
Improved Algorithms for Kernel Matrix-Vector Multiplication

Piotr Indyk * 1 Michael Kapralov * 2 Kshiteej Sheth * 2 Tal Wagner * 3

Abstract

Motivated by the problem of fast processing
of attention matrices, we study fast algorithms
for computing matrix-vector products for asym-
metric Gaussian Kernel matrices K ∈ Rn×n.
K’s columns are indexed by a set of n keys
k1, k2 . . . , kn ∈ Rd, rows by a set of n queries
q1, q2, . . . , qn ∈ Rd, and its i, j entry is Kij =

e−∥qi−kj∥2
2/2σ

2

for some bandwidth parameter
σ > 0. Given a vector x ∈ Rn and error parame-
ter ϵ > 0, our task is to output a y ∈ Rn such that
∥Kx−y∥2 ≤ ϵ∥x∥2 in time subquadratic in n and
linear in d. Our algorithms rely on the following
modelling assumption about the matrices K: the
sum of the entries of K scales linearly in n, as op-
posed to worst case quadratic growth. We validate
this assumption experimentally, for Gaussian ker-
nel matrices encountered in various settings such
as fast attention computation in LLMs. Under this
assumption, we obtain the first subquadratic time
algorithm for kernel matrix-vector multiplication
for unrestricted vectors.

1. Introduction

Linear-algebraic operations on kernel matrices play an im-
portant role in machine learning. One of the most widely
used operation computes a product of a Gaussian kernel
matrix with another matrix or a vector. Formally, let
k : Rd×Rd → R+ be such that k(x, y) = e−∥x−y∥2

2/2σ for
some parameter σ > 0. The kernel matrix is defined by two
sets, keys {k1, k2, . . . , kn} and queries {q1, q2, . . . , qn},
where ki’s and qi’s are elements of Rd. The entries of
K are defined as Ki,j = k(qi, kj) for all i, j ∈ [n]. The
computational task is defined as follows: given ki’s, qi’s

*Equal contribution 1CSAIL MIT, USA. 2School of Computer
and Communication Sciences EPFL, Switzerland. 3School of
Computer Science Tel Aviv University, Israel.. Correspondence to:
Kshiteej Sheth <kshiteejsheth96@gmail.com>.

Proceedings of the 1 st Workshop on Long-Context Foundation
Models, Vienna, Austria. 2024. Copyright 2024 by the author(s).

and x ∈ Rn, compute the product Kx, or its approximation.
In typical applications, both n, d are large but n ≫ d.

The kernel matrix-vector product has many applications in
machine learning and artificial intelligence. For example,
if x is the all-ones vector, this operation corresponds to
Kernel Density Estimation, a classic tool in non-parametric
statistics, where the kernel function is used to extend the
empirical distribution function over a discrete set of points
smoothly to the whole space. More recently, the problem
emerged as a key computational subroutine in transform-
ers (Vaswani et al., 2017). One of the key computational
task in training and inference of transformers is to compute
the product AV , where Ai,j = e⟨qi,kj⟩/

√
d is the “attention

matrix“ and V consists of d column vectors xi. A recent
paper (Zandieh et al., 2023) gave a reduction that replaces
attention matrices with Gaussian kernel matrices, so that the
algorithms for Gaussian kernel matrices could be applied
to attention matrices as well. A fast kernel matrix vector
product for Gaussian kernel matrices can then not only be
used for fast attention computation but for other important
computational tasks such as investigating the spectrum of
attention matrices quickly by computing its eigenvalues us-
ing the kernel noisy power method presented in the work
of (Backurs et al., 2021). Thus our motivation is to study
the kernel matrix vector product, rather than solely focus on
fast attention computation which is the case in the works of
(Zandieh et al., 2023; Han et al., 2023) for example.

A direct algorithm for kernel matrix-vector product takes
time O(n2d). The quadratic dependence on n has been
widely identified as a significant bottleneck in many appli-
cations, including transformers (Kitaev et al., 2020; Choro-
manski et al., 2021; Beltagy et al., 2020; Chen et al.,
2021; Wang et al., 2020; Zaheer et al., 2020; Xiong et al.,
2021; Zandieh et al., 2023; Han et al., 2023). Unfortu-
nately, (Backurs et al., 2017; Keles et al., 2023; Alman &
Song, 2024) gave evidence that algorithms that compute
Kx or AV in time sub-quadratic in n are unlikely to ex-
ist for high-precision algorithms (i.e. algorithms that can
achieve 1/poly(n) error in polynomial time), in the worst
case. In the low precision (i.e. algorithms that can achieve
1/poly(log n) error in polynomial time) high dimensional
regime, the work of (Backurs et al., 2021) gave a o(n2)
time approximate kernel matrix vector product algorithm,
however it could only handle multiplying the matrix with

1

Improved Algorithms for Kernel Matrix-Vector Multiplication

non-negative vectors. This forms the baseline for our work.

Most of the algorithmic efforts have focused on designing
approximation algorithms for the special cases of matrices
which occur in practice. The contributions of these studies1

are two-fold. First, they identify classes of matrices that
accurately model the matrices occurring in practice. Second,
they develop efficient algorithms for the identified classes
of matrices.

1.1. Our Results

In this paper we present a new model for Gaussian ker-
nel matrices that are observed in practice especially in the
context of large language models, and propose improved
approximate matrix-vector multiplication algorithms. For-
mally, for an error parameter ϵ > 0, keys k1 . . . kn and
queries q1 . . . qn defining K, and a vector x, we want to
output a vector y in time o(n2) · poly(d, 1/ϵ) such that
∥Kx− y∥2 ≤ ϵ∥x∥2.

It has been observed in practice that on average over an
input sequence of length n, each token in the sequence has
high correlation with only few other tokens. This implies for
self-attention, Gaussian kernel and other similarity matrices
there are about n large entries. This motivates our modelling
assumption about Gaussian kernel matrices K:

The ratio of the sum of all except the largest
n entries of K (i.e. the sum of the tail of K)
and the sum of the largest n entries of K (i.e.
the sum of the head of K) is at most a constant
c > 0 independent of n.

(A)

We start by introducing our main computation problem of
interest: multiplying the dot product self-attention matrix
by a vector, an operation that naturally arises in widely used
Transformer models (Vaswani et al., 2017). Consider a se-
quence of n tokens. For each token i there is key, query and
value embedding denoted by ki, qi, vi ∈ Rd respectively,
for all i ∈ [n]. We use Q,K, V ∈ Rn×d to denote the query
and key matrices whose ith rows are qi, ki, vi respectively
for all i ∈ [n]. Let A to denote the n × n un-normalized
attention matrix whose (i, j)th entry is e⟨qi,kj⟩/

√
d for all

(i, j) ∈ [n]× [n]. Thus A = exp(QKT /
√
d) where exp(.)

is entry wise exponentiation. Let D = diag(A1n) denote
the diagonal matrix containing the row sums of A on the
corresponding diagonal entry. The main computational prob-
lem in self-attention is to compute D−1AV , which naively
takes Ω(n2 · d) time.

