

000 GROUP-RELATIVE REINFORCE IS SECRETLY AN 001 OFF-POLICY ALGORITHM: DEMYSTIFYING SOME 002 MYTHS ABOUT GRPO AND ITS FRIENDS 003

004
005
006 **Anonymous authors**
007 Paper under double-blind review
008
009
010
011
012

ABSTRACT

013 Off-policy reinforcement learning (RL) for large language models (LLMs)
014 is attracting growing interest, driven by practical constraints in real-world
015 applications, the complexity of LLM-RL infrastructure, and the need for further
016 innovations of RL methodologies. While classic REINFORCE and its modern
017 variants like Group Relative Policy Optimization (GRPO) are typically regarded
018 as on-policy algorithms with limited tolerance of off-policyness, we present
019 in this work a first-principles derivation for *group-relative REINFORCE* — a
020 REINFORCE variant that uses the *within-group mean reward as the baseline for*
021 *advantage calculation* — without assuming a specific training data distribution,
022 showing that it admits a *native off-policy interpretation*. This perspective yields
023 two general principles for adapting REINFORCE to truly off-policy settings:
024 regularizing policy updates, and actively shaping the data distribution. Our
025 analysis demystifies some myths about the roles of importance sampling and
026 clipping in GRPO, unifies and reinterprets two recent algorithms — Online Policy
027 Mirror Descent and Asymmetric REINFORCE — as regularized forms of the
028 REINFORCE loss, and offers theoretical justification for seemingly heuristic data-
029 weighting strategies. Our findings lead to actionable insights that are validated
030 with extensive empirical studies, and open up new opportunities for principled
031 algorithm design in off-policy RL for LLMs.

1 INTRODUCTION

032 The past few years have witnessed rapid progress in reinforcement learning (RL) for large language
033 models (LLMs). This began with reinforcement learning from human feedback (RLHF) (Bai
034 et al., 2022; Ouyang et al., 2022) that aligns pre-trained LLMs with human preferences, followed
035 by reasoning-oriented RL that enables LLMs to produce long chains of thought (OpenAI, 2024;
036 DeepSeek-AI, 2025; Kimi-Team, 2025b; Zhang et al., 2025b). More recently, agentic RL (Kimi-
037 Team, 2025a; Gao et al., 2025; Zhang et al., 2025a) aims to train LLMs for agentic capabilities such
038 as tool use, long-horizon planning, and multi-step task execution in dynamic environments.

039 Alongside these developments, off-policy RL has been attracting growing interest. In the “era of
040 experience” (Silver & Sutton, 2025), LLM-powered agents need to be continually updated through
041 interaction with the environment. Practical constraints in real-world deployment and the complexity
042 of LLM-RL infrastructure often render on-policy training impractical (Noukhovitch et al., 2025):
043 rollout generation and model training can proceed at mismatched speeds, data might be collected
044 from different policies, reward feedback might be irregular or delayed, and the environment may
045 be too costly or unstable to query for fresh trajectories. Moreover, in pursuit of higher sample
046 efficiency and model performance, it is desirable to go beyond the standard paradigm of independent
047 rollout sampling, e.g., via replaying past experiences (Schaul et al., 2016; Rolnick et al., 2019; An
048 et al., 2025), synthesizing higher-quality experiences based on auxiliary information (Da et al., 2025;
049 Liang et al., 2025; Guo et al., 2025), or incorporating expert demonstrations into online RL (Yan
050 et al., 2025; Zhang et al., 2025c) — all of which incur off-policyness.

051 However, the prominent algorithms in LLM-RL — Proximal Policy Optimization (PPO) (Schulman
052 et al., 2017) and Group Relative Policy Optimization (GRPO) (Shao et al., 2024) — are essentially

054 on-policy methods: as modern variants of REINFORCE (Williams, 1992), their fundamental
 055 rationale is to produce unbiased estimates of the policy gradient, which requires fresh data sampled
 056 from the current policy. PPO and GRPO can handle a limited degree of off-policyness via
 057 importance sampling, but require that the current policy remains sufficiently close to the behavior
 058 policy. Truly off-policy LLM-RL often demands ad-hoc analysis and algorithm design; worse still,
 059 as existing RL infrastructure (Sheng et al., 2024; Hu et al., 2024; von Werra et al., 2020; Wang et al.,
 060 2025; Pan et al., 2025; Fu et al., 2025a) is typically optimized for REINFORCE-style algorithms,
 061 their support for specialized off-policy RL algorithms could be limited. All these have motivated
 062 our investigation into principled and infrastructure-friendly algorithm design for off-policy RL.

063 **Core finding: a native off-policy interpretation for group-relative REINFORCE.** Consider
 064 a one-step RL setting and a group-relative variant of REINFORCE that, like in GRPO, assumes
 065 access to multiple responses $\{y_1, \dots, y_K\}$ for the same prompt x and use the group mean reward \bar{r}
 066 as the baseline in advantage calculation. Each response is a sequence of tokens $y_i = (y_i^1, y_i^2, \dots)$,
 067 and receives a response-level reward $r_i = r(x, y_i)$. Let $\pi_\theta(\cdot|x)$ denote an autoregressive policy
 068 parameterized by θ . The update rule for each iteration of group-relative REINFORCE is $\theta' =$
 069 $\theta + \eta g$, where η is the learning rate, and g is the sum of updates from multiple prompts and their
 070 corresponding responses. For a specific prompt x , the update would be¹

$$g(\theta; x, \{y_i, r_i\}_{1 \leq i \leq K}) = \frac{1}{K} \sum_{1 \leq i \leq K} (r_i - \bar{r}) \nabla_\theta \log \pi_\theta(y_i | x) \quad (\text{response-wise}) \quad (1a)$$

$$= \frac{1}{K} \sum_{1 \leq i \leq K} \sum_{1 \leq t \leq |y_i|} (r_i - \bar{r}) \nabla_\theta \log \pi_\theta(y_i^t | x, y_i^{<t}) \quad (\text{token-wise}) \quad (1b)$$

071 Here, the response-wise and token-wise formulas are linked by the elementary decomposition
 072 $\log \pi_\theta(y_i | x) = \sum_t \log \pi_\theta(y_i^t | x, y_i^{<t})$, where $y_i^{<t}$ denotes the first $t-1$ tokens of y_i .

073 A major finding of this work is that group-relative REINFORCE admits a native off-policy
 074 interpretation. We establish this in Section 2 via a novel, first-principles derivation that makes
 075 no explicit assumption about the sampling distribution of the responses $\{y_i\}$, in contrast to the
 076 standard policy gradient theory. Our derivation provides a new perspective for understanding
 077 how REINFORCE makes its way towards the optimal policy by constructing a series of surrogate
 078 objectives and taking gradient steps for the corresponding surrogate losses. Such analysis can be
 079 extended to multi-step RL settings as well, with details deferred to Appendix A.

080 **Implications: principles and concrete methods for augmenting REINFORCE.** While the
 081 proposed off-policy interpretation does not imply that vanilla REINFORCE should converge to
 082 the optimal policy when given arbitrary training data (which is too good to be true), our analysis
 083 in Section 3 identifies two general principles for augmenting REINFORCE in off-policy settings:
 084 (1) regularize the policy update step to stabilize learning, and (2) actively shape the training
 085 data distribution to steer the policy update direction. As we will see in Section 4, this unified
 086 framework demystifies common myths about the rationales behind many recent RL algorithms:
 087 (1) It reveals that in GRPO, clipping (as a form of regularization) plays a much more essential
 088 role than importance sampling, and it is often viable to enlarge the clipping range far beyond
 089 conventional choices for accelerated convergence without sacrificing stability. (2) Two recent
 090 algorithms — Kimi’s Online Policy Mirror Descent (OPMD) (Kimi-Team, 2025b) and Meta’s
 091 Asymmetric REINFORCE (AsymRE) (Arnal et al., 2025) — can be reinterpreted as adding a
 092 regularization loss to the standard REINFORCE loss, which differs substantially from the rationales
 093 explained in their original papers. (3) Our framework justifies heuristic data-weighting strategies
 094 like discarding certain low-reward samples or up-weighting high-reward ones, even though they
 095 violate assumptions in policy gradient theory and often require ad-hoc analysis in prior works.

096 ¹For notational simplicity and consistency, we use the same normalization factor $1/K$ for both response-
 097 wise and token-wise formulas in Eq. (1a) and (1b). For practical implementation, the gradient is calculated with
 098 samples from a mini-batch, and typically normalized by the total number of response tokens. This mismatch
 099 does not affect our theoretical studies in this work. Interestingly, our analysis of REINFORCE in this work
 100 provides certain justifications for calculating the token-mean loss within a mini-batch, instead of first taking
 101 the token-mean loss within each sequence and then taking the average across sequences (Shao et al., 2024); our
 102 perspective is complementary to the rationales explained in prior works like DAPO (Yu et al., 2025), although
 103 a deeper understanding of this aspect is beyond our current focus.

108 Extensive empirical studies in Section 4 and Appendix B validate these insights and demonstrate
 109 the efficacy and/or limitations of various algorithms under investigation. By revealing the off-
 110 policy nature of group-relative REINFORCE, our work opens up new opportunities for principled,
 111 infrastructure-friendly algorithm design in off-policy LLM-RL with solid theoretical foundation.
 112

113 2 TWO INTERPRETATIONS FOR REINFORCE

115 Consider the standard reward-maximization objective in reinforcement learning:

$$117 \max_{\theta} J(\theta) := \mathbb{E}_{x \sim D} J(\theta; x), \quad \text{where} \quad J(\theta; x) := \mathbb{E}_{y \sim \pi_{\theta}(\cdot|x)} r(x, y), \quad (2)$$

119 where D is a distribution over the prompts x .

120 We first recall the standard on-policy interpretation of REINFORCE in Section 2.1, and then present
 121 our proposed off-policy interpretation in Section 2.2.
 122

123 2.1 RECAP: ON-POLICY INTERPRETATION VIA POLICY GRADIENT THEORY

125 In the classical on-policy view, REINFORCE updates policy parameters θ using samples that are
 126 drawn directly from π_{θ} . The policy gradient theorem (Sutton et al., 1998) tells us that

$$128 \nabla_{\theta} J(\theta; x) = \nabla_{\theta} \mathbb{E}_{y \sim \pi_{\theta}(\cdot|x)} r(x, y) = \mathbb{E}_{y \sim \pi_{\theta}(\cdot|x)} \left[(r(x, y) - b(x)) \nabla_{\theta} \log \pi_{\theta}(y|x) \right],$$

130 where $b(x)$ is a baseline for reducing variance when $\nabla_{\theta} J(\theta; x)$ is estimated with finite samples. If
 131 samples are drawn from a different behavior policy π_b instead, the gradient can be rewritten as

$$132 \nabla_{\theta} J(\theta; x) = \mathbb{E}_{y \sim \pi_b(\cdot|x)} \left[(r(x, y) - b(x)) \frac{\pi_{\theta}(y|x)}{\pi_b(y|x)} \nabla_{\theta} \log \pi_{\theta}(y|x) \right].$$

135 While the raw importance-sampling weight $\pi_{\theta}(y|x)/\pi_b(y|x)$ facilitates unbiased policy gradient
 136 estimate, it may be unstable when π_{θ} and π_b diverge. Modern variants of REINFORCE address
 137 this by modifying the probability ratios (e.g., via clipping or normalization), which achieves better
 138 bias-variance trade-off in the policy gradient estimate and leads to a stable learning process.

139 In the LLM context, we have $\nabla_{\theta} \log \pi_{\theta}(y|x) = \sum_t \nabla_{\theta} \log \pi_{\theta}(y^t|x, y^{<t})$, but the response-wise
 140 probability ratio $\pi_{\theta}(y|x)/\pi_b(y|x)$ can blow up or shrink exponentially with the sequence length.
 141 Practical implementations typically adopt token-wise probability ratio instead:

$$143 \tilde{g}(\theta; x) = \mathbb{E}_{y \sim \pi_b(\cdot|x)} \left[(r(x, y) - b(x)) \sum_{1 \leq t \leq |y|} \frac{\pi_{\theta}(y^t|x, y^{<t})}{\pi_b(y^t|x, y^{<t})} \nabla_{\theta} \log \pi_{\theta}(y^t|x, y^{<t}) \right]$$

145 Although this becomes a biased approximation of $\nabla_{\theta} J(\theta; x)$, classical RL theory still offers policy
 146 improvement guarantees if π_{θ} is sufficiently close to π_b (Kakade & Langford, 2002; Fragkiadaki,
 147 2018; Schulman et al., 2015; 2017; Achiam et al., 2017).

149 2.2 A NEW OFF-POLICY INTERPRETATION FOR GROUP-RELATIVE REINFORCE

151 We now provide an alternative off-policy interpretation for group-relative REINFORCE. Let us
 152 think of policy optimization as an iterative process $\theta_1, \theta_2, \dots$, and focus on the t -th iteration
 153 that updates the policy model parameters from θ_t to θ_{t+1} . Our derivation consists of three steps:
 154 (1) define a KL-regularized surrogate objective, and show that its optimal solution must satisfy
 155 certain consistency conditions; (2) define a surrogate loss (with finite samples) that enforces such
 156 consistency conditions; and (3) take one gradient step of the surrogate loss, which turns out to be
 157 equivalently the group-relative REINFORCE method.

