4, retrieving all 𝑒𝐿3𝑖 that are adjacent to 𝑒𝐿2𝑠 and their
adjacent 𝑒𝐿4𝑎𝑖 . Given 𝑒𝐿2𝑠 , let 𝐸𝐿3𝑠 = {𝑒𝐿3𝑖 | 𝑒𝐿3𝑖 ∈ Adj(𝑒𝐿2𝑠 )}
denote the set of disease nodes that belong to 𝑒𝐿2𝑠 . Similarly, define
𝐸𝐿4𝑎𝑠 = {𝑒𝐿4𝑎 𝑗

| 𝑒𝐿4𝑎 𝑗
∈ Adj(𝑒𝐿3𝑖 ), 𝑒𝐿3𝑖 ∈ 𝐸𝐿3𝑠 } to denote the set

of feature nodes linked to the disease nodes in 𝐸𝐿3𝑠 .
We concatenate all triples (𝑒𝐿3𝑠 , 𝑟𝑚, 𝑒𝐿4𝑎𝑖 ), where 𝑒𝐿3𝑠 ∈ Adj(𝑒𝐿2𝑠 )

and 𝑒𝐿4𝑎𝑖 ∈ Adj(𝑒𝐿3𝑠 ), to form the set of diagnostic differences KG:

𝐾 (𝑒𝐿2𝑠 ) =
⋃

𝑒𝐿3𝑠 ∈Adj(𝑒𝐿2𝑠 )
{(𝑒𝐿3𝑠 , 𝑟𝑚, 𝑒𝐿4𝑎𝑠 )}, (14)

where 𝐾 represents the diagnostic differences KG used for the
reasoning in the LLM next.

4.2.4 Proactive Diagnostic Questioning Mechanism. Inaccurate di-
agnoses often stem from insufficient or incomplete patient descrip-
tions. To address this issue, we propose a Proactive Diagnostic
Questioning Mechanism. When the initial input 𝑞 lacks some cru-
cial information required for doctors or LLMs to make more precise
diagnostic decisions, this mechanism acts as a copilot to cast tar-
geted follow-up questions.

In the diagnostic knowledge graph G, a feature 𝑒𝐿4𝑑𝑖 may be
connected to multiple disease nodes 𝑒𝐿3, with each 𝑒𝐿4𝑑𝑖 varying in
its discriminability. For instance, certain features aremore prevalent,
such as “pain located in the lumbar region”, while others represent
more distinctive characteristics, like “pain worsens while walking”.
Here we define the discriminability score of 𝑒𝐿4𝑑𝑖 as the reciprocal
of the degree centrality in G:

𝜎 (𝑒𝐿4𝑑𝑖 ) =
𝑛 − 1

𝑑𝑒𝑔(𝑒𝐿4𝑑𝑖 )
, (15)

where 𝑛 represents the total number of 𝑒𝐿4𝑑𝑖G.
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We calculate the discriminability score 𝜎 (𝑒𝐿4𝑑 𝑗
) for each feature

node 𝑒𝐿4𝑑 𝑗
∈ 𝐸𝐿4𝑑𝑠 and select those with the highest discriminabil-

ity scores as follows:

{𝑒𝐿4𝑑𝑠1 , 𝑒𝐿4𝑑𝑠2 , . . . , 𝑒𝐿4𝑑𝑠𝑘 } = arg max
{𝑒𝐿4𝑑𝑗 |𝑒𝐿4𝑑𝑗 ∈𝐸𝐿4𝑑𝑠 }

𝜎 (𝑒𝐿4𝑑 𝑗
), (16)

where {𝑒𝐿4𝑑𝑠1 , 𝑒𝐿4𝑑𝑠2 , . . . , 𝑒𝐿4𝑑𝑠𝑘 } represents the selected features
with the highest discriminability scores, which are used to proac-
tively guide follow-up questions for clarifying the diagnosis.

4.3 KG-elicited Reasoning RAG
KG-elicited Reasoning RAG is the core component of MedRAG, we
use an LLM to generate diagnoses, personalized treatment plans,
and medication suggestions. Additionally, the system proactively
suggests follow-up questions for doctors to clarify missing or am-
biguous patient information. As shown in Equation 17, MedRAG
utilizes diagnostic differences KG augmented by LLM and a tailored
prompt 𝑝𝑠 to elicit the reasoning capabilities of LLM.