Consider the computational problem of computing the
matrix-vector product Ax for an arbitrary vector x ∈ Rn.
When x = 1n, the all ones vector, then A1n will be the

1See Related work for the overview.

vector of row sums and thus can be used to compute the
diagonal scaling matrix D = diag(A1n). Finally for the
value embedding of each token vi we can compute Avi for
all i ∈ [n] to compute AV . We will now use the following
lemma to reduce this problem to an instance of the problem
we study - Gaussian kernel matrix-vector computation. We
note that a similar reduction from attention matrices to Gaus-
sian kernel matrices was presented in (Zandieh et al., 2023);
the new reduction we give here is preferable, as it has better
precision guarantees, and is also independent on the vector
x being multiplied with the attention matrix (thus, our re-
duction need only be performed once per matrix, rather than
once per matrix-vector pair as in (Zandieh et al., 2023)).

Lemma 1.1. For any collection of vectors
{ki}ni=1, {qi}ni=1 ⊆ Rd, there exists a corresponding
collection of vectors {k′i}ni=1, {q′i}ni=1 ⊆ Rd+1 such that
for any vector x ∈ Rd,∑

j∈[n]

xje
⟨qi,kj⟩√

d =e∥qi∥
2
2 · emaxj∈[n] ∥kj∥2

2

·
∑
j∈[n]

xje
−

∥q′i−k′
j∥

2
2

2
√

d ∀i ∈ [n].

Thus for A the attention matrix corresponding to keys and
queries {ki}ni=1, {qi}ni=1 ⊆ Rd and K the Gaussian Ker-
nel matrix corresponding to modified keys and queries
{k′i}ni=1, {q′i}ni=1 ⊆ Rd+1, Ax = SKx where S is a di-
agonal scaling matrix with Sii = e∥qi∥

2
2 · emaxj∈[n] ∥kj∥2

2 for
all i ∈ [n].

The previous lemma essentially allows us to compute Ax for
any x ∈ Rn for an attention matrix A by first computing the
Gaussian kernel matrix K naturally obtained from applying
Lemma 1.1 to A, then computing Kx.

Experimental Evaluation: In Section A.2 we empirically
evaluate our modelling assumption on real data. We con-
sider a collection of attention matrices obtained by running
BERT (Devlin et al., 2018) on random sentences from Stan-
ford Question Answering Dataset (Rajpurkar et al., 2016)
and use the previous lemma, Lemma 1.1 to obtain a Gaus-
sian kernel matrix for each attention matrix in this collection
(See Section A.2 for complete formal details). For each at-
tention head and layer in BERT, we compute the head-to-tail
ratio as defined in Assumption A for the Gaussian kernel
matrix as a function of matrix size. Our experiments in
Section A.2 shows that the maximum value of this ratio is at
most 3.1, over all sentences, heads, layers and matrix size
values. This confirms the validity of our assumption.

In Section A.2 we also investigate a stronger assumption,
where (informally) one postulates that there is a small uni-
form upper bound on the values of the entries in the tail
of the matrix, which is orders of magnitude smaller than

2

Improved Algorithms for Kernel Matrix-Vector Multiplication

the values of the entries in the head of the matrix.2 This is
similar to the assumption made in (Han et al., 2023), though
in this paper we consider it in the context of Gaussian ker-
nel matrices K, not attention matrices. Our experiments
indicate that this assumption does not model matrices K
well. Specifically, we show that the median ratio between
the smallest entry of the head (i.e., the nth largest entry of
K) and the largest entry of the tail (i.e., the (n+1)th largest
entry of K) is very close to 1. In fact, even the median ratio
between the nth and (2n)th largest entry is about 20 in most
cases. This demonstrates the usefulness of our assumption,
which quantifies the tail according to the ℓ1 norm, not the
ℓ∞ norm. Please refer to Section A.2 for precise details.

Algorithmic result: Our algorithmic result is encapsulated
by the following theorem.

Theorem 1.2. Suppose we are given error parameter ϵ > 0,
keys k1 . . . kn ∈ Rd and queries q1 . . . qn ∈ Rd defin-
ing Gaussian kernel matrix K, and a vector x. Under
the assumption that K satisfies Assumption A, then in
time Õ(dn1.89/ϵ2), the Algorithm 3 APPROXKMV outputs
y ∈ Rn such that it satisfies ∥Kx − y∥2 ≤ ϵ∥x∥2 with
probability 0.99.

The complete algorithm and its proof is presented in Section
A.3. Crucially, the running time is o(n2). Prior to our
work, subquadratic time algorithms in the high-dimensional
regime (i.e. running time depends polynomially rather than
exponentially on d) for kernel matrix-vector multiplication
were not known for general vectors x, see Section 1.2. To
summarize, our contributions are as follows:

• We put forward a new modelling assumption for kernel
matrices;

• On the one hand, we show empirically that our modelling
assumption holds for kernel matrices that arise in modern
transformer based language models;

• On the other hand, we show that our modelling assump-
tion provably leads to subquadratic time algorithms for
approximate matrix vector multiplication. As a result, we
obtain the first algorithm for high dimensional approx-
imate kernel-matrix vector multiplication, that runs in
subquadratic time for general vectors.

1.2. Related Work

We follow a line of work on hashing-based algorithms for
kernel computations on high-dimensional points, pioneered
by (Charikar & Siminelakis, 2017), and continued in (Back-
urs et al., 2018; Siminelakis et al., 2019; Backurs et al.,
2019; Charikar et al., 2020; Backurs et al., 2021; Karppa
et al., 2022; Zandieh et al., 2023). Starting at the problem of

2Note that if this gap is large enough, it implies our assumption.

kernel density estimation (KDE), (Charikar & Siminelakis,
2017) considered the data structure setting, defined as fol-
lows: Let X be a dataset of points in Rd, and let µ ∈ (0, 1)
be a precision parameter (for intuition, it is instructive to
consider µ = 1/n where n = |X|). The goal is to pre-
process X so as to enable efficiently reporting the KDE
value 1

|X|
∑

x,y k(x, y) at any incoming query y, as long
as the its true KDE is at least µ. By vanilla uniform sam-
pling, KDE queries can be answered up to relative error
1 + ϵ in time linear in 1/µ, namely O(d/ϵ2µ). (Charikar &
Siminelakis, 2017) showed that, by using locality sensitive
hashing (LSH) (Indyk & Motwani, 1998), it is possible to
answer KDE queries in time O(d/ϵ2µρ) with ρ < 1, which
is sublinear in 1/µ. For the Gaussian kernel, currently the
best known value for ρ is ρ = 0.173+o(1), due to (Charikar
et al., 2020).

