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ABSTRACT

Off-policy reinforcement learning (RL) for large language models (LLMs)
is attracting growing interest, driven by practical constraints in real-world
applications, the complexity of LLM-RL infrastructure, and the need for further
innovations of RL methodologies. While classic REINFORCE and its modern
variants like Group Relative Policy Optimization (GRPO) are typically regarded
as on-policy algorithms with limited tolerance of off-policyness, we present
in this work a first-principles derivation for group-relative REINFORCE — a
REINFORCE variant that uses the within-group mean reward as the baseline for
advantage calculation — without assuming a specific training data distribution,
showing that it admits a native off-policy interpretation. This perspective yields
two general principles for adapting REINFORCE to truly off-policy settings:
regularizing policy updates, and actively shaping the data distribution. Our
analysis demystifies some myths about the roles of importance sampling and
clipping in GRPO, unifies and reinterprets two recent algorithms — Online Policy
Mirror Descent and Asymmetric REINFORCE — as regularized forms of the
REINFORCE loss, and offers theoretical justification for seemingly heuristic data-
weighting strategies. Our findings lead to actionable insights that are validated
with extensive empirical studies, and open up new opportunities for principled
algorithm design in off-policy RL for LLMs.

1 INTRODUCTION

The past few years have witnessed rapid progress in reinforcement learning (RL) for large language
models (LLMs). This began with reinforcement learning from human feedback (RLHF) (Bai
et al., 2022; Ouyang et al., 2022) that aligns pre-trained LLMs with human preferences, followed
by reasoning-oriented RL that enables LLMs to produce long chains of thought (OpenAI, 2024;
DeepSeek-AI, 2025; Kimi-Team, 2025b; Zhang et al., 2025b). More recently, agentic RL (Kimi-
Team, 2025a; Gao et al., 2025; Zhang et al., 2025a) aims to train LLMs for agentic capabilities such
as tool use, long-horizon planning, and multi-step task execution in dynamic environments.

Alongside these developments, off-policy RL has been attracting growing interest. In the “era of
experience” (Silver & Sutton, 2025), LLM-powered agents need to be continually updated through
interaction with the environment. Practical constraints in real-world deployment and the complexity
of LLM-RL infrastructure often render on-policy training impractical (Noukhovitch et al., 2025):
rollout generation and model training can proceed at mismatched speeds, data might be collected
from different policies, reward feedback might be irregular or delayed, and the environment may
be too costly or unstable to query for fresh trajectories. Moreover, in pursuit of higher sample
efficiency and model performance, it is desirable to go beyond the standard paradigm of independent
rollout sampling, e.g., via replaying past experiences (Schaul et al., 2016; Rolnick et al., 2019; An
et al., 2025), synthesizing higher-quality experiences based on auxiliary information (Da et al., 2025;
Liang et al., 2025; Guo et al., 2025), or incorporating expert demonstrations into online RL (Yan
et al., 2025; Zhang et al., 2025c) — all of which incur off-policyness.

However, the prominent algorithms in LLM-RL — Proximal Policy Optimization (PPO) (Schulman
et al., 2017) and Group Relative Policy Optimization (GRPO) (Shao et al., 2024) — are essentially
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on-policy methods: as modern variants of REINFORCE (Williams, 1992), their fundamental
rationale is to produce unbiased estimates of the policy gradient, which requires fresh data sampled
from the current policy. PPO and GRPO can handle a limited degree of off-policyness via
importance sampling, but require that the current policy remains sufficiently close to the behavior
policy. Truly off-policy LLM-RL often demands ad-hoc analysis and algorithm design; worse still,
as existing RL infrastructure (Sheng et al., 2024; Hu et al., 2024; von Werra et al., 2020; Wang et al.,
2025; Pan et al., 2025; Fu et al., 2025a) is typically optimized for REINFORCE-style algorithms,
their support for specialized off-policy RL algorithms could be limited. All these have motivated
our investigation into principled and infrastructure-friendly algorithm design for off-policy RL.

Core finding: a native off-policy interpretation for group-relative REINFORCE. Consider
a one-step RL setting and a group-relative variant of REINFORCE that, like in GRPO, assumes
access to multiple responses {y1, . . . , yK} for the same prompt x and use the group mean reward r
as the baseline in advantage calculation. Each response is a sequence of tokens yi = (y1i , y

2
i , . . . ),

and receives a response-level reward ri = r(x, yi). Let πθ(·|x) denote an autoregressive policy
parameterized by θ. The update rule for each iteration of group-relative REINFORCE is θ′ =
θ + ηg, where η is the learning rate, and g is the sum of updates from multiple prompts and their
corresponding responses. For a specific prompt x, the update would be1

g
(
θ;x, {yi, ri}1≤i≤K

)
=

1

K

∑
1≤i≤K

(ri − r)∇θ log πθ(yi |x) (response-wise) (1a)

=
1

K

∑
1≤i≤K

∑
1≤t≤|yi|

(ri − r)∇θ log πθ(y
t
i |x, y<t

i ) (token-wise) (1b)

Here, the response-wise and token-wise formulas are linked by the elementary decomposition
log πθ(yi |x) =

∑
t log πθ(y

t
i |x, y<t

i ), where y<t
i denotes the first t− 1 tokens of yi.

A major finding of this work is that group-relative REINFORCE admits a native off-policy
interpretation. We establish this in Section 2 via a novel, first-principles derivation that makes
no explicit assumption about the sampling distribution of the responses {yi}, in contrast to the
standard policy gradient theory. Our derivation provides a new perspective for understanding
how REINFORCE makes its way towards the optimal policy by constructing a series of surrogate
objectives and taking gradient steps for the corresponding surrogate losses. Such analysis can be
extended to multi-step RL settings as well, with details deferred to Appendix A.

Implications: principles and concrete methods for augmenting REINFORCE. While the
proposed off-policy interpretation does not imply that vanilla REINFORCE should converge to
the optimal policy when given arbitrary training data (which is too good to be true), our analysis
in Section 3 identifies two general principles for augmenting REINFORCE in off-policy settings:
(1) regularize the policy update step to stabilize learning, and (2) actively shape the training
data distribution to steer the policy update direction. As we will see in Section 4, this unified
framework demystifies common myths about the rationales behind many recent RL algorithms:
(1) It reveals that in GRPO, clipping (as a form of regularization) plays a much more essential
role than importance sampling, and it is often viable to enlarge the clipping range far beyond
conventional choices for accelerated convergence without sacrificing stability. (2) Two recent
algorithms — Kimi’s Online Policy Mirror Descent (OPMD) (Kimi-Team, 2025b) and Meta’s
Asymmetric REINFORCE (AsymRE) (Arnal et al., 2025) — can be reinterpreted as adding a
regularization loss to the standard REINFORCE loss, which differs substantially from the rationales
explained in their original papers. (3) Our framework justifies heuristic data-weighting strategies
like discarding certain low-reward samples or up-weighting high-reward ones, even though they
violate assumptions in policy gradient theory and often require ad-hoc analysis in prior works.