𝐴 =M𝑔 (𝑞, 𝑑𝑟 , 𝐾, 𝑝𝑠 ) (17)

Unlike most RAG systems that focus on answering short factual
questions, our system is tailored for complex tasks in clinical scenar-
ios. The prompts are designed explicitly to optimize the reasoning
capabilities of the LLM, particularly in distinguishing between dis-
eases with similar manifestations. The system conducts thorough
reasoning by using both the retrieved documents and the diagnostic
differences KG extracted from 𝐺 .

We use the EHR database as a document repository to retrieve
the most relevant documents 𝑑𝑟 corresponding to the patient’s
manifestations 𝑞. We then perform a similarity search over the
database to identify the most relevant k records. For this, we employ
Facebook AI Similarity Search (FAISS) [10], a library optimized for
efficient approximate nearest neighbor searches. FAISS allows rapid
retrieval of similar records in large-scale EHR datasets, enabling
adjustable trade-offs between speed and search accuracy, depending
on the size and complexity of the dataset:

After obtaining all inputs, we designed a tailored prompt 𝑝𝑠 for
guiding the LLM to reason through 𝐾 , generating answers to assist
doctors in distinguishing between similar diseases and proactively
generating follow-up questions.

5 Experiments
5.1 Datasets
We evaluate our proposed MedRAG framework using two distinct
datasets: one public and one private. The public dataset demon-
strates the model’s general applicability, while the private dataset,
focused on chronic pain patients, enables a more thorough eval-
uation of MedRAG’s diagnostic capabilities in real-world clinical
settings.

The public dataset, DDXPlus [14], is a large-scale, synthesized
EHR dataset widely recognized for offering complex, diverse medi-
cal diagnosis cases. It includes comprehensive patient data such as
socio-demographic information, underlying diseases, symptoms,
and antecedents. Many studies have employed DDXPlus to bench-
mark models in medical reasoning and diagnosis [6, 32, 51, 61].
DDXPlus contains 49 different diagnoses with over 1.3 million

patients, each of whom has approximately 10 symptoms and 3 an-
tecedents on average. We ultimately utilized a maximum balanced
sub-dataset comprising 13,230 patients’ EHRs.

The private dataset is the Chronic PainDiagnostic Dataset (CPDD),
a specialized EHR dataset focused on chronic pain patients. This
dataset is collected from a collaborating hospital, it comprises 551
patients with 33 distinct diagnoses. CPDD offers manifestations-
specific chronic pain patient data, making it an invaluable resource
for testing MedRAG’s diagnostic capabilities in clinical settings. For
more details on the partitioning, preprocessing, and selection of
these two datasets, please refer to the Appendix.

5.2 Baselines
In order to explore the performance of the MedRAG, we compare
the MedRAG results against six other models:

• Naive RAG + COT[57] We apply the chain-of-thought
(COT) prompting with a naive RAG model, which only
retrieves documents without additional enhancements.

• FL-RAG[44] FL-RAG is a multi-round retrieval method
that triggers the retrieval module every n tokens.

• FS-RAG[52] FS-RAG is an interleaving retrieval method
that improves multi-round question answering by alternat-
ing between COT reasoning and document retrieval.

• FLARE[24] FLARE is an active RAG method that improves
knowledge-intensive tasks by retrieving relevant documents
when the model encounters uncertain tokens.
• DRAGIN[50] DRAGIN is a dynamic retrieval method that

enhances language models by retrieving relevant docu-
ments based on real-time information needs during gener-
ation, triggered by token uncertainty.

• SR-RAG[55] In SR-RAG, relevant passages are retrieved
from an external corpus based on the initial query and then
incorporated into the input of the language model

5.3 Experimental Setup
Throughout the experiment, we use text-embedding-3-large [42]
from OpenAI as the embedding model E, use IndexFlatIP method
after standardization in FAISS index search which is equivalent
to cosine similarity in retriever R. In diagnostic differences KG
searching, we use K-means algorithm [36] for clustering model C
and GPT-4o as LLMM𝑎 for external diagnostic difference augmen-
tation.

