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Abstract

Graphs are a powerful tool for representing and analyzing complex relationships in1

real-world applications such as social networks, recommender systems, and com-2

putational finance. Reasoning on graphs is essential for drawing inferences about3

the relationships between entities in a complex system, and to identify hidden pat-4

terns and trends. Despite the remarkable progress in automated reasoning with5

natural text, reasoning on graphs with large language models (LLMs) remains an6

understudied problem. In this work, we perform the first comprehensive study of7

encoding graph-structured data as text for consumption by LLMs. We show that8

LLM performance on graph reasoning tasks varies on three fundamental levels:9

(1) the graph encoding method, (2) the nature of the graph task itself, and (3) in-10

terestingly, the very structure of the graph considered. These novel results provide11

valuable insight on strategies for encoding graphs as text. Using these insights12

we illustrate how the correct choice of encoders can boost performance on graph13

reasoning tasks inside LLMs by 4.8% to 61.8%, depending on the task.14

1 Introduction15

There has been remarkable recent progress in the research and applications of large language mod-16

els (LLMs) [35, 12, 5, 29]. These generative models have captivated the artificial intelligence com-17

munity and a plethora of models trained on a variety of tasks and modalities have recently been18

released [45]. All of these advancements have led to a growing consensus that LLMs are a pivotal19

advancement on the path to artificial general intelligence (AGI) [7].20

However, despite all their successes, there are a number of limitations with the current methodology21

of design and implementation of LLMs. One of the most obvious limitations is their reliance on22

unstructured text, causing the models to sometimes miss obvious logical entailments or hallucinate23

incorrect conclusions [44]. Another is that LLMs are fundamentally limited by when they were24

trained, and it can be difficult to incorporate ‘fresh’ information about the state of the world which25

has changed [26]. Graph-structured data is one of the most flexible ways to represent information26

and could be a promising solution to both challenges [33, 31].27

Interestingly, despite this promise, the intersection of graphs and LLMs has been relatively under-28

studied. For example, while much work has focused on LLMs and graph databases (or knowledge29

graphs [15, 26]) there has not been much study about general purpose use of graph-structured data.30

More recent work [36] has sought to address this by designing a graph benchmarking task for lan-31

guage models. While their task represents an exciting initial foray into measuring LLMs graph32

reasoning capabilities, there are still many open questions due to the omission of several natural33

graph tasks and a lack of variety in the type of graph structure considered. Other recent work seeks34

to replace graph-structured data with LLMs [41], but this does not address fundamental challenges35

with LLMs.36
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Figure 1: Overview of our framework for reasoning with graphs using LLMs.

In this work, we perform the first comprehensive study about reasoning over graph-structured data37

as text for consumption by LLMs. To analyze graph reasoning more closely, we decompose the38

problem into graph encoding and graph prompt engineering. Varying graph encoding methods39

allows us to understand how LLM’s learned representations are leveraged in graph tasks. While40

studying prompt engineering techniques finds the most suitable way to get a desired solution to41

a question from an LLM. Our experimental results seek to uncover the situations where different42

prompt heuristics work well. To that end, we propose a new set of benchmarks GraphQA for mea-43

suring LLM performance reasoning over graph data. GraphQA is distinguished by using graphs with44

much more varied and realistic graph structure than has previously been studied with LLMs.45

Our Contributions: Specifically, the contributions of our work are the following:46

1. An extensive study of graph-structure prompting techniques for use in LLMs.47

2. Insights and best practices for encoding graphs as text for use in LLMs.48

3. A new graph benchmark (GraphQA) to aid the community in studying the effects of graph49

structure on LLM prompting further.50

2 Prompting LLMs for Graph Reasoning51

Notation. Let f be the interface function to a generative AI model, which takes high-dimensional52

discrete input tokens W and produces output in the same token space (f : W 7→ W ). Without53

loss of generality, we will colloquially refer to f as a pre-trained Large Language Model (LLM)54

throughout this work, but note that our discussion here applies to any generative AI model with such55

a discrete interface. In this work, we consider encoding graphs G = (V,E), where V is the set of56

vertices (or nodes) and E ∈ (V × V ) is the set of edges connecting them.57

2.1 Prompt Engineering58

The goal in prompt engineering is to find the correct way to phrase a question Q such that an LLM
f (or other generative model) will return the corresponding answer A, (Q ∈ W,A ∈ W ). In other
words:

A = f(Q)

In this work, our goal is to provide the LLM f with graph information, so that it can better reason
about question/answer pairs that require access to arbitrarily structured relational information.

A = f(G,Q)

A variety of approaches exist for modifying the LLM f(.) so that it could better perform on tasks59

with graph data such as fine-tuning [11], soft prompting [25], and LoRA [19]. In addition, many60

approaches modify the model to include graph information [28, 42, 13]. However, these methods61

all require access to the internals of the model (either its weights or gradients), which can limit their62

applicability in many real-world settings. In this work, we are instead interested in the case where63

f(.) and its parameters are fixed, and the system is available only for use in a black box setup where64

the LLM only consumes and produces text (i.e., the LLM f : W 7→ W ). We believe this setting to65

be particularly valuable as the number of proprietary models available and their hardware demands66

increase.67

To this end, we introduce the graph encoder function g(G), where g : G 7→ W (where W is the68

large discrete domain of tokens used to train the LLM).69

A = f(g(G), Q) (1)

Our training input D to the graph-based prompt system is a set of G,Q, S triples, where G is a70

graph, Q is a question asked to the LLM, and S is a solution to Q, (S ∈ W ). We seek to find a g(.)71
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and Q that maximize the expected score from the model (scoref ) of the answers over the training72

dataset D.73

max
g,Q

EQ,S∈D scoref (g(G), Q, S) (2)

AsW is a very large discrete space, many current approaches use heuristics for this optimization (by74

changing the promptQ). The novel contribution of this work is to consider the role of both the graph75

structure G and graph encoding function g(.) in the optimization of Eq. (2).76

2.2 Prompting Heuristics77

The vast majority of prompting heuristics operate by optimizing the prompt text Q used to query the78

model. We briefly introduce the methods we’ll examine further in the paper here:79

Zero-shot prompting (ZERO-SHOT): This approach simply provides the model with a task descrip-80

tion and asks it to generate the desired output, without any prior training on the task. Few-shot81

in-context learning (FEW-SHOT) [6]: This approach provides the model with a small number of82

examples of the task, along with the desired outputs. The model then learns from these examples83

to perform the task on new inputs. Chain-of-thought (CoT) prompting (COT) [37]: This approach84

provides the model with a sequence of examples, each of which shows how to solve the task step-by-85

step. The model then learns to generate its CoTs to solve new problems. Zero-shot CoT prompting86

(ZERO-COT) [24]: This approach is similar to CoT prompting, but it does not require any prior train-87

ing examples. Instead, the model uses a simple prompt to generate its own CoTs. As suggested88

by the original paper, we used “Let’s think step by step”. Bag prompting (COT-BAG) [36]: This89

technique is proposed to improve the performance of LLMs on graph-related tasks. It works by90

appending “Let’s construct a graph with the nodes and edges first” to the graph description.91

We note that there is also a popular recent extension of this family of methods, based on iterative92

prompting. These methods use a series of iterative LLM queries to optimize the prompt ques-93

tion (e.g., [47, 32, 38]). However, our initial experiments showed that iterative prompting methods94

performed much worse for our tasks, due to cascading errors. Consequently, we chose to concentrate95

our efforts on the methods outlined earlier.96

In this study, the goal is to optimize the graph encoder function on basic graph tasks. Such basic97

tasks are essential intermediate steps for more complex reasoning tasks on graphs. We conduct98

extensive experiments on graph, question, and graph generator functions, providing a study of graph99

encoding methods for black-box LLM usage.100

3 Talk Like a Graph: Encoding Graphs via Text101

Graph encoding is a necessary step for turning graph-structured information into a sequence for102

consumption by language models. In this section, we will study the details of a graph encoder103

function g(.) which maps graph data into tokens for consumption by an LLM. Our experimental104

results in this section seek to understand the best form of graph encoding and prompt engineering to105

maximize the performance on graph reasoning tasks.106

We begin by highlighting some of the most exciting results from our analysis here:107

• R1: LLMs perform poorly on basic graph tasks (§3.1).108

• R2: The graph encoder function has a significant impact on LLM graph reasoning (§3.1).109

• R3: Model capacity has a significant effect on graph reasoning capabilities of LLMs (§3.4).110

Graph Encoding Function. This section is an investigation into various methodologies for rep-111

resenting graphs as text. This process of encoding graphs as text can be separated into two key112

inquiries: First, the encoding of nodes in the graph, and second the encoding of edges between113

the nodes. Regarding the encoding of nodes and edges, we examined several techniques. Figure 2114

shows an overview of the graph encoding functions used. For brevity’s sake, a full description and115

examples of the graph encoding functions considered are explained in Appendix A.1.116

Graph Structure We briefly note that the design of this experiment follows that of [36], who use117

Erdős-Rényi (ER) graphs [14]. One contribution of our work is to consider the effect of more118

complex graph structures on reasoning in LLMs (covered in Section 4).119
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Expert: You are a graph analyst and you have 
been given a graph G among A, B, C, D, E, F, G, 
H, and I. G has the following undirected edges: 
A -> B, A -> C, …, H -> I.