1For notational simplicity and consistency, we use the same normalization factor 1/K for both response-
wise and token-wise formulas in Eq. (1a) and (1b). For practical implementation, the gradient is calculated with
samples from a mini-batch, and typically normalized by the total number of response tokens. This mismatch
does not affect our theoretical studies in this work. Interestingly, our analysis of REINFORCE in this work
provides certain justifications for calculating the token-mean loss within a mini-batch, instead of first taking
the token-mean loss within each sequence and then taking the average across sequences (Shao et al., 2024); our
perspective is complementary to the rationales explained in prior works like DAPO (Yu et al., 2025), although
a deeper understanding of this aspect is beyond our current focus.
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Extensive empirical studies in Section 4 and Appendix B validate these insights and demonstrate
the efficacy and/or limitations of various algorithms under investigation. By revealing the off-
policy nature of group-relative REINFORCE, our work opens up new opportunities for principled,
infrastructure-friendly algorithm design in off-policy LLM-RL with solid theoretical foundation.

2 TWO INTERPRETATIONS FOR REINFORCE

Consider the standard reward-maximization objective in reinforcement learning:

max
θ

J(θ) := Ex∼D J(θ;x), where J(θ;x) := Ey∼πθ(·|x) r(x, y), (2)

where D is a distribution over the prompts x.

We first recall the standard on-policy interpretation of REINFORCE in Section 2.1, and then present
our proposed off-policy interpretation in Section 2.2.

2.1 RECAP: ON-POLICY INTERPRETATION VIA POLICY GRADIENT THEORY

In the classical on-policy view, REINFORCE updates policy parameters θ using samples that are
drawn directly from πθ. The policy gradient theorem (Sutton et al., 1998) tells us that

∇θJ(θ;x) = ∇θ Ey∼πθ(·|x) r(x, y) = Ey∼πθ(·|x)
[(
r(x, y)− b(x)

)
∇θ log πθ(y|x)

]
,

where b(x) is a baseline for reducing variance when ∇θJ(θ;x) is estimated with finite samples. If
samples are drawn from a different behavior policy πb instead, the gradient can be rewritten as

∇θJ(θ;x) = Ey∼πb(·|x)

[(
r(x, y)− b(x)

) πθ(y | x)
πb(y | x) ∇θ log πθ(y | x)

]
.

While the raw importance-sampling weight πθ(y|x)/πb(y|x) facilitates unbiased policy gradient
estimate, it may be unstable when πθ and πb diverge. Modern variants of REINFORCE address
this by modifying the probability ratios (e.g., via clipping or normalization), which achieves better
bias-variance trade-off in the policy gradient estimate and leads to a stable learning process.

In the LLM context, we have ∇θ log πθ(y |x) =
∑

t ∇θ log πθ(y
t |x, y<t), but the response-wise

probability ratio πθ(y|x)/πb(y|x) can blow up or shrink exponentially with the sequence length.
Practical implementations typically adopt token-wise probability ratio instead:

g̃(θ;x) = Ey∼πb(·|x)

[(
r(x, y)− b(x)

) ∑
1≤t≤|y|

πθ(y
t |x, y<t)

πb(yt |x, y<t)
∇θ log πθ(y

t |x, y<t)

]
Although this becomes a biased approximation of ∇θJ(θ;x), classical RL theory still offers policy
improvement guarantees if πθ is sufficiently close to πb (Kakade & Langford, 2002; Fragkiadaki,
2018; Schulman et al., 2015; 2017; Achiam et al., 2017).

2.2 A NEW OFF-POLICY INTERPRETATION FOR GROUP-RELATIVE REINFORCE

We now provide an alternative off-policy interpretation for group-relative REINFORCE. Let us
think of policy optimization as an iterative process θ1,θ2, . . . , and focus on the t-th iteration
that updates the policy model parameters from θt to θt+1. Our derivation consists of three steps:
(1) define a KL-regularized surrogate objective, and show that its optimal solution must satisfy
certain consistency conditions; (2) define a surrogate loss (with finite samples) that enforces such
consistency conditions; and (3) take one gradient step of the surrogate loss, which turns out to be
equivalently the group-relative REINFORCE method.

Step 1: surrogate objective and consistency condition. Consider the following KL-regularized
surrogate objective that incentivizes the policy to make a stable improvement over πθt :

max
θ

J(θ;πθt
) := Ex∼D

[
Ey∼πθ(·|x)[r(x, y)]− τ ·DKL

(
πθ(·|x) ∥πθt

(·|x)
)]
, (3)

3
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where τ is a regularization coefficient. It is a well-known fact that the optimal policy π for this
surrogate objective satisfies the following (Ziebart et al., 2008) (Nachum et al., 2017; Korbak et al.,
2022; Rafailov et al., 2023; Richemond et al., 2024; Kimi-Team, 2025b): for any prompt x and
response y,

π(y|x) = πθt
(y|x)er(x,y)/τ
Z(x, πθt)

, where Z(x, πθt) :=

∫
πθt(y

′|x)er(x,y′)/τ dy′. (4)

Note that Eq. (4) is equivalent to the following: for any pair of responses y1 and y2,

π(y1|x)
π(y2|x)

=
πθt

(y1|x)
πθt(y2|x)

exp

(
r(x, y1)− r(x, y2)

τ

)
.

Taking logarithm of both sides, we have this pairwise consistency condition:

r1 − τ ·
(
log π(y1|x)− log πθt

(y1|x)
)
= r2 − τ ·

(
log π(y2|x)− log πθt

(y2|x)
)
. (5)

Step 2: surrogate loss with finite samples. Given a prompt x and K responses y1, . . . , yK , we
define the following mean-squared surrogate loss that enforces the consistency condition, as done in
prior works (Gao et al., 2024; Flet-Berliac et al., 2024):

L̂(θ;x, πθt) :=
1

K2

∑
1≤i<j≤K

(ai − aj)
2

(1 + τ)2
, where ai := ri−τ

(
log πθ(yi|x)−log πθt(yi|x)

)
. (6)

Here, we normalize ai − aj by 1 + τ to account for the loss scale. In theory, if this surrogate loss is
defined by infinite samples with sufficient coverage of the action space (Song et al., 2024), then its
unique minimizer is the same as the optimal policy for the surrogate objective in Eq. (3).

Step 3: one gradient step of the surrogate loss. Let us conduct further analysis for (ai − aj)
2.

The trick here is that, if we take only one gradient step of this loss at θ = θt, then the values of
log πθ(yi|x)− log πθt

(yi|x) and log πθ(yj |x)− log πθt
(yj |x) are simply zero. As a result,

∇θ(ai − aj)
2
∣∣
θt

= −2τ (ri − rj)
(
∇θ log πθ(yi|x)

∣∣
θt

−∇θ log πθ(yj |x)
∣∣
θt

)
⇒

∇θ

∑
1≤i<j≤K

(ai − aj)
2

(1 + τ)2

∣∣∣
θt

=
∑
i<j

−2τ

(1 + τ)2
(ri − rj)

(
∇θ log πθ(yi|x)

∣∣
θt

−∇θ log πθ(yj |x)
∣∣
θt

)
=

∑
i<j

−2τ

(1 + τ)2

((
ri − rj

)
∇θ log πθ(yi|x)

∣∣
θt

+
(
rj − ri

)
∇θ log πθ(yj |x)

∣∣
θt

)
=

−2τ

(1 + τ)2

∑
1≤i≤K

∑
1≤j≤K

(
ri − rj

)
∇θ log πθ(yi|x)

∣∣
θt

=
−2τK

(1 + τ)2

∑
1≤i≤K

(
ri − r

)
∇θ log πθ(yi|x)

∣∣
θt
, where r :=

1

K

∑
1≤j≤K

rj .