158 **Step 1: surrogate objective and consistency condition.** Consider the following KL-regularized
 159 surrogate objective that incentivizes the policy to make a stable improvement over π_{θ_t} :

$$161 \max_{\theta} J(\theta; \pi_{\theta_t}) := \mathbb{E}_{x \sim D} \left[\mathbb{E}_{y \sim \pi_{\theta}(\cdot|x)} [r(x, y)] - \tau \cdot D_{\text{KL}}(\pi_{\theta}(\cdot|x) \parallel \pi_{\theta_t}(\cdot|x)) \right], \quad (3)$$

162 where τ is a regularization coefficient. It is a well-known fact that the optimal policy π for this
 163 surrogate objective satisfies the following (Ziebart et al., 2008) (Nachum et al., 2017; Korbak et al.,
 164 2022; Rafailov et al., 2023; Richemond et al., 2024; Kimi-Team, 2025b): for any prompt x and
 165 response y ,

$$166 \quad \pi(y|x) = \frac{\pi_{\theta_t}(y|x)e^{r(x,y)/\tau}}{Z(x, \pi_{\theta_t})}, \text{ where } Z(x, \pi_{\theta_t}) := \int \pi_{\theta_t}(y'|x)e^{r(x,y')/\tau} dy'. \quad (4)$$

169 Note that Eq. (4) is equivalent to the following: for any pair of responses y_1 and y_2 ,

$$171 \quad \frac{\pi(y_1|x)}{\pi(y_2|x)} = \frac{\pi_{\theta_t}(y_1|x)}{\pi_{\theta_t}(y_2|x)} \exp\left(\frac{r(x, y_1) - r(x, y_2)}{\tau}\right).$$

173 Taking logarithm of both sides, we have this *pairwise consistency condition*:

$$174 \quad r_1 - \tau \cdot (\log \pi(y_1|x) - \log \pi_{\theta_t}(y_1|x)) = r_2 - \tau \cdot (\log \pi(y_2|x) - \log \pi_{\theta_t}(y_2|x)). \quad (5)$$

175 **Step 2: surrogate loss with finite samples.** Given a prompt x and K responses y_1, \dots, y_K , we
 176 define the following mean-squared surrogate loss that enforces the consistency condition, as done in
 177 prior works (Gao et al., 2024; Flet-Berliac et al., 2024):

$$180 \quad \widehat{L}(\theta; x, \pi_{\theta_t}) := \frac{1}{K^2} \sum_{1 \leq i < j \leq K} \frac{(a_i - a_j)^2}{(1 + \tau)^2}, \text{ where } a_i := r_i - \tau \left(\log \pi_{\theta}(y_i|x) - \log \pi_{\theta_t}(y_i|x) \right). \quad (6)$$

183 Here, we normalize $a_i - a_j$ by $1 + \tau$ to account for the loss scale. In theory, if this surrogate loss is
 184 defined by infinite samples with sufficient coverage of the action space (Song et al., 2024), then its
 185 unique minimizer is the same as the optimal policy for the surrogate objective in Eq. (3).

186 **Step 3: one gradient step of the surrogate loss.** Let us conduct further analysis for $(a_i - a_j)^2$.
 187 The trick here is that, if we take only one gradient step of this loss at $\theta = \theta_t$, then the values of
 188 $\log \pi_{\theta}(y_i|x) - \log \pi_{\theta_t}(y_i|x)$ and $\log \pi_{\theta}(y_j|x) - \log \pi_{\theta_t}(y_j|x)$ are simply zero. As a result,

$$190 \quad \nabla_{\theta} (a_i - a_j)^2 \Big|_{\theta_t} = -2\tau(r_i - r_j) \left(\nabla_{\theta} \log \pi_{\theta}(y_i|x) \Big|_{\theta_t} - \nabla_{\theta} \log \pi_{\theta}(y_j|x) \Big|_{\theta_t} \right) \Rightarrow$$

$$192 \quad \nabla_{\theta} \sum_{1 \leq i < j \leq K} \frac{(a_i - a_j)^2}{(1 + \tau)^2} \Big|_{\theta_t} = \sum_{i < j} \frac{-2\tau}{(1 + \tau)^2} (r_i - r_j) \left(\nabla_{\theta} \log \pi_{\theta}(y_i|x) \Big|_{\theta_t} - \nabla_{\theta} \log \pi_{\theta}(y_j|x) \Big|_{\theta_t} \right)$$

$$195 \quad = \sum_{i < j} \frac{-2\tau}{(1 + \tau)^2} \left((r_i - r_j) \nabla_{\theta} \log \pi_{\theta}(y_i|x) \Big|_{\theta_t} + (r_j - r_i) \nabla_{\theta} \log \pi_{\theta}(y_j|x) \Big|_{\theta_t} \right)$$

$$198 \quad = \frac{-2\tau}{(1 + \tau)^2} \sum_{1 \leq i \leq K} \sum_{1 \leq j \leq K} (r_i - r_j) \nabla_{\theta} \log \pi_{\theta}(y_i|x) \Big|_{\theta_t}$$

$$200 \quad = \frac{-2\tau K}{(1 + \tau)^2} \sum_{1 \leq i \leq K} (r_i - \bar{r}) \nabla_{\theta} \log \pi_{\theta}(y_i|x) \Big|_{\theta_t}, \quad \text{where } \bar{r} := \frac{1}{K} \sum_{1 \leq j \leq K} r_j.$$

202 Putting these back to the surrogate loss defined in Eq. (6), we end up with this policy update step:

$$204 \quad g(\theta; x, \{y_i, r_i\}_{1 \leq i \leq K}) = \frac{2\tau}{(1 + \tau)^2} \cdot \frac{1}{K} \sum_{1 \leq i \leq K} (r_i - \bar{r}) \nabla_{\theta} \log \pi_{\theta}(y_i|x). \quad (7)$$

207 That's it! We have just derived the group-relative REINFORCE method, but without any on-policy
 208 assumption about the distribution of training data $\{x, \{y_i, r_i\}_{1 \leq i \leq K}\}$. The regularization coefficient
 209 $\tau > 0$ controls the update step size; a larger τ effectively corresponds to a smaller learning rate.

210 **Summary and remarks.** Figure 1 visualizes the proposed interpretation of what REINFORCE
 211 is actually doing. The curve going through $\theta_t \rightarrow \theta_{t+1} \rightarrow \tilde{\theta}_{t+1} \rightarrow \theta^*$ stands for the ideal
 212 optimization trajectory from θ_t to the optimal policy model θ^* , if the algorithm solves each
 213 intermediate surrogate objective $J(\theta; \pi_{\theta_t})$ / surrogate loss $\widehat{L}(\theta; \pi_{\theta_t})$ exactly at each iteration t .
 214 In comparison, REINFORCE is effectively taking a single gradient step of the surrogate loss and
 215 immediately moving on to the next iteration θ_{t+1} with a new surrogate objective.

Two remarks are in place. (1) Our derivation of group-relative REINFORCE can be generalized to multi-step RL settings, by replacing a response y in the previous analysis with a full trajectory consisting of multiple turns of agent-environment interaction. For example, regarding the surrogate objective in Eq. (3), we need to replace the response-level reward and KL divergence with their trajectory-level counterparts. Interested readers might refer to Appendix A for the full analysis. (2) The above analysis suggests that we might interpret group-relative REINFORCE from a *pointwise or pairwise* perspective. While the policy update in Eq. (7) is stated in a pointwise manner, we have also seen that, at each iteration, REINFORCE is implicitly enforcing the pairwise consistency condition in Eq. (5) among multiple responses. This allows us the flexibility to choose whichever perspective that offers more intuition for our analysis later in this work.

3 PITFALLS AND AUGMENTATIONS

Although we have provided a native off-policy interpretation for REINFORCE, it certainly does not guarantee convergence to the optimal policy when given arbitrary training data. This section identifies pitfalls that could undermine vanilla REINFORCE, which motivate two principles for augmentations in off-policy settings.

Pitfalls of vanilla REINFORCE. In Figure 1, we might expect that ideally, (1) $\tilde{\theta}_{t+1} - \theta_t$ aligns with the direction of $\theta^* - \theta_t$; and (2) $\theta_{t+1} - \theta_t$ aligns with the direction of $\tilde{\theta}_{t+1} - \theta_t$. One pitfall, however, is that even if both conditions hold, they do *not* necessarily imply that $\theta_{t+1} - \theta_t$ should align well with $\theta^* - \theta_t$. That is, $\langle \tilde{\theta}_{t+1} - \theta_t, \theta^* - \theta_t \rangle > 0$ and $\langle \theta_{t+1} - \theta_t, \tilde{\theta}_{t+1} - \theta_t \rangle > 0$ do not imply $\langle \theta_{t+1} - \theta_t, \theta^* - \theta_t \rangle > 0$. Moreover, it is possible that $\theta_{t+1} - \theta_t$ might not align well with $\tilde{\theta}_{t+1} - \theta_t$. Recall from Eq. (7) that, from θ_t to θ_{t+1} , we take one gradient step for a surrogate loss that enforces the pairwise consistency condition among a *finite* number of samples. Given the enormous action space of an LLM, some implicit assumptions about the training data (e.g., balancedness and coverage) would be needed to ensure that the gradient aligns well with the direction towards the optimum of the surrogate objective, namely $\tilde{\theta}_{t+1} - \theta_t$.

In fact, without a mechanism that ensures boundedness of policy update under a sub-optimal data distribution, vanilla REINFORCE could eventually converge to a sub-optimal policy. Let us show this with a minimal example in a didactic 3-arm bandit setting. Suppose that there are three actions $\{a_j\}_{1 \leq j \leq 3}$ with rewards $\{r(a_j)\}$. Consider K training samples $\{y_i\}_{1 \leq i \leq K}$, where $y_i \in \{a_j\}_{1 \leq j \leq 3}$ is sampled from some behavior policy π_b . Denote by $\mu_r := \sum_{1 \leq j \leq 3} \pi_b(a_j) r(a_j)$ the expected reward under π_b , and $\bar{r} := \sum_i r(y_i)/K$ the average reward of training samples. We consider the softmax parameterization, i.e., $\pi_\theta(a_j) = e^{\theta_j} / \sum_\ell e^{\theta_\ell}$ for a policy parameterized by $\theta \in \mathbb{R}^3$. A standard fact is that $\nabla_\theta \log \pi_\theta(a_j) = e_j - \pi_\theta$, where $e_j \in \mathbb{R}^3$ is a one-hot vector with value 1 at entry j . Now we examine the policy update direction of REINFORCE, as $K \rightarrow \infty$:

$$\begin{aligned} g &= \frac{1}{K} \sum_{1 \leq i \leq K} (r(y_i) - \bar{r}) \nabla_\theta \log \pi_\theta(y_i) \rightarrow \sum_{1 \leq j \leq 3} \pi_b(a_j) (r(a_j) - \mu_r) \nabla_\theta \log \pi_\theta(a_j) \\ &= \sum_{1 \leq j \leq 3} \pi_b(a_j) (r(a_j) - \mu_r) (e_j - \pi_\theta) = \sum_{1 \leq j \leq 3} \pi_b(a_j) (r(a_j) - \mu_r) e_j. \end{aligned}$$

For example, if $r = [r(a_j)]_{1 \leq j \leq 3} = [0, 0.8, 1]$ and $\pi_b = [0.3, 0.6, 0.1]$, then basic calculation says $\mu_r = 0.58$, $r - \mu_r = [-0.58, 0.22, 0.42]$, and finally $g_2 = \pi_b(a_2)(r(a_2) - \mu_r) > \pi_b(a_3)(r(a_3) - \mu_r) = g_3$, which implies that the policy will converge to the sub-optimal action a_2 .

Two principles for augmenting REINFORCE. The identified pitfalls of vanilla REINFORCE suggest two general principles for augmenting REINFORCE in off-policy scenarios:

- One is to *regularize the policy update step*, ensuring that the optimization trajectory remains bounded and reasonably stable when given training data from a sub-optimal distribution;

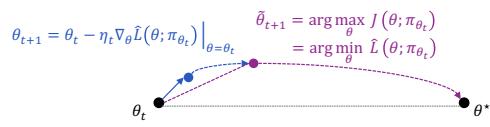


Figure 1: A visualization of our off-policy interpretation for group-relative REINFORCE. Here $\widehat{L}(\theta; \pi_{\theta_t}) = \mathbb{E}_{x \sim \widehat{D}}[\widehat{L}(\theta; x, \pi_{\theta_t})]$, where \widehat{D} is the sampling distribution for prompts and $\widehat{L}(\theta; x, \pi_{\theta_t})$ is the loss defined in Eq. (6).