Graph G

Adjacency: In an undirected graph, (i,j) means that node i 
and node j are connected with an undirected edge. G 
describes a graph among nodes 0, 1, 2, 3, 4, 5, 6, 7, and 8.
The edges in G are: (0, 1) (0, 2) … (6, 7) (7, 8).

Incident: G describes a graph among nodes 0, 1, 2, 3, 4, 5, 
6, 7, and 8. In this graph: Node 0 is connected to nodes 1, 2. 
Node 1 is connected to nodes 0, 2. Node 2 is connected to 
nodes 0, 1, 3, 4, 5, 7. … Node 8 is connected to nodes 3, 7.

Friendship: G describes a friendship graph among James, 
Robert, John, Michael, David, Mary, Patricia, Jennifer, and 
Linda. We have the following edges in G: James and 
Robert are friends. … Jennifer and Linda are friends.

Politician: G describes a social network graph among 
Barack, Jimmy, Arnold, Bernie, Bill, Kamala, Hillary, 
Elizabeth, and John. We have the following edges in G: 
Barack and Jimmy are connected. … Elizabeth and John 
are connected.

Social network: G describes a social network graph 
among James, Robert, John, Michael, David, Mary, 
Patricia, Jennifer, and Linda. We have the following edges 
in G: James and Robert are connected. … Jennifer and 
Linda are connected.

SP: G describes a friendship graph among Eric, Kenny, Kyle, 
Stan, Tolkien, Heidi, Bebe, Liane, and Sharon. In this friendship 
graph: Eric and Kenny are friends, Eric and Kyle are friends …, 
Heidi and Bebe are friends, Bebe and Liane are friends, Liane and 
Sharon are friends.

GOT: G describes a friendship graph among Ned, Cat, 
Daenerys, Jon, Bran, Sansa, Arya, Cersei, and Jaime.
In this friendship graph: Ned and Cat are friends, Ned and 
Daenerys are friends, Cat and Daenerys are friends, …, 
Cersei and Jaime are friends.

Co-authorship: G describes a co-authorship graph among 
James, Robert, John, Michael, David, Mary, Patricia, 
Jennifer, and Linda. In this co-authorship graph: James and 
Robert wrote a paper together. … Jennifer and Linda wrote 
a paper together..

Figure 2: Overview of our framework for encoding graphs via text.

3.1 Experiment 1: Varying Graph Encoder Functions120

In this experiment, we measure the performance of pre-trained LLMs on graph tasks: edge existence,121

node degree, node count, edge count, connected nodes, and cycle check. We describe these tasks122

and our graph benchmark that contains them (GraphQA) in detail in Appendix A.2.123

3.1.1 Results124

Table 1 shows the results of this experiment varying graph encoding and prompting techniques.125

These results show several interesting conclusions, which we briefly summarize here:126

LLMs Perform Poorly on Basic Graph Tasks. Let’s start by examining the overall results. LLMs127

performed poorly on almost all the basic graph tasks we experimented with. This is especially128

interesting for the edge existence and cycle check tasks, where there is not an edge 53.96% of the129

time for the edge existence task and there is a cycle 81.96% of the time for the cycle check task.130

Therefore. LLMs perform worse than the majority baseline. Note that we experimented with ER131

graphs in this experiment, and it is very likely for an ER graph to have a cycle.132

Simple Prompts are best for Simple Tasks. We see that ZERO-COT prompting has worse model133

performance than ZERO-SHOT prompting on basic graph tasks. This is likely because ZERO-SHOT134

prompting is sufficient for these tasks, which do not require multi-hop reasoning. ZERO-COT135

prompting can be effective for tasks that require multi-hop reasoning, such as arithmetic problems,136

but it is not necessary for most basic graph tasks, which only require the LLM to have an under-137

standing of the graph structure (nodes, edges, paths, etc.) and the graph task. However for more138

complex tasks, adding few-shot examples and CoT prompting generally improved the performance139

of the model. This is mainly because few-shot examples provide the LLM with a better understand-140

ing of the task it is solving. CoT prompting can also improve performance by helping the LLM to141

find out how to get to the answer to the problem.142

Graph Encoder Functions Have Significant Impact on LLM Reasoning. As the results indicate,143

the choice of the graph encoder function has a significant impact on the performance of LLMs on144

graph-related tasks. This is because different encoder functions capture different aspects of the145

graph structure. For instance, for finding connected nodes to a node in a graph, adjacency achieves146

19.8% accuracy and incident achieves 53.8% accuracy. For both node degree and connected nodes,147

incident encoding outperforms the rest of the encoder functions. This is likely because the Incident148

encoder encodes the graph structure in a way that makes the relevant information more accessible,149

i.e., in close proximity, to the LLM.150

Integer Node Encoding Improves Arithmetic Performance. Another finding here is that integer151

encoding of nodes (e.g., node 0) can improve the performance of LLMs on integer output tasks, such152

as predicting node degree, node count, and edge count. This is because the input and output of the153

LLM are then in the same space, making it easier for the model to learn the relationship between154

the two. Interestingly however, encoder functions with specific names (e.g., David) worked better in155

non-integer output tasks such as GOT for edge existence or Friendship for cycle check.156

Summary: Choosing the right graph encoder function significantly affects the performance of157

LLMs on basic graph algorithms. Therefore, it is important to select a function carefully and ap-158

propriately for the specific task. This finding is especially important because many reasoning tasks159
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Method Encoding Edge Existence Node degree Node count Edge count Connected nodes Cycle check

Z
E

R
O

-S
H

O
T

Overall (µ/δ) 44.5 / 9.4 14.0/16.0 21.73 / 8.6 12.4 / 4.8 14.7 / 11.0 76.0 / 13.2
Adjacency 45.8 12.4 18.8 14.0 19.8 71.6
Incident 39.6 25.0 15.6 10.6 53.8 68.8

Co-authorship 44.0 13.8 22.0 11.4 7.6 70.8
Friendship 46.6 11.2 23.0 10.2 4.0 82.0

SP 46.4 9.0 22.4 15.0 6.2 80.4
GOT 49.0 13.6 22.8 13.2 7.6 79.0

Social network 43.2 16.0 22.8 10.8 8.2 81.2
Politician 44.6 15.2 24.2 11.6 8.8 81.0

Expert 41.2 10.0 24.0 14.8 16.4 69.6

Z
E

R
O

-C
O

T

Overall (µ/δ) 33.5 / 11.6 10.4 / 22.4 14.6 / 9.4 9.4 / 4.8 8.8 / 9.2 32.3 / 23.2
Adjacency 34.2 15.4 11.0 12.2 6.0 46.2
Incident 41.4 26.6 10.0 12.2 35.2 39.0

Co-authorship 29.8 9.8 15.6 8.2 3.0 28.2
Friendship 28.4 7.0 19.4 7.4 3.0 31.2

SP 32.6 9.2 15.6 8.4 5.0 34.8
GOT 34.6 8.4 16.2 8.4 5.4 33.4

Social network 30.8 6.6 14.0 9.2 3.8 26.0
Politician 38.0 4.2 14.6 8.6 3.2 23.0

Expert 31.6 6.0 14.8 10.0 14.2 28.8

F
E

W
-S

H
O

T

Overall (µ/δ) 36.8 / 13.8 17.4 / 23.4 25.3 / 35.6 12.0 / 9.0 12.4 / 15.2 37.4 / 24.0
Adjacency 42.8 15.4 47.2 18.6 22.2 47.8
Incident 38.8 33.6 51.2 14.6 36.6 45.0

Co-authorship 29.4 15.6 15.6 10.2 9.0 46.8
Friendship 40.6 12.2 18.4 9.8 6.4 41.4

SP 34.6 18.0 18.0 12.0 6.8 38.2
GOT 40.6 17.2 14.2 12.0 3.4 28.6

Social network 37.4 15.0 21.2 10.2 7.8 34.2
Politician 38.0 13.4 21.4 9.6 7.8 30.8