Putting these back to the surrogate loss defined in Eq. (6), we end up with this policy update step:

g
(
θ;x, {yi, ri}1≤i≤K

)
=

2τ

(1 + τ)2
· 1

K

∑
1≤i≤K

(
ri − r

)
∇θ log πθ(yi |x). (7)

That’s it! We have just derived the group-relative REINFORCE method, but without any on-policy
assumption about the distribution of training data {x, {yi, ri}1≤i≤K}. The regularization coefficient
τ > 0 controls the update step size; a larger τ effectively corresponds to a smaller learning rate.

Summary and remarks. Figure 1 visualizes the proposed interpretation of what REINFORCE
is actually doing. The curve going through θt → θt+1 → θ̃t+1 → θ⋆ stands for the ideal
optimization trajectory from θt to the optimal policy model θ⋆, if the algorithm solves each
intermediate surrogate objective J(θ;πθt

) / surrogate loss L̂(θ;πθt
) exactly at each iteration t.

In comparison, REINFORCE is effectively taking a single gradient step of the surrogate loss and
immediately moving on to the next iteration θt+1 with a new surrogate objective.

4
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Two remarks are in place. (1) Our derivation of group-relative REINFORCE can be generalized
to multi-step RL settings, by replacing a response y in the previous analysis with a full trajectory
consisting of multiple turns of agent-environment interaction. For example, regarding the surrogate
objective in Eq. (3), we need to replace the response-level reward and KL divergence with their
trajectory-level counterparts. Interested readers might refer to Appendix A for the full analysis.
(2) The above analysis suggests that we might interpret group-relative REINFORCE from a
pointwise or pairwise perspective. While the policy update in Eq. (7) is stated in a pointwise
manner, we have also seen that, at each iteration, REINFORCE is implicitly enforcing the pairwise
consistency condition in Eq. (5) among multiple responses. This allows us the flexibility to choose
whichever perspective that offers more intuition for our analysis later in this work.

3 PITFALLS AND AUGMENTATIONS

𝜃⋆𝜃"

"𝜃"#$ = argmax
%
	 𝐽 𝜃; 𝜋%!

= argmin
%
	 /𝐿 𝜃; 𝜋%!

𝜃"#$ = 𝜃" − 𝜂"∇% /𝐿 𝜃; 𝜋%! 4
%&%!

Figure 1: A visualization of our off-policy
interpretation for group-relative REINFORCE.
Here L̂(θ;πθt) = Ex∼D̂[L̂(θ;x, πθt)], where
D̂ is the sampling distribution for prompts and
L̂(θ;x, πθt

) is the loss defined in Eq. (6).

Although we have provided a native off-policy
interpretation for REINFORCE, it certainly does
not guarantee convergence to the optimal policy
when given arbitrary training data. This section
identifies pitfalls that could undermine vanilla
REINFORCE, which motivate two principles for
augmentations in off-policy settings.

Pitfalls of vanilla REINFORCE. In Figure 1,
we might expect that ideally, (1) θ̃t+1 − θt aligns
with the direction of θ⋆ − θt; and (2) θt+1 − θt
aligns with the direction of θ̃t+1−θt. One pitfall, however, is that even if both conditions hold, they
do not necessarily imply that θt+1−θt should align well with θ⋆−θt. That is, ⟨θ̃t+1−θt,θ

⋆−θt⟩ >
0 and ⟨θt+1 − θt, θ̃t+1 − θt⟩ > 0 do not imply ⟨θt+1 − θt,θ

⋆ − θt⟩ > 0. Moreover, it is possible
that θt+1 − θt might not align well with θ̃t+1 − θt. Recall from Eq. (7) that, from θt to θt+1, we
take one gradient step for a surrogate loss that enforces the pairwise consistency condition among a
finite number of samples. Given the enormous action space of an LLM, some implicit assumptions
about the training data (e.g., balancedness and coverage) would be needed to ensure that the gradient
aligns well with the direction towards the optimum of the surrogate objective, namely θ̃t+1 − θt.

In fact, without a mechanism that ensures boundedness of policy update under a sub-optimal data
distribution, vanilla REINFORCE could eventually converge to a sub-optimal policy. Let us show
this with a minimal example in a didactic 3-arm bandit setting. Suppose that there are three actions
{aj}1≤j≤3 with rewards {r(aj)}. Consider K training samples {yi}1≤i≤K , where yi ∈ {aj}1≤j≤3

is sampled from some behavior policy πb. Denote by µr :=
∑

1≤j≤3 πb(aj)r(aj) the expected
reward under πb, and r :=

∑
i r(yi)/K the average reward of training samples. We consider the

softmax parameterization, i.e., πθ(aj) = eθj/
∑

ℓ e
θℓ for a policy parameterized by θ ∈ R3. A

standard fact is that ∇θ log πθ(aj) = ej − πθ, where ej ∈ R3 is a one-hot vector with value 1 at
entry j. Now we examine the policy update direction of REINFORCE, as K → ∞:

g =
1

K

∑
1≤i≤K

(r(yi)− r)∇θ log πθ(yi) →
∑

1≤j≤3

πb(aj)(r(aj)− µr)∇θ log πθ(aj)

=
∑

1≤j≤3

πb(aj)(r(aj)− µr)(ej − πθ) =
∑

1≤j≤3

πb(aj)(r(aj)− µr)ej .

For example, if r = [r(aj)]1≤j≤3 = [0, 0.8, 1] and πb = [0.3, 0.6, 0.1], then basic calculation says
µr = 0.58, r − µr = [−0.58, 0.22, 0.42], and finally g2 = πb(a2)(r(a2) − µr) > πb(a3)(r(a3) −
µr) = g3, which implies that the policy will converge to the sub-optimal action a2.

Two principles for augmenting REINFORCE. The identified pitfalls of vanilla REINFORCE
suggest two general principles for augmenting REINFORCE in off-policy scenarios:

• One is to regularize the policy update step, ensuring that the optimization trajectory remains
bounded and reasonably stable when given training data from a sub-optimal distribution;

5
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• The other is to steer the policy update direction, by actively weighting the training samples
rather than naively using them as is.

These two principles are not mutually exclusive, and might be integrated within a single algorithm.
We will see in the next section that many RL algorithms can be viewed as instantiations of them.

4 RETHINKING THE RATIONALES BEHIND RECENT RL ALGORITHMS

This section revisits various RL algorithms through a unified lens — the native off-policy
interpretation of group-relative REINFORCE and its augmentations — and demystifies some
common myths about their working mechanisms. Our main findings are summarized as follows:

ID Finding Analysis & Experiments

F1 GRPO’s effectiveness in off-policy settings stems from clipping as
regularization rather than importance sampling. A wider clipping
range than usual often accelerates training without harming stability.

Section 4.1, Figures 2, 3, 5, 8, 9

F2 Kimi’s OPMD and Meta’s AsymRE can be interpreted as
REINFORCE loss + regularization loss, complementary to the
rationales in their original papers.

Section 4.2, Figure 10

F3 Data-oriented heuristics — such as dropping excess negatives or
up-weighting high-reward rollouts — fit naturally into our off-
policy view and show strong empirical performance.