For the quantitative performance comparison, we use Llama-3.1-
Instruct 8B [11] as the generative modelM𝑔 , as some RAG algo-
rithms only support open-source LLMs. For the generalizability
evaluation, we utilize both open-source LLMs, such as Llama-3.1-
Instruct 70B [11], Mixtral-8x7B [20], and Qwen2 [62], as well as
closed-source models, including GPT-3.5-turbo [39], GPT-4o-mini
[41], and GPT-4o [40], as the backbone LLMs. For the hyperparame-
ters of MedRAG, we use 𝑘 = 3 in Retriever and𝑚 = 5 in diagnostic
differences KG searching, set threshold 𝑡 and 𝑡𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 to 0.5.

We mask certain existing 𝑒𝐿4𝑠 of a patient to simulate scenarios
where they are missing. MedRAG then makes diagnoses and gen-
erates follow-up questions based on the remaining information. If
MedRAG identifies the removed manifestations during questioning,
the masked manifestations are added back to the patient’s record
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as the answer of the patient, and diagnostic reasoning is repeated
to evaluate the improvement in diagnostic accuracy. More detail is
shown in the Appendix.

6 Experimental Results
In this section, we present the results of the experiments to answer
the following research questions:

• RQ1 (Section 6.1): Does MedRAG outperform the SOTA
RAG methods using the same datasets?

• RQ2 (Section 6.2): Does MedRAG demonstrate compatibil-
ity, generalizability and adaptability across different back-
bone LLMs?

• RQ3 (Section 6.3): Does MedRAG’s proactive diagnos-
tic questioning mechanism provide users with impactful,
relevant follow-up questions to enhance diagnostic perfor-
mance?

• RQ4 (Section 6.4): Is the MedRAG system we designed
effective, and what is the impact of each module on its
overall performance?

6.1 Quantitative Comparison (RQ1)
Our experiments evaluate MedRAG against six different SOTA
RAG models on 2 two datasets. We report the results using the
following metrics: 1) Accuracy, defined as the number of correct
diagnoses out of the total diagnoses; and 2) Specificity, which uses
𝐿1, 𝐿2, and 𝐿3 to represent different diagnostic granularity levels. As
outlined in Section 3 (Definition 3.1), 𝐿𝑖 refers to the MedRAG select
potential diagnoses from 𝐸𝐿𝑖 . This metric evaluates the model’s
specificity and its ability to differentiate between similar diseases
across varying levels of diagnostic granularity.

The result is shown in Table 1, Our proposed MedRAG achieved
the best or second-best (with only one exception) performance
across multiple metrics in all datasets. Accuracy on the 𝐿3metric is
the best indicator of MedRAG’s performance, as higher specificity
increases diagnostic difficulty. MedRAG outperformed the second-
best scores on the CPDD and DDXPlus datasets by 11.32% and
1.23%, respectively.

Additionally, most RAGmodels designed for simpler QA tasks do
not perform as well in the more complex medical domain, leading to
longer contextual and prompt. These models are often optimized for
generating short and straightforward answers, which limits their
effectiveness in handling intricate medical queries. We observe
models that have a simpler mechanism in the query-organizing
phase perform better than part of more sophisticated ones. Except
for our MedRAG, models like SR-RAG and FL-RAG also secured sev-
eral second-best performances. Even the Chain-of-Thought model,
which lacks improvements in the retriever or generator compo-
nents, outperformed some of the other SOTA models in complex
medical tasks.

6.2 Compatibility, Generalizability and
Adaptability (RQ2)

The results in Table 2 demonstrate the performance of incorporating
KG-elicited reasoning to various backbone LLMs, including both
open-source and closed-source models. The results demonstrate
that the inclusion of KG-elicited reasoning significantly enhances

Figure 3: Ablation result on Llama-3.1-Instruct 8B backbone
using the CPDD dataset

diagnostic accuracy across 𝐿1, 𝐿2, and 𝐿3 for all backbone LLMs,
compared to models without its use. For example, Mixtral-8x7B
shows a significant 𝐿3 improvement from 22.34% to 63.46%, demon-
strating the effectiveness of our proposed KG-elicited reasoning,
particularly in smaller models.