Expert 29.0 16.6 20.4 11.2 11.8 23.8

C
O

T

Overall (µ/δ) 42.8 / 7.0 29.2 / 60.4 27.6 / 42.4 12.8 / 17.4 13.1 / 18.0 58.0 / 16.4
Adjacency 42.8 71.2 57.0 25.2 22.4 56.6
Incident 41.6 75.0 57.6 21.4 30.2 62.6

Co-authorship 43.2 16.4 15.2 8.8 8.4 54.8
Friendship 46.6 14.6 23.0 7.8 9.6 61.8

SP 42.6 17.4 17.0 10.6 8.2 59.4
GOT 44.0 17.8 16.2 11.8 7.2 60.4

Social network 42.6 16.4 21.6 8.4 8.0 60.6
Politician 42.2 16.6 22.6 9.2 9.4 59.4

Expert 39.6 17.4 18.0 12.4 14.4 46.2

C
O

T-
B

A
G

Overall (µ/δ) 37.3 / 16.6 28.0 / 61.8 26.9 / 33.8 12.5 / 17.8 15.8 / 31.8 52.1 / 26.0
Adjacency 45.8 66.8 48.6 25.0 20.6 56.8
Incident 45.6 75.2 51.2 21.8 41.0 63.0

Co-authorship 25.0 14.6 17.4 7.2 9.2 37.0
Friendship 39.0 16.2 21.8 7.4 9.8 52.0

SP 33.6 17.0 21.6 11.4 11.4 52.2
GOT 32.6 15.6 18.0 11.0 10.0 54.6

Social network 44.8 13.4 19.6 9.0 10.0 51.2
Politician 40.4 17.6 22.8 8.2 10.2 57.2

Expert 29.2 15.8 20.8 11.6 20.4 45.0

Table 1: Comparison of various graph encoder functions based on their accuracy on different graph
tasks using PaLM 62B. The most effective prompting heuristic is highlighted with an underline,
and the top-performing graph encoder function for it is highlighted in bold. The overall result is
represented its average (µ) and an absolute difference (δ) of its best and worst graph encoder.

involve graph problems. For example, finding influential nodes in a social network is similar to160

finding the degree of the nodes in the graph. Encoding such graphs in the right way for the task can161

improve the task. We examine the relative rankings of graph encoders more in Appendix A.3.162

3.2 Experiment 2: Varying Prompt Questions163

In this experiment, we maintained the graph encoder function as a constant for the concept of friend-164

ship and conducted experiments using two distinct question encoder functions: the graph question165

encoder and the application question encoder. The graph question encoder is responsible for encod-166

ing graph-related tasks, such as determining the degree of a specific node (e.g., “What is the degree167

of node i?”). This encoder is used for obtaining results in Section 3.1.168
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Method Question encoder LLM Edge Existence Node degree Node count Edge count Connected nodes

ZERO-SHOT

Graph PaLM 2-XXS 42.8 10.8 5.4 5.6 1.6
Application PaLM 2-XXS 60.8 14.0 9.4 4.4 11.4

Graph PaLM 62B 46.6 11.2 23.0 10.2 4.0
Application PaLM 62B 47.8 16.6 17.8 13.2 6.0

COT

Graph PaLM2 XXS 50.4 8.8 8.4 4.2 10.2
Application PaLM2 XXS 56.4 12.2 8.6 5.4 11.0

Graph PaLM 62B 46.6 14.6 23.0 7.8 9.6
Application PaLM 62B 38.6 16.6 16.0 12.2 10.0

Table 2: Comparing two question encoders based on their accuracy for PaLM 2 XXS and PaLM
62B. The top-performing question encoder for the respective LLM is highlighted in bold.
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Figure 3: Effect of Model Capacity on graph rea-
soning task for PaLM 2-XXS, XS, S, and L.

Task Same
relation

Multiple
relations

Z
E

R
O

-S
H

O
T Edge Existence 42.8 39.8

Node degree 10.8 11.6
Node count 5.4 6.6
Edge count 5.6 5.4

Connected nodes 1.6 3.4
Cycle Check 65.2 84.4

C
O

T

Edge Existence 50.4 50.8
Node degree 8.8 10.0
Node count 8.4 5.8
Edge count 4.2 5.0

Connected nodes 10.2 7.2
Cycle Check 77.4 74.4

Table 3: Results on multiple relations for
edge encoding with PaLM 2 XXS.

On the other hand, the application question encoder interprets graph questions in a more practi-169

cal, day-to-day context. In the application scenario, we used a friendship-based scenario where we170

transformed the tasks as follows: “edge existence” became “assessing friendship existence”, “node171

degree” became “counting the number of friends for an individual”, “node count” became “count-172

ing the number of people mentioned”, “edge count” became “counting the number of friendships173

mentioned”, and “connected nodes” became “listing friends”.174

Results: Table 2 summarizes the results of our experiment on question encoder functions. As the175

results show, the application encoder outperforms the graph encoder on almost all tasks, despite176

both encoders having the same graph encoder function and only differing slightly in how they ask177

the question. For example, on the ZERO-SHOT edge existence task using PALM 2 XXS, the graph178

encoder obtained 42.8% accuracy, while the application encoder obtained 60.8%.179

Summary: The selection of the question encoder function affects the performance of LLMs when180

handling basic graph algorithms. As a result, it becomes important to translate a given task into181

more contextually meaningful textual information when employing LLMs for inference.182

3.3 Experiment 3: Multiple Relation Encoding183

In this experimental setup, we introduce a modification to the friendship graph encoder function,184

which characterizes edges based on a range of distinct relation types, including friends, colleagues,185

spouses, siblings, neighbors, acquaintances, teammates, classmates, coworkers, or roommates. The186

selection of the relation type is randomized from this predefined set, thereby using multiple words187

to reference the existence of a relationship between nodes. This is a departure from using the same188

token(s) for edge representation in prior graph encoder experiments.189

Results: As Table 3 shows, using multiple words to represent relationships did not hurt LLM per-190

formance and even improved it in some cases. This improvement is likely because the diverse set of191

relations provides the LLM with more textual information to perform the task, and the final encoding192

is closer to text that the LLM may have seen during training, compared to the prior setup.193
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Figure 4: Samples of graphs generated with different graph generators in our framework.

3.4 Experiment 4: Model Capacity and Graph Reasoning Ability194

In this experiment, we measure the effect of model capacity on the graph tasks. We compare the195

results of PaLM 2 [3] XXS, XS, S, and L, which have different number of parameters and therefore196

different capacity. We report the majority baseline for reference.197

Results: Model capacity has a significant effect on the graph reasoning ability of an LLM. The198

results of this experiment, reported in Section 3.3, show the larger model is generally better at graph199

reasoning tasks. This is because it has more capacity to learn and store complex information. The200

model capacity has less effect on edge existence. The results also show that the model was not able201

to beat the majority baseline for edge existence even with a large capacity.202

3.5 Experiment 5: Reasoning in the Absence of Edges203

In this experiment, we evaluate the performance of LLMs on the disconnected nodes task. This task204

differs from the previous ones in that it requires reasoning about information that is implicit in the205

graph, i.e., information that is not explicitly mentioned in the output of the graph encoder function.206

Results: LLMs lack a global model of a graph. The ZERO-SHOT prompting method achieved an207

accuracy of 0.5%, while the ZERO-COT, FEW-SHOT, COT, and COT-BAG methods achieved close to208

0.0% accuracy. These results suggest that LLMs perform significantly worse on the disconnected209

nodes task than on the connected nodes task. We believe that this is because the graph encoder210

functions primarily encode information about connected nodes, while not explicitly encoding infor-211

mation about nodes that are not connected. As a result, LLMs are better at processing relationships212

among connected nodes than at capturing the absence of connections, leading to sub-optimal per-213

formance in disconnectivity-related tasks.214

4 Does the structure of the graph matter for the LLM?215

It is natural to wonder if the structure of the graph itself might effect LLM’s ability to reason over it.216

Inspired by recent work in analyzing graph neural networks [30, 39] this section seeks to measure a217

LLM’s reasoning capabilities over graph with distinct structures. In this section, we show that graph218

structure can have significance influence on an LLM’s reasoning performance. Figure 4 illustrates219

graphs created through different generative processes.220

4.1 Random Graph Generation221

To be able to experiment with LLMs on graphs, we generate random graphs using various graph222

generator algorithms. This allows us to:223

Cover a wide range of properties. Different graph generators produce graphs with different prop-224

erties. For example, Erdős-Rényi graphs tend to be sparse and have a small average degree, while225

Barabási-Albert graphs tend to be dense and have a power-law degree distribution. By using a di-226

verse set of generators, we ensure that the GraphQA benchmark includes graphs with a wide range227

of properties.228

Avoid bias in graph problem evaluation. The goal of generating such graphs is to test the ability of229