Section 4.3, Figures 4, 5, 11

Experimental setup. We conduct experiments with the Trinity-RFT framework (Pan et al., 2025),
and control off-policyness with the sync interval (frequency of model synchronization) and
sync offset (lag between rollout generation and training) parameters. Larger values improve
efficiency (via pipeline parallelism) at the cost of off-policyness; in addition, sync offset >
1 simulates delayed environmental feedback in practical scenarios. We also include a stress-test
setting that only allows access to offline data generated by the initial policy model. Our experiments
cover math reasoning tasks like GSM8k (Cobbe et al., 2021), MATH (Hendrycks et al., 2021),
Guru-Math (Cheng et al., 2025), and tool-use tasks like ToolACE (Liu et al., 2025a). LLMs under
consideration include Qwen2.5-1.5B-Instruct, Qwen2.5-7B-Instruct (Qwen-Team, 2025a), Llama-
3.1-8B-Instruct, and Llama-3.2-3B-Instruct (Dubey et al., 2024). Further details can be found in
Appendix B.

4.1 DEMYSTIFYING MYTHS ABOUT GRPO

Recall that in GRPO, the advantage for each response yi is defined as Ai = (ri − r)/σr, where r
and σr denote the within-group mean and standard deviation of the rewards {ri}1≤i≤K respectively.
We consider the practical implementation of GRPO with token-wise importance-sampling (IS)
weighting and clipping, whose loss function for a specific prompt x and responses {yi} is2

L̂ =
1

K

∑
1≤i≤K

∑
1≤t≤|yi|

min

{
πθ(y

t
i |x, y<t

i )

πold(y
t
i |x, y<t

i )
Ai, clip

( πθ(y
t
i |x, y<t

i )

πold(y
t
i |x, y<t

i )
, 1− ϵlow, 1 + ϵhigh

)
Ai

}
,

where πold denotes the older policy version that generated this group of rollout data. The gradient of
this loss can be written as (Schulman et al., 2017)

g
(
θ;x, {yi, ri}1≤i≤K

)
=

1

K

∑
1≤i≤K

∑
1≤t≤|yi|

∇θ log πθ(y
t
i |x, y<t

i ) ·Ai
πθ(y

t
i |x, y<t

i )

πold(y
t
i |x, y<t

i )
M t

i ,

where M t
i denotes a one-side clipping mask:

M t
i = 1

(
Ai > 0,

πθ(y
t
i |x, y<t

i )

πold(y
t
i |x, y<t

i )
≤ 1+ϵhigh

)
+1

(
Ai < 0,

πθ(y
t
i |x, y<t

i )

πold(y
t
i |x, y<t

i )
≥ 1−ϵlow

)
. (8)

2In our experiments with GRPO, we neglect KL regularization with respect to an extra reference model, or
entropy regularization that encourages output diversity. Recent works (Yu et al., 2025; Liu et al., 2025b) have
shown that these practical techniques are often unnecessary.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 2: Empirical results for REC algorithms on GSM8k with Qwen2.5-1.5B-Instruct. Training
reward curves are smoothed with a running-average window of size 3. Numbers in the legend
denote clipping parameters ϵlow, ϵhigh. The “mixed” setting adopts sync interval = 16 and
sync offset = 8.

Ablation study with the REC series. To isolate the roles of importance sampling and clipping,
we consider a series of REINFORCE-with-Clipping (REC) algorithms. Due to space limitation, we
defer our studies of more clipping mechanisms to Appendix B.3, and focus on REC with one-side
clipping in this section. More specifically, REC-ONESIDE-IS removes advantage normalization in
GRPO (to reduce variability), and REC-ONESIDE-NOIS further removes IS weighting:

REC-ONESIDE-IS: g =
1

K

∑
1≤i≤K

∑
1≤t≤|yi|

∇θ log πθ(y
t
i |x, y<t

i ) · (ri − r)
πθ(y

t
i |x, y<t

i )

πold(y
t
i |x, y<t

i )
M t

i ,

REC-ONESIDE-NOIS: g =
1

K

∑
1≤i≤K

∑
1≤t≤|yi|

∇θ log πθ(y
t
i |x, y<t

i ) · (ri − r)M t
i .
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Figure 3: Empirical results for REC on ToolACE
with Llama-3.2-3B-Instruct. Training reward curves
are smoothed with a running-average window of size
3. Details about REC-TWOSIDE and REC-RING are
provided in Appendix B.3.

Experiments. We conduct experiments
to validate Finding F1 regarding the
roles of clipping (with a small or large
clipping range) and importance sampling
in GRPO. Figure 2 presents GSM8k
results with Qwen2.5-1.5B-Instruct
in various off-policy settings. REC-
ONESIDE-IS/NOIS and GRPO (with the
same ϵlow = ϵhigh = 0.2) have nearly
identical performance, indicating that
importance sampling is non-essential,
whereas the collapse of REINFORCE
highlights the critical role of clipping.
Radically enlarging (ϵlow, ϵhigh) to
(0.6, 2.0) accelerates REC-ONESIDE-
NOIS without compromising stability
in both sync interval = 20 and sync offset = 10 settings. Similar patterns also appear
in Figure 3 (ToolAce with Llama-3.2-3B-Instruct) and other results in Appendix B. As for the
stress-test (“offline”) setting, Figure 2 reveals an intrinsic trade-off between the speed and stability
of policy improvement, motivating future work toward better algorithms that achieve both.

We hypothesize that sequence-level importance sampling in GSPO (Zheng et al., 2025) could
be non-essential as well. Interested readers might refer to our preliminary experiment results in
Appendix B.7 that support this prediction.

4.2 UNDERSTANDING KIMI’S OPMD AND META’S ASYMRE

Besides clipping, another natural method is to add a regularization loss R(·) to vanilla REINFORCE:

L̂
(
θ;x, {yi, ri}1≤i≤K

)
= − 1

K

∑
i∈[K]

(ri − r) log πθ(yi |x) + β ·R
(
θ;x, {yi, ri}1≤i≤K

)
,

7
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and take g = −∇θL̂. We show below that Kimi’s OPMD and Meta’s AsymRE are indeed special
cases of this unified formula, with empirical validation of their efficacy deferred to Appendix B.5.

Kimi’s OPMD. Kimi-Team (2025b) derives an OPMD variant by taking logarithm of both sides
of Eq. (4), which leads to a consistency condition and further motivates the following surrogate loss:

L̃ =
1

K

∑
1≤i≤K

(
ri − τ logZ(x, πθt)− τ

(
log πθ(yi |x)− log πθt(yi|x)

))2

.

With K responses generated by πold = πθt
, the term τ logZ(x, πθt

) can be approximated by a finite-
sample estimate τ log(

∑
i e

ri/τ/K) (Brantley et al., 2025), which can be further approximated by
the mean reward r =

∑
i ri/K if τ is large. With these approximations, the gradient of L̃ becomes

equivalent to that of the following loss (which is the final version of Kimi’s OPMD):

L̂ = − 1

K

∑
1≤i≤K

(ri−r) log πθ(yi |x)+
β

2K

∑
1≤i≤K

(
log πθ(yi |x)−log πold(yi |x)

)2

, where β = τ .

In comparison, our analysis in Sections 2 and 3 suggests that this is in itself a principled loss function
for off-policy RL, adding a mean-squared regularization loss to the vanilla REINFORCE loss.

Meta’s AsymRE. AsymRE (Arnal et al., 2025) modifies REINFORCE by tuning down the
baseline (from r to r − β) in advantage calculation, which was motivated by the intuition of
prioritizing learning from positive samples and justified by multi-arm bandit analysis in the original
paper. We offer an alternative interpretation for AsymRE by rewriting its loss function:

L̂ = − 1

K

∑
i

(
ri − (r − β)

)
log πθ(yi |x) = − 1

K

∑
i

(ri − r) log πθ(yi |x)−
β

K

∑
i

log πθ(yi |x).