(Charikar & Siminelakis, 2017) also observed that their tech-
niques can be used for fast algorithms for estimating the
matrix product Kx of a kernel matrix K and a vector x.
In (Backurs et al., 2021) this was formalized into an algo-
rithm that, given an n × n kernel matrix K and x ∈ Rn,
outputs a vector y that satisfies ∥Kx− y∥2 ≤ ϵ∥Kx∥2, in
time Õ(n1+ρ/ϵ3+2ρ), provided that x has only non-negative
entries. For Gaussian kernel matrices, by plugging the afore-
mentioned bound on ρ from (Charikar et al., 2020), the
dependence on n is n1.173+o(1) = o(n2). To our knowl-
edge, this is the only prior subquadratic time algorithm for
kernel matrix-vector multiplication in the high-dimensional
(i.e. when d is very large) regime.

The main limitation of (Backurs et al., 2021) is the require-
ment that x is non-negative. They used their kernel matrix-
vector multiplication algorithm as a subroutine for estimat-
ing the top eigenvalue of K, which based on the classical
Perron-Frobenius theorem, allowed them to only deal with
non-negative vectors. However, in many applications, there
is no way to enforce the non-negativity of x. Note that this
limitation is inherent to their approach: the error in their
approximation guarantee is ϵ∥Kx∥2, which in general can
be zero (if x is in nullspace of K). Thus, in general it may
require computing Kx exactly, which takes time Ω(n2).3

To overcome this, we study the natural approximation guar-
antee ∥Kx − y∥2 ≤ ϵ∥x∥2 instead of ϵ∥Kx∥2, see Theo-
rem 1.2. This notion of error is independent of whether x
lies in the nullspace of K or not. This allows us to achieve
subquadratic time algorithms without any restrictions, and
in particular removes the non-negativity restriction on x.
Nonetheless, we note that our algorithm improves over

3For example, with kernel matrices, one can essentially realize
a zero matrix K0, and also “hide” a single 1-entry in an otherwise
zero matrix K1, see, e.g., (Backurs et al., 2017). Computing
Kx exactly entails distinguishing between K0 and K1 with high
probability, which requires Ω(n2) time.

3

Improved Algorithms for Kernel Matrix-Vector Multiplication

(Backurs et al., 2021) even in cases where x is non-negative.
For example, consider the case when x is the all ones vector
denoted by x = 1n. Then the error incurred by the algo-
rithm of (Backurs et al., 2021) will be ϵ∥K1n∥2 and will run
in time O(n1+ρ/ϵ3+2ρ) where ρ = 0.173 as mentioned pre-
viously. Consider the case when K contains one row of all
ones and all other rows are 0, then ϵ∥K1n∥2 = ϵ · n. Thus
we would have to re-scale ϵ by n0.5 to achieve our error guar-
antee of ϵ∥1∥2 = ϵ·n0.5. Thus the runtime of (Backurs et al.,
2017) will be at least n1+ρ · (n0.5·(3+2ρ)) = Ω(n2), failing
to achieve subquadratic time better than naı̈ve matrix-vector
multiplication. On the other hand our algorithm achieves
this guarantee in o(n2) time.

We note that besides LSH, there are other approaches for
fast kernel computations that can be used with the above
line of work, like the fast Gauss transform (Greengard &
Strain, 1991). While this also leads to kernel matrix-vector
multiplication algorithms with running time subquadratic in
n, the running time depends exponentially on the dimension
d of the underlying points {ki, qj} that define the kernel
matrix, and is thus unsuitable for high-dimensional regimes,
and particularly for deep learning models.

1.3. Overview of our Techniques

We now give a high level overview of our algorithm, its
details with proofs are presented in Section A.3. Recall our
goal is the following - given an error parameter ϵ > 0, keys
k1 . . . kn and queries q1 . . . qn defining K, and a vector x,
we want to output a vector y such that ∥Kx− y∥2 ≤ ϵ∥x∥2.

Firstly since our guarantee is free from the scaling of x,
we assume ∥x∥22 = n. Now we pre-process x to explicitly
calculate the contribution of extremely large entries of x
to Kx, since ∥x∥22 = n we can’t have too many extremely
large entries in x. Next we round the extremely small values
of x to 0, since the entries are extremely small and entries
of K are bounded by 1 this incurs negligible error. This
pre-processing of x is described formally in Section A.3.1,
and it renders x’s remaining values to be in a bounded range.

In the next phase for every query qi for i ∈ [n], we will find
all the keys kj for j ∈ [n] such that k(qi, kj) is large. We
call such keys “heavy” for query qi. Then we will calculate
exactly the contribution of such heavy keys to (Kx)i for
every i ∈ [n]. We will show this can be done in time
o(n2) by first showing that assumption A on K implies we
cannot have too many heavy keys per query on average,
coupled with a fast locality sensitive hashing based recovery
procedure to find all heavy keys per query. This is discussed
with all details in Section A.3.2.

The final phase of our algorithm will be a random sampling
based procedure to estimate the contribution of all the non-

heavy, henceforth light, keys corresponding to query qi to
(Kx)i for all i ∈ [n]. We will uniformly sub-sample each
light key with probability 1/n and calculate the (scaled)
contribution of the surviving keys to get a basic unbiased
estimator for the contribution of all light keys. We will show
that the variance of this estimator will depend on the sum
of squares of the contribution of every light key to (Kx)i.
This variance will also be the number of repetitions, up to
poly(log n, 1/ϵ) factors, we need to do of the basic estima-
tor to reduce its variance by averaging to within our error
bound. Our main innovation is to show that the number of
repetitions for each row, which may potentially be different
across rows, can approximated using a fast Gaussian kernel
density estimation primitive. Please refer to Section A.3.3 .

2. Conclusion

In this paper we study fast algorithms for approximate Gaus-
sian kernel matrix vector multiplication motivated by the
problem of fast processing of attention matrices encountered
in modern language models.

Our results are two fold, first we do an empirical study of
Gaussian kernel matrices derived from attention matrices in
the context of fast attention computation using pre-trained
language models to arrive at a modelling assumption that the
sum of all but the largest n entries of the Gaussian kernel
matrix is comparable to the sum of the largest n entries.
This modelling assumption implies the sum of entries of
the whole matrix scales linearly in the matrix dimension as
opposed to worst case quadratic growth.

Our second contribution is to design a provable approximate
matrix vector multiplication algorithm for these class of ma-
trices that runs in time subquadratic in the matrix dimension.
Our algorithm is not only faster than previous algorithms but
also can handle multiplying the matrix with vectors that can
have negative entries, which was not possible with previous
algorithms.

A limitation of our work is that our algorithms operate under
a structural assumption on the input matrices—namely, of
the linear growth of the sum of the entries in the matrix
K. Although we provide an empirical validation of this
assumption, the set of matrices occurring in practice is very
rich, and no assumption will model such matrices perfectly.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

4

Improved Algorithms for Kernel Matrix-Vector Multiplication

References
Alman, J. and Song, Z. Fast attention requires bounded

entries. Advances in Neural Information Processing Sys-
tems, 36, 2024.