LLMs to solve graph problems. Graph problems can vary in difficulty depending on the properties230

of the graphs, so we use a diverse set of graphs to avoid bias.231

Provide realistic benchmarks. Real-world graphs exhibit a wide range of properties, and no single232

graph generator can capture all of these properties perfectly. By using a diverse set of generators,233

we create a benchmark that is more representative of real-world graphs.234
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Method Graph generator Edge Existence Node degree Node count Edge count Connected nodes Cycle check

Z
E

R
O

-S
H

O
T

Overall 49.1 17.6 23.0 12.1 23.3 75.2
ER 45.1 13.6 22.1 11.7 14.9 76.3
BA 50.2 18.0 24.9 13.6 20.1 72.0

SBM 45.0 13.8 21.9 9.2 13.8 86.5
Star 58.0 34.0 32.8 31.7 61.7 8.1
SFN 57.6 23.1 19.9 8.0 38.1 90.0
Path 60.9 14.8 31.9 28.8 26.6 5.9

Complete 19.8 12.6 20.7 6.2 13.3 91.7

C
O

T

Overall 40.4 29.6 31.7 12.2 24.3 59.5
ER 41.2 28.4 28.8 12.6 12.8 61.2
BA 40.0 30.0 35.0 14.3 20.8 58.5

SBM 40.3 26.5 30.2 8.7 13.0 65.8
Star 40.3 38.0 41.8 31.6 68.6 21.3
SFN 40.2 32.2 30.8 7.1 43.2 66.0
Path 42.0 35.1 35.3 31.1 27.6 19.7

Complete 39.6 21.9 28.9 3.9 14.6 69.3

Table 4: Comparing different graph generators on different graph tasks on PaLM 62B. The most ef-
fective prompting heuristic is highlighted with an underline, and the top-performing graph generator
algorithm for the respective heuristic is highlighted in bold.

To generate random graphs, we use Erdős-Rényi (ER) graphs [14], scale-free networks (SFN) [4],235

Barabási–Albert (BA) model [2], and stochastic block model (SBM) [18], in addition to star, path,236

and complete graph generators. We use NetworkX [16] to generate the random graphs. The details237

are reported in Appendix A.4.238

4.2 Results on Random Graph Generators239

Previous experiments have studied the performance of LLMs on basic graph tasks using random240

graphs generated using the Erdős-Rényi (ER) model. However, ER graphs often do not accurately241

represent the characteristics of real-world graphs. In this experiment, we investigate the effect of242

different random graph generators on the performance of LLMs on graph reasoning tasks. To make243

the experiment more realistic, we sample the few-shot examples randomly from graphs generated244

using different algorithms. We report the results of this experiment in Table 4.245

Graph structure has a significant impact on the LLM’s performance. The results show that the246

algorithm used to generate the graph has a significant impact on the performance of the LLM on247

graph tasks. For example, the cycle check task achieves 91.7% accuracy on complete graphs and248

5.9% accuracy on path graphs. This is because the LLM has a strong prior towards graphs having249

cycles. Therefore, the accuracy is high for complete graphs, which always have cycles, and very low250

for path graphs, which never have cycles. By adding few-shot examples some having a cycle and251

some not, the accuracy of cycle check on path graphs increased from 5.9% to 19.7%. As another252

example, on the edge existence task, the LLM achieves 60.0% accuracy on path graphs, which are253

less likely to have an edge between two nodes, and 19.8% accuracy on complete graphs, which have254

edges between all pairs of nodes. This shows that the LLM has a prior that two nodes in a graph are255

more likely to be disconnected.256

Distractive statements in the graph encoder function disrupt the performance of the LLM.257

The accuracy of node degree, node count, and connected nodes tasks is highest for star and path258

graphs. This is likely because the star and path graphs are more likely to have fewer edges and their259

graph encoding is most likely shorter with less distracting statements to these tasks. This is also260

evident from the accuracy of these tasks being among the lowest in complete graphs, which have261

many edges to specify and therefore many distractors.262

Adding out-of-distribution few-shot examples helped the LLM. Similarly to the experiment in263

Section 3.1, adding few-shot examples and their chain of thought in COT prompting helped on most264

tasks. The key difference between the few-shot examples in this experiment and the previous one is265

that in this case, the examples are not required to come from the same graph generator algorithm.266

This shows that few-shot examples do not need to come from the same generator for the LLM to be267

helpful, and their main role is to explain the task to the LLM.268

Summary: The performance of large language models (LLMs) on graph tasks is significantly im-269

pacted by the graph structure and the distracting statements in the graph encoder function. Graphs270
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with fewer edges and less complex encodings tend to perform better on most tasks. Adding few-shot271

examples, even if they are out-of-distribution, can help the LLM to perform better on most tasks.272

5 Related Work273

In-context learning. One common approach for reasoning with LLMs is to pre-train it on a large274

corpus of text that is closely related to the reasoning task. This has been shown to improve the275

performance [17, 34], but it can be computationally expensive, especially for larger models. Addi-276

tionally, fine-tuning often demands domain-specific data and human expertise, adding to the cost.277

[6] has demonstrated the capabilities of LLMs in tackling novel tasks with little or no training data.278

The FEW-SHOT method inserts k in-context input-output pairs before the test input and has been279

shown to significantly improve the performance of the LLM on unseen tasks. Recent research has280

proposed strategies to improve the selection of in-context demonstrations, such as retrieving seman-281

tically similar examples [27], employing chain-of-thought reasoning [37], and decomposing tasks282

into sub-problems using least-to-most prompting [46]. In this work, we focus on evaluating and283

enhancing LLMs on basic graph reasoning tasks. We exploit some of the ideas in the literature and284

compare their results.285

Text-based reasoning with LLMs. Numerous models have been proposed for text-based reasoning286

employing LLMs (see [20] for a survey). One approach to reasoning with LLMs is modular reason-287

ing. This methodology divides the problem into smaller modules, utilizing distinct LMs to address288

each module [46, 22, 23]. Another approach to reasoning with LLMs aims to predict the output of a289

question in a single LM call. This study primarily focuses on the latter method.290

Knowledge-Augmented LLMs. Another body of work is concerned with the use of knowledge291

(frequently stored in knowledge graphs (KGs)) to improve LLM understanding of the world [31].292

Several different methodologies have been proposed which range from generating additional training293

data from KGs [15, 26, 1] to extending pretraining [40, 21].294

Reasoning on graphs using LLMs. The combination of graph learning and reasoning with LLMs295

is a rapidly growing area. InstructGLM [41] proposed an instruction-finetuned LLM for performing296

node classification. [8] used LLMs as enhancers to exploit text attributes to be used in a graph297

learning model or as predictors for node classification on text-attributed graphs. The closest work to298

ours is [36], which proposed a set of tasks for benchmarking LLMs on graphs. However, this work299

omitted several natural graph tasks, lacked variety in the type of graph structure considered, and300

fixed the graph and question encoder function. They conclude that LLMs have preliminary graph301

reasoning abilities on somewhat complex graph tasks.302

Present work. In this study, we focus on basic graph tasks, which are essential intermediate steps for303

more complex reasoning tasks on graphs. We conduct extensive experiments on graph and question304

encoder functions, as well as a wide range of graph generator functions. We provide an extensive305

study of graph encoding methods for black-box LLM usage, and introduce GraphQA, a new graph306

benchmark that illustrates the effect of graph structure on LLM encoding. We also provide insights307

and best practices for encoding graphs as text for use in LLMs.308

6 Conclusions309

In this work, we have presented the first comprehensive study of encoding graph-structured data as310

text for consumption by LLMs. We show that LLM performance on graph reasoning tasks varies311

on three fundamental levels: (1) the graph encoding method, (2) the nature of the graph task it-312

self, and (3) interestingly, the very structure of the graph considered. These novel results provide313

valuable insight on strategies for encoding graphs as text – which can boost performance on graph314

reasoning tasks inside LLMs by 4.8% to 61.8%. We believe that this is a fruitful avenue for further315

investigation, and hope that our GraphQA benchmark tasks inspire additional work in the area.316
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Figure 5: Running example graph for all graph encoder functions.