In fact, without a mechanism that ensures boundedness of policy update under a sub-optimal data distribution, vanilla REINFORCE could eventually converge to a sub-optimal policy. Let us show this with a minimal example in a didactic 3-arm bandit setting. Suppose that there are three actions $\{a_j\}_{1 \leq j \leq 3}$ with rewards $\{r(a_j)\}$. Consider K training samples $\{y_i\}_{1 \leq i \leq K}$, where $y_i \in \{a_j\}_{1 \leq j \leq 3}$ is sampled from some behavior policy π_b . Denote by $\mu_r := \sum_{1 \leq j \leq 3} \pi_b(a_j) r(a_j)$ the expected reward under π_b , and $\bar{r} := \sum_i r(y_i)/K$ the average reward of training samples. We consider the softmax parameterization, i.e., $\pi_\theta(a_j) = e^{\theta_j} / \sum_\ell e^{\theta_\ell}$ for a policy parameterized by $\theta \in \mathbb{R}^3$. A standard fact is that $\nabla_\theta \log \pi_\theta(a_j) = e_j - \pi_\theta$, where $e_j \in \mathbb{R}^3$ is a one-hot vector with value 1 at entry j . Now we examine the policy update direction of REINFORCE, as $K \rightarrow \infty$:

$$\begin{aligned} g &= \frac{1}{K} \sum_{1 \leq i \leq K} (r(y_i) - \bar{r}) \nabla_\theta \log \pi_\theta(y_i) \rightarrow \sum_{1 \leq j \leq 3} \pi_b(a_j) (r(a_j) - \mu_r) \nabla_\theta \log \pi_\theta(a_j) \\ &= \sum_{1 \leq j \leq 3} \pi_b(a_j) (r(a_j) - \mu_r) (e_j - \pi_\theta) = \sum_{1 \leq j \leq 3} \pi_b(a_j) (r(a_j) - \mu_r) e_j. \end{aligned}$$

For example, if $r = [r(a_j)]_{1 \leq j \leq 3} = [0, 0.8, 1]$ and $\pi_b = [0.3, 0.6, 0.1]$, then basic calculation says $\mu_r = 0.58$, $r - \mu_r = [-0.58, 0.22, 0.42]$, and finally $g_2 = \pi_b(a_2)(r(a_2) - \mu_r) > \pi_b(a_3)(r(a_3) - \mu_r) = g_3$, which implies that the policy will converge to the sub-optimal action a_2 .

Two principles for augmenting REINFORCE. The identified pitfalls of vanilla REINFORCE suggest two general principles for augmenting REINFORCE in off-policy scenarios:

270 • The other is to *steer the policy update direction*, by actively weighting the training samples
 271 rather than naively using them as is.
 272

273 These two principles are not mutually exclusive, and might be integrated within a single algorithm.
 274 We will see in the next section that many RL algorithms can be viewed as instantiations of them.
 275

276 4 RETHINKING THE RATIONALES BEHIND RECENT RL ALGORITHMS

278 This section revisits various RL algorithms through a unified lens — the native off-policy
 279 interpretation of group-relative REINFORCE and its augmentations — and demystifies some
 280 common myths about their working mechanisms. Our main findings are summarized as follows:
 281

ID	Finding	Analysis & Experiments
F1	GRPO’s effectiveness in off-policy settings stems from <i>clipping as regularization</i> rather than importance sampling. A wider clipping range than usual often accelerates training without harming stability.	Section 4.1, Figures 2, 3, 5, 8, 9
F2	Kimi’s OPMD and Meta’s AsymRE can be interpreted as <i>REINFORCE loss + regularization loss</i> , complementary to the rationales in their original papers.	Section 4.2, Figure 10
F3	<i>Data-oriented heuristics</i> — such as dropping excess negatives or up-weighting high-reward rollouts — fit naturally into our off-policy view and show strong empirical performance.	Section 4.3, Figures 4, 5, 11

293 **Experimental setup.** We conduct experiments with the Trinity-RFT framework (Pan et al., 2025),
 294 and control off-policyness with the `sync_interval` (frequency of model synchronization) and
 295 `sync_offset` (lag between rollout generation and training) parameters. Larger values improve
 296 efficiency (via pipeline parallelism) at the cost of off-policyness; in addition, `sync_offset` >
 297 1 simulates delayed environmental feedback in practical scenarios. We also include a stress-test
 298 setting that only allows access to offline data generated by the initial policy model. Our experiments
 299 cover math reasoning tasks like GSM8k (Cobbe et al., 2021), MATH (Hendrycks et al., 2021),
 300 Guru-Math (Cheng et al., 2025), and tool-use tasks like ToolACE (Liu et al., 2025a). LLMs under
 301 consideration include Qwen2.5-1.5B-Instruct, Qwen2.5-7B-Instruct (Qwen-Team, 2025a), Llama-
 302 3.1-8B-Instruct, and Llama-3.2-3B-Instruct (Dubey et al., 2024). Further details can be found in
 303 Appendix B.
 304

305 4.1 DEMYSTIFYING MYTHS ABOUT GRPO

306 Recall that in GRPO, the advantage for each response y_i is defined as $A_i = (r_i - \bar{r})/\sigma_r$, where \bar{r}
 307 and σ_r denote the within-group mean and standard deviation of the rewards $\{r_i\}_{1 \leq i \leq K}$ respectively.
 308 We consider the practical implementation of GRPO with token-wise importance-sampling (IS)
 309 weighting and clipping, whose loss function for a specific prompt x and responses $\{y_i\}$ is²

$$310 \hat{L} = \frac{1}{K} \sum_{1 \leq i \leq K} \sum_{1 \leq t \leq |y_i|} \min \left\{ \frac{\pi_{\theta}(y_i^t | x, y_i^{<t})}{\pi_{\text{old}}(y_i^t | x, y_i^{<t})} A_i, \text{clip} \left(\frac{\pi_{\theta}(y_i^t | x, y_i^{<t})}{\pi_{\text{old}}(y_i^t | x, y_i^{<t})}, 1 - \epsilon_{\text{low}}, 1 + \epsilon_{\text{high}} \right) A_i \right\},$$

313 where π_{old} denotes the older policy version that generated this group of rollout data. The gradient of
 314 this loss can be written as (Schulman et al., 2017)

$$316 \mathbf{g}(\theta; x, \{y_i, r_i\}_{1 \leq i \leq K}) = \frac{1}{K} \sum_{1 \leq i \leq K} \sum_{1 \leq t \leq |y_i|} \nabla_{\theta} \log \pi_{\theta}(y_i^t | x, y_i^{<t}) \cdot A_i \frac{\pi_{\theta}(y_i^t | x, y_i^{<t})}{\pi_{\text{old}}(y_i^t | x, y_i^{<t})} M_i^t,$$

318 where M_i^t denotes a one-side clipping mask:

$$320 M_i^t = \mathbb{1} \left(A_i > 0, \frac{\pi_{\theta}(y_i^t | x, y_i^{<t})}{\pi_{\text{old}}(y_i^t | x, y_i^{<t})} \leq 1 + \epsilon_{\text{high}} \right) + \mathbb{1} \left(A_i < 0, \frac{\pi_{\theta}(y_i^t | x, y_i^{<t})}{\pi_{\text{old}}(y_i^t | x, y_i^{<t})} \geq 1 - \epsilon_{\text{low}} \right). \quad (8)$$

322 ²In our experiments with GRPO, we neglect KL regularization with respect to an extra reference model, or
 323 entropy regularization that encourages output diversity. Recent works (Yu et al., 2025; Liu et al., 2025b) have
 shown that these practical techniques are often unnecessary.

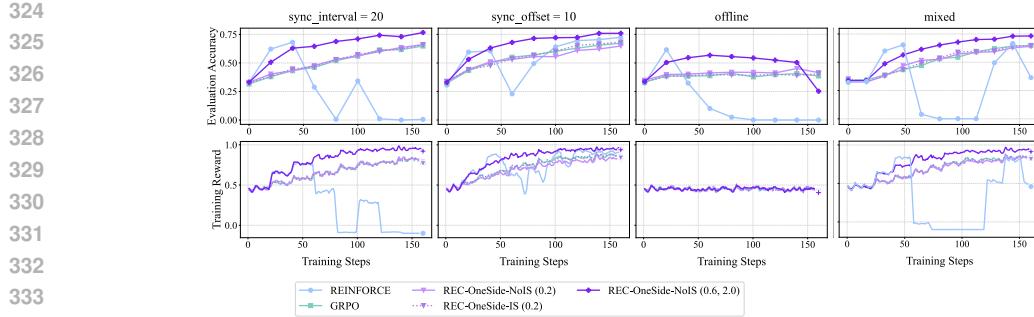


Figure 2: Empirical results for REC algorithms on GSM8k with Qwen2.5-1.5B-Instruct. Training reward curves are smoothed with a running-average window of size 3. Numbers in the legend denote clipping parameters $\epsilon_{\text{low}}, \epsilon_{\text{high}}$. The “mixed” setting adopts `sync_interval = 16` and `sync_offset = 8`.

Ablation study with the REC series. To isolate the roles of importance sampling and clipping, we consider a series of REINFORCE-with-Clipping (REC) algorithms. Due to space limitation, we defer our studies of more clipping mechanisms to Appendix B.3, and focus on REC with one-side clipping in this section. More specifically, REC-ONESIDE-IS removes advantage normalization in GRPO (to reduce variability), and REC-ONESIDE-NOIS further removes IS weighting:

$$\begin{aligned} \text{REC-ONESIDE-IS: } g &= \frac{1}{K} \sum_{1 \leq i \leq K} \sum_{1 \leq t \leq |y_i|} \nabla_{\theta} \log \pi_{\theta}(y_i^t | x, y_i^{<t}) \cdot (r_i - \bar{r}) \frac{\pi_{\theta}(y_i^t | x, y_i^{<t})}{\pi_{\text{old}}(y_i^t | x, y_i^{<t})} M_i^t, \\ \text{REC-ONESIDE-NOIS: } g &= \frac{1}{K} \sum_{1 \leq i \leq K} \sum_{1 \leq t \leq |y_i|} \nabla_{\theta} \log \pi_{\theta}(y_i^t | x, y_i^{<t}) \cdot (r_i - \bar{r}) M_i^t. \end{aligned}$$

Experiments. We conduct experiments to validate Finding F1 regarding the roles of clipping (with a small or large clipping range) and importance sampling in GRPO. Figure 2 presents GSM8k results with Qwen2.5-1.5B-Instruct in various off-policy settings. REC-ONESIDE-IS/NOIS and GRPO (with the same $\epsilon_{\text{low}} = \epsilon_{\text{high}} = 0.2$) have nearly identical performance, indicating that importance sampling is non-essential, whereas the collapse of REINFORCE highlights the critical role of clipping. Radically enlarging $(\epsilon_{\text{low}}, \epsilon_{\text{high}})$ to $(0.6, 2.0)$ accelerates REC-ONESIDE-NOIS without compromising stability in both `sync_interval = 20` and `sync_offset = 10` settings. Similar patterns also appear in Figure 3 (ToolACE with Llama-3.2-3B-Instruct) and other results in Appendix B. As for the stress-test (“offline”) setting, Figure 2 reveals an intrinsic trade-off between the speed and stability of policy improvement, motivating future work toward better algorithms that achieve both.

We hypothesize that sequence-level importance sampling in GSPO (Zheng et al., 2025) could be non-essential as well. Interested readers might refer to our preliminary experiment results in Appendix B.7 that support this prediction.

4.2 UNDERSTANDING KIMI’S OPMD AND META’S ASYMRE

Besides clipping, another natural method is to add a regularization loss $R(\cdot)$ to vanilla REINFORCE:

$$\hat{L}(\theta; x, \{y_i, r_i\}_{1 \leq i \leq K}) = -\frac{1}{K} \sum_{i \in [K]} (r_i - \bar{r}) \log \pi_{\theta}(y_i | x) + \beta \cdot R(\theta; x, \{y_i, r_i\}_{1 \leq i \leq K}),$$

378 and take $\mathbf{g} = -\nabla_{\theta} \hat{L}$. We show below that Kimi’s OPMD and Meta’s AsymRE are indeed special
 379 cases of this unified formula, with empirical validation of their efficacy deferred to Appendix B.5.
 380

381 **Kimi’s OPMD.** Kimi-Team (2025b) derives an OPMD variant by taking logarithm of both sides
 382 of Eq. (4), which leads to a consistency condition and further motivates the following surrogate loss:
 383

$$384 \quad \tilde{L} = \frac{1}{K} \sum_{1 \leq i \leq K} \left(r_i - \tau \log Z(x, \pi_{\theta_t}) - \tau \left(\log \pi_{\theta}(y_i | x) - \log \pi_{\theta_t}(y_i | x) \right) \right)^2.$$

385 With K responses generated by $\pi_{\text{old}} = \pi_{\theta_t}$, the term $\tau \log Z(x, \pi_{\theta_t})$ can be *approximated* by a finite-
 386 sample estimate $\tau \log(\sum_i e^{r_i}/\tau/K)$ (Brantley et al., 2025), which can be further *approximated* by
 387 the mean reward $\bar{r} = \sum_i r_i/K$ if τ is large. With these approximations, the gradient of \tilde{L} becomes
 388 equivalent to that of the following loss (which is the final version of Kimi’s OPMD):
 389

$$390 \quad \hat{L} = -\frac{1}{K} \sum_{1 \leq i \leq K} (r_i - \bar{r}) \log \pi_{\theta}(y_i | x) + \frac{\beta}{2K} \sum_{1 \leq i \leq K} \left(\log \pi_{\theta}(y_i | x) - \log \pi_{\text{old}}(y_i | x) \right)^2, \text{ where } \beta = \tau.$$

391 In comparison, our analysis in Sections 2 and 3 suggests that this is in itself a principled loss function
 392 for off-policy RL, adding a mean-squared regularization loss to the vanilla REINFORCE loss.
 393

394 **Meta’s AsymRE.** AsymRE (Arnal et al., 2025) modifies REINFORCE by tuning down the
 395 baseline (from \bar{r} to $\bar{r} - \beta$) in advantage calculation, which was motivated by the intuition of
 396 prioritizing learning from positive samples and justified by multi-arm bandit analysis in the original
 397 paper. We offer an alternative interpretation for AsymRE by rewriting its loss function:
 398

$$400 \quad \hat{L} = -\frac{1}{K} \sum_i \left(r_i - (\bar{r} - \beta) \right) \log \pi_{\theta}(y_i | x) = -\frac{1}{K} \sum_i (r_i - \bar{r}) \log \pi_{\theta}(y_i | x) - \frac{\beta}{K} \sum_i \log \pi_{\theta}(y_i | x).$$