Comparing open-source and closed-source models, the RAGwith
the GPT-4o as the backbone LLM outperforms all others, showing
its superior adaptability with knowledge graph integration. In addi-
tion, MedRAG performs best on closed-source models, showcasing
our framework’s compatibility, generalizability and adaptability. In
contrast, token-level RAG models like DRAGIN and FLARE face
challenges in adapting to closed-source models due to their inherent
frameworks, limiting their potential to achieve better performance
across various LLMs.

6.3 Proactive Diagnostic Questioning (RQ3)
The results in Table 3 show the impact of following MedRAG’s op-
timized instructive questions and obtaining corresponding patient
responses on diagnostic accuracy.

As more detailed information is gathered through these targeted
questions, the 𝐿3 accuracy progressively improves. Initially, with
no specific patient information obtained through this questioning
process, the 𝐿3 accuracy is 52.83%, representing MedRAG making a
diagnosis with other information with very few manifestations. As
the doctor collects more critical details about disease representa-
tion, covering from 33.3% to 100% of the key manifestations, the 𝐿3
score rises from 55.10% to 66.04% and other levels’ metrics follow
the same trend. This demonstrates the significant effectiveness of
MedRAG’s proactive diagnostic questioning mechanism, validat-
ing its capability to provide doctors with impactful questions that
not only enhance diagnostic performance but also improve the
efficiency of the medical consultation process.

6.4 Ablation Study (RQ4)
We perform ablation studies to evaluate the effectiveness of dif-
ferent components in MedRAG and present the result in Figure 3.
Specifically, we assess the retriever component R and KG-elicited
reasoning module G under three configurations: “random”, “with”
and “without”. In the “random” setting for the retriever R, we
choose documents from the entire EHR database randomly. The
“without” of the retriever refers to the scenario where no documents
are passed toM𝑔 for diagnostic report generation. The “with” set-
ting of the retriever means to pass the top-𝑘 relevant documents to
theM𝑔 .
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Method Model CPDD DDXPlus

𝐿1 𝐿2 𝐿3 𝐿1 𝐿2 𝐿3

Baselines

Naive RAG + COT 75.47 54.72 43.40 79.28 71.89 56.84
FS-RAG 64.71 49.02 45.10 78.18 68.20 51.40
FLARE 54.84 48.39 45.16 71.09 56.70 31.02
FL-RAG 65.45 50.91 49.09 90.12 83.32 66.78
DRAGIN 78.72 59.57 40.42 80.51 70.83 50.24
SR-RAG 73.58 60.38 54.72 78.65 70.28 52.16

Ours MedRAG 79.25 75.47 66.04 88.65 83.46 68.01

Table 1: Results of quantitative performance comparison

Backbone LLMs Size w/o KG-elicited Reasoning w/ KG-elicited Reasoning

𝐿1 𝐿2 𝐿3 𝐿1 𝐿2 𝐿3

Open-source Models

Mixtral-8x7B 13B 60.38 32.08 22.34 84.62 82.69 63.46
Qwen-2.5 72B 66.04 41.51 39.62 80.36 73.21 64.29

Llama-3.1-Instruct 8B 75.47 54.72 43.40 79.25 75.47 66.04
Llama-3.1-Instruct 70B 86.79 67.92 56.60 86.79 83.02 71.70

Closed-source Models
GP-3.5-turbo - 83.02 56.60 45.28 70.56 68.68 50.57
GPT-4o-mini - 88.68 67.92 56.60 85.85 75.00 60.38

GPT-4o - 90.57 71.70 60.38 91.87 81.78 73.23

Table 2: Performance of MedRAG on different LLM backbones with and without KG-elicited reasoning

Manifestation Masking Ratio 𝐿1 𝐿2 𝐿3

0% 60.38 56.60 52.83
33.3% 69.39 67.35 55.10
66.6% 71.43 67.35 61.22
100% 79.25 75.47 66.04

Table 3: Result of proactive diagnostic questioning

For the KG-elicited reasoning module, the “random” configura-
tion denotes randomly selecting subcategory 𝑒𝐿2𝑠 and collecting
corresponding 𝐾 accordingly. The “without” is the scenario where
no diagnostic differences KG are passed toM𝑔 . Configuration “with”
means to pass correct 𝐾 by the 𝑒𝐿2𝑠 to theM𝑔 .