A Appendix447

A.1 Graph Encoding Function448

We conducted an investigation into various methodologies for representing graphs as text. This449

process of encoding graphs as text can be separated into two key inquiries: First, the encoding of450

nodes within the graph, and second the encoding of edges between the nodes.451

Encoding Nodes. Regarding the encoding of nodes, we examined several techniques, including:452

• Integer encoding (e.g., Node 0).453

• Utilizing well-known English first names (e.g., David).454

• Utilizing popular character names in television series Game of Thrones and South Park.455

• Incorporating the first names of American politicians.456

• Employing alphabet letters for representation.457

Representing Edges. Regarding the encoding of the edges, we examined the following techniques:458

• Parenthesis: describing edges as (source node, target node).459

• Friendship: source node and target node are friends.460

• Coauthorship: source node and target node wrote a paper together.461

• Social network: source node and target node are connected.462

• Arrows: source node −→ target node.463

• Incident: source node is connected to target nodes.464

Combining the node and edge encoding, we start with the following list of graph encoder functions:465

• Adjacency. using integer node encoding and parenthesis edge encoding.466

• Incident. using integer node encoding and incident edge encoding.467

• Friendship. using well-known english first names as node encoding and friendship edge468

encoding.469

• Co-authorship. using well-known english first names as node encoding and coauthorship470

edge encoding.471

• SP. using South Park character names as node encoding and friendship as edge encoding.472

• GOT. using Game of Thrones character names as node encoding and friendship as edge473

encoding.474

• Social network. using well-known English first names and social network edge encoding.475

• Politician. using politician American politician first names and social network edge en-476

coding.477

• Expert. employing alphabet letters for node encoding and arrows as edge encoding. The478

encoding starts with “You are a graph analyst” (expert prompting [43]).479
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Here, we provide the full details for the graph encoding functions for the graph example in Figure 5.480

Adjacency: In an undirected graph, (i,j) means that node i and node j are connected with an undi-
rected edge. G describes a graph among nodes 0, 1, 2, 3, 4, 5, 6, 7, and 8.
The edges in G are: (0, 1) (0, 2) (1, 2) (2, 3) (2, 4) (2, 5) (2, 7) (3, 8) (5, 6) (6, 7) (7, 8).

481

Incident: G describes a graph among 0, 1, 2, 3, 4, 5, 6, 7, and 8.
In this graph:
Node 0 is connected to nodes 1, 2.
Node 1 is connected to nodes 0, 2.
Node 2 is connected to nodes 0, 1, 3, 4, 5, 7.
Node 3 is connected to nodes 2, 8.
Node 4 is connected to node 2.
Node 5 is connected to nodes 2, 6.
Node 6 is connected to nodes 7, 5.
Node 7 is connected to nodes 2, 8, 6.
Node 8 is connected to nodes 3, 7.

482

Co-authorship: G describes a co-authorship graph among James, Robert, John, Michael, David,
Mary, Patricia, Jennifer, and Linda.
In this co-authorship graph:
James and Robert wrote a paper together.
James and John wrote a paper together.
Robert and John wrote a paper together.
John and Michael wrote a paper together.
John and David wrote a paper together.
John and Mary wrote a paper together.
John and Jennifer wrote a paper together.
Michael and Linda wrote a paper together.
Mary and Patricia wrote a paper together.
Patricia and Jennifer wrote a paper together.
Jennifer and Linda wrote a paper together.

483

Friendship: G describes a friendship graph among James, Robert, John, Michael, David, Mary,
Patricia, Jennifer, and Linda.
We have the following edges in G:
James and Robert are friends.
James and John are friends.
Robert and John are friends.
John and Michael are friends.
John and David are friends.
John and Mary are friends.
John and Jennifer are friends.
Michael and Linda are friends.
Mary and Patricia are friends.
Patricia and Jennifer are friends.
Jennifer and Linda are friends.

484

SP: G describes a friendship graph among Eric, Kenny, Kyle, Stan, Tolkien, Heidi, Bebe, Liane, and
Sharon.
In this friendship graph:
Eric and Kenny are friends, Eric and Kyle are friends, Kenny and Kyle are friends, Kyle and Stan are
friends, Kyle and Tolkien are friends, Kyle and Heidi are friends, Kyle and Liane are friends, Stan
and Sharon are friends, Heidi and Bebe are friends, Bebe and Liane are friends, Liane and Sharon
are friends.

485
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GOT: G describes a friendship graph among Ned, Cat, Daenerys, Jon, Bran, Sansa, Arya, Cersei,
and Jaime.
In this friendship graph: Ned and Cat are friends, Ned and Daenerys are friends, Cat and Daenerys
are friends, Daenerys and Jon are friends, Daenerys and Bran are friends, Daenerys and Sansa are
friends, Daenerys and Cersei are friends, Jon and Jaime are friends, Sansa and Arya are friends,
Arya and Cersei are friends, Cersei and Jaime are friends.

486

Social Network: G describes a social network graph among James, Robert, John, Michael, David,
Mary, Patricia, Jennifer, and Linda.
We have the following edges in G:
James and Robert are connected.
James and John are connected.
Robert and John are connected.
John and Michael are connected.
John and David are connected.
John and Mary are connected.
John and Jennifer are connected.
Michael and Linda are connected.
Mary and Patricia are connected.
Patricia and Jennifer are connected.
Jennifer and Linda are connected.

487

Politician: G describes a social network graph among Barack, Jimmy, Arnold, Bernie, Bill, Kamala,
Hillary, Elizabeth, and John.
We have the following edges in G:
Barack and Jimmy are connected.
Barack and Arnold are connected.
Jimmy and Arnold are connected.
Arnold and Bernie are connected.
Arnold and Bill are connected.
Arnold and Kamala are connected.
Arnold and Elizabeth are connected.
Bernie and John are connected.
Kamala and Hillary are connected.
Hillary and Elizabeth are connected.
Elizabeth and John are connected.

488

Expert: You are a graph analyst and you have been given a graph G among A, B, C, D, E, F, G, H,
and I. G has the following undirected edges:
A -> B
A -> C
B -> C
C -> D
C -> E
C -> F
C -> H
D -> I
F -> G
G -> H
H -> I

489

A.2 Graph Tasks490

GraphQA consists of a diverse set of basic graph problems, including:491

• Edge existence. Determine whether a given edge exists in a graph.492

• Node degree. Calculate the degree of a given node in a graph.493

• Node count. Count the number of nodes in a graph.494

• Edge count. Count the number of edges in a graph.495
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• Connected nodes. Find all the nodes that are connected to a given node in a graph.496

• Cycle check. Determine whether a graph contains a cycle.497

• Disconnected nodes. Find all the nodes that are not connected to a given node in a graph.498

These tasks are all relatively simple, but they require LLMs to be able to reason about the rela-499

tionships between nodes and edges in a graph. While adhering to basic graph tasks, we aimed for500

a diverse set of tasks, including discriminative (e.g., cycle check) and generative (e.g., connected501

or disconnected nodes) challenges. These tasks covered various aspects of graph analysis, from502

existence checks (e.g., edge existence) to quantitative assessments (e.g., node count), path analysis503

(e.g., cycle check), recall-based tasks (e.g., connected nodes), and null space exploration (e.g., dis-504

connected nodes).505

The basic graph tasks listed above are all essential intermediate steps for more complex reasoning506

tasks on graphs. For example, to determine the shortest path between two nodes in a graph, we507

must first be able to find all the nodes that are connected to a given node. To detect communities508

in a graph, we must first be able to identify all the cycles in the graph. To find the most influential509

node in a graph, we must first be able to calculate the degree of each node. These tasks are essential510

building blocks for more complex reasoning tasks on graphs.511

A.3 Graph Encoder Rankings512

To provide recommendations about the best graph encoding function to use for each prompt type,513

we rank the encoders by their average standing (in rank order) on each graph task. The results are514

presented in Table 5, where a lower number is better (the encoder ranked higher on average). We515

note that for most prompting methods, incident encoding performed the best. However, for ZERO-516

SHOT graph prompting, node tokens with more established representations (such as politicians or517

popular fantasy characters) outperformed incident encoding.518

Graph Encoder ZERO-SHOT ZERO-COT FEW-SHOT COT COT-BAG

Adjacency 4.83 3.25 2.16 3.00 1.83
Incident 6.16 2.58 2.00 2.33 1.33
Co-authorship 6.08 6.33 5.58 6.75 8.83
Friendship 5.16 6.41 6.25 4.66 6.00
SP 5.16 4.50 5.25 5.75 4.66
GOT 4.33 4.08 5.83 5.00 6.25
Social Network 4.58 6.50 5.83 6.16 6.41
Politician 3.50 6.33 6.25 5.58 4.00
Expert 5.16 5.00 5.83 5.75 5.66

Table 5: Ranking of Graph Encoders from experiment in Section 3.1 (lower better).