Andoni, A. and Indyk, P. Near-optimal hashing algorithms
for approximate nearest neighbor in high dimensions.
Communications of the ACM, 51(1):117–122, 2008.

Backurs, A., Indyk, P., and Schmidt, L. On the fine-grained
complexity of empirical risk minimization: Kernel meth-
ods and neural networks. Advances in Neural Information
Processing Systems, 30, 2017.

Backurs, A., Charikar, M., Indyk, P., and Siminelakis, P.
Efficient density evaluation for smooth kernels. In 2018
IEEE 59th Annual Symposium on Foundations of Com-
puter Science, pp. 615–626, 2018.

Backurs, A., Indyk, P., and Wagner, T. Space and time
efficient kernel density estimation in high dimensions.
Advances in neural information processing systems, 32,
2019.

Backurs, A., Indyk, P., Musco, C., and Wagner, T. Faster
kernel matrix algebra via density estimation. In Interna-
tional Conference on Machine Learning, pp. 500–510.
PMLR, 2021.

Beltagy, I., Peters, M. E., and Cohan, A. Long-
former: The long-document transformer. arXiv preprint
arXiv:2004.05150, 2020.

Charikar, M. and Siminelakis, P. Hashing-based-estimators
for kernel density in high dimensions. In 2017 IEEE 58th
Annual Symposium on Foundations of Computer Science,
pp. 1032–1043. IEEE, 2017.

Charikar, M., Kapralov, M., Nouri, N., and Siminelakis, P.
Kernel density estimation through density constrained
near neighbor search. In 2020 IEEE 61st Annual Sympo-
sium on Foundations of Computer Science, pp. 172–183.
IEEE, 2020.

Chen, B., Dao, T., Winsor, E., Song, Z., Rudra, A., and Ré,
C. Scatterbrain: Unifying sparse and low-rank attention.
In Advances in Neural Information Processing Systems,
2021.

Choromanski, K., Likhosherstov, V., Dohan, D., Song, X.,
Gane, A., Sarlos, T., Hawkins, P., Davis, J., Mohiuddin,
A., Kaiser, L., et al. Rethinking attention with performers.
In International Conference on Learning Representations,
2021.

Devlin, J., Chang, M., Lee, K., and Toutanova, K. BERT:
pre-training of deep bidirectional transformers for lan-
guage understanding. CoRR, abs/1810.04805, 2018. URL
http://arxiv.org/abs/1810.04805.

Greengard, L. and Strain, J. The fast Gauss transform. SIAM
Journal on Scientific and Statistical Computing, 12(1):
79–94, 1991.

Han, I., Jayaram, R., Karbasi, A., Mirrokni, V., Woodruff,
D., and Zandieh, A. Hyperattention: Long-context at-
tention in near-linear time. In The Twelfth International
Conference on Learning Representations, 2023.

Indyk, P. and Motwani, R. Approximate nearest neigh-
bors: towards removing the curse of dimensionality. In
Proceedings of the thirtieth annual ACM symposium on
Theory of computing, pp. 604–613, 1998.

Karppa, M., Aumüller, M., and Pagh, R. Deann: Speeding
up kernel-density estimation using approximate nearest
neighbor search. In International Conference on Artificial
Intelligence and Statistics, pp. 3108–3137. PMLR, 2022.

Keles, F. D., Wijewardena, P. M., and Hegde, C. On the
computational complexity of self-attention. In Interna-
tional Conference on Algorithmic Learning Theory, pp.
597–619. PMLR, 2023.

Kitaev, N., Kaiser, Ł., and Levskaya, A. Reformer: The
efficient transformer. In International Conference on
Learning Representations, 2020.

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. SQuAD:
100,000+ questions for machine comprehension of text.
In Su, J., Duh, K., and Carreras, X. (eds.), Proceed-
ings of the 2016 Conference on Empirical Methods in
Natural Language Processing, pp. 2383–2392, Austin,
Texas, November 2016. Association for Computational
Linguistics. doi: 10.18653/v1/D16-1264. URL https:
//aclanthology.org/D16-1264.

Siminelakis, P., Rong, K., Bailis, P., Charikar, M., and
Levis, P. Rehashing kernel evaluation in high dimensions.
In International Conference on Machine Learning, pp.
5789–5798, 2019.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wang, S., Li, B. Z., Khabsa, M., Fang, H., and Ma, H.
Linformer: Self-attention with linear complexity. arXiv
preprint arXiv:2006.04768, 2020.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M.,

5

http://arxiv.org/abs/1810.04805
https://aclanthology.org/D16-1264
https://aclanthology.org/D16-1264

Improved Algorithms for Kernel Matrix-Vector Multiplication

et al. Huggingface’s transformers: State-of-the-art natural
language processing. arXiv preprint arXiv:1910.03771,
2019.

Xiong, Y., Zeng, Z., Chakraborty, R., Tan, M., Fung, G., Li,
Y., and Singh, V. Nyströmformer: A nyström-based algo-
rithm for approximating self-attention. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume
35-16, pp. 14138–14148, 2021.

Zaheer, M., Guruganesh, G., Dubey, K. A., Ainslie, J., Al-
berti, C., Ontanon, S., Pham, P., Ravula, A., Wang, Q.,
Yang, L., et al. Big bird: Transformers for longer se-
quences. In Advances in Neural Information Processing
Systems, volume 33, 2020.

Zandieh, A., Han, I., Daliri, M., and Karbasi, A. Kdeformer:
Accelerating transformers via kernel density estimation.
In International Conference on Machine Learning, pp.
40605–40623. PMLR, 2023.

6

Improved Algorithms for Kernel Matrix-Vector Multiplication

A. Appendix

A.1. Preliminaries and Notation

For any integer n > 0 we let [n] to denote the interval {1, 2, . . . , n}. We let 1n ∈ Rn denote the all ones vector and we use
1E to be the indicator variable for any event E. For any matrix A ∈ Rm×n for some integers m,n > 0, we denote its i, j
entry for any i ∈ [m], j ∈ [n] as Ai,j . We let A[: i, : j] to be the sub matrix of A that contains first i rows first j columns for
any i ∈ [m] and j ∈ [n]. For any vector x we use ∥x∥2, ∥x∥1 to denote its ℓ2, ℓ1 norms respectively. For any matrix A we
use ∥A∥1 to denote the sum of all of its entries. We use Õ(·) to suppress poly(log n) factors.

The first tool we will need in our algorithm are locality sensitive hash (LSH) functions which are used for solving high-
dimensional approximate nearest neighbour search problems (Indyk & Motwani, 1998; Andoni & Indyk, 2008). We first
state the following claim about the LSH function of (Andoni & Indyk, 2008) stated in a convenient form for us as Claim 19
in (Charikar et al., 2020). Next we will need the following claim about the Andoni-Indyk LSH family from the (Charikar
et al., 2020).

