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ABSTRACT

Reinforcement learning (RL) under continual environmental changes has re-
mained a central challenge for decades. Novel designs of loss functions, train-
ing procedures and neural network architectures have not yet managed to alleviate
the main mode of failure in lifelong learning: loss of plasticity. Here, we turn to
a very different family of optimisers: neuroevolution (NE). Through an extensive
evaluation on diverse lifelong control tasks, we see that both population-based and
distribution-based approaches exhibit a remarkable ability to adapt where RL fails
catastrophically. We observe that, in the present of environmental shifts, NE nat-
urally increases its diversity of solutions, evolving the ability to rapidly discover
well-performing specialist individuals. We propose that NE can be a promising
approach towards tackling the need for lifelong adaptation and that future work
should focus on the benefit of diversity.

1 INTRODUCTION

Reinforcement learning (RL) has produced impressive feats in recent years, offering ways to advance
robotic agents (Silver et al., 2016b), improve the capabilities of Large Language Models (Ouyang
et al., 2022) and perform on-par with humans in complex decision-making problems (Silver et al.,
2016a). It is not surprising that RL, the de facto formalism for learning through interaction with
an environment, is driving the increasing adoption of Artificial Intelligence (AI) in the real world.
However, today’s RL algorithms require immense training experience, extensive hyper-parameter
tuning and, nevertheless, remain brittle to unexpected variations in their environment (Kirk et al.,
2023; Pan et al., 2025; Kudithipudi et al., 2022). Continuing on this path requires moving out of our
current paradigm of close human supervision and towards AI that can autonomously learn in shift-
ing, open-ended worlds (Hughes et al., 2024; Clune, 2020). A major mode of failure for RL in such
settings is a loss of plasticity (Klein et al., 2024; Sokar et al., 2023; Muppidi et al., 2024). Plasticity
lies at the other end of stability and, since a large focus of past progress RL has been on improving
stability (Schulman et al., 2017b; Kirkpatrick et al., 2017), RL’s best-performing algorithm often
exhibit a remarkable tendency to ignore shifts in their environemnt (Klein et al., 2024). The recent
resurgence of RL has, however triggered, an interest in bringing plasticity back. A natural approach
is the development of techniques that re-trigger learning (Sokar et al., 2023). However, such ap-
proaches often require extensive tuning, defeating their original motivation (Muppidi et al., 2024;
Klein et al., 2024). Lifelong RL is today in need of low-cost, hyperparameter-free solutions for
battling loss of plasticity. Here we propose to look for such a solution in a fundamentally different
family of optimisers: neuro-evolution.

Evolutionary algorithms are a long-standing and diverse family of black-box optimization meth-
ods that, when applied for the optimization of artificial neural networks (ANNs), are referred to
as neuroevolution (Risi et al., 2025; Stanley et al., 2019). A core component of any evolutionary
algorithm is the presence of a population. The field originally drew its inspiration from biological
evolution, repurposing the processes of mutation, selection, and reproduction for black-box opti-
mization (Koza). Since then, the field has grown into an engineering-focused discipline with a
pluralism of methods that leverage the population in diverse ways Risi et al. (2025). NE methods
have recently been shown to perform competitively with RL in control tasks, with previous works
noting that their population-based nature brings several advantages: scalability through paralleliza-
tion, increased exploration that helps avoid local optima thanks to population diversity, and smaller
sensitivity to hyperparameters (Such et al., 2018; Salimans et al., 2017; Chalumeau et al., 2023). In
this work, we propose that there is another, yet unexamined, benefit of NE in control tasks: avoidng
loss of plasticity in the face of enviromental shifts.
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Environmental change is both a setback and a driver for evolution. In a constant environment and
in the absence of an explicit mechanism for preserving diversity, a population converges to minimal
diversity imposed by its mutation rate (Giraud et al., 2001). When a shift occurs, it causes increased
fitness variation in the population, retriggering competition amongst the population and, thus, ex-
ploration. If the shift is too large or the population is not sufficiently diverse, the population may
experience a mass extinction (Nisioti & Moulin-Frier, 2022). If, however, some individuals survive,
this increased diversity can act as a buffer from future environmental changes. Thus, the popula-
tion becomes increasingly better at dealing with variation. The form of environmental change plays
an important role in this with some types of variation favoring adaptability (Nisioti & Moulin-Frier,
2022; Grove, 2014). The idea is central in the field of artificial open-endedness (