A.4 Implementation Details519

For our experiments, we used PaLM 62B and PaLM 2 (various sizes) served on a 4 × 4 TPU520

v4 architecture. The decoding temperature was set to zero. We used the NetworkX library [16]521

to generate the random graphs and to find the answers to the graph tasks. To generate random522

graphs, we use Erdős-Rényi (ER) graphs [14], scale-free networks (SFN) [4], Barabási–Albert (BA)523

model [2], and stochastic block model (SBM) [18], in addition to star, path, and complete graph524

generators. To generate graphs, we sampled 500 graphs for each of the following algorithms: ER,525

BA, SFN, and SBM. We sampled 100 graphs for path, complete, and star graphs, as these have less526

variety. All graphs had between 5 and 20 nodes. For ER graphs, we sampled the probability for527

edge creation from [0, 1]. For SBM graphs, number of communities has been sampled from 2 to 10.528

We are committed to open-sourcing both our code and data upon the acceptance of our paper.529

A.5 Evaluating More LLMs for Graph Tasks with Different Graph Encoding Functions530

We compared different graph encoder functions on a PaLM 62B [9] in Section 3.1. Here, we provide531

the results of the same experiment on PaLM 2 XXS, XS, S, and L [3] in Tables 6, 8 and 10. We also532
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provide results for some instruction-finetuned Flan [10] checkpoints of the same models in Tables 7533

and 9.534

Method Encoding function Edge Existence Node degree Node count Edge count Connected nodes Cycle check

Z
E

R
O

-S
H

O
T

Overall 47.2 11.3 8.7 6.4 7.2 61.5
Adjacency 48.4 14.4 6.2 4.0 17.6 82.6
Incident 45.2 13.4 7.2 5.2 11.2 68.4

Co-authorship 45.4 10.8 7.4 4.6 5.2 66.4
Friendship 42.8 10.8 5.4 5.6 1.6 65.2

SP 56.6 11.0 7.2 5.8 3.0 26.6
GOT 56.4 7.8 6.0 7.0 2.0 51.8

Social Network 51.2 11.0 7.8 5.4 5.2 74.4
Politician 40.6 12.0 9.4 6.8 10.0 73.2

Expert 38.0 10.4 21.4 12.8 9.0 45.2

Z
E

R
O

-C
O

T

Overall 34.1 8.6 1.7 2.2 6.0 13.7
Adjacency 20.2 19.0 2.4 2.0 9.0 16.4
Incident 45.0 36.0 1.2 6.0 16.0 37.8

Co-authorship 48.8 22.0 0.8 4.4 11.8 31.6
Friendship 43.2 0.2 0.6 1.6 2.0 10.8

SP 30.8 0 1.2 0.6 1.0 3.0
GOT 21.8 0 1.2 0.6 2.6 4.8

Social Network 39.4 0 5.0 1.8 4.8 6.2
Politician 40.6 0 2.2 2.6 5.2 7.0

Expert 16.8 0 0.4 0.6 1.6 6.0

F
E

W
-S

H
O

T

Overall 42.7 10.3 23.9 10.2 13.3 26.0
Adjacency 50.2 11.8 77.6 27.0 17.4 83.4
Incident 46.6 12.8 58.4 19.8 18.4 57.8

Co-authorship 44.2 7.6 31.0 11.8 11.4 31.0
Friendship 42.8 9.6 8.8 7.4 11.8 7.2

SP 29.4 10.4 9.6 4.6 11.6 7.0
GOT 26.0 10.0 8.2 5.4 9.0 9.8

Social Network 40.4 9.4 8.4 4.2 12.0 11.2
Politician 50.6 8.2 7.2 6.0 12.6 12.0

Expert 54.0 12.6 6.0 6.0 15.8 14.6

C
O

T

Overall 50.6 24.7 22.8 9.3 13.3 77.0
Adjacency 51.0 80.8 72.2 22.0 19.6 84.0
Incident 48.6 55.0 54.4 17.2 17.2 81.6

Co-authorship 51.4 31.2 29.8 10.0 12.2 80.6
Friendship 50.4 8.8 8.4 4.2 10.2 77.4

SP 52.2 9.4 10.0 6.6 12.0 74.6
GOT 51.4 9.2 8.0 5.6 10.4 70.4

Social Network 53.8 8.6 7.8 5.8 8.4 76.0
Politician 47.0 9.4 8.4 6.4 13.8 75.8

Expert 49.6 10.2 6.4 5.6 15.6 72.6

C
O

T-
B

A
G

Overall 50.3 23.7 19.4 9.2 13.6 68.4
Adjacency 49.6 73.0 57.8 22.8 17.6 82.4
Incident 49.6 53.4 46.6 17.6 14.4 77.2

Co-authorship 50.4 30.4 28.4 10.2 14.6 74.0
Friendship 48.8 8.4 6.2 5.2 9.2 65.8

SP 50.4 7.0 6.8 5.0 12.4 61.2
GOT 51.8 11.0 6.0 5.0 13.2 57.2

Social Network 55.8 10.6 9.4 4.6 11.0 59.4
Politician 49.2 9.4 6.0 6.6 16.0 69.6

Expert 47.4 10.2 7.4 6.2 14.2 68.6

Table 6: Comparing different graph encoder functions on different graph tasks for PaLM 2 XXS.
The most effective prompting heuristic is highlighted with an underline, and the top-performing
graph function encoder for the respective heuristic is highlighted in bold.
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Method Encoding function Edge Existence Node degree Node count Edge count Connected nodes Cycle check

Z
E

R
O

-S
H

O
T

Overall 56.6 11.1 11.7 3.9 8.2 20.8
Adjacency 57.6 10.4 10.0 4.6 15.6 23.4
Incident 59.8 12.2 11.8 4.2 11.6 32.4

Co-authorship 58.2 10.8 9.8 5.0 6.8 25.8
Friendship 57.2 11.0 11.6 2.6 3.0 18.4

SP 54.8 11.4 15.4 3.0 5.8 17.0
GOT 51.2 9.0 16.2 3.4 5.2 16.6

Social Network 54.4 11.8 11.0 3.2 6.6 15.2
Politician 55.8 12.2 8.0 4.8 7.6 18.4

Expert 60.2 11.0 11.8 4.0 11.4 19.6

Z
E

R
O

-C
O

T

Overall 45.9 17.6 11.2 9.7 14.4 33.9
Adjacency 51.2 26.2 5.2 16.6 19.2 70.6
Incident 52.4 38.8 6.0 13.6 16.8 46.4

Co-authorship 47.0 25.0 10.8 12.4 13.8 32.8
Friendship 47.2 10.0 16.6 9.2 11.4 21.4

SP 39.4 9.0 12.8 9.2 14.2 22.6
GOT 40.8 9.4 11.6 7.8 11.0 17.4

Social Network 47.2 10.0 12.4 7.2 11.6 15.2
Politician 48.2 13.0 13.6 6.2 12.8 22.8

Expert 39.8 16.8 11.6 4.8 19.0 56.2

F
E

W
-S

H
O

T

Overall 54.1 10.0 11.9 4.9 8.6 82.6
Adjacency 53.2 11.2 16.2 4.6 9.2 82.8
Incident 53.2 11.4 23.0 5.6 9.0 80.2

Co-authorship 54.2 10.8 13.0 4.6 8.4 84.4
Friendship 56.0 8.4 9.4 4.8 8.4 81.0

SP 59.0 9.0 10.4 5.4 8.8 84.2
GOT 52.8 8.8 9.4 5.8 8.6 84.6

Social Network 50.6 9.8 8.8 4.2 7.8 85.4
Politician 51.4 7.6 7.8 5.2 9.4 80.2

Expert 56.6 12.8 9.2 3.8 8.0 80.8

C
O

T

Overall 56.4 20.0 17.3 6.6 8.0 82.7
Adjacency 57.4 51.6 31.8 14.8 10.4 80.0
Incident 56.4 41.0 37.0 10.8 11.2 80.8

Co-authorship 54.4 28.6 19.6 7.2 7.6 83.4
Friendship 58.0 11.0 11.6 4.0 6.0 81.6

SP 62.4 10.4 12.2 3.4 5.4 84.4
GOT 54.4 11.2 13.2 4.2 5.4 84.0

Social Network 56.0 8.2 12.4 3.8 6.0 86.0
Politician 53.8 8.4 9.6 6.4 8.2 80.8

Expert 55.2 9.8 8.6 5.0 11.6 83.0

C
O

T-
B

A
G

Overall 52.6 19.6 17.7 8.1 8.1 82.1
Adjacency 53.4 50.2 30.4 17.4 10.2 81.2
Incident 49.4 44.0 33.2 16.6 9.0 79.8