As shown in Figure 3, both the retriever and KG-elicited reason-
ing module significantly enhance performance across all specificity
levels. the best outcomes are achieved when RAG and KG compo-
nents are combined and aligned, especially for granular diagnosis
tasks that demand high specificity.

Notably, randomly selected documents performed better than no
documents at all, this phenomenonwas explored in detail by [8].We
also observed a performance decline in the lower-granularity levels
of 𝐿1 and 𝐿2 when transitioning from random to no knowledge
from KG when random documents are retrieved. Once correct KG-
augmented knowledge was added, this noise effect was mitigated,
leading to accuracy improvements across all metrics: an average
accuracy increase of 18.88% for 𝐿1, 26.92% for 𝐿2, and 18.89% for

𝐿3, compared to the baseline with random or without KG-elicited
reasoning module.

7 Conclusion
In conclusion, MedRAG significantly improves diagnostic accuracy
and specificity in the medical domain by integrating KG-elicited
reasoning with RAG models. By systematically retrieving and rea-
soning over Electronic Health Records (EHRs) and dynamically
incorporating critical diagnostic differences KG, MedRAG offers
more precise diagnosis and personalized treatment recommenda-
tions. Additionally, MedRAG’s proactive diagnostic questioning
mechanism proves highly effective, and shows potential capacity
to provide doctors and patients with impactful questions that en-
hance diagnostic performance and improve consultation efficiency.
The evaluation of public and private datasets demonstrates that
MedRAG outperforms state-of-the-art RAG models, particularly
in reducing misdiagnosis rates for diseases with similar manifes-
tations, showcasing its potential as a key module in healthcare
copilot. For future work, we aim to further enhance MedRAG’s
capabilities by incorporating additional multimodal data, such as
medical imaging (e.g., MRI), physiological signal data (e.g., ECG),
and blood test data to improve diagnostic accuracy and broaden its
applicability to a wider range of medical conditions. Additionally,
we plan to deploy MedRAG within our healthcare copilot systems
(The user interface is shown in the Appendix) for real-world testing
in hospitals, ensuring its effectiveness in clinical settings.
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Appendix
This appendix is organized as follows:

• Section A includes variables and definitions in the paper.
• Section B demonstrates the detailed data preprocessing

steps and experimental setup, ensuring transparency and
reproducibility.

• Section C presents intermediate results from experiments.
• Section D shows the user interface of healthcare copilot.

A Variables and Definitions
The variables used throughout this paper and their definitions are
provided in Table A1.

B Data Preprocessing and Experimental Setup
B.1 Settings for Datasets

• CPDD We split the data set into a 9:1 ratio for the training
set (to be retrieved) and test set. Since the dataset was
collected from multiple doctors, the diagnosis descriptions
are not standardized. Part of the diagnosis is presented as a
type of pain instead of a specific disease. When calculating
the accuracy of these pain-type diagnoses, if the predicted
result is a disease associated with that type of pain, it will
be considered a correct prediction.

• DDXPlus We directly use the training set and test set in a
split dataset in the ratio of 8:1:1(validation set). Due to the
massive size of the dataset with over a million synthesized
patients’ records, which is too large for the scale of our
task, we first fixed the number of samples in the test set
to 30, which corresponds to the fewest pathology. For the
other pathology with more samples, we randomly select 30
samples to form the whole test set. In the training set, we
randomly pick 240 samples for each pathology to retrieve.
This approach can ensure we get a maximum balanced
sub-dataset containing 13230 patients’ EHR in total. The
random seed is set to 42.

B.2 Setup for Proactive Diagnostic Questioning
Mechanism

Wemask certain existing manifestations of a patient to simulate sce-
narios where they are missing. MedRAG then generates follow-up
questions based on the remaining information. If MedRAG identi-
fies the removed manifestations during questioning, they are added
back to the patient’s record, and diagnostic reasoning is repeated
to evaluate the improvement in diagnostic accuracy.