Lemma A.1 (Claim 19 of (Charikar et al., 2020)). For any constant α ∈ [0, 1], there exists a family of hash functions H
such that for rnear =

√
2σ2α lnn, the following holds for any rfar ≥ rnear,

1. Ph∼H[h(p) = h(q)] ≥ n−α for any ∥p− q∥2 ≤ rnear.

2. Ph∼H[h(p) = h(q)] ≤ n−c2α(1−o(1)) for all ∥p− q∥2 = rfar and c = min{(rfar/rnear), log1/7 n} 4.

We will also use recent algorithms for fast Gaussian kernel density estimation (KDE) (Charikar et al., 2020; Charikar &
Siminelakis, 2017; Backurs et al., 2019). In this problem we are given a dataset P ⊆ Rd containing n points |P | = n, the
Gaussian kernel k(p, q) = e−∥p−q∥2

2/2σ
2

for some bandwidth parameter σ > 0 and p, q ∈ Rd. The goal is to preprocess the
dataset to create a data structure such that at the query phase when given a query q ∈ Rd, the data structure can approximate
(
∑

p∈P k(p, q))/n up to 1± β relative error in time o(n). In this section we will use the following fast Gaussian KDE result
of (Charikar et al., 2020).

Theorem A.2 (Theorem 2 of (Charikar et al., 2020)). Suppose we are given a set of n points P ⊆ Rd and parameters
β, µ > 0. For any point q ∈ Rd let µ(q) = (

∑n
i=1 e

−∥ki−q∥2
2/2σ

2

)/n. Then there exists a data-structure with pre-
processing time O((β−2dn/µ0.173) · log(1/δ)), such that for any query q the data structure can output an approximation to
µ(q) · 1{µ(q)≥µ} up to 1± β relative error in time O((β−2d/µ0.173) · log(1/δ)) and success probability 1− δ.

A.2. Empirical validation of our model

In this section we empirically evaluate our modelling assumption on the Gaussian matrices observed in the context of fast
attention computation for transformer models. We first recall our main computational problem of interest: multiplying
the dot product self-attention matrix by a vector, an operation that naturally arises in widely used Transformer models
(Vaswani et al., 2017). Consider a sequence of n tokens. For each token i there is key, query and value embedding denoted
by ki, qi, vi ∈ Rd respectively, for all i ∈ [n]. We use Q,K, V ∈ Rn×d to denote the query and key matrices whose ith

rows are qi, ki, vi respectively for all i ∈ [n]. Let A to denote the n × n un-normalized attention matrix whose (i, j)th

entry is e⟨qi,kj⟩/
√
d for all (i, j) ∈ [n] × [n]. Thus A = exp(QKT /

√
d) where exp(.) is entry wise exponentiation. Let

D = diag(A1n) denote the diagonal matrix containing the row sums of A on the corresponding diagonal entry. The main
computational problem in self-attention is to compute D−1AV , which naively takes Ω(n2 · d) time.

Consider the computational problem of computing the matrix-vector product Ax for an arbitrary vector x ∈ Rn. When
x = 1n, the all ones vector, then A1n will be the vector of row sums and thus can be used to compute the diagonal scaling
matrix D = diag(A1n). Finally for the value embedding of each token vi we can compute Avi for all i ∈ [n] to compute
AV . We will then use Lemma 1.1 to obtain a Gaussian kernel matrix K from attention matrix A, which can then be used to
compute Ax for any x ∈ Rn. The proof of Lemma 1.1 is presented below.

4Here the o(1) factor in the exponent in the far collision probability is O(log logn/ log1/3 n), and it is justified as long as c =

O(log1/7 n).

7

Improved Algorithms for Kernel Matrix-Vector Multiplication

Proof of Lemma 1.1. Let α = −maxj∈[n] ∥kj∥22 and let wj =
√
(−∥kj∥22 + α) for all j ∈ [n]. Append wj and 0 as

(d+ 1)th coordinates to kj and qj respectively to obtain k′j , q
′
j ∈ Rd+1. Then we can observe the following,

e
−

∥q′i−k′
j∥

2
2

2
√

d = e
∥qi−kj∥

2
2

2
√

d
−

w2
j

2
√

d

= e
− ∥qi∥

2
2

2
√

d · e−
maxj∈[n] ∥kj∥

2
2

2
√

d · e
⟨qi,kj⟩√

d .

Multiplying this with xj and summing up over all j ∈ [n], we finish the proof of the lemma.

Next we formalize the modelling assumption A and state it as follows,

For a set of n keys and queries {ki}ni=1, {qi}ni=1 ⊆ Rd, consider the self-attention matrix A ∈ Rn×n defined
as Ai,j = e⟨qi,kj⟩/

√
d for all i, j ∈ [n]. Let {k′i}ni=1, {q′i}ni=1 ⊆ Rd+1 be the set of keys and queries obtained

after applying the reduction of Lemma 1.1, and K ∈ Rn×n be the Gaussian kernel matrix obtained from them
defined as Ki,j = e−∥q′i−k′

j∥
2
2/2

√
d. Then the ratio of ∥K∥1 minus the sum of the top n entries of K and the

sum of the top n entries of K is at most a constant c > 0 independent of n.

(A)

To validate this assumption experimentally, we proceed as follows:

• we take attention matrices computed in practice by a Transformer model on real data;

• for each attention matrix and its associated keys and queries computed by the model, we apply the reduction of Lemma
1.1 to obtain a Gaussian kernel matrix;

• we verify our assumption (A) for this Gaussian kernel matrix.

Evaluation methodology: We consider a pre-trained BERT base (uncased) model (Devlin et al., 2018), which is a
transformer based model pre-trained on a large corpus of English data. We use the Huggingface transformers library for our
experiments (Wolf et al., 2019). This model has 12 layers with 12 self-attention heads per each layer. We then obtain the
attention matrices from this model as follows - We consider a collection of 100 random sentences obtained from responses
of 100 random questions in the public Stanford Question Answering Dataset (SQuAD) dataset (Rajpurkar et al., 2016). Our
experiments are performed on the Google colaboratory platform’s free tier version. For each sentence we use the tokenizer
used in the BERT pre-training to tokenize the sentence. Then we feed this sequence of tokens into BERT and inspect all the
self-attention activations across each layer.

Fix a sentence, suppose it has n tokens after tokenization, and pass it through BERT. Then fix a layer and an attention head
in that layer. We obtain the key and query embeddings {ki, qi} produced by this attention head. Then we use the reduction
of Lemma 1.1 to produce the modified set of keys and queries {k′i, q′i} that we use to construct a Gaussian kernel matrix
denoted by K ∈ Rn×n as described in A. To demonstrate Assumption A, we consider all principal sub matrices of K. More
specifically, we consider K[: i, : i] for i ∈ [50, n]. This is natural for studying how our model scales with input sequence
length as K[: i, : i] is the kernel matrix obtained from the prefix of the input sequence containing the first i tokens. We
choose a min prefix length of 50 so as to start observing asymptotic behavior. The maximum n goes up to is 512, the max
context length of BERT.