Co-authorship 52.4 26.4 22.6 8.4 7.0 85.2
Friendship 50.8 10.2 12.6 4.6 5.2 80.0

SP 56.6 8.8 13.4 4.0 5.8 82.4
GOT 52.6 11.0 12.8 5.4 6.4 82.4

Social Network 54.0 8.0 12.6 5.4 7.8 82.2
Politician 51.0 9.2 10.8 5.0 9.2 83.0

Expert 53.2 9.0 10.6 5.8 12.6 82.8

Table 7: Comparing different graph encoder functions on different graph tasks for Flan-PaLM
2 XXS. The most effective prompting heuristic is highlighted with an underline, and the top-
performing graph function encoder for the respective heuristic is highlighted in bold.
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Method Encoding function Edge Existence Node degree Node count Edge count Connected nodes Cycle check

Z
E

R
O

-S
H

O
T

Overall 49.9 23.0 28.7 21.3 10.1 15.6
Adjacency 50.8 22.4 11.4 22.2 25.8 21.8
Incident 50.6 36.6 11.2 11.0 31.0 30.6

Co-authorship 48.2 21.4 31.0 17.8 11.6 6.8
Friendship 49.2 20.6 36.2 24.0 4.2 0

SP 52.4 22.6 38.4 25.8 2.8 0.4
GOT 53.8 17.8 32.2 25.8 1.8 0

Social Network 44.6 22.4 35.8 24.4 2.0 0
Politician 49.0 21.4 32.8 21.8 5.2 15.2

Expert 50.2 22.0 29.6 18.6 6.6 65.4

Z
E

R
O

-C
O

T

Overall 43.7 3.8 16.9 9.9 15.2 14.2
Adjacency 48.2 16.6 3.0 18.4 26.6 40.4
Incident 53.6 10.6 2.6 6.2 50.8 43.6

Co-authorship 46.8 2.6 9.2 2.2 19.6 8.6
Friendship 32.8 0.4 18.4 12.6 3.2 3.6

SP 40.2 0.4 21.4 4.0 4.8 7.6
GOT 41.2 0.2 20.8 3.8 3.6 2.8

Social Network 47.2 0 25.4 12.4 3.8 1.4
Politician 47.0 0.8 27.6 15.6 4.8 10.0

Expert 36.0 3.0 23.8 14.0 19.4 10.2

F
E

W
-S

H
O

T

Overall 40.4 22.3 26.0 18.7 16.5 27.2
Adjacency 42.2 23.2 43.2 29.6 21.4 58.0
Incident 48.6 35.4 58.8 31.8 34.0 41.2

Co-authorship 42.6 24.0 22.2 18.2 15.2 29.4
Friendship 45.0 17.4 16.8 13.8 13.2 18.2

SP 36.6 23.6 16.2 16.0 13.0 20.2
GOT 32.4 19.6 17.2 17.8 10.6 17.0

Social Network 41.6 20.8 18.4 14.4 12.8 21.0
Politician 43.0 16.2 17.6 12.8 11.6 26.0

Expert 31.4 20.2 23.2 13.8 17.0 13.4

C
O

T

Overall 57.8 30.2 28.2 17.0 19.7 36.4
Adjacency 43.4 63.0 43.0 26.8 33.0 69.8
Incident 55.8 63.8 54.4 24.6 44.2 38.8

Co-authorship 59.6 27.2 25.2 13.4 17.2 40.6
Friendship 64.2 19.0 20.2 12.8 13.0 40.8

SP 62.0 19.2 18.0 16.6 15.0 10.2
GOT 62.4 19.6 20.6 17.4 12.2 6.2

Social Network 61.0 21.4 23.0 13.2 10.4 42.6
Politician 55.2 18.4 21.4 14.0 13.6 61.4

Expert 56.4 20.0 27.6 14.4 18.8 17.4

C
O

T-
B

A
G

Overall 58.9 29.6 30.0 15.8 20.0 37.1
Adjacency 49.8 57.8 43.0 26.4 32.8 71.2
Incident 57.4 61.8 50.0 23.8 41.8 55.8

Co-authorship 59.0 27.0 25.8 15.6 17.6 34.8
Friendship 66.2 22.6 22.6 10.0 10.2 38.2

SP 61.2 18.4 23.8 15.2 13.4 15.6
GOT 61.2 20.4 27.2 15.0 13.6 9.8

Social Network 60.6 19.2 24.8 10.8 13.4 35.8
Politician 54.8 17.8 23.2 11.2 15.4 53.6

Expert 60.0 21.4 29.6 14.4 21.8 19.2

Table 8: Comparing different graph encoder functions on different graph tasks for PaLM 2 XS. The
most effective prompting heuristic is highlighted with an underline, and the top-performing graph
function encoder for the respective heuristic is highlighted in bold.
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Method Encoding function Edge Existence Node degree Node count Edge count Connected nodes Cycle check

Z
E

R
O

-S
H

O
T

Overall 68.4 10.2 26.8 4.4 23.0 84.4
Adjacency 78.0 17.6 39.0 7.2 34.4 87.2
Incident 76.2 29.6 46.0 3.8 45.8 84.4

Co-authorship 64.8 11.2 23.6 3.4 20.8 84.6
Friendship 63.4 5.4 23.4 3.2 15.2 84.0

SP 59.2 5.4 16.8 2.8 16.0 84.0
GOT 62.6 4.6 19.6 3.2 18.2 83.2

Social Network 72.0 4.4 17.6 4.0 17.8 84.0
Politician 69.0 5.6 20.0 4.4 17.2 84.6

Expert 70.6 7.6 35.4 7.2 21.4 84.0

Z
E

R
O

-C
O

T

Overall 54.3 16.4 32.2 13.4 25.1 59.9
Adjacency 68.6 34.8 23.0 16.6 36.8 82.0
Incident 59.4 51.2 24.2 11.0 55.8 67.4

Co-authorship 51.8 15.0 25.8 11.8 26.6 41.4
Friendship 53.8 6.2 41.6 12.2 19.6 70.6

SP 49.4 5.8 33.6 13.8 14.4 37.0
GOT 47.0 7.6 27.6 12.8 16.6 38.6

Social Network 51.4 8.0 34.4 12.4 18.4 74.0
Politician 55.6 8.8 35.6 12.8 14.6 53.8

Expert 51.8 10.6 44.2 17.0 23.2 74.6

F
E

W
-S

H
O

T

Overall 70.9 13.2 21.4 10.0 10.4 87.2
Adjacency 72.0 22.4 33.2 14.4 12.2 86.6
Incident 81.8 27.0 33.6 7.2 22.0 83.4

Co-authorship 68.0 17.8 20.2 11.2 8.0 89.4
Friendship 66.8 7.2 17.0 9.0 4.8 86.8

SP 67.6 7.0 15.8 10.0 6.0 88.6
GOT 67.6 5.0 15.2 9.2 6.8 88.0

Social Network 70.6 10.2 14.6 9.0 6.6 88.2
Politician 71.2 8.6 16.4 9.0 6.6 87.6

Expert 72.4 13.6 26.2 11.2 20.8 86.4

C
O

T

Overall 71.9 23.8 20.7 12.6 14.0 86.7
Adjacency 76.0 72.4 30.2 25.6 16.6 85.4
Incident 77.0 63.4 32.8 18.0 23.2 82.2

Co-authorship 67.4 22.6 19.0 13.8 9.4 84.2
Friendship 69.0 7.4 17.6 7.8 10.2 88.8

SP 71.2 7.4 15.4 9.6 9.4 87.4
GOT 71.0 9.8 16.4 7.4 10.2 89.4

Social Network 75.0 6.8 11.4 8.0 8.0 88.4
Politician 72.4 10.2 15.4 11.0 13.4 89.8

Expert 68.2 14.6 28.4 11.8 25.2 84.8

C
O

T-
B

A
G

Overall 74.7 25.0 27.9 14.1 14.8 88.8
Adjacency 73.0 73.8 37.8 25.8 16.2 86.4
Incident 80.0 63.4 35.0 19.8 23.4 84.2

Co-authorship 72.4 25.2 28.8 13.8 11.2 86.0
Friendship 74.6 8.6 25.0 11.4 8.6 90.4

SP 74.4 9.0 23.6 10.6 9.6 90.0
GOT 75.6 8.0 24.8 10.2 12.4 91.8

Social Network 76.8 9.2 19.6 9.6 12.2 90.4
Politician 71.2 12.6 22.2 11.8 13.4 91.8

Expert 74.4 15.4 34.6 13.8 26.6 88.0

Table 9: Comparing different graph encoder functions on different graph tasks for Flan-PaLM 2
XS. The most effective prompting heuristic is highlighted with an underline, and the top-performing
graph function encoder for the respective heuristic is highlighted in bold.
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Method Encoding function Edge Existence Node degree Node count Edge count Connected nodes Cycle check