Note that the first term on the right-hand side is the REINFORCE loss, and the second term serves
as regularization, enforcing imitation of responses from an older version of the policy model. For
the latter, we may also add a term that is independent of θ to it and take the limit K → ∞:

− 1

K

∑
1≤i≤K

log πθ(yi |x) +
1

K

∑
1≤i≤K

log πold(yi |x) =
1

K

∑
1≤i≤K

log
πold(yi |x)
πθ(yi |x)

→ Ey∼πold(· | x)
[
log

πold(y |x)
πθ(y |x)

]
= DKL

(
πold(·|x)∥πθ(·|x)

)
,

which turns out to be a finite-sample approximation of KL regularization.

4.3 UNDERSTANDING DATA-WEIGHTING METHODS

We now shift our attention to the second principle for augmenting REINFORCE, i.e., actively
shaping the training data distribution.

Pairwise weighting. Recall from Section 2 that we define the surrogate loss in Eq. (6) as an
unweighted sum of pairwise mean-squared losses. However, if we have certain knowledge about
which pairs are more informative for RL training, we may assign higher weights to them. This
motivates generalizing

∑
i<j(ai − aj)

2 to
∑

i<j wi,j(ai − aj)
2, where {wi,j} are non-negative

weights. Assuming that wi,j = wj,i and following the steps in Section 2, we end up with

g
(
θ;x, {yi, ri}1≤i≤K

)
=

1

K

∑
1≤i≤K

( ∑
1≤j≤K

wi,j

)(
ri −

∑
j wi,jrj∑
j wi,j

)
∇θ log πθ(yi |x).

In the special case where wi,j = wiwj , this becomes

g =
(∑

j

wj

) 1

K

∑
1≤i≤K

wi

(
ri − rw

)
∇θ log πθ(yi |x), where rw :=

∑
j wjrj∑
j wj

. (9)

Based on this, we investigate two REINFORCE-with-data-weighting (RED) methods.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 50 100 150
0.0

0.2

0.4

0.6

0.8

Ev
al

ua
tio

n 
A

cc
ur

ac
y

on-policy

0 50 100 150

sync_interval = 20

0 25 50 75 100 125 150

Training Steps

0.00

0.25

0.50

0.75

1.00

Tr
ai

ni
ng

 R
ew

ar
d

0 25 50 75 100 125 150

Training Steps

REINFORCE
RED-Drop

RED-Weight REC-OneSide-NoIS (0.6, 2.0)

Figure 4: Empirical performance
of RED algorithms on GSM8k
with Qwen2.5-1.5B-Instruct, in
both on-policy and off-policy
settings. Training reward curves
are smoothed with a running-
average window of size 3.
Implementation details about
RED-WEIGHT and RED-DROP
are provided in Appendix B.6.

RED-DROP: sample dropping. The idea is to use a filtered subset S ⊆ [K] of responses for
training; for example, the Kimi-Researcher technical blog (Kimi-Team, 2025a) proposes to “discard
some negative samples strategically”, as negative gradients increase the risk of entropy collapse.
This is indeed a special case of Eq. (9), by setting wi =

√
K/|S| for i ∈ S and 0 otherwise:

g
(
θ;x, {yi, ri}1≤i≤K

)
=

1

|S|
∑
i∈S

(ri − rS)∇θ log πθ(yi |x), where rS =
1

|S|
∑
i∈S

ri. (10)

While this is no longer an unbiased estimate of policy gradient even if all responses are sampled
from the current policy, it is still well justified by our off-policy interpretation of REINFORCE.

RED-WEIGHT: pointwise loss weighting. Another approach for prioritizing high-reward
responses is to directly up-weight their gradient terms in Eq. (1a). To better understand the working
mechanism of this seemingly heuristic method, we rewrite its policy update:

g =
∑

1≤i≤K

wi(ri − r)∇θ log πθ(yi|x) =
∑

1≤i≤K

wi(ri − rw + rw − r)∇θ log πθ(yi|x)

=
∑

1≤i≤K

wi(ri − rw)∇θ log πθ(yi|x) + (rw − r)
∑

1≤i≤K

wi∇θ log πθ(yi|x).

This is the pairwise-weighted REINFORCE gradient in Eq. (9), plus a regularization term (weighted
by rw−r > 0) that resembles the one in AsymRE but prioritizes imitating higher-reward responses,
echoing the finding from offline RL literature (Hong et al., 2023a;b) that regularizing against high-
reward trajectories can be more effective than conservatively imitating all trajectories in the dataset.
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Figure 5: Empirical results on Guru-Math with
Qwen2.5-7B-Instruct. Training reward curves are
smoothed with a running-average window of size 3.

Experiments. Figure 4 presents GSM8k
results with Qwen2.5-1.5B-Instruct,
which confirm the efficacy of RED-
DROP and RED-WEIGHT (details in
Appendix B.6) in on/off-policy settings,
comparable to REC-ONESIDE-NOIS
with enlarged (ϵlow, ϵhigh). Figure 5
reports larger-scale experiments on
Guru-Math with Qwen2.5-7B-Instruct,
where RED-WEIGHT achieves higher
rewards than GRPO, with similar KL
distance to the initial policy. Figure 11
in the appendix further validates the
efficacy of RED-WEIGHT on MATH with
Llama-3.1-8B-Instruct.

5 RELATED WORKS

Various perspectives for off-policy LLM-RL. Importance sampling has long been considered
one foundational mechanism for off-policy RL; besides TRPO, PPO and GRPO, recent extensions

9
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include GSPO (Zheng et al., 2025) and GMPO (Zhao et al., 2025) that work with sequence-wise
probability ratios, CISPO (Chen et al., 2025) that clips probability ratios rather than token updates,
decoupled PPO (Fu et al., 2025a) that adapts PPO to asynchronous RL, among others. AsymRE
(Arnal et al., 2025) offers an alternative baseline-shift approach (with ad-hoc analysis for discrete
bandit settings), while OPMD (Kimi-Team, 2025b) partly overlaps with our analysis up to Eq. (4)
before diverging. REBEL (Gao et al., 2024) and CoPG (Flet-Berliac et al., 2024) overlap with our
analysis up to Eq. (6) before diverging, which will soon be elaborated. Other perspectives for off-
policy LLM-RL include learning dynamics of DPO and SFT (Ren & Sutherland, 2025), training
offline loss functions with negative gradients on on-policy data (Tajwar et al., 2024), or improving
generalization of SFT via probability-aware rescaling (Wu et al., 2025). Another line of research
integrates expert data into online RL (Yan et al., 2025; Zhang et al., 2025c; Fu et al., 2025b). Our
work contributes complementary perspectives to this growing toolkit for off-policy LLM-RL.

Most closely related works. We focus our discussion on previous methods that are most closely
related to our core analysis in Section 2.2. In a tabular setting, the surrogate objective in Eq. (3)
— KL-regularized reward maximization — can be regarded as an instantiation of mirror descent,
whose optimum admits the closed form in Eq. (4). In more general settings with parameterized
policy πθ and large action space, it is infeasible to realize Eq. (4) directly, and one would resort to
optimizing the model parameters. Various algorithms have been developed on the basis of Eq. (3)
and (4), including Kimi’s OPMD (Kimi-Team, 2025b) as explained in Section 4.2.