Experiment (i). For a prefix length i ∈ [50, n], we compute the sum of the top i largest entries in K[: i, : i] denoted by ai
and we compute the sum of the remaining i2 − i entries in K[: i, : i] which will be ∥K[: i, : i]∥1 − ai. We then compute
the max of (∥K[: i, : i]∥1 − ai)/ai over all i ∈ [n]. We then take the max of maxi∈[n](∥K[: i, : i]∥1 − ai)/ai over every
sentence in the collection of 100 sentences we consider. We thus get an accumulated max ratio over all sentences for each
head and each layer. Figure 1 lists these accumulated max ratios per layer per attention head.

Experiment (ii). Next, we consider a set of experiments to show that the large values in the reduced Gaussian kernel matrices
after the removal of the largest n elements, are comparable to the values in the largest n elements.

For the same collection 100 sentences we fix a sentence, with number of tokens denoted by n after tokenization, and pass
it through BERT. Then for each layer and each head we extract the key and query embeddings and construct the reduced
Gaussian kernel matrix K using Lemma 1.1. Then we calculate the ratio of the nth and 2nth largest as well as of the nth

and (n+ 1)th largest entries of K, and take the median of these ratio across all 100 sentences. Thus we get two median
ratios per head per layer. Figure 4 shows a visualization of these median ratios the reduced Gaussian kernel matrices.

8

Improved Algorithms for Kernel Matrix-Vector Multiplication

Figure 1: Statistics of max ratios over a dataset of 100 sentences.

A.2.1. Results

Experiment (i): From inspecting the numbers in Figure 1 across all 12 layers and 12 heads per layer, we observe that all of
these are less than 3.1, and often significantly smaller. We interpret this as strong evidence that the constant c in Assumption
(A) is small, thus validating our model.

Experiment (ii): From Figure 4 sub figure 2 we observe that for most of the attention heads, the median ratio of nth and
2nth largest entries of the reduced Gaussian kernel matrices is about 20 or less. This implies that in most cases, the nth

largest and the 2nth largest entries have comparable value. Moreover from sub figure 3 we observe that for almost all
attention heads, the median ratio of nth and (n+ 1)th largest is about 1. The implication of this result is that we cannot rely
for the strong assumption, that after the removal of the largest n entries, there is small uniform upper bound on the values of
the remaining entries on the matrices we study. We interpret this as further motivation for our assumption (A), which only
assumes total sum of entries in the largest n entries and the sum of the remaining entries after removing the largest n is
comparable.

A.3. Algorithm

The goal of this section is to describe the main algorithm and prove Theorem 1.2. We will go about proving this using
intermediate building blocks. We will work the following convenient re-phrasing of our Assumption A - the assumption
says that if we denote K as our Gaussian kernel matrix then ∥K∥1 minus the sum of the largest n entries of K is at most a
constant times the sum of the largest n entries of K, thus ∥K∥1 is at most a constant times the sum of the largest n entries
of K. Since each entry in K is bounded by 1, the assumption directly implies that ∥K∥1 = O(n).

A.3.1. Pre processing x

This section describes a convenient pre-processing of x, starting with the following notation.

Definition A.3. Let γ ∈ [0, 1] be a threshold. Define the following subsets of [n] as follows,

H1 = {j ∈ [n] : x2
j ≥ nγ}, H2 = {j ∈ [n] : x2

j ≤ n−4}, H = H1 ∪H2, and T = [n] \H.

Let yH , yT ∈ Rn be defined as follows, (yH)i =
∑

j∈H1
k(qi, kj)xj and (yT)i =

∑
j∈T k(qi, kj)xj for all i ∈ [n].

9

Improved Algorithms for Kernel Matrix-Vector Multiplication

Figure 2: Median ratio of nth and 2nth largest.

We now state the following lemma which says that yH + yT are a good approximation of Kx and yH can be computed in
o(n2) time.

Lemma A.4. In time O(d · n2−γ) we can output the set H and vector yH . Moreover ∥Kx− (yH + yT)∥2 ≤ ϵ∥x∥2.

Proof of Lemma A.4. Since we know that
∑

j∈[n] x
2
j = n, a simple Markov bound implies that |H1| ≤ n1−γ . Correspond-

ing to the entries in H1 we explicitly calculate yH using its definition in Definition A.3. To do this we need to explicitly
calculate n · |H1| entries of K, which takes time n · |H1| ·O(d) = O(d · n2−γ).

Next, since each entry in the matrix K has value at most 1, we have that (Kx− yH − yT)i ≤ n · n−4 = n−3 for all i ∈ [n].
Thus ∥Kx− yH − yT ∥2 ≤ n−3 ·

√
n ≤ ϵ∥x∥2 since ϵ = Θ(1) and ∥x∥2 =

√
n.

A.3.2. Finding heavy keys

The next objective is to approximate yT . The goal of this section is to give the algorithm that explicitly finds for all queries
qi for i ∈ [n], the set of all keys kj which have a large contribution to

∑
j∈T xjk(qi, kj). We call such keys “heavy” and we

now formally define them.

Definition A.5. Let α ∈ [0, 1] be a threshold. Consider any i ∈ [n]. For query qi define the set of “heavy” keys
Si = {j ∈ [n] : k(qi, kj) ≥ n−α}.

We now state the main lemma which says that we can find the set of heavy keys for all rows in o(n2) time. The pseudocode
of the algorithm is presented in Algorithm 1.

Lemma A.6. In time Õ(d · n1+2α) Algorithm 1 FINDHEAVY returns all the sets Si for i ∈ [n]. The algorithm succeeds
with probability 0.99.

Proof of Lemma A.6. Fix any query qi for i ∈ [n] and let µi = (
∑n

j=1 k(qi, kj))/n, thus using a Markov bound we get the
following,

|Si| ≤ nα · (nµi) = n1+αµi.

Consider T = 10nα log n independent LSH hash functions h1, . . . , hT ∼ H as per Lemma A.1. Then for any key kj for
j ∈ Si we have the following,

P[∃t ∈ [T] s.t. ht(qi) = ht(kj)] = 1− (1− 1/nα)10n
α logn ≥ 1− 1/n10.

10

Improved Algorithms for Kernel Matrix-Vector Multiplication

Figure 3: Median ratio of nth and (n+ 1)th largest.

Figure 4: Statistics of ratio of nth largest with 2nth and (n+ 1)th largest entries.