401 Note that the first term on the right-hand side is the REINFORCE loss, and the second term serves
 402 as regularization, enforcing imitation of responses from an older version of the policy model. For
 403 the latter, we may also add a term that is independent of θ to it and take the limit $K \rightarrow \infty$:

$$404 \quad -\frac{1}{K} \sum_{1 \leq i \leq K} \log \pi_{\theta}(y_i | x) + \frac{1}{K} \sum_{1 \leq i \leq K} \log \pi_{\text{old}}(y_i | x) = \frac{1}{K} \sum_{1 \leq i \leq K} \log \frac{\pi_{\text{old}}(y_i | x)}{\pi_{\theta}(y_i | x)} \\ 405 \quad \rightarrow \mathbb{E}_{y \sim \pi_{\text{old}}(\cdot | x)} \left[\log \frac{\pi_{\text{old}}(y | x)}{\pi_{\theta}(y | x)} \right] = D_{\text{KL}} \left(\pi_{\text{old}}(\cdot | x) \| \pi_{\theta}(\cdot | x) \right),$$

406 which turns out to be a finite-sample approximation of KL regularization.
 407

4.3 UNDERSTANDING DATA-WEIGHTING METHODS

416 We now shift our attention to the second principle for augmenting REINFORCE, i.e., actively
 417 shaping the training data distribution.
 418

419 **Pairwise weighting.** Recall from Section 2 that we define the surrogate loss in Eq. (6) as an
 420 unweighted sum of pairwise mean-squared losses. However, if we have certain knowledge about
 421 which pairs are more informative for RL training, we may assign higher weights to them. This
 422 motivates generalizing $\sum_{i < j} (a_i - a_j)^2$ to $\sum_{i < j} w_{i,j} (a_i - a_j)^2$, where $\{w_{i,j}\}$ are non-negative
 423 weights. Assuming that $w_{i,j} = w_{j,i}$ and following the steps in Section 2, we end up with
 424

$$425 \quad \mathbf{g}(\theta; x, \{y_i, r_i\}_{1 \leq i \leq K}) = \frac{1}{K} \sum_{1 \leq i \leq K} \left(\sum_{1 \leq j \leq K} w_{i,j} \right) \left(r_i - \frac{\sum_j w_{i,j} r_j}{\sum_j w_{i,j}} \right) \nabla_{\theta} \log \pi_{\theta}(y_i | x).$$

426 In the special case where $w_{i,j} = w_i w_j$, this becomes
 427

$$428 \quad \mathbf{g} = \left(\sum_j w_j \right) \frac{1}{K} \sum_{1 \leq i \leq K} w_i (r_i - \bar{r}_w) \nabla_{\theta} \log \pi_{\theta}(y_i | x), \text{ where } \bar{r}_w := \frac{\sum_j w_j r_j}{\sum_j w_j}. \quad (9)$$

429 Based on this, we investigate two REINFORCE-with-data-weighting (RED) methods.
 430

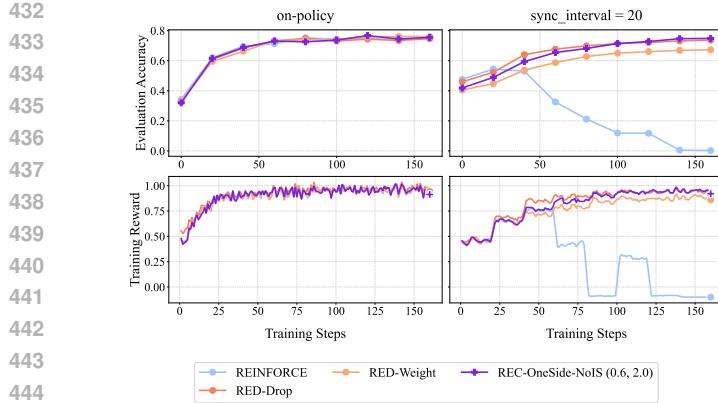


Figure 4: Empirical performance of RED algorithms on GSM8k with Qwen2.5-1.5B-Instruct, in both on-policy and off-policy settings. Training reward curves are smoothed with a running-average window of size 3. Implementation details about RED-WEIGHT and RED-DROP are provided in Appendix B.6.

RED-DROP: sample dropping. The idea is to use a filtered subset $\mathcal{S} \subseteq [K]$ of responses for training; for example, the Kimi-Researcher technical blog (Kimi-Team, 2025a) proposes to “discard some negative samples strategically”, as negative gradients increase the risk of entropy collapse. This is indeed a special case of Eq. (9), by setting $w_i = \sqrt{K}/|\mathcal{S}|$ for $i \in \mathcal{S}$ and 0 otherwise:

$$\mathbf{g}(\boldsymbol{\theta}; x, \{y_i, r_i\}_{1 \leq i \leq K}) = \frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} (r_i - \bar{r}_{\mathcal{S}}) \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(y_i | x), \text{ where } \bar{r}_{\mathcal{S}} = \frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} r_i. \quad (10)$$

While this is no longer an unbiased estimate of policy gradient even if all responses are sampled from the current policy, it is still well justified by our off-policy interpretation of REINFORCE.

RED-WEIGHT: pointwise loss weighting. Another approach for prioritizing high-reward responses is to directly up-weight their gradient terms in Eq. (1a). To better understand the working mechanism of this seemingly heuristic method, we rewrite its policy update:

$$\begin{aligned} \mathbf{g} &= \sum_{1 \leq i \leq K} w_i (r_i - \bar{r}) \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(y_i | x) = \sum_{1 \leq i \leq K} w_i (r_i - \bar{r}_w + \bar{r}_w - \bar{r}) \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(y_i | x) \\ &= \sum_{1 \leq i \leq K} w_i (r_i - \bar{r}_w) \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(y_i | x) + (\bar{r}_w - \bar{r}) \sum_{1 \leq i \leq K} w_i \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(y_i | x). \end{aligned}$$

This is the pairwise-weighted REINFORCE gradient in Eq. (9), plus a regularization term (weighted by $\bar{r}_w - \bar{r} > 0$) that resembles the one in AsymRE but prioritizes imitating higher-reward responses, echoing the finding from offline RL literature (Hong et al., 2023a;b) that regularizing against high-reward trajectories can be more effective than conservatively imitating all trajectories in the dataset.

Experiments. Figure 4 presents GSM8k results with Qwen2.5-1.5B-Instruct, which confirm the efficacy of RED-DROP and RED-WEIGHT (details in Appendix B.6) in on/off-policy settings, comparable to REC-ONESIDE-NoIS with enlarged $(\epsilon_{\text{low}}, \epsilon_{\text{high}})$. Figure 5 reports larger-scale experiments on Guru-Math with Qwen2.5-7B-Instruct, where RED-WEIGHT achieves higher rewards than GRPO, with similar KL distance to the initial policy. Figure 11 in the appendix further validates the efficacy of RED-WEIGHT on MATH with Llama-3.1-8B-Instruct.

5 RELATED WORKS

Various perspectives for off-policy LLM-RL. Importance sampling has long been considered one foundational mechanism for off-policy RL; besides TRPO, PPO and GRPO, recent extensions

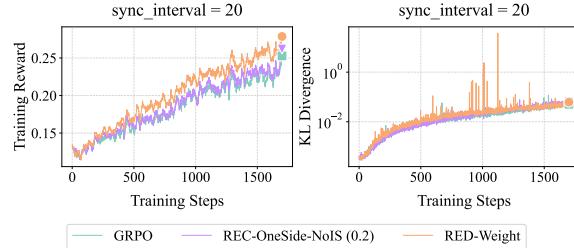


Figure 5: Empirical results on Guru-Math with Qwen2.5-7B-Instruct. Training reward curves are smoothed with a running-average window of size 3.

486 include GSPO (Zheng et al., 2025) and GMPO (Zhao et al., 2025) that work with sequence-wise
 487 probability ratios, CISPO (Chen et al., 2025) that clips probability ratios rather than token updates,
 488 decoupled PPO (Fu et al., 2025a) that adapts PPO to asynchronous RL, among others. AsymRE
 489 (Arnal et al., 2025) offers an alternative baseline-shift approach (with ad-hoc analysis for discrete
 490 bandit settings), while OPMD (Kimi-Team, 2025b) partly overlaps with our analysis up to Eq. (4)
 491 before diverging. **REBEL** (Gao et al., 2024) and CoPG (Flet-Berliac et al., 2024) overlap with our
 492 analysis up to Eq. (6) before diverging, which will soon be elaborated. Other perspectives for off-
 493 policy LLM-RL include learning dynamics of DPO and SFT (Ren & Sutherland, 2025), training
 494 offline loss functions with negative gradients on on-policy data (Tajwar et al., 2024), or improving
 495 generalization of SFT via probability-aware rescaling (Wu et al., 2025). Another line of research
 496 integrates expert data into online RL (Yan et al., 2025; Zhang et al., 2025c; Fu et al., 2025b). Our
 497 work contributes complementary perspectives to this growing toolkit for off-policy LLM-RL.
 498

499 **Most closely related works.** We focus our discussion on previous methods that are most closely
 500 related to our core analysis in Section 2.2. In a tabular setting, the surrogate objective in Eq. (3)
 501 — KL-regularized reward maximization — can be regarded as an instantiation of mirror descent,
 502 whose optimum admits the closed form in Eq. (4). In more general settings with parameterized
 503 policy π_θ and large action space, it is infeasible to realize Eq. (4) directly, and one would resort to
 504 optimizing the model parameters. Various algorithms have been developed on the basis of Eq. (3)
 505 and (4), including Kimi’s OPMD (Kimi-Team, 2025b) as explained in Section 4.2.

506 REBEL (Gao et al., 2024) has a derivation that largely overlaps with our Step 1 and 2 analysis
 507 in Section 2.2. It then seeks to solve the squared loss in Eq. (6), which enforces the pairwise
 508 consistency condition in Eq. (5). CoPG (Flet-Berliac et al., 2024) takes a similar approach, except
 509 that it uses a fixed reference policy (rather than the current iteration π_{θ_t}) for KL regularization.
 510 Compared to REINFORCE-style algorithms — for which enterprise-grade LLM-RL frameworks
 511 like verl (Sheng et al., 2024) and Trinity-RFT (Pan et al., 2025) have been heavily optimized for —
 512 REBEL and CoPG could be less infrastructure-friendly or efficient. For example, in the presence
 513 of data parallelism and gradient accumulation, these frameworks can automatically divide a mini-
 514 batch into multiple micro-batches (each containing multiple or just one sequence) in a way that
 515 maximizes load balancing and training efficiency, while minimizing peak memory usage. However,
 516 solving the squared loss in Eq. (6) (like REBEL does) contradicts these performance optimization
 517 techniques, as it requires paired responses for the same prompt to be located within the same micro-
 518 batch. This constraint increases infrastructure complexity and peak memory usage, as reported in
 519 (Brantley et al., 2025). Our Step 3 analysis in Section 2.2, on the other hand, proposes to take one
 520 gradient descent step for the squared loss, leading to a group-relative variant of classic REINFORCE
 521 while giving it a native off-policy interpretation.

522 Natural Policy Gradient (NPG) (Kakade, 2001) can be derived by approximating the surrogate
 523 objective in Eq. (3) with first-order Taylor expansion for the max-reward term and second-order
 524 Taylor expansion for the KL term, and then setting its gradient to zero. Since NPG requires on-
 525 policy sampling, it is less relevant to our study of off-policy LLM-RL. DPO (Rafailov et al., 2023)
 526 was also derived on the basis of Eq. (3), (4) and (5), but in a substantially different setting, with
 527 pairwise preference data and the Bradley-Terry assumption.

528 6 LIMITATIONS AND FUTURE WORK

529 While our work offers a new off-policy interpretation for group-relative REINFORCE and shows
 530 its broad implications for LLM-RL, several limitations remain. (1) Our current analysis covers
 531 single/multi-step RL with response/trajectory-level rewards, and assumes access to multiple rollouts
 532 per query. Future work may expand its scope and applicability, e.g., generalizing to settings with
 533 step-level rewards or only one rollout per query. (2) Our analysis lacks formal guarantees for
 534 policy improvement or convergence. Future work may identify distributional assumptions that yield
 535 provable guarantees for REINFORCE variants in off-policy settings. (3) Our experiments focus
 536 on settings where training data is generated by older policy versions. Extensions to broader off-
 537 policy settings (e.g., advanced experience synthesis or incorporation of expert data) may reveal new
 538 insights. Addressing these limitations will further solidify the theoretical foundation and advance
 539 principled algorithm design for off-policy LLM-RL.

540 REPRODUCIBILITY STATEMENT
541542 Full implementation details and hyperparameter configurations are documented in Section 4 and
543 Appendix B. To facilitate reproducibility, we will release our code publicly upon acceptance.
544545 ETHICS STATEMENT
546547 All datasets used in this study (e.g., GSM8k, MATH, Guru, ToolACE) are publicly available,
548 and no private or personally identifiable information was collected or used. Our contributions
549 are methodological, focusing on improving the stability and efficiency of RL for LLM post-
550 training. We acknowledge that LLMs may still generate biased or harmful outputs; however, our
551 experiments are restricted to benchmark evaluations and do not involve deployment in real-world
552 systems. We believe that releasing our code and reporting detailed hyperparameter settings will
553 foster reproducibility and responsible advancement in this field.
554555 REFERENCES
556

557 Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization.
558 In *Proceedings of the 34th International Conference on Machine Learning*, volume 70 of
559 *Proceedings of Machine Learning Research*, pp. 22–31. PMLR, 2017.