We begin by selecting all matching manifestation nodes 𝐸𝐿4𝑑𝑠
and ranking them according to their discriminability scores. A pro-
portion 𝑟 of the nodes with the highest discriminability scores is
then removed, simulating the scenario where certain key patient
features are missing or unclear, shown in Equation 18. After re-
moving, we match the removed nodes 𝐸del

𝐿4𝑑𝑠
with each 𝑓𝑖 , if the

similarity score, the corresponding sentence 𝑓𝑖 is also removed, as
formalized in Equation 19, which simulates the loss of relevant
patient information from the input.

𝑒del
𝐿4𝑑𝑠 = Top-r

(
𝑒𝐿4𝑑𝑠 , 𝜎 (𝑒𝐿4𝑑𝑠 )

)
, (18)

𝑓 del𝑖 =
⋃
𝑓𝑖

{𝑓𝑖 | S(𝑓𝑖 , 𝑒del𝐿4𝑑𝑠 , E) > 𝑡}, (19)

where 𝑒del
𝐿4𝑑𝑠

represents the nodes removed from 𝑒𝐿4𝑑𝑠 based on the
similarity score threshold 𝑡 and 𝑓 del

𝑖
is removed 𝑓𝑖 .

B.3 Prompt Engineering
The prompt configuration for the generative model in MedRAG is
illustrated in Figure A1. The first block provides instructions as the
system prompt. The second block displays the answer template. In
the final block, relevant information including the patient’s mani-
festations 𝑞, retrieved documents 𝑑𝑟 , and diagnostic differences 𝐾 ,
is populated in this field.

C Intermediate Results
C.1 Disease Clustering Result
The result of disease clustering in CPDD is Shown in Figure A2.
Through the disease clustering operation, we group different forms
and representations of the same disease in the EHR database to-
gether, assigning a topic to each cluster. This process unifies the
representation of diseases, ensuring consistency and comparability.
Additionally, it provides a unified foundation for subsequent disease
knowledge graph construction and augmentation.

C.2 Example of Diagnostic Differences
Knowledge Graph

While lumbar canal stenosis and sciatica share some similar features,
the critical distinguishing factor lies in the response to sitting. In
lumbar canal stenosis, features are typically alleviated when sitting,
whereas in sciatica, sitting tends to exacerbate the discomfort. The
augmented disease features are shown in Figure A3

D User Interface (UI)
This section introduces how our MedRAG can be integrated into
the user interface design of the healthcare copilot system. The
healthcare copilot offers three modes of interaction, as shown in
Figure A4.

• Consultation Mode: By monitoring the consultation dia-
logue between the doctor and patient, the system extracts
patient manifestations in real-time and provides diagnostic
suggestions along with proactive questioning recommen-
dations to guide the consultation.

• EHR Mode: By uploading the patient’s EHR to the health-
care copilot system, this system automatically extracts the
relevant patient manifestations for diagnostic purposes.

• Typewritting Mode: The user can manually input the
patient’s manifestations into the system.

On the results page shown in Figure A5, the output of the health-
care copilot system include diagnoses, instructive follow-up ques-
tions, physiotherapy treatments, and medication treatments. This
UI integrates the most essential functions derived from extensive
interviews we conducted with numerous healthcare practitioners.
It ensures that the healthcare copilot system meets the practical
needs of healthcare professionals, ultimately enhancing the overall
quality of care.
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Variable Definition
C The clustering model
𝑑𝑟 Retrieved relevant documents
𝐷 Electronic Health Record (EHR) database
𝐸𝐿1 The set of broad disease categories
𝐸𝐿2 The set of disease subcategories
𝑒𝐿2𝑠 The matched subcategory
𝐸𝐿3 The set of specific disease names

𝐸𝐿3𝑟𝑎𝑤 the set of original disease descriptions in 𝐷
𝐸𝐿3𝑠 The set of disease nodes connected with 𝐸𝐿2𝑠
𝐸𝐿4 The set of disease-specific features
𝐸𝐿4𝑠 The set of features nodes connected with node in 𝐸𝐿3𝑠
𝐸del
𝐿4𝑑𝑠