REBEL (Gao et al., 2024) has a derivation that largely overlaps with our Step 1 and 2 analysis
in Section 2.2. It then seeks to solve the squared loss in Eq. (6), which enforces the pairwise
consistency condition in Eq. (5). CoPG (Flet-Berliac et al., 2024) takes a similar approach, except
that it uses a fixed reference policy (rather than the current iteration πθt

) for KL regularization.
Compared to REINFORCE-style algorithms — for which enterprise-grade LLM-RL frameworks
like verl (Sheng et al., 2024) and Trinity-RFT (Pan et al., 2025) have been heavily optimized for —
REBEL and CoPG could be less infrastructure-friendly or efficient. For example, in the presence
of data parallelism and gradient accumulation, these frameworks can automatically divide a mini-
batch into multiple micro-batches (each containing multiple or just one sequence) in a way that
maximizes load balancing and training efficiency, while minimizing peak memory usage. However,
solving the squared loss in Eq. (6) (like REBEL does) contradicts these performance optimization
techniques, as it requires paired responses for the same prompt to be located within the same micro-
batch. This constraint increases infrastructure complexity and peak memory usage, as reported in
(Brantley et al., 2025). Our Step 3 analysis in Section 2.2, on the other hand, proposes to take one
gradient descent step for the squared loss, leading to a group-relative variant of classic REINFORCE
while giving it a native off-policy interpretation.

Natural Policy Gradient (NPG) (Kakade, 2001) can be derived by approximating the surrogate
objective in Eq. (3) with first-order Taylor expansion for the max-reward term and second-order
Taylor expansion for the KL term, and then setting its gradient to zero. Since NPG requires on-
policy sampling, it is less relevant to our study of off-policy LLM-RL. DPO (Rafailov et al., 2023)
was also derived on the basis of Eq. (3), (4) and (5), but in a substantially different setting, with
pairwise preference data and the Bradley-Terry assumption.

6 LIMITATIONS AND FUTURE WORK

While our work offers a new off-policy interpretation for group-relative REINFORCE and shows
its broad implications for LLM-RL, several limitations remain. (1) Our current analysis covers
single/multi-step RL with response/trajectory-level rewards, and assumes access to multiple rollouts
per query. Future work may expand its scope and applicability, e.g., generalizing to settings with
step-level rewards or only one rollout per query. (2) Our analysis lacks formal guarantees for
policy improvement or convergence. Future work may identify distributional assumptions that yield
provable guarantees for REINFORCE variants in off-policy settings. (3) Our experiments focus
on settings where training data is generated by older policy versions. Extensions to broader off-
policy settings (e.g., advanced experience synthesis or incorporation of expert data) may reveal new
insights. Addressing these limitations will further solidify the theoretical foundation and advance
principled algorithm design for off-policy LLM-RL.
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REPRODUCIBILITY STATEMENT

Full implementation details and hyperparameter configurations are documented in Section 4 and
Appendix B. To facilitate reproducibility, we will release our code publicly upon acceptance.

ETHICS STATEMENT

All datasets used in this study (e.g., GSM8k, MATH, Guru, ToolACE) are publicly available,
and no private or personally identifiable information was collected or used. Our contributions
are methodological, focusing on improving the stability and efficiency of RL for LLM post-
training. We acknowledge that LLMs may still generate biased or harmful outputs; however, our
experiments are restricted to benchmark evaluations and do not involve deployment in real-world
systems. We believe that releasing our code and reporting detailed hyperparameter settings will
foster reproducibility and responsible advancement in this field.
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LLM USAGE STATEMENT

We used large language models (LLMs) only as general-purpose writing assistants to polish the
presentation and improve the clarity of the text. All research contributions and findings are solely
the work of the authors.

A EXTENDING SECTION 2.2 TO MULTI-STEP RL

This section extends the off-policy interpretation proposed in Section 2.2 to multi-step RL settings.
Let us start by introducing some notations. In multi-step RL, the initial prompt x is also regarded
as the initial state s1 = x. A rollout trajectory consisting of multiple turns of agent-environment
interaction is denoted by

T = (s1, a1, s2, a2, . . . ) = (sℓ, aℓ)1≤ℓ≤|T |,

where sℓ is the state and aℓ is the action, i.e., an LLM response (akin to y in Section 2.2). Let cℓ
denote the context up to step ℓ, so that aℓ ∼ π(·|cℓ) for some policy π. Throughout this section, we
consider trajectory-level rewards r(x, T ). Let ρθ(·|x) denote the trajectory distribution induced by
policy πθ at initial state s1 = x.

The following analysis focuses on the t-th iteration, updating the policy model from θt to θt+1.

Step 1: surrogate objective and consistency condition. For the t-th iteration of policy
optimization, consider the following KL-regularized objective:

max
θ

J(θ;πθt
) := Ex∼D

[
ET ∼ρθ(·|x)[r(x, T )]− τ ·DKL

(
ρθ(·|x) ∥ ρθt

(·|x)
)]
. (11)

The optimal policy π and the induced trajectory distribution ρ satisfies the following: for any
trajectory T ,

ρ(T |x) = ρθt
(T |x)er(x,T )/τ

Z(x, ρθt)
, where (12)

Z(x, ρθt) :=

∫
ρθt(T ′|x)er(x,T ′)/τ dT ′ = ET ′∼ρθt (·|x)[e

r(x,T ′)/τ ]. (13)

This is equivalent to the following: for any pair of trajectories T1 and T2,

ρ(T1|x)
ρ(T2|x)

=
ρθt

(T1|x)
πθt(T2|x)

e

(
r(x,T1)−r(x,T2)

)
/τ .

Taking logarithm of both sides and doing some rearrangement, we have equivalently

r(x, T1)− τ ·
(
log ρ(T1|x)− log ρθt

(T1|x)
)
= r(x, T2)− τ ·

(
log ρ(T2|x)− log ρθt

(T2|x)
)
.

(14)

Note that for a trajectory T , we have

log ρ(T |x)− log ρθt(T |x) =
∑
ℓ

log π(aℓ|cℓ)−
∑
ℓ

log πθt(a
ℓ|cℓ)

since the state-transition probability terms in log ρ(T |x) and log ρθt(T |x) cancel out.

Step 2: surrogate loss with finite samples. Given K trajectories from the same initial state s1 =
x, we define the following mean-squared surrogate loss that enforces the consistency condition:

L̂(θ;x, πθt) :=
1

K2

∑
1≤i<j≤K

(ai − aj)
2

(1 + τ)2
, (15)

where ai := r(x, Ti)− τ
(∑

ℓ

log πθ(a
ℓ
i |cℓi)−

∑
ℓ

log πθt
(aℓi |cℓi)

)
. (16)

With infinite samples and sufficient coverage of the action space, the optimum of this surrogate loss
would be the same as the optimal policy for the surrogate objective in Eq. (11).
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Step 3: one gradient step of the surrogate loss. By the same trick as in Section 2.2, we have

∇θ(ai − aj)
2
∣∣
θt

= −2τ
(
r(x, Ti)− r(x, Tj)

)(
∇θ

∑
ℓ

log πθ(a
ℓ
i |cℓi)

∣∣
θt

−∇θ

∑
ℓ

log πθ(a
ℓ
j |cℓj)

∣∣
θt

)
,

and

∇θ

∑
1≤i<j≤K

(ai − aj)
2

(1 + τ)2

∣∣∣
θt

=
−2τK

(1 + τ)2

∑
1≤i≤K

(
r(x, Ti)− r(x)

)
∇θ

∑
ℓ

log πθ(a
ℓ
i |cℓi)

∣∣∣
θt

,

where r(x) :=
∑

1≤j≤K r(x, Tj)/K denotes the group mean reward in the last line.