560 Chenxin An, Zhihui Xie, Xiaonan Li, Lei Li, Jun Zhang, Shansan Gong, Ming Zhong, Jingjing
561 Xu, Xipeng Qiu, Mingxuan Wang, and Lingpeng Kong. POLARIS: A post-training recipe for
562 scaling reinforcement learning on advanced reasoning models, 2025. URL <https://hkunlp.github.io/blog/2025/Polaris>.
563

564 Charles Arnal, GaĂłtan Narozniak, Vivien Cabannes, Yunhao Tang, Julia Kempe, and Remi
565 Munos. Asymmetric reinforce for off-policy reinforcement learning: Balancing positive and
566 negative rewards. *arXiv Preprint arXiv:2506.20520*, 2025.

567 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
568 Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
569 assistant with reinforcement learning from human feedback. *arXiv preprint arXiv:2204.05862*,
570 2022.

571 KiantĂ Brantley, Mingyu Chen, Zhaolin Gao, Jason D. Lee, Wen Sun, Wenhao Zhan, and Xuezhou
572 Zhang. Accelerating RL for LLM reasoning with optimal advantage regression. In *The Thirty-
573 ninth Annual Conference on Neural Information Processing Systems*, 2025.

574 Aili Chen, Aonian Li, Bangwei Gong, Binyang Jiang, Bo Fei, Bo Yang, Boji Shan, Changqing Yu,
575 Chao Wang, Cheng Zhu, et al. MiniMax-M1: Scaling test-time compute efficiently with lightning
576 attention. *arXiv preprint arXiv:2506.13585*, 2025.

577 Zhoujun Cheng, Shibo Hao, Tianyang Liu, Fan Zhou, Yutao Xie, Feng Yao, Yuexin Bian, Yonghao
578 Zhuang, Nilabjo Dey, Yuheng Zha, Yi Gu, Kun Zhou, Yuqi Wang, Yuan Li, Richard Fan, Jianshu
579 She, Chengqian Gao, Abulhair Saparov, Haonan Li, Taylor W. Killian, Mikhail Yurochkin,
580 Zhengzhong Liu, Eric P. Xing, and Zhiting Hu. Revisiting reinforcement learning for LLM
581 reasoning from a cross-domain perspective. *arXiv preprint arXiv:2506.14965*, 2025.

582 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
583 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
584 Schulman. Training verifiers to solve math word problems. *arXiv*, 2021.

585 Jeff Da, Clinton Wang, Xiang Deng, Yuntao Ma, Nikhil Barhate, and Sean Hendryx. Agent-RLVR:
586 Training software engineering agents via guidance and environment rewards. *arXiv*, 2025.

587 DeepSeek-AI. DeepSeek-R1: Incentivizing reasoning capability in LLMs via reinforcement
588 learning. *arXiv*, 2025.

589 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
590 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The Llama 3 herd of models.
591 *arXiv*, 2024.

594 Yannis Flet-Berliac, Nathan Grinsztajn, Florian Strub, Eugene Choi, Bill Wu, Chris Cremer, Arash
 595 Ahmadian, Yash Chandak, Mohammad Gheshlaghi Azar, Olivier Pietquin, and Matthieu Geist.
 596 Contrastive policy gradient: Aligning LLMs on sequence-level scores in a supervised-friendly
 597 fashion. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language
 598 Processing*, pp. 21353–21370, 2024.

599 Katerina Fragkiadaki. Natural policy gradients, TRPO, PPO. https://www.andrew.cmu.edu/course/10-703/slides/Lecture_NaturalPolicyGradientsTRPOPO.pdf, 2018.

600 Wei Fu, Jiaxuan Gao, Xujie Shen, Chen Zhu, Zhiyu Mei, Chuyi He, Shusheng Xu, Guo Wei, Jun
 601 Mei, Jiashu Wang, Tongkai Yang, Binhang Yuan, and Yi Wu. AReaL: A large-scale asynchronous
 602 reinforcement learning system for language reasoning. *arXiv*, 2025a.

603 Yuqian Fu, Tinghong Chen, Jiajun Chai, Xihuai Wang, Songjun Tu, Guojun Yin, Wei Lin, Qichao
 604 Zhang, Yuanheng Zhu, and Dongbin Zhao. SRFT: A single-stage method with supervised and
 605 reinforcement fine-tuning for reasoning. *arXiv*, 2025b.

606 Jiaxuan Gao, Wei Fu, Minyang Xie, Shusheng Xu, Chuyi He, Zhiyu Mei, Banghua Zhu, and Yi Wu.
 607 Beyond ten turns: Unlocking long-horizon agentic search with large-scale asynchronous rl. *arXiv*,
 608 2025.

609 Zhaolin Gao, Jonathan D. Chang, Wenhao Zhan, Owen Oertell, Gokul Swamy, Kianté Brantley,
 610 Thorsten Joachims, J. Andrew Bagnell, Jason D. Lee, and Wen Sun. Rebel: Reinforcement
 611 learning via regressing relative rewards. In *Advances in Neural Information Processing Systems*,
 612 volume 37, pp. 52354–52400, 2024.

613 Yongxin Guo, Wenbo Deng, Zhenglin Cheng, and Xiaoying Tang. G²RPO-A: Guided group relative
 614 policy optimization with adaptive guidance. *arXiv*, 2025.

615 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
 616 Song, and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset.
 617 *NeurIPS*, 2021.

618 Zhang-Wei Hong, Pulkit Agrawal, Remi Tachet des Combes, and Romain Laroche. Harnessing
 619 mixed offline reinforcement learning datasets via trajectory weighting. In *The Eleventh
 620 International Conference on Learning Representations*, 2023a.

621 Zhang-Wei Hong, Aviral Kumar, Sathwik Karnik, Abhishek Bhandwaldar, Akash Srivastava, Joni
 622 Pajarinen, Romain Laroche, Abhishek Gupta, and Pulkit Agrawal. Beyond uniform sampling:
 623 Offline reinforcement learning with imbalanced datasets. In *Thirty-seventh Conference on Neural
 624 Information Processing Systems*, 2023b.

625 Jian Hu, Xibin Wu, Zilin Zhu, Xianyu, Weixun Wang, Dehao Zhang, and Yu Cao. OpenRLHF: An
 626 easy-to-use, scalable and high-performance RLHF framework. *arXiv preprint arXiv:2405.11143*,
 627 2024.

628 Sham Kakade. A natural policy gradient. In *Advances in Neural Information Processing Systems*,
 629 2001.

630 Sham M. Kakade and John Langford. Approximately optimal approximate reinforcement learning.
 631 In *International Conference on Machine Learning*, 2002.

632 Kimi-Team. Kimi-Researcher. <https://moonshotai.github.io/Kimi-Researcher>,
 633 2025a.

634 Kimi-Team. Kimi k1.5: Scaling reinforcement learning with LLMs. *arXiv preprint
 635 arXiv:2501.12599*, 2025b.

636 Tomasz Korbak, Ethan Perez, and Christopher L. Buckley. RL with KL penalties is better viewed as
 637 bayesian inference. In *Conference on Empirical Methods in Natural Language Processing*, 2022.

648 Xiao Liang, Zhong-Zhi Li, Yeyun Gong, Yang Wang, Hengyuan Zhang, Yelong Shen, Ying Nian
 649 Wu, and Weizhu Chen. SwS: Self-aware weakness-driven problem synthesis in reinforcement
 650 learning for LLM reasoning. *arXiv Preprint arXiv:2506.08989*, 2025.

651

652 Weiwen Liu, Xu Huang, Xingshan Zeng, xinlong hao, Shuai Yu, Dexun Li, Shuai Wang, Weinan
 653 Gan, Zhengying Liu, Yuanqing Yu, Zezhong WANG, Yuxian Wang, Wu Ning, Yutai Hou, Bin
 654 Wang, Chuhan Wu, Wang Xinzhi, Yong Liu, Yasheng Wang, Duyu Tang, Dandan Tu, Lifeng
 655 Shang, Xin Jiang, Ruiming Tang, Defu Lian, Qun Liu, and Enhong Chen. ToolACE: Winning
 656 the points of LLM function calling. In *The Thirteenth International Conference on Learning
 657 Representations*, 2025a.

658

659 Zihe Liu, Jiashun Liu, Yancheng He, Weixun Wang, Jiaheng Liu, Ling Pan, Xinyu Hu, Shaopan
 660 Xiong, Ju Huang, Jian Hu, Shengyi Huang, Siran Yang, Jiamang Wang, Wenbo Su, and Bo Zheng.
 661 Part I: Tricks or traps? a deep dive into RL for LLM reasoning. *arXiv preprint arXiv:2508.08221*,
 662 2025b.

663

664 Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. Bridging the gap between
 665 value and policy based reinforcement learning. In *NIPS*, 2017.

666

667 Michael Noukhovitch, Shengyi Huang, Sophie Xhonneux, Arian Hosseini, Rishabh Agarwal, and
 668 Aaron Courville. Asynchronous RLHF: Faster and more efficient off-policy RL for language
 669 models. In *The Thirteenth International Conference on Learning Representations*, 2025.

670

671 OpenAI. OpenAI o1 system card. *arXiv Preprint arXiv:2412.16720*, 2024.

672

673 Long Ouyang, Pamela Mishkin, Jeff Wu, C L Mar, Jacob Hilton, Amanda Askell, and Paul
 674 Christiano. Training language models to follow instructions with human feedback. *arXiv*, 2022.

675

676 Xuchen Pan, Yanxi Chen, Yushuo Chen, Yuchang Sun, Daoyuan Chen, Wenhao Zhang, Yuexiang
 677 Xie, Yilun Huang, Yilei Zhang, Dawei Gao, Weijie Shi, Yaliang Li, Bolin Ding, and Jingren
 678 Zhou. Trinity-RFT: A general-purpose and unified framework for reinforcement fine-tuning of
 679 large language models. *arXiv Preprint arXiv:2505.17826*, 2025.

680

681 Qwen-Team. Qwen2.5 technical report. *arXiv*, 2025a.

682

683 Qwen-Team. Qwen3 technical report. *arXiv*, 2025b.

684

685 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 686 Finn. Direct preference optimization: Your language model is secretly a reward model. In *Thirty-
 687 seventh Conference on Neural Information Processing Systems*, 2023.

688

689 Yi Ren and Danica J. Sutherland. Learning dynamics of LLM finetuning. In *The Thirteenth
 690 International Conference on Learning Representations*, 2025.

691

692 Pierre Harvey Richemond, Yunhao Tang, Daniel Guo, Daniele Calandriello, Mohammad Gheshlaghi
 693 Azar, Rafael Rafailov, Bernardo Avila Pires, Eugene Tarassov, Lucas Spangher, Will Ellsworth,
 694 Aliaksei Severyn, Jonathan Mallinson, Lior Shani, Gil Shamir, Rishabh Joshi, Tianqi Liu, Remi
 695 Munos, and Bilal Piot. Offline regularised reinforcement learning for large language models
 696 alignment. *arXiv Preprint arXiv:2405.19107*, 2024.

697

698 David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience
 699 replay for continual learning. In *Advances in Neural Information Processing Systems*, volume 32,
 700 2019.

701

702 Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. *arXiv
 703 Preprint arXiv:1511.05952*, 2016.

704

705 John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
 706 policy optimization. In *International conference on machine learning*, pp. 1889–1897. PMLR,
 707 2015.

708

709 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 710 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

702 Zhihong Shao, Peiyi Wang, Qihao Zhu, Junxiao Song, Runxin Xu, Mingchuan Zhang, Y.K. Li,
 703 Y. Wu, and Daya Guo. DeepSeekMath: Pushing the limits of mathematical reasoning in open
 704 language models. *arXiv*, 2024.

705 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 706 Haibin Lin, and Chuan Wu. HybridFlow: A flexible and efficient RLHF framework. *arXiv*, 2024.

708 David Silver and Richard S. Sutton. Welcome to the era of experience. <https://storage.googleapis.com/deepmind-media/Era-of-Experience%20/The%20Era%20of%20Experience%20Paper.pdf>, 2025.

711 Yuda Song, Gokul Swamy, Aarti Singh, J. Andrew Bagnell, and Wen Sun. The importance of online
 712 data: Understanding preference fine-tuning via coverage. In *Advances in Neural Information
 713 Processing Systems*, volume 37, pp. 12243–12270, 2024.

715 Richard S Sutton, Andrew G Barto, et al. *Reinforcement learning: An introduction*. MIT press
 716 Cambridge, 1998.

717 Fahim Tajwar, Anikait Singh, Archit Sharma, Rafael Rafailev, Jeff Schneider, Tengyang Xie,
 718 Stefano Ermon, Chelsea Finn, and Aviral Kumar. Preference fine-tuning of LLMs should leverage
 719 suboptimal, on-policy data. In *Forty-first International Conference on Machine Learning*, 2024.

721 Sharan Vaswani, Olivier Bachem, Simone Totaro, Robert Müller, Shivam Garg, Matthieu Geist,
 722 Marlos C. Machado, Pablo Samuel Castro, and Nicolas Le Roux. A functional mirror ascent view
 723 of policy gradient methods with function approximation. In *Proceedings of the 25th International
 724 Conference on Artificial Intelligence and Statistics (AISTATS)*, volume 151, Valencia, Spain,
 725 2022. PMLR.

726 Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan
 727 Lambert, Shengyi Huang, Kashif Rasul, and Quentin Gallouédec. TRL: Transformer
 728 reinforcement learning. <https://github.com/huggingface/trl>, 2020.