Deleted features in proactive diagnostic questioning
𝐸𝐿4𝑎 Disease-specific features augmented by the LLM
𝐸𝐿4𝑑 Features decomposed from the EHR database
𝑒𝐿2𝑖𝑘 The closest disease subcategory node
𝑒𝐿𝑖 𝑗 A disease or category name in the graph where 𝑒𝐿𝑖 𝑗 ∈ 𝐸𝐿𝑖
𝑓𝑖 A specific feature of the patient’s manifestation
𝐾 The set of diagnostic differences KG identified in the knowledge graph
𝑝𝑎 Prompt used byM𝑎 for disease manifestation augmentation

𝑝𝑛𝑎𝑖𝑣𝑒 Simple prompt used byM𝑔

𝑝𝑠 Prompt designed for reasoning and generating diagnostic reports
𝑃 The shortest path function
𝑞 A input patient’s manifestations
𝑟 𝐸𝐿4𝑠 removing proportion in proactive diagnostic questioning mechanism
𝑟𝑚 Relation type "has_manifestation_of" between diseases and their manifestations
𝑟𝑠 Relation type "is_a" for hierarchical relationships
𝑠𝑖𝑚 The similarity score between patient features and nodes in the knowledge graph
𝑇 Set of relevant matching nodes in the knowledge graph
𝑡 Similarity score threshold in proactive diagnostic questioning mechanism
𝜒 The voting indicator function
𝛿 The matching filtering indicator function
E Embedding model used to compute similarity between features
G The four-tier hierarchical diagnostic knowledge graph
G𝐷 The four-tier disease knowledge graph
M𝑎 LLM used for disease manifestation augmentation
M𝑔 LLM used for generating diagnostic reports
Mℎ LLM used for topic aggregation
S The similarity model
𝜙 The decomposition function for 𝑞

𝜎 (𝑒𝐿4𝑑𝑖 ) Discriminability score of a feature in the knowledge graph
Θ The hierarchical aggregation operator

Table A1: List of variables and their definitions
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Prompt

Character
Definition

KG-elicited 
Reasoning

Diagnostic 
Differences 
Searching

Diagnosis

You are a knowledgeable medical assistant with expertise in pain management.
Your task are:        
1. Analyse and refer to the retrieved similar patients' cases and knowledge graph which may be relevant to 

the diagnosis and assist with new patient cases.        
2. Output of "Diagnoses" must come from Head pain, Migraine, Trigeminal neuralgia, Cervical spondylosis, 

Chronic neck pain, Neck pain, Chest pain, Abdominal pain, Limb pain, Shoulder pain, Hip pain, Knee 
pain, Buttock pain, Calf pain, Low back pain, Chronic low back pain, Mechanical low back pain, Upper 
back pain, Degenerative disc disease, Lumbar spondylosis, Lumbar canal stenosis, Spinal stenosis, 
Foraminal stenosis, Lumbar_radicular_pain, Radicular pain, Sciatica, Lumbosacral pain, Generalized 
body pain, Fibromyalgia, Musculoskeletal pain, Myofascial pain syndrome, Neuropathic pain, Post-
herpetic neuralgia.        

3. You are given differences in diagnoses of similar symptoms or pain locations. Read that information as a 
reference to your diagnostic if applicable.        

4. Do mind the nuance between these factors of similar diagnosis with knowledge graph information and 
consider it when diagnosing new patient's information.        

5. Ensure that the recommendations are evidence-based and consider the most recent and effective 
practices in pain management.        

6. The output should include four specific treatment-related fields:           
- "Diagnoses (related to pain) and Explanations of diagnose           
- "Pain/General Physiotherapist Treatments\nSession No.: General Overview\n- Specific  
interventions/treatments"           

- "Pain Psychologist Treatments"           
- "Pain Medicine Treatments"        

7. In "Diagnoses (related to pain)", only output the diagnosis itself. Place all other explanations and 
analyses  (if any) into "Explanations of diagnose".        