Taking union bound over all rows i ∈ [n] and at most n heavy points per row, we get that with probability at least 1− 1/n,
Si can be recovered during query time by scanning the buckets that qi hash to for all i ∈ [n].

Now for any i ∈ [n] let Li,m = {j ∈ [n] : k(qi, kj) ∈ [2−m, 2−m+1]} for m ∈ {α log n, log(1/µi)} and let Li =⋃log 1/µi

m=α logn Li,m. Then again by a Markov argument we know that |Li,m| ≤ 2mnµi for all i ∈ [n]. Note that for any
independent copy of the LSH hash function ht we have the following for all j ∈ Li,m

P[ht(qi) = ht(kj)] ≤ n−α(1−o(1))·m ln 2
α lnn = 2−m(1−o(1)).

Thus by linearity of expectation we have that

E[|{j ∈ Li,m : ht(qi) = ht(kj)}|] ≤ |Li,m|2−m(1−o(1)) ≤ 2n1+o(1)µi

for all j. Thus again by linearity of expectation this implies that

E[|{j ∈ Li : ∃t ∈ [T] s.t. ht(qi) = ht(kj)}|] ≤ Õ(n1+α+o(1)µi).

Thus we get that in expectation the number of non-heavy points across all rows that we may have to scan due to collision is
at most

∑n
i=1 Õ(n1+α+o(1)µi) = Õ(n1+α) since

∑n
i=1 µi = 1

TK1/n = O(1). This also holds with probability at least
0.99 due to Markov’s inequality.

This implies that in time n · T = Õ(n1+α) we can hash all keys during pre-processing. Then for every row i, we can scan
all the buckets that query qi hashes to across all repetitions and return the union of all keys kj landing in the same bucket as
qi satisfying k(qi, kj) ≥ n−α. As per our previous discussion we get that with probability 0.99, this scan will take us time

T ·
n∑

i=1

(|Si|) + Õ(n1+α+o(1)) = Õ(n1+2α)

and we will recover Si for all i ∈ [n]. For every row i, we will brute force calculate
∑

j∈Si
xjk(qi, kj) and this will take us

overall time
n∑

i=1

|Si| ≤ n1+α
n∑

i=1

µi = Õ(n1+α). (1)

11

Improved Algorithms for Kernel Matrix-Vector Multiplication

Algorithm 1 FINDHEAVY

Input: Keys k1, k2, . . . , kn, Queries q1, q2, . . . , qn threshold α > 0.
Output: Sets Si for all i ∈ [n] as per Lemma A.6.
Let T = 10nα log n.
Let H be an Hash family as per Lemma A.1.
Sample T i.i.d. h1, . . . , hT ∼ H. Hash entire dataset using these T hash functions.
for i ∈ [n] do

Scan all the buckets ht(xi) for all t ∈ [T] and return all points in Si = {x ∈ P : k(x, xi) ≥ n−α}.
end for

A.3.3. Estimating contribution of light keys

After finding Si, what remains is approximating
∑

j∈T\Si
k(qi, kj)xj for all i ∈ [n] up to additive error ϵ. This is the main

goal of this section formalized in the lemma below, its full proof is in Appendix A.

Lemma A.7. In time Õ(d · (n2+γ−α + n1.78+γ/ϵ2)) Algorithm 2 APPROXLIGHT, when executed on sets Si for i ∈ [n]
as per Lemma A.6 and set T , returns a vector z ∈ Rn which satisfies |zi −

∑
j∈T\Si

k(qi, kj)xj | ≤ ϵ for all i ∈ [n] with
probability 0.99.

Proof of Lemma A.7. Let Li = T \Si for every i ∈ [n]. Let Kij be the i, j element of K, and let Ki denote the ith row of K.
For each row i, we will sub-sample every key in Li with probability 1/n (This can be done by sub-sampling every key with
probability 1/n and only retaining those keys with index in Li). Thus define the following random variable Xij = n ·xjKij

with probability 1/n and 0 otherwise, thus E[
∑

j∈Li
Xij] =

∑
j∈Li

xjKij . Thus V ar(Xij) ≤ (n ·xjKij)
2/n = n ·x2

jK
2
ij .

Thus V ar(
∑

j∈Li
Xij) ≤ n · (

∑
j∈Li

x2
jK

2
ij). Thus by Chebyshev’s inequality

∑
j∈Li

Xij =
∑

j∈Li
xjKij ± ϵ with

probability 0.9 for any fixed i if we take the average of 10n · (
∑

j∈Li
x2
jK

2
ij/ϵ

2) independent repetitions of
∑

j∈Li
Xij

. If we take the median of 10 log(n) independent repetitions, then by Chernoff bound we get an estimator that is within∑
j∈Li

xjKij ± ϵ with probability 1 − 1/10n. Now by a union bound this holds for all rows with probability 0.9. The
expected number of samples taken across all rows is

10 log n
∑
i∈[n]

n

∑
j∈Li

x2
jK

2
ij/ϵ

2

 = Õ

n1+γ

ϵ2

∑
i∈[n]

∑
j∈Li

K2
ij

 .

It can be seen that under the constraint that all Kij ≤ n−α ∀j ∈ Li and ∥K∥1 = O(n),∑
i∈[n]

∑
j∈Li

K2
ij ≤ n−α

∑
i∈[n]

∑
j∈Li

Kij = O(n1−α).

Plugging this back into the expression on the expected number of samples across all rows and applying Markov’s inequality,
we get that with probability at least 0.99 the total amount of samples taken is

Õ(n2+γ−α/ϵ2). (2)

What remains to estimate
∑

j∈Li
x2
jK

2
ij for each row i ∈ [n] to get the number of times we need to repeat the estimator

for averaging to reduce the variance. We will do this using a KDE data structure to estimate
∑

j∈T x2
jK

2
ij and subtracting∑

j∈Si
x2
jK

2
ij explicitly from the estimate for each i ∈ [n]. We will do this as follows. Let β ∈ [0, 1] be a parameter. We

will first do a convenient bucketing of entries in x.
Rounding: First we will round the entries of x2

j to the nearest powers of (1 + ϵ)m for integers m in
[−4 log1+ϵ(n), γ log1+ϵ(n)]. This covers all x2

j ∈ [n−4, nγ], thus all j ∈ T . Let Bm = {j ∈ T : x2
j ∈

[(1 + ϵ)m−1, (1 + ϵ)m]}. For every m ∈ [−4 log1+ϵ(n), γ log1+ϵ(n)] and j ∈ Bm let x2
j = (1 + ϵ)m. This implies

the following for all i ∈ [n], ∑
j∈T

K2
ijx

2
j −

∑
j∈T

K2
ijx

2
j ≤ 2ϵ

∑
j∈T

K2
ijx

2
j .