729 Weixun Wang, Shaopan Xiong, Gengru Chen, Wei Gao, Sheng Guo, Yancheng He, Ju Huang,
 730 Jiaheng Liu, Zhendong Li, Xiaoyang Li, et al. Reinforcement learning optimization for large-
 731 scale learning: An efficient and user-friendly scaling library. *arXiv preprint arXiv:2506.06122*,
 732 2025.

733 Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
 734 learning. *Machine learning*, 8(3):229–256, 1992.

736 Yongliang Wu, Yizhou Zhou, Zhou Ziheng, Yingzhe Peng, Xinyu Ye, Xinting Hu, Wenbo Zhu,
 737 Lu Qi, Ming-Hsuan Yang, and Xu Yang. On the generalization of SFT: A reinforcement learning
 738 perspective with reward rectification. *arXiv preprint arXiv:2508.05629*, 2025.

739 Jianhao Yan, Yafu Li, Zican Hu, Zhi Wang, Ganqu Cui, Xiaoye Qu, Yu Cheng, and Yue Zhang.
 740 Learning to reason under off-policy guidance. *arXiv Preprint arXiv:2504.14945*, 2025.

742 Feng Yao, Liyuan Liu an Dinghuai Zhang, Chengyu Dong, Jingbo Shang, and Jianfeng Gao.
 743 Your efficient RL framework secretly brings you off-policy RL training. <https://fengyao.notion.site/off-policy-rl>, 2025.

745 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
 746 Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng,
 747 Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen,
 748 Jiangjie Chen, Chengyi Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing
 749 Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. DAPO:
 750 An open-source LLM reinforcement learning system at scale. *arXiv preprint arXiv:2503.14476*,
 751 2025.

752 Guibin Zhang, Hejia Geng, Xiaohang Yu, Zhenfei Yin, Zaibin Zhang, Zelin Tan, Heng Zhou,
 753 Zhongzhi Li, Xiangyuan Xue, Yijiang Li, Yifan Zhou, Yang Chen, Chen Zhang, Yutao Fan, Zihu
 754 Wang, Songtao Huang, Yue Liao, Hongru Wang, Mengyue Yang, Heng Ji, Michael Littman, Jun
 755 Wang, Shuicheng Yan, Philip Torr, and Lei Bai. The landscape of agentic reinforcement learning
 for LLMs: A survey, 2025a.

756 Kaiyan Zhang, Yuxin Zuo, Bingxiang He, Youbang Sun, Runze Liu, Che Jiang, Yuchen Fan, Kai
757 Tian, Guoli Jia, Pengfei Li, et al. A survey of reinforcement learning for large reasoning models.
758 *arXiv preprint arXiv:2509.08827*, 2025b.

759
760 Wenhao Zhang, Yuexiang Xie, Yuchang Sun, Yanxi Chen, Guoyin Wang, Yaliang Li, Bolin Ding,
761 and Jingren Zhou. On-policy RL meets off-policy experts: Harmonizing supervised fine-tuning
762 and reinforcement learning via dynamic weighting. *arXiv preprint arXiv:2508.11408*, 2025c.

763 Yuzhong Zhao, Yue Liu, Junpeng Liu, Jingye Chen, Xun Wu, Yaru Hao, Tengchao Lv, Shaohan
764 Huang, Lei Cui, Qixiang Ye, Fang Wan, and Furu Wei. Geometric-mean policy optimization.
765 *arXiv preprint arXiv:2507.20673*, 2025.

766
767 Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
768 Yuqiong Liu, Rui Men, An Yang, Jingren Zhou, and Junyang Lin. Group sequence policy
769 optimization. *arXiv preprint arXiv:2507.18071*, 2025.

770 Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K. Dey. Maximum entropy inverse
771 reinforcement learning. In *Proceedings of the 23rd National Conference on Artificial Intelligence*
772 - Volume 3, pp. 1433–1438, 2008.

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 LLM USAGE STATEMENT
811812 We used large language models (LLMs) only as general-purpose writing assistants to polish the
813 presentation and improve the clarity of the text. All research contributions and findings are solely
814 the work of the authors.
815816 A EXTENDING SECTION 2.2 TO MULTI-STEP RL
817818 This section extends the off-policy interpretation proposed in Section 2.2 to multi-step RL settings.
819 Let us start by introducing some notations. In multi-step RL, the initial prompt x is also regarded
820 as the initial state $s^1 = x$. A rollout trajectory consisting of multiple turns of agent-environment
821 interaction is denoted by
822

823
$$\mathcal{T} = (s^1, a^1, s^2, a^2, \dots) = (s^\ell, a^\ell)_{1 \leq \ell \leq |\mathcal{T}|},$$

824 where s^ℓ is the state and a^ℓ is the action, i.e., an LLM response (akin to y in Section 2.2). Let c^ℓ
825 denote the context up to step ℓ , so that $a^\ell \sim \pi(\cdot | c^\ell)$ for some policy π . Throughout this section, we
826 consider trajectory-level rewards $r(x, \mathcal{T})$. Let $\rho_{\theta}(\cdot | x)$ denote the trajectory distribution induced by
827 policy π_{θ} at initial state $s^1 = x$.
828829 The following analysis focuses on the t -th iteration, updating the policy model from θ_t to θ_{t+1} .
830831 **Step 1: surrogate objective and consistency condition.** For the t -th iteration of policy
832 optimization, consider the following KL-regularized objective:
833

834
$$\max_{\theta} J(\theta; \pi_{\theta_t}) := \mathbb{E}_{x \sim D} \left[\mathbb{E}_{\mathcal{T} \sim \rho_{\theta}(\cdot | x)} [r(x, \mathcal{T})] - \tau \cdot D_{\text{KL}}(\rho_{\theta}(\cdot | x) \| \rho_{\theta_t}(\cdot | x)) \right]. \quad (11)$$

835 The optimal policy π and the induced trajectory distribution ρ satisfies the following: for any
836 trajectory \mathcal{T} ,
837

838
$$\rho(\mathcal{T} | x) = \frac{\rho_{\theta_t}(\mathcal{T} | x) e^{r(x, \mathcal{T}) / \tau}}{Z(x, \rho_{\theta_t})}, \quad \text{where} \quad (12)$$

839
$$Z(x, \rho_{\theta_t}) := \int \rho_{\theta_t}(\mathcal{T}' | x) e^{r(x, \mathcal{T}') / \tau} d\mathcal{T}' = \mathbb{E}_{\mathcal{T}' \sim \rho_{\theta_t}(\cdot | x)} [e^{r(x, \mathcal{T}') / \tau}]. \quad (13)$$

840 This is equivalent to the following: for any pair of trajectories \mathcal{T}_1 and \mathcal{T}_2 ,
841

842
$$\frac{\rho(\mathcal{T}_1 | x)}{\rho(\mathcal{T}_2 | x)} = \frac{\rho_{\theta_t}(\mathcal{T}_1 | x)}{\rho_{\theta_t}(\mathcal{T}_2 | x)} e^{(r(x, \mathcal{T}_1) - r(x, \mathcal{T}_2)) / \tau}.$$

843 Taking logarithm of both sides and doing some rearrangement, we have equivalently
844

845
$$r(x, \mathcal{T}_1) - \tau \cdot (\log \rho(\mathcal{T}_1 | x) - \log \rho_{\theta_t}(\mathcal{T}_1 | x)) = r(x, \mathcal{T}_2) - \tau \cdot (\log \rho(\mathcal{T}_2 | x) - \log \rho_{\theta_t}(\mathcal{T}_2 | x)). \quad (14)$$

846 Note that for a trajectory \mathcal{T} , we have
847

848
$$\log \rho(\mathcal{T} | x) - \log \rho_{\theta_t}(\mathcal{T} | x) = \sum_{\ell} \log \pi(a^\ell | c^\ell) - \sum_{\ell} \log \pi_{\theta_t}(a^\ell | c^\ell)$$

849 since the state-transition probability terms in $\log \rho(\mathcal{T} | x)$ and $\log \rho_{\theta_t}(\mathcal{T} | x)$ cancel out.
850851 **Step 2: surrogate loss with finite samples.** Given K trajectories from the same initial state $s_1 =$
852 x , we define the following mean-squared surrogate loss that enforces the consistency condition:
853

854
$$\widehat{L}(\theta; x, \pi_{\theta_t}) := \frac{1}{K^2} \sum_{1 \leq i < j \leq K} \frac{(a_i - a_j)^2}{(1 + \tau)^2}, \quad (15)$$

855 where $a_i := r(x, \mathcal{T}_i) - \tau \left(\sum_{\ell} \log \pi_{\theta}(a_i^\ell | c_i^\ell) - \sum_{\ell} \log \pi_{\theta_t}(a_i^\ell | c_i^\ell) \right)$.
856

857 With infinite samples and sufficient coverage of the action space, the optimum of this surrogate loss
858 would be the same as the optimal policy for the surrogate objective in Eq. (11).
859

864 **Step 3: one gradient step of the surrogate loss.** By the same trick as in Section 2.2, we have
 865
 866 $\nabla_{\theta} (a_i - a_j)^2 \Big|_{\theta_t} = -2\tau \left(r(x, \mathcal{T}_i) - r(x, \mathcal{T}_j) \right) \left(\nabla_{\theta} \sum_{\ell} \log \pi_{\theta}(a_i^{\ell} | c_i^{\ell}) \Big|_{\theta_t} - \nabla_{\theta} \sum_{\ell} \log \pi_{\theta}(a_j^{\ell} | c_j^{\ell}) \Big|_{\theta_t} \right),$
 867
 868 and
 869

870 $\nabla_{\theta} \sum_{1 \leq i < j \leq K} \frac{(a_i - a_j)^2}{(1 + \tau)^2} \Big|_{\theta_t} = \frac{-2\tau K}{(1 + \tau)^2} \sum_{1 \leq i \leq K} (r(x, \mathcal{T}_i) - \bar{r}(x)) \nabla_{\theta} \sum_{\ell} \log \pi_{\theta}(a_i^{\ell} | c_i^{\ell}) \Big|_{\theta_t},$
 871
 872

873 where $\bar{r}(x) := \sum_{1 \leq j \leq K} r(x, \mathcal{T}_j) / K$ denotes the group mean reward in the last line.
 874

875 In sum, the gradient of the surrogate loss in Eq. (16) becomes:
 876

877 $\nabla_{\theta} \hat{L}(\theta; x, \pi_{\theta_t}) \Big|_{\theta_t} = \frac{-2\tau}{(1 + \tau)^2} \cdot \frac{1}{K} \sum_{1 \leq i \leq K} (r(x, \mathcal{T}_i) - \bar{r}(x)) \nabla_{\theta} \sum_{\ell} \log \pi_{\theta}(a_i^{\ell} | c_i^{\ell}) \Big|_{\theta_t}.$
 878

879 This motivates the following policy update step:
 880

881 $g(\theta; x, \{\mathcal{T}_i, r_i\}_{1 \leq i \leq K}) = \frac{2\tau}{(1 + \tau)^2} \cdot \frac{1}{K} \sum_{1 \leq i \leq K} (r(x, \mathcal{T}_i) - \bar{r}(x)) \nabla_{\theta} \sum_{1 \leq \ell \leq |\mathcal{T}_i|} \log \pi_{\theta}(a_i^{\ell} | c_i^{\ell}), \quad (17)$
 882

883 which concludes our derivation of group-relative REINFORCE in multi-step RL settings.
 884

885 B IMPLEMENTATION DETAILS AND ADDITIONAL EXPERIMENTS

886 We implement all algorithms with the Trinity-RFT framework (Pan et al., 2025), and run
 887 experiments on NVIDIA L20, H20, and A800 GPUs. See Tables 1 and 2 for detailed configurations
 888 of our experiments.
 889

890 B.1 DATASET DETAILS

891 We provide additional descriptions of the datasets used in our experiments:
 892

- 893 • GSM8k (Cobbe et al., 2021) is a widely used benchmark with 8.5k grade-school math word
 894 problems, designed to test arithmetic reasoning and step-by-step problem solving.
 895
- 896 • MATH (Hendrycks et al., 2021) covers algebra, geometry, probability, and number theory,
 897 containing 12.5k examples in total (7.5k for training and 5k for testing); it demands
 898 advanced symbolic reasoning beyond GSM8k.
 899
- 900 • Guru (Cheng et al., 2025) is a multi-domain reasoning dataset with 91.9k examples
 901 spanning math, code, science, logic, simulation, and tabular tasks; we use its math subset
 902 (around 54k samples), which introduces diverse problem formats for evaluating transfer of
 903 reasoning strategies.
 904
- 905 • ToolACE (Liu et al., 2025a) is a multilingual benchmark with around 11k synthetic samples
 906 designed to evaluate LLMs’ ability to solve tasks by selecting and invoking external tools
 907 via strict JSON-formatted function calls; we use a 5k single-turn subset in our experiments.
 908

909 B.2 UNDERSTANDING THE SYNCHRONIZATION PARAMETERS

910 We parameterize rollout-training scheduling by two configuration parameters in Trinity-RFT: the
 911 synchronization interval (`sync_interval`) and synchronization offset (`sync_offset`). Their
 912 meanings are visualized in Figure 6 and explained in the following.
 913

914 The parameter `sync_interval` specifies the number of generated rollout batches (which equals
 915 the number of gradient steps for training the policy model) between two consecutive executions
 916 of model weight synchronization. When `sync_interval` = 1, the rollout and policy models
 917 synchronize after each gradient step with one batch of samples, yielding a strictly on-policy process
 918 (if we ignore the issue of precision mismatch between rollout and training engines (Yao et al.,
 919 2025)). When `sync_interval` > 1, `sync_interval` rollout batches are generated with stale
 920