8. You can leave Psychologist Treatments blank if not applicable for the case, leaving the text "Not 
applicable"        

9. If you think information is needed, guide the doctor to ask further questions about which following areas 
to distinguish between the most likely diseases: Pain restriction; Location; and Symptom. Separate 
answers with ",". The output should only include aspects.        

10. The output should follow this structured format:

### Diagnoses    
1. **Diagnosis**: Answer.              2. **Explanations of diagnose**: Answer.        

### Instructive question    
1. **Questions**: Answer.        

### Pain/General Physiotherapist Treatments    
1. **Session No.: General Overview**        

- **Specific interventions/treatments**:                    - **Goals**:        
- **Exercises**:                  - **Manual Therapy**:                   - **Techniques**:    

2. **Exercise Recommendations from the Exercise List**:    
### Pain Psychologist Treatments(if applicable)    

1. **Treatment 1**:         
### Pain Medicine Treatments   
### Recommendations for Further Evaluations    

1. **Evaluation 1**:

Treatments

Medication
Follow Up

Questions

.
New patient’s information: {q}.
Retrieved Documents {d_r}.
Augmented knowledge from knowledge graph about relevant diagnoses {K}. 
Now complete the tasks in that format.''

Populate
Information

Figure A1: Prompt for the generative model of MedRAG
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Figure A2: The result of disease clustering in CPDD

Low back pain related lumbar related pain

lumbar canal stenosis

cause lower_back_pain

cause leg_pain

cause numbness

cause weakness

has_symptom pain_reliref_with_sitting

has_symptom pain_worsens_with_standing

has_symptom tingling

has_symptom cramping

sight sided sciatica

is_a sciatica

cause lumbar_disc_herniation

has_symptom low_back_pain

has_symptom buttock_pain

has_symptom pain_worsens_with_sitting

has_symptom leg_pain

has_symptom tingling

has_symptom numbness

has_symptom muscle_weakness

Key diagnostic 
difference

Figure A3: Diagnostic differences knowledge graph between lumbar canal stenosis and sciatica. (Similar manifestations but
opposite responses to sitting (Alleviation vs. Exacerbation))
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Hi, I am your copilot Chris. Interact with me in the following ways:

Input your question here!

Speak to a patient 
or tell me a patient’s 
condition.

Speaking Uploading file Typewriting

Upload a patient’s 
electronical medical 
record.

Type in a question or 
a patient's condition.

Within 24 Hours

Within 1 Week

Within 30 Days

• Chronic pain
• lumbago

• angiocarp
• coronary heart disease
• postoperative pain

• postpartum depression
• postpartum depression
• head injuries

• headache

Healthcare Copilot

Figure A4: The interactive interface of healthcare copilot allows multi-turn medical Q&A through voice, files, and text.

Input your question here!

 Diagnoses
- Diagnosis: Lumbar canal stenosis

- Explanations of diagnosis: The MRI findings indicate severe spinal canal stenosis at the L4/5 level leading to cauda 
equina compression. This can result in significant back and limb pain, as evidenced by the patient's symptoms of aching 
pain in the lower back with radiating pain down the […].

 Instructive Follow-up Question
- Does leaning forward or sitting relieve your pain?

 Pain/General Physiotherapist Treatments:
- Specific interventions/treatments: General physiotherapy focusing on patient education, […].

- Goals: To reduce pain levels, improve functional mobility, […].

- Exercises: Tailored exercises including back extensions, nerve glides, hamstring stretches, […].

- Manual Therapy: Techniques including Grade III mobilization of affected vertebral segments, […].

- Techniques: Application of hot packs for pain relief, pacing strategies in exercises, and […].

 Pain Medicine Treatments
- Medicine: The patient is advised to continue the usage of gabapentin and paracetamol as […].

patient_501.json

Healthcare Copilot

Within 24 Hours

Within 1 Week

Within 30 Days

• Chronic pain
• lumbago

• angiocarp
• coronary heart disease
• postoperative pain

• postpartum depression
• postpartum depression
• head injuries

• headache

Me

Figure A5: A specific example of how healthcare copilot could handle the diagnosis of lumbar canal stenosis using a JSON
format medical record input, and output relevant treatments.
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