In sum, the gradient of the surrogate loss in Eq. (16) becomes:

∇θL̂(θ;x, πθt
)
∣∣
θt

=
−2τ

(1 + τ)2
· 1

K

∑
1≤i≤K

(
r(x, Ti)− r(x)

)
∇θ

∑
ℓ

log πθ(a
ℓ
i |cℓi)

∣∣∣
θt

.

This motivates the following policy update step:

g
(
θ;x, {Ti, ri}1≤i≤K

)
=

2τ

(1 + τ)2
· 1

K

∑
1≤i≤K

(
r(x, Ti)− r(x)

)
∇θ

∑
1≤ℓ≤|Ti|

log πθ(a
ℓ
i |cℓi), (17)

which concludes our derivation of group-relative REINFORCE in multi-step RL settings.

B IMPLEMENTATION DETAILS AND ADDITIONAL EXPERIMENTS

We implement all algorithms with the Trinity-RFT framework (Pan et al., 2025), and run
experiments on NVIDIA L20, H20, and A800 GPUs. See Tables 1 and 2 for detailed configurations
of our experiments.

B.1 DATASET DETAILS

We provide additional descriptions of the datasets used in our experiments:

• GSM8k (Cobbe et al., 2021) is a widely used benchmark with 8.5k grade-school math word
problems, designed to test arithmetic reasoning and step-by-step problem solving.

• MATH (Hendrycks et al., 2021) covers algebra, geometry, probability, and number theory,
containing 12.5k examples in total (7.5k for training and 5k for testing); it demands
advanced symbolic reasoning beyond GSM8k.

• Guru (Cheng et al., 2025) is a multi-domain reasoning dataset with 91.9k examples
spanning math, code, science, logic, simulation, and tabular tasks; we use its math subset
(around 54k samples), which introduces diverse problem formats for evaluating transfer of
reasoning strategies.

• ToolACE (Liu et al., 2025a) is a multilingual benchmark with around 11k synthetic samples
designed to evaluate LLMs’ ability to solve tasks by selecting and invoking external tools
via strict JSON-formatted function calls; we use a 5k single-turn subset in our experiments.

B.2 UNDERSTANDING THE SYNCHRONIZATION PARAMETERS

We parameterize rollout-training scheduling by two configuration parameters in Trinity-RFT: the
synchronization interval (sync interval) and synchronization offset (sync offset). Their
meanings are visualized in Figure 6 and explained in the following.

The parameter sync interval specifies the number of generated rollout batches (which equals
the number of gradient steps for training the policy model) between two consecutive executions
of model weight synchronization. When sync interval = 1, the rollout and policy models
synchronize after each gradient step with one batch of samples, yielding a strictly on-policy process
(if we ignore the issue of precision mismatch between rollout and training engines (Yao et al.,
2025)). When sync interval > 1, sync interval rollout batches are generated with stale
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Table 1: Default hyperparameters. Deviations from defaults are noted in figure captions.

GSM8K
Qwen2.5

1.5B

ToolACE
Llama-3.2

3B

Guru
Qwen2.5

7B

Guru
Qwen3

30B-A3B

MATH
Llama-3.1

8B

Learning rate 1×10−6 1×10−6 1×10−6 2×10−6 5×10−7

Batch size 96 96 64 72 64
K 8 8 16 16 16
Weight decay 0.01 0.01 0.1 0.1 0.1
Warmup steps 0 0 80 80 40
Eval temperature 1.0 N/A N/A N/A 0.6
Eval top-p 1.0 N/A N/A N/A 1.0
Figures 2, 4, 8,9,10 3 5 12 11

Table 2: Other shared hyperparameters across all experiments.

Parameter Value

Optimizer AdamW
(β1, β2) (0.9, 0.999)
Gradient clipping 1.0
Warmup style constant
Weight-decay increment style constant
Auxiliary LR decay style exponential
Training inference temperature 1.0
Training inference top-p 1.0

model weights before synchronization, which accelerates the overall RL process through pipeline
parallelism but incurs off-policyness.

The parameter sync offset specifies the lag between the generation and consumption of
each batch. More specifically, sync offset batches are generated and saved to the buffer
before training is launched, which is also useful for reducing pipeline bubbles and improving
hardware utilization (Noukhovitch et al., 2025). In some of our experiments, we deliberately set
sync offset to a large value, in order to simulate a scenario where reward signals from the
environment are lagged.

In general, with (sync interval,sync offset) = (m,n), the off-policyness of a consumed
batch with zero-index id l corresponds to its temporal distance from the most recent synchronized
policy is (l mod m) + n. For example, (4, 0) yields off-policyness 0, 1, 2, 3 within each interval,
while (1, 4) yields a constant off-policyness of 4.

Mode: sync_interval = 4, sync_offset = 0

Rollout

Buffer

Training

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

...

...
sync sync

Mode: sync_interval = 1, sync_offset = 4

Rollout

Buffer

Training

0 1 2 3 4 5 6 7

0 1 2 3

...

...
sync

Figure 6: A visualization of the rollout-training scheduling in sync interval = 4 (left) or
sync offset = 4 (right) modes. Each block denotes one batch of samples for one gradient step,
and the number in it denotes the corresponding batch id. Training blocks are color-coded by data
freshness, with lighter color indicating increasing off-policyness.
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Figure 7: A visualization of activated gradient for various REC algorithms. Here, A represents the
advantage of a specific token, and an arrow pointing to the right and annotated with “A > 0” means
there is activated gradient that incentivizes increasing πθ when the token advantage is positive and
the probability ratio πθ/πold lies in the corresponding interval.

B.3 REC WITH DIFFERENT CLIPPING MECHANISMS

In addition to one-side clipping investigated in Section 4, here we compare additional clipping
mechanisms for the REC series, to understand how the geometry of clipping — asymmetric
vs. symmetric bounds and the presence of a zero-gradient band — affects the learning process.

REC-TWOSIDE-IS/NOIS. We replace the mask M t
i in REC-ONESIDE-IS/NOIS in Eq. (8)

with a two-side mask3:

M̃ t
i = 1

(
1− ϵlow ≤ πθ(y

t
i |x, y<t

i )

πold(y
t
i |x, y<t

i )
≤ 1 + ϵhigh

)
. (18)

Two-side clipping imposes weaker regularization than one-side clipping does with the same clipping
parameter (ϵlow, ϵhigh). This can potentially improve training efficiency, but might also be risky when
πθ/πold goes far off. To compensate for this, we design REC-RING.

REC-RING. In addition to the inner band (1 − ϵlow, 1 + ϵhigh) as in Eq. (18), we further specify
outer safety margins ϵ′low≥ϵlow and ϵ′high≥ϵhigh. The REC-RING mask is:

M̂ t
i = 1

(
1− ϵlow ≤ πθ(y

t
i |x, y<t

i )

πold(y
t
i |x, y<t

i )
≤ 1 + ϵhigh

)
(19)

+ 1

(
Ai > 0 and

πθ(y
t
i |x, y<t

i )

πold(y
t
i |x, y<t

i )
≤ 1− ϵ′low

)
(20)

+ 1

(
Ai < 0 and

πθ(y
t
i |x, y<t

i )

πold(y
t
i |x, y<t

i )
≥ 1 + ϵ′high

)
. (21)

A comparison of the clipping mechanisms are visualized in Figure 7. Note that REC-ONESIDE and
REC-TWOSIDE can be regarded as special cases of REC-RING.