918 Table 1: Default hyperparameters. Deviations from defaults are noted in figure captions.
919

	GSM8K Qwen2.5 1.5B	ToolACE Llama-3.2 3B	Guru Qwen2.5 7B	Guru Qwen3 30B-A3B	MATH Llama-3.1 8B
Learning rate	1×10^{-6}	1×10^{-6}	1×10^{-6}	2×10^{-6}	5×10^{-7}
Batch size	96	96	64	72	64
K	8	8	16	16	16
Weight decay	0.01	0.01	0.1	0.1	0.1
Warmup steps	0	0	80	80	40
Eval temperature	1.0	N/A	N/A	N/A	0.6
Eval top-p	1.0	N/A	N/A	N/A	1.0
Figures	2, 4, 8, 9, 10	3	5	12	11

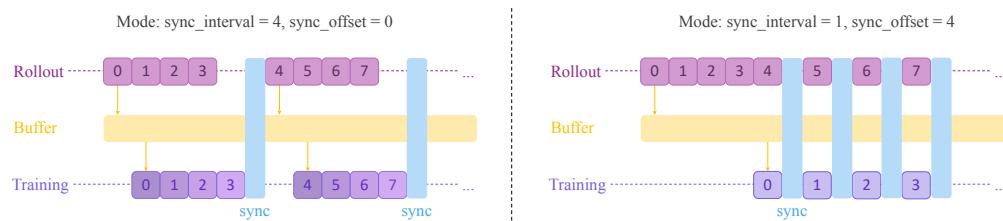
931
932 Table 2: Other shared hyperparameters across all experiments.
933

Parameter	Value
Optimizer	AdamW
(β_1, β_2)	(0.9, 0.999)
Gradient clipping	1.0
Warmup style	constant
Weight-decay increment style	constant
Auxiliary LR decay style	exponential
Training inference temperature	1.0
Training inference top-p	1.0

946 model weights before synchronization, which accelerates the overall RL process through pipeline
947 parallelism but incurs off-policyness.

948 The parameter `sync_offset` specifies the lag between the generation and consumption of
949 each batch. More specifically, `sync_offset` batches are generated and saved to the buffer
950 before training is launched, which is also useful for reducing pipeline bubbles and improving
951 hardware utilization (Noukhovitch et al., 2025). In some of our experiments, we deliberately set
952 `sync_offset` to a large value, in order to simulate a scenario where reward signals from the
953 environment are lagged.

954 In general, with $(\text{sync_interval}, \text{sync_offset}) = (m, n)$, the off-policyness of a consumed
955 batch with zero-index id l corresponds to its temporal distance from the most recent synchronized
956 policy is $(l \bmod m) + n$. For example, $(4, 0)$ yields off-policyness 0, 1, 2, 3 within each interval,
957 while $(1, 4)$ yields a constant off-policyness of 4.



968 Figure 6: A visualization of the rollout-training scheduling in `sync_interval = 4` (left) or
969 `sync_offset = 4` (right) modes. Each block denotes one batch of samples for one gradient step,
970 and the number in it denotes the corresponding batch id. Training blocks are color-coded by data
971 freshness, with lighter color indicating increasing off-policyness.

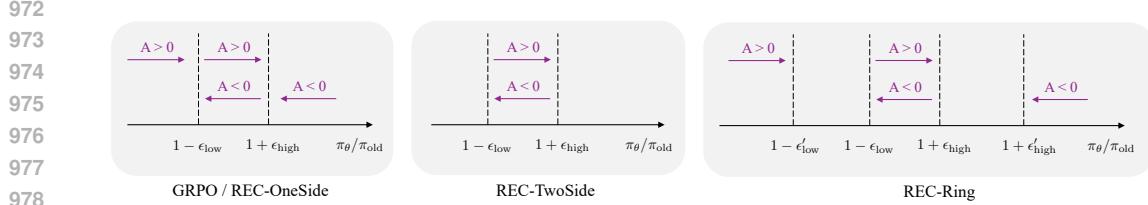


Figure 7: A visualization of activated gradient for various REC algorithms. Here, A represents the advantage of a specific token, and an arrow pointing to the right and annotated with “ $A > 0$ ” means there is activated gradient that incentivizes increasing π_θ when the token advantage is positive and the probability ratio $\pi_\theta/\pi_{\text{old}}$ lies in the corresponding interval.

B.3 REC WITH DIFFERENT CLIPPING MECHANISMS

In addition to one-side clipping investigated in Section 4, here we compare additional clipping mechanisms for the REC series, to understand how the geometry of clipping — asymmetric vs. symmetric bounds and the presence of a zero-gradient band — affects the learning process.

REC-TwoSide-IS/NOIS. We replace the mask M_i^t in REC-ONESIDE-IS/NOIS in Eq. (8) with a two-side mask³:

$$\widehat{M}_i^t = \mathbb{1}\left(1 - \epsilon_{\text{low}} \leq \frac{\pi_\theta(y_i^t | x, y_i^{<t})}{\pi_{\text{old}}(y_i^t | x, y_i^{<t})} \leq 1 + \epsilon_{\text{high}}\right). \quad (18)$$

Two-side clipping imposes weaker regularization than one-side clipping does with the same clipping parameter $(\epsilon_{\text{low}}, \epsilon_{\text{high}})$. This can potentially improve training efficiency, but might also be risky when $\pi_\theta/\pi_{\text{old}}$ goes far off. To compensate for this, we design REC-RING.

REC-RING. In addition to the inner band $(1 - \epsilon_{\text{low}}, 1 + \epsilon_{\text{high}})$ as in Eq. (18), we further specify outer safety margins $\epsilon'_{\text{low}} \geq \epsilon_{\text{low}}$ and $\epsilon'_{\text{high}} \geq \epsilon_{\text{high}}$. The REC-RING mask is:

$$\widehat{M}_i^t = \mathbb{1}\left(1 - \epsilon_{\text{low}} \leq \frac{\pi_\theta(y_i^t | x, y_i^{<t})}{\pi_{\text{old}}(y_i^t | x, y_i^{<t})} \leq 1 + \epsilon_{\text{high}}\right) \quad (19)$$

$$+ \mathbb{1}\left(A_i > 0 \text{ and } \frac{\pi_\theta(y_i^t | x, y_i^{<t})}{\pi_{\text{old}}(y_i^t | x, y_i^{<t})} \leq 1 - \epsilon'_{\text{low}}\right) \quad (20)$$

$$+ \mathbb{1}\left(A_i < 0 \text{ and } \frac{\pi_\theta(y_i^t | x, y_i^{<t})}{\pi_{\text{old}}(y_i^t | x, y_i^{<t})} \geq 1 + \epsilon'_{\text{high}}\right). \quad (21)$$

A comparison of the clipping mechanisms are visualized in Figure 7. Note that REC-ONESIDE and REC-TwoSide can be regarded as special cases of REC-RING.

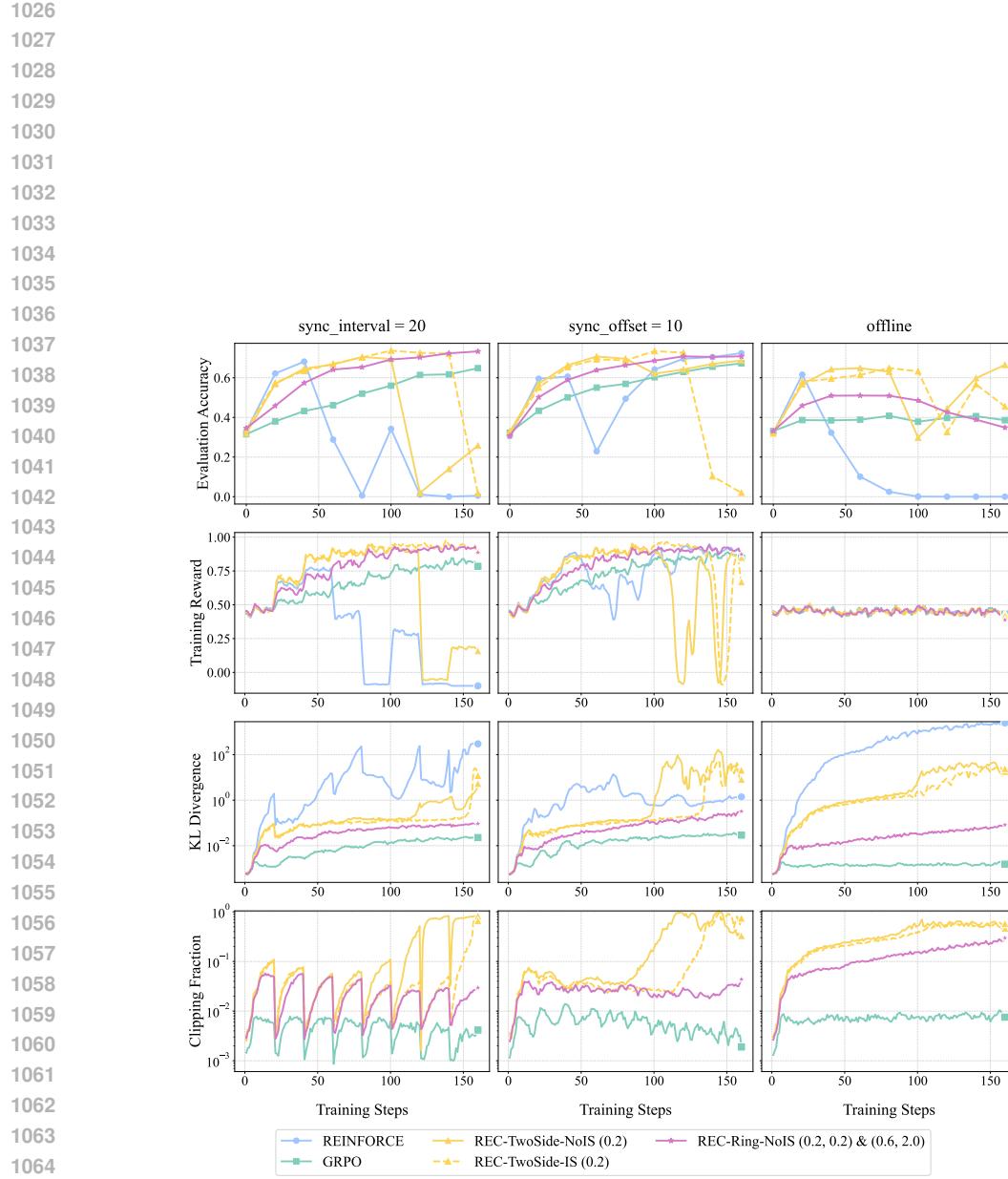
Experiments. We compare the following algorithms: REINFORCE, GRPO, REC-TwoSide-IS, REC-TwoSide-NoIS, and REC-Ring-NoIS. Clipping parameters are set to $(\epsilon_{\text{low}}, \epsilon_{\text{high}}) = (0.2, 0.2)$, and for REC-RING we additionally set $(\epsilon'_{\text{low}}, \epsilon'_{\text{high}}) = (0.6, 2.0)$.

Figure 8 presents the empirical results. We observe that for REC-TwoSide, importance sampling is non-essential in all three settings, akin to the case of REC-ONESIDE. In addition, REC-TwoSide methods demonstrate fast policy improvement at the beginning but tend to collapse later on, whereas REC-RING achieves a better balance of convergence speed and stability.

B.4 ABLATION: THE IMPACT OF LEARNING RATES

Recall that in Section 4.1, we have demonstrated empirically the advantages of enlarging the clipping parameters $\epsilon_{\text{low}}, \epsilon_{\text{high}}$ for REC-ONESIDE-NoIS. One might wonder if the relatively weak

³It turns out that REC-TwoSide-NoIS resembles the sPPO algorithm proposed by Vaswani et al. (2022), though derived with different rationales.



1066 Figure 8: Comparison of REC variants on GSM8K with Qwen2.5-1.5B-Instruct under different
1067 off-policy settings. Evaluation accuracy, training reward, KL divergence (with respect to the initial
1068 model) and clipping fraction are reported. Training reward curves are smoothed with a running-
1069 average window of size 3.

1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

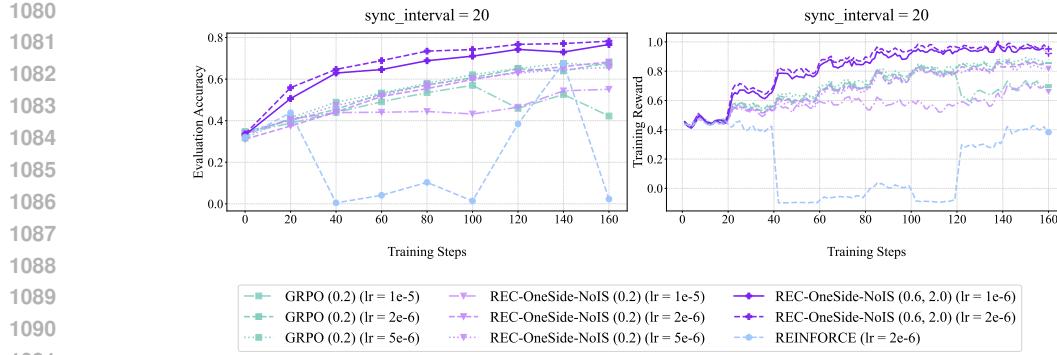


Figure 9: Comparison of GRPO and REC-ONESIDE-NoIS on GSM8K with Qwen2.5-1.5B-Instruct. Evaluation accuracy (left) and training reward (right) are reported for varying learning rates.