12

Improved Algorithms for Kernel Matrix-Vector Multiplication

Estimation within each bucket: Fix an m ∈ [−4 log1+ϵ(n), γ log1+ϵ(n)] . Note that since ∥x∥22 = n and for each j ∈ Bm

we have that x2
j ≥ (1 + ϵ)m, we have that |Bm| ≤ n/(1 + ϵ)m. Now for every Bm we will create a Gaussian KDE data

structure with data set as {kj : j ∈ Bm}, relative error parameter of n−β , failure probability δ = 1/n2, and a KDE lower
bound of ϵ2

n log2(n)(1+ϵ)m|Bm| . This lower bound satisfies the following from the bound on the size of Bm,

ϵ2

n log2(n)(1 + ϵ)m|Bm|
≥ ϵ2

n2 log2(n)
.

Thus, the KDE data structure can be created and queried n times in time Õ(dn·(n2/ϵ2)0.173/n−2β) = Õ(dn1.346+2β/ϵ0.346).
This setting of the KDE lower bound implies that if for any row i ∈ [n], the KDE value corresponding to this bucket is less
than this lower bound then its contribution is at most∑

j∈Bm

xjKij ≤
√

n ·
∑

j∈Bm

x2
jK

2
ij

≤

√
n · (1 + ϵ)m+1|Bm| · ϵ2

n log2(n)(1 + ϵ)m|Bm|

≤ ϵ

log n
.

This implies that since there are at most O(log n) many buckets, ignoring the contribution of buckets with KDE smaller
than the corresponding lower bound results in an additive error of ϵ in the end.

Thus without loss of generality we will assume that all buckets contributing to
∑

j∈T x2
jK

2
ij for i ∈ [n] have contribution

above the corresponding KDE lower bound. This implies in time Õ(dn1.346+2β/ϵ0.346) we can output an estimate ti
satisfying the following for all i ∈ [n],∑

j∈T

x2
jK

2
ij ≤ ti ≤

∑
j∈T

x2
jK

2
ij + n−β

∑
j∈T

x2
jK

2
ij .

We will use ti −
∑

j∈Si
x2
jK

2
ij + n−βti as an estimate of

∑
j∈Li

x2
jK

2
ij . This is clearly an over estimate of

∑
j∈Li

x2
jK

2
ij

from the guarantee on ti, and the over-estimation error will just lead to oversampling in the previous discussion. The
additional number of samples we will take due to this oversampling due to the error is

Õ((n/ϵ2) · n−β
∑
i∈[n]

∑
j∈T

xjK
2
ij) = Õ((n1−β+γ/ϵ2) ·

∑
i∈[n]

∑
j∈T

K2
ij).

Now we know that since Kij ≤ 1 for all entries in K, we have that
∑

i∈[n]

∑
j∈T K2

ij ≤
∑

i,j∈[n] Kij = O(n). Thus

overall the additional number samples needed due to oversampling caused by estimation error is Õ(n2+γ−β/ϵ2) Thus
combining this additional additive oversampling factor with the sample complexity bound of the equation 2, we get that the
total sample complexity is

Õ(n2+γ−α + n2+γ−β/ϵ2). (3)

The total time to estimate the sampling probabilities is Õ(dn1.346+2β/ϵ0.346). Balancing this with O(n2+γ−β/ϵ2) we set
β = 0.218. Plugging in these values, the overall runtime is Õ(d(n2+γ−α + n1.78+γ/ϵ2)).

We now have all the parts to state the proof of our main theorem, Theorem 1.2. The pseudocode of the complete algorithm
is presented in Algorithm 3 APPROXKMV.

Proof of Theorem 1.2. We first use Lemma A.4 to estimate yH in time O(d · n2−γ). We then let T = [n] \H . Next, we
run Algorithm 1 FINDHEAVY to find sets Si for all i ∈ [n]. Its correctness is guaranteed by Lemma A.6, and it runs in
time Õ(d · n1+2α). Finally we run Algorithm 2 APPROXLIGHT on the set T and sets Si for all i ∈ [n], to obtain the
vector z in time Õ(d · (n2+γ−α + n1.78+γ/ϵ2)). z satisfies the guarantees as per Lemma A.7. We then define the vector
ỹT ∈ Rn as follows, (ỹT)i = zi +

∑
j∈Si

k(qi, kj)xj for all i ∈ [n] and let y = ỹT + yH . Thus we get that ∥Kx− y∥2 ≤

13

Improved Algorithms for Kernel Matrix-Vector Multiplication

Algorithm 2 APPROXLIGHT

Input: Keys k1, k2, . . . , kn, Queries q1, q2, . . . , qn, vector x, parameters α, γ, ϵ > 0, set T and sets Si for all i ∈ [n].
Output: A vector z ∈ Rn as per Lemma A.7.
Let Bm = {j ∈ T : x2

j ∈ [(1 + ϵ)m−1, (1 + ϵ)m]} for m ∈ [−4 log1+ϵ(n), γ log1+ϵ(n)].
For every m and j ∈ Bm let x2

j = (1 + ϵ)m.
For every Bm create a data structure as per Lemma A.2 with data set {kj : j ∈ Bm}, error parameter n−0.218,
µ = ϵ2/(n log2(n)(1 + ϵ)m|Bm|), δ = 1/n2, and kernel function k2(·, ·).
for i ∈ [n] do

Let ti be the data structure output for query qi, and let si = ti −
∑

j∈Si
x2
jk(qi, kj)

2 + n−0.218ti.
Sub-sample every key in T \ Si with probability 1/n, and sum n · xjk(qi, kj) for every surviving key kj .
Take average of 10nsi/ϵ2 such repetitions, then median of 10 log n such averages.
Set zi to be this median.

end for
Return z.

Algorithm 3 APPROXKMV

Input: Keys k1, k2, . . . , kn, Queries q1, q2, . . . , qn, vector x, parameter ϵ > 0.
Output: A vector y ∈ Rn such that ∥Kx− y∥2 ≤ ϵ∥x∥2.
Let H ⊆ [n] and yH ∈ Rn be the output of Lemma A.4 for γ = 0.109. Let T = [n] \H .
Let Si for all i ∈ [n] be the output of Algorithm 1 FINDHEAVY when executed for α = 1/3.
Let z ∈ Rn be the output of Algorithm 2 APPROXLIGHT when executed for set T , sets Si ∀i ∈ [n], γ = 0.109, α = 1/3
and ϵ.
Output the vector y ∈ Rn defined as yi = zi + (yH)i +

∑
j∈Si

k(qi, kj)xj .

∥Kx−yH −yT ∥2+∥ỹT −yT ∥2 ≤ 2ϵ∥x∥2, where we used the fact that |(ỹT)i− (yT)i| = |zi−
∑

i∈T\Si
k(qi, kj)xj | ≤ ϵ

for all i ∈ [n]. We scale down ϵ by 2 and set γ = 0.109, α = 1/3 to balance the exponents in the runtime, to obtain the
overall runtime of Õ(dn1.89/ϵ2). A union bound over success probabilities gives the final success probability.

14