Experiments. We compare the following algorithms: REINFORCE, GRPO, REC-TWOSIDE-
IS, REC-TWOSIDE-NOIS, and REC-RING-NOIS. Clipping parameters are set to (ϵlow, ϵhigh) =
(0.2, 0.2), and for REC-RING we additionally set (ϵ′low, ϵ

′
high) = (0.6, 2.0).

Figure 8 presents the empirical results. We observe that for REC-TWOSIDE, importance sampling is
non-essential in all three settings, akin to the case of REC-ONESIDE. In addition, REC-TWOSIDE
methods demonstrate fast policy improvement at the beginning but tend to collapse later on, whereas
REC-RING achieves a better balance of convergence speed and stability.

B.4 ABLATION: THE IMPACT OF LEARNING RATES

Recall that in Section 4.1, we have demonstrated empirically the advantages of enlarging the
clipping parameters ϵlow, ϵhigh for REC-ONESIDE-NOIS. One might wonder if the relatively weak

3It turns out that REC-TWOSIDE-NOIS resembles the sPPO algorithm proposed by Vaswani et al. (2022),
though derived with different rationales.
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Figure 8: Comparison of REC variants on GSM8K with Qwen2.5-1.5B-Instruct under different
off-policy settings. Evaluation accuracy, training reward, KL divergence (with respect to the initial
model) and clipping fraction are reported. Training reward curves are smoothed with a running-
average window of size 3.
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Figure 9: Comparison of GRPO and REC-ONESIDE-NOIS on GSM8K with Qwen2.5-1.5B-
Instruct. Evaluation accuracy (left) and training reward (right) are reported for varying learning
rates.
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Figure 10: Empirical results for OPMD and AsymRE (cf. Section 4.2) on GSM8K with Qwen2.5-
1.5B-Instruct under various off-policy settings. The regularization coefficient for OPMD and the
baseline shift for AsymRE are both 0.1. Training reward curves are smoothed with a running-
average window of size 3.

performance of GRPO or REC-ONESIDE with conventional ϵlow = ϵhigh = 0.2 is genuinely rooted
in the clipping mechanism itself, or simply due to the choice of a small learning rate.

To answer this, we enhance the experiment of Figure 2 by sweeping learning rates over {1×10−5, 2×
10−6, 5×10−6}. The results are illustrated in Figure 9, which confirm that simply increasing the
learning rate cannot bridge the performance gap between GRPO with ϵlow = ϵhigh = 0.2 and REC-
ONESIDE-NOIS with ϵlow = 0.6, ϵhigh = 2.0. This shows that relaxing the clipping range acts as a
genuine improvement of regularization, rather than merely mimicking a larger learning rate.

B.5 EXPERIMENTS FOR OPMD AND ASYMRE

Figure 10 presents empirical results for OPMD and AsymRE in various off-policy settings. It is
worth noting that, while the analysis and experiments in their original papers (Kimi-Team, 2025b;
Arnal et al., 2025) focus on a setting that is effectively the same as our sync interval > 1
setting, our analysis and experiments have also validated their efficacy in sync offset > 1
scenarios.
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training include reward, KL divergence, entropy,
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accuracy on the MATH500 subset.

0 200 400 600

Training Steps

0.6

0.7

0.8

Tr
ai

ni
ng

 R
ew

ar
d

sync_interval = 8

0 200 400 600

Training Steps

0.1

0.2

0.3

0.4
C

lip
pi

ng
 F

ra
ct

io
n

sync_interval = 8

REC-OneSide-NoIS (6e-4, 8e-4) REC-OneSide-IS (6e-4, 8e-4)

Figure 12: Empirical results on Guru-Math with Qwen3-30B-A3B (MoE). Training reward curves
are smoothed with a running-average window of size 3.

B.6 ADDITIONAL DETAILS AND RESULTS FOR RED ALGORITHMS

We present further implementation details for the RED-DROP and RED-WEIGHT algorithms
investigated in Section 4.3:

• RED-DROP: When the number of negative samples in a group exceeds the number of
positive ones, we randomly drop the excess negatives so that positives and negatives are
balanced. After this subsampling step, we recompute the advantages using the remaining
samples, which are then fed into the loss.

• RED-WEIGHT: Each sample i is weighted by wi = exp(Ai/T ), where Ai denotes
its advantage estimate and T > 0 is a temperature parameter controlling the sharpness
of weighting. Intuitively, this scheme amplifies high-advantage samples while down-
weighting low-advantage ones. We fix T = 1 for all experiments.

Additional experiments for RED-WEIGHT, and its comparison against GRPO and REC-ONESIDE-
NOIS, can be found in Figure 11. We observe that for the MATH dataset and Llama-3.1-8B-Instruct,
RED-WEIGHT achieves higher rewards with lower KL divergence, while maintaining more stable
entropy and response lengths.

B.7 GSPO: SEQUENCE-LEVEL IMPORTANCE SAMPLING COULD BE NON-ESSENTIAL

Group Sequence Policy Optimization (GSPO) (Zheng et al., 2025) proposes to replace token-wise
clipping and importance sampling in GRPO with sequence-wise counterparts. Similar to Finding
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F1 in Section 4 for GRPO, we hypothesize that GSPO’s effectiveness stems from sequence-level
clipping as regularization, rather than from sequence-level importance sampling. We provides
preliminary validation for this hypothesis, through experiments with GSPO-style REC variants.

Implementations. Given a prompt x and K responses {yi}1≤i≤K , let si(θ) denote the length-
normalized sequence-level probability ratio for yi:

si(θ) :=

(
πθ(yi |x)
πold(yi |x)

) 1
|yi|

= exp

(
1

|yi|
∑

1≤t≤|yi|
log

πθ(y
t
i |x, y<t

i )

πold(y
t
i |x, y<t

i )

)
.

We further define the one-side sequence-level clipping mask as

Mi := 1

(
Ai > 0, si(θ) ≤ 1 + ϵhigh

)
+ 1

(
Ai < 0, si(θ) ≥ 1− ϵlow

)
.

With these notations in place, we implement two GSPO-style REC variants as follows:

REC-GSPO-IS: g =
1

K

∑
1≤i≤K

1

|yi|
∑

1≤t≤|yi|
∇θ log πθ(y

t
i |x, y<t

i ) · (ri − r) si(θ)Mi,

REC-GSPO-NOIS: g =
1

K

∑
1≤i≤K

1

|yi|
∑

1≤t≤|yi|
∇θ log πθ(y

t
i |x, y<t

i ) · (ri − r)Mi.

One can check that REC-GSPO-IS is equivalent to GSPO (except that we use ri − r as the
advantage, without normalization by σr), while REC-GSPO-NOIS discards the sequence-level
importance-sampling weights.

Experiments. We use the Guru-Math dataset and a mixture-of-expert (MoE) model — Qwen3-
30B-A3B (Qwen-Team, 2025b) — since stable RL for MoE models is one of the main motivations
behind GSPO (Zheng et al., 2025). We set sync interval = 8, ϵlow = 6 × 10−4, and ϵhigh =
8× 10−4; other hyperparameters can be found in Tables 1 and 2.

Figure 12 shows that the learning curves of both REC-GSPO variants — with or without importance
sampling — mostly overlap, indicating that importance sampling is likely a non-essential component
for the effectiveness of GSPO.

C SUMMARY: A UNIFIED VIEW OF VARIOUS ALGORITHMS

For convenient reference, Table 3 summarizes the algorithms investigated in Section 4.
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