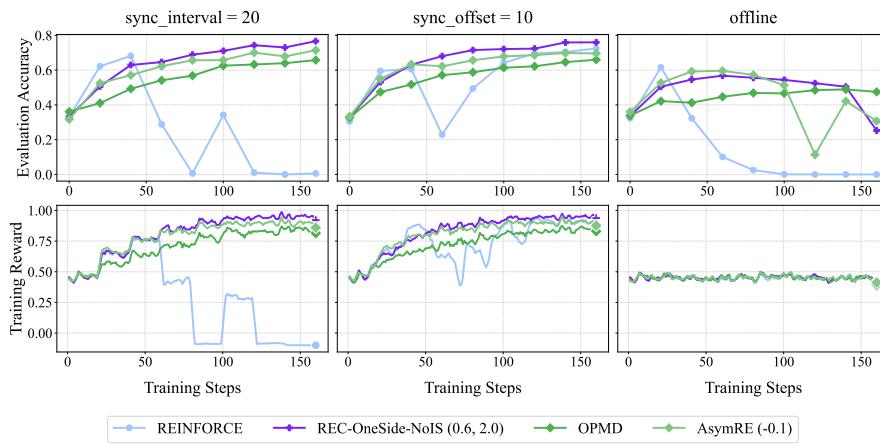


Figure 10: Empirical results for OPMD and AsymRE (cf. Section 4.2) on GSM8K with Qwen2.5-1.5B-Instruct under various off-policy settings. The regularization coefficient for OPMD and the baseline shift for AsymRE are both 0.1. Training reward curves are smoothed with a running-average window of size 3.

1118 performance of GRPO or REC-ONESIDE with conventional $\epsilon_{\text{low}} = \epsilon_{\text{high}} = 0.2$ is genuinely rooted
1119 in the clipping mechanism itself, or simply due to the choice of a small learning rate.

1120 To answer this, we enhance the experiment of Figure 2 by sweeping learning rates over $\{1 \times 10^{-5}, 2 \times$
1121 $10^{-6}, 5 \times 10^{-6}\}$. The results are illustrated in Figure 9, which confirm that simply increasing the
1122 learning rate cannot bridge the performance gap between GRPO with $\epsilon_{\text{low}} = \epsilon_{\text{high}} = 0.2$ and REC-
1123 ONESIDE-NoIS with $\epsilon_{\text{low}} = 0.6, \epsilon_{\text{high}} = 2.0$. This shows that relaxing the clipping range acts as a
1124 genuine improvement of regularization, rather than merely mimicking a larger learning rate.

B.5 EXPERIMENTS FOR OPMD AND ASYMRE

1130 Figure 10 presents empirical results for OPMD and AsymRE in various off-policy settings. It is
1131 worth noting that, while the analysis and experiments in their original papers (Kimi-Team, 2025b;
1132 Arnal et al., 2025) focus on a setting that is effectively the same as our $\text{sync_interval} > 1$
1133 setting, our analysis and experiments have also validated their efficacy in $\text{sync_offset} > 1$
scenarios.

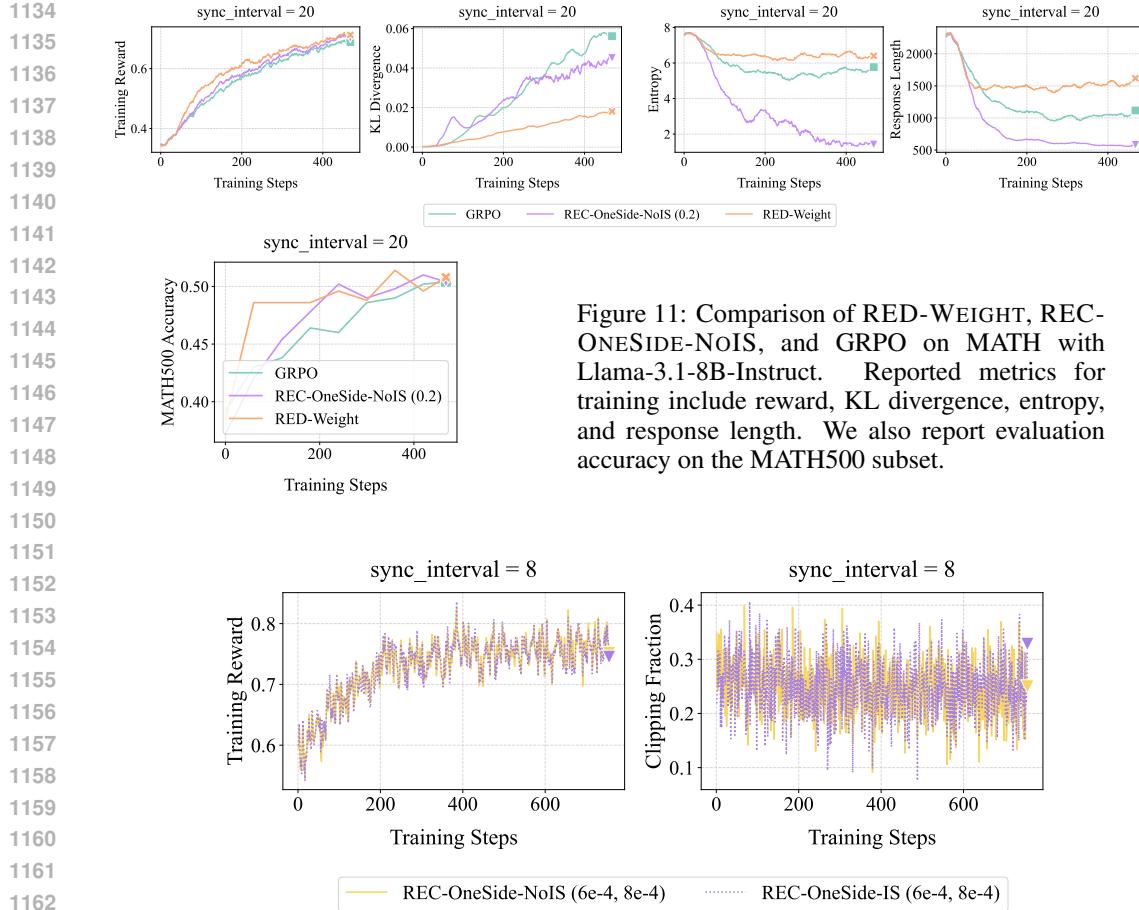


Figure 12: Empirical results on Guru-Math with Qwen3-30B-A3B (MoE). Training reward curves are smoothed with a running-average window of size 3.

B.6 ADDITIONAL DETAILS AND RESULTS FOR RED ALGORITHMS

We present further implementation details for the RED-DROP and RED-WEIGHT algorithms investigated in Section 4.3:

- RED-DROP: When the number of negative samples in a group exceeds the number of positive ones, we randomly drop the excess negatives so that positives and negatives are balanced. After this subsampling step, we recompute the advantages using the remaining samples, which are then fed into the loss.
- RED-WEIGHT: Each sample i is weighted by $w_i = \exp(A_i/\mathcal{T})$, where A_i denotes its advantage estimate and $\mathcal{T} > 0$ is a temperature parameter controlling the sharpness of weighting. Intuitively, this scheme amplifies high-advantage samples while down-weighting low-advantage ones. We fix $\mathcal{T} = 1$ for all experiments.

Additional experiments for RED-WEIGHT, and its comparison against GRPO and REC-ONESIDE-NOIS, can be found in Figure 11. We observe that for the MATH dataset and Llama-3.1-8B-Instruct, RED-WEIGHT achieves higher rewards with lower KL divergence, while maintaining more stable entropy and response lengths.

B.7 GSPO: SEQUENCE-LEVEL IMPORTANCE SAMPLING COULD BE NON-ESSENTIAL

Group Sequence Policy Optimization (GSPO) (Zheng et al., 2025) proposes to replace token-wise clipping and importance sampling in GRPO with sequence-wise counterparts. Similar to Finding

1188
 1189 F1 in Section 4 for GRPO, we hypothesize that GSPO’s effectiveness stems from sequence-level
 1190 clipping as regularization, rather than from sequence-level importance sampling. We provides
 1191 preliminary validation for this hypothesis, through experiments with GSPO-style REC variants.
 1192

1193 **Implementations.** Given a prompt x and K responses $\{y_i\}_{1 \leq i \leq K}$, let $s_i(\theta)$ denote the length-
 1194 normalized sequence-level probability ratio for y_i :

$$1195 \quad s_i(\theta) := \left(\frac{\pi_\theta(y_i | x)}{\pi_{\text{old}}(y_i | x)} \right)^{\frac{1}{|y_i|}} = \exp \left(\frac{1}{|y_i|} \sum_{1 \leq t \leq |y_i|} \log \frac{\pi_\theta(y_i^t | x, y_i^{<t})}{\pi_{\text{old}}(y_i^t | x, y_i^{<t})} \right).$$

1196 We further define the one-side sequence-level clipping mask as
 1197

$$1198 \quad M_i := \mathbb{1}(A_i > 0, s_i(\theta) \leq 1 + \epsilon_{\text{high}}) + \mathbb{1}(A_i < 0, s_i(\theta) \geq 1 - \epsilon_{\text{low}}).$$

1199 With these notations in place, we implement two GSPO-style REC variants as follows:
 1200

$$1201 \quad \text{REC-GSPO-IS: } \mathbf{g} = \frac{1}{K} \sum_{1 \leq i \leq K} \frac{1}{|y_i|} \sum_{1 \leq t \leq |y_i|} \nabla_\theta \log \pi_\theta(y_i^t | x, y_i^{<t}) \cdot (r_i - \bar{r}) s_i(\theta) M_i,$$

$$1202 \quad \text{REC-GSPO-NoIS: } \mathbf{g} = \frac{1}{K} \sum_{1 \leq i \leq K} \frac{1}{|y_i|} \sum_{1 \leq t \leq |y_i|} \nabla_\theta \log \pi_\theta(y_i^t | x, y_i^{<t}) \cdot (r_i - \bar{r}) M_i.$$

1203 One can check that REC-GSPO-IS is equivalent to GSPO (except that we use $r_i - \bar{r}$ as the
 1204 advantage, without normalization by σ_r), while REC-GSPO-NoIS discards the sequence-level
 1205 importance-sampling weights.

1206 **Experiments.** We use the Guru-Math dataset and a mixture-of-expert (MoE) model — Qwen3-
 1207 30B-A3B (Qwen-Team, 2025b) — since stable RL for MoE models is one of the main motivations
 1208 behind GSPO (Zheng et al., 2025). We set `sync_interval` = 8, $\epsilon_{\text{low}} = 6 \times 10^{-4}$, and $\epsilon_{\text{high}} =$
 1209 8×10^{-4} ; other hyperparameters can be found in Tables 1 and 2.

1210 Figure 12 shows that the learning curves of both REC-GSPO variants — with or without importance
 1211 sampling — mostly overlap, indicating that importance sampling is likely a non-essential component
 1212 for the effectiveness of GSPO.

1221 C SUMMARY: A UNIFIED VIEW OF VARIOUS ALGORITHMS

1222 For convenient reference, Table 3 summarizes the algorithms investigated in Section 4.
 1223

1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241

1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295

Table 3: A summary of algorithms investigated in Section 4.

Augmentation	Algorithm	Gradient / Loss
Regularize by clipping	GRPO	$\mathbf{g} = \frac{1}{K} \sum_i \sum_t \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(y_i^t x, y_i^{<t}) \cdot A_i \frac{\pi_{\boldsymbol{\theta}}(y_i^t x, y_i^{<t})}{\pi_{\text{old}}(y_i^t x, y_i^{<t})} M_i^t$
	REC-ONESIDE-IS	$\mathbf{g} = \frac{1}{K} \sum_i \sum_t \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(y_i^t x, y_i^{<t}) \cdot (r_i - \bar{r}) \frac{\pi_{\boldsymbol{\theta}}(y_i^t x, y_i^{<t})}{\pi_{\text{old}}(y_i^t x, y_i^{<t})} M_i^t$
	REC-ONESIDE-NoIS	$\mathbf{g} = \frac{1}{K} \sum_i \sum_t \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(y_i^t x, y_i^{<t}) \cdot (r_i - \bar{r}) M_i^t$
Add regularization loss	OPMD	$\hat{L} = -\frac{1}{K} \sum_i (r_i - \bar{r}) \log \pi_{\boldsymbol{\theta}}(y_i x) + \frac{\beta}{2K} \sum_i (\log \pi_{\boldsymbol{\theta}}(y_i x) - \log \pi_{\text{old}}(y_i x))^2$
	AsymRE	$\hat{L} = -\frac{1}{K} \sum_i (r_i - \bar{r}) \log \pi_{\boldsymbol{\theta}}(y_i x) - \frac{\beta}{K} \sum_i \log \pi_{\boldsymbol{\theta}}(y_i x)$
Reweight data	Pairwise-weighted REINFORCE	$\mathbf{g} = \frac{1}{K} \sum_i \left(\sum_j w_{i,j} \right) \left(r_i - \frac{\sum_j w_{i,j} r_j}{\sum_j w_{i,j}} \right) \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(y_i x)$
	RED-Drop	$\mathbf{g} = \frac{1}{ S } \sum_{i \in S} (r_i - \bar{r}_S) \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(y_i x)$
	RED-Weight	$\mathbf{g} = \sum_i w_i (r_i - \bar{r}) \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(y_i x), w_i = \exp(A_i / \textcolor{blue}{T})$