Z
E

R
O

-S
H

O
T

Overall 48.2 41.4 36.5 12.1 25.0 74.7
Adjacency 47.2 33.6 14.0 19.0 32.8 83.6
Incident 44.0 68.8 15.0 19.8 72.2 82.2

Co-authorship 49.2 36.2 41.6 12.6 14.0 57.8
Friendship 50.4 36.8 46.6 8.6 17.0 83.4

SP 50.0 35.6 51.6 8.0 18.2 40.6
GOT 51.6 36.4 49.0 11.2 15.8 75.0

Social Network 47.0 42.0 48.4 9.6 19.0 83.2
Politician 49.0 41.2 37.8 7.6 14.2 83.6

Expert 45.8 41.8 24.8 12.4 22.0 82.6

Z
E

R
O

-C
O

T

Overall 37.0 7.4 31.3 13.1 14.7 16.5
Adjacency 46.0 36.0 20.4 20.4 15.6 69.6
Incident 51.2 26.8 7.8 12.0 72.4 46.6

Co-authorship 53.6 0.6 44.2 9.8 16.2 5.8
Friendship 34.6 0.4 36.4 15.8 5.2 4.8

SP 43.8 2.6 44.6 14.8 5.6 0.6
GOT 18.0 0 43.0 12.4 2.8 0.2

Social Network 35.2 0 38.0 22.6 2.6 3.4
Politician 30.4 0 30.2 7.0 2.2 1.4

Expert 20.0 0.4 17.0 3.0 9.6 16.4

F
E

W
-S

H
O

T

Overall 47.5 36.9 40.0 16.9 22.9 40.4
Adjacency 61.4 37.2 81.2 18.4 37.8 43.8
Incident 69.4 61.2 83.2 20.4 80.4 45.8

Co-authorship 28.2 33.4 31.2 15.8 12.2 20.2
Friendship 47.2 36.0 25.6 17.4 12.8 47.2

SP 45.6 30.6 29.4 15.8 13.8 46.4
GOT 26.2 29.2 27.4 18.2 12.0 37.8

Social Network 50.4 35.8 30.8 16.6 13.8 42.4
Politician 39.4 30.4 27.6 15.6 13.6 35.4

Expert 60.0 38.2 23.4 14.2 10.0 45.0

C
O

T

Overall 57.6 44.3 41.7 19.4 23.0 42.5
Adjacency 62.6 69.4 82.0 23.8 41.8 41.0
Incident 68.2 78.4 80.8 26.6 79.6 44.4

Co-authorship 46.8 36.0 35.2 16.6 12.8 34.6
Friendship 66.2 38.0 29.0 17.4 9.6 46.4

SP 66.4 32.4 29.2 17.6 13.8 45.6
GOT 50.6 30.4 28.0 19.2 8.2 24.2

Social Network 52.2 40.4 31.4 17.0 11.0 50.4
Politician 43.6 32.2 30.8 16.4 8.0 44.8

Expert 62.0 41.8 28.8 20.2 22.0 51.0

C
O

T-
B

A
G

Overall 55.2 43.7 44.4 20.8 22.7 39.6
Adjacency 54.0 66.2 85.2 25.8 40.6 41.6
Incident 59.4 77.2 89.0 24.8 81.6 42.8

Co-authorship 41.8 38.4 35.0 18.8 11.8 29.4
Friendship 66.0 36.8 31.8 22.2 6.6 48.8

SP 63.8 30.2 31.0 17.8 10.2 33.8
GOT 59.2 32.2 31.0 19.4 10.0 21.4

Social Network 49.8 39.4 34.0 20.6 12.2 47.6
Politician 47.8 32.4 32.8 16.8 6.2 38.6

Expert 55.4 40.6 30.0 21.0 25.4 52.8

Table 10: Comparing different graph encoder functions on different graph tasks for PaLM 2 S. The
most effective prompting heuristic is highlighted with an underline, and the top-performing graph
function encoder for the respective heuristic is highlighted in bold.
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Method Encoding function Edge Existence Node degree Node count Edge count Connected nodes Cycle check

Z
E

R
O

-S
H

O
T

Overall 47.5 55.1 76.3 30.6 19.5 83.3
Adjacency 43.6 49.6 100.0 36.8 55.6 83.8
Incident 48.6 85.0 98.6 6.6 88.0 83.2

Co-authorship 48.0 55.2 67.4 32.4 1.6 83.2
Friendship 48.0 50.8 63.2 31.2 0.2 83.2

SP 49.2 49.8 56.4 30.8 6.6 83.2
GOT 51.0 52.6 70.6 34.8 6.2 83.2

Social Network 46.0 50.2 61.0 31.6 0 83.2
Politician 50.0 52.8 70.8 32.2 1.0 83.2

Expert 43.0 50.2 98.6 39.4 16.0 83.2

Z
E

R
O

-C
O

T

Overall 41.6 7.9 73.9 24.4 39.5 22.4
Adjacency 31.6 13.2 66.4 25.2 61.6 52.0
Incident 52.0 54.8 75.0 9.8 84.4 55.2

Co-authorship 43.4 0.8 81.8 31.6 27.8 9.0
Friendship 46.0 0.6 80.2 26.2 20.4 8.4

SP 38.6 0 78.6 27.6 41.0 0.2
GOT 38.8 0.4 68.6 30.0 29.8 1.0

Social Network 47.8 0 78.4 30.2 28.2 6.4
Politician 51.4 1.2 66.6 29.2 17.2 11.6

Expert 24.8 0.2 69.4 9.6 45.0 57.4

F
E

W
-S

H
O

T

Overall 41.5 55.8 60.3 35.9 46.1 73.8
Adjacency 49.2 61.0 97.6 43.2 66.4 78.4
Incident 73.2 82.4 99.2 37.4 85.6 78.4

Co-authorship 16.4 51.4 45.4 32.2 36.8 73.6
Friendship 32.6 53.0 45.6 35.2 44.2 79.4

SP 33.2 45.6 40.6 35.2 30.6 57.8
GOT 30.0 48.6 41.6 38.2 36.0 61.4

Social Network 40.4 51.4 44.0 32.4 38.2 79.0
Politician 39.4 53.6 46.2 35.2 32.2 77.6

Expert 59.2 55.0 82.8 34.0 45.0 78.6

C
O

T

Overall 52.2 59.7 62.2 34.4 45.2 72.7
Adjacency 53.6 81.4 98.0 42.2 66.6 66.8
Incident 72.4 94.6 98.8 29.8 87.2 68.6

Co-authorship 42.4 55.0 45.0 33.8 37.0 69.4
Friendship 55.0 48.8 45.0 33.4 40.8 80.6

SP 54.4 48.4 44.6 34.2 26.2 71.0
GOT 51.4 51.2 46.2 35.2 29.4 65.4

Social Network 42.8 51.4 43.6 32.4 39.8 77.0
Politician 36.8 53.0 50.4 33.0 30.2 76.8

Expert 60.8 53.2 88.4 35.8 49.6 78.6

C
O

T-
B

A
G

Overall 60.4 60.0 63.1 34.6 45.0 69.2
Adjacency 64.6 78.0 98.6 39.4 64.2 70.4
Incident 71.6 95.4 99.4 32.2 89.0 70.8

Co-authorship 52.0 55.8 48.6 33.0 36.8 63.0
Friendship 64.8 49.6 45.6 32.6 36.4 71.8

SP 65.8 51.6 44.2 33.0 26.4 69.4
GOT 65.0 50.2 44.6 38.6 29.6 64.0

Social Network 48.4 53.6 46.4 31.2 45.6 72.0
Politician 50.4 53.0 51.0 33.8 24.2 63.4

Expert 61.2 52.6 89.6 37.2 52.8 78.4

Table 11: Comparing different graph encoder functions on different graph tasks for PaLM 2 L. The
most effective prompting heuristic is highlighted with an underline, and the top-performing graph
function encoder for the respective heuristic is highlighted in bold.

22


	Introduction
	Prompting LLMs for Graph Reasoning
	Prompt Engineering
	Prompting Heuristics

	Talk Like a Graph: Encoding Graphs via Text
	Experiment 1: Varying Graph Encoder Functions
	Results

	Experiment 2: Varying Prompt Questions
	Experiment 3: Multiple Relation Encoding
	Experiment 4: Model Capacity and Graph Reasoning Ability
	Experiment 5: Reasoning in the Absence of Edges

	Does the structure of the graph matter for the LLM?
	Random Graph Generation
	Results on Random Graph Generators

	Related Work
	Conclusions
	Appendix
	Graph Encoding Function
	Graph Tasks
	Graph Encoder Rankings
	Implementation Details
	Evaluating More LLMs for Graph Tasks with Different Graph Encoding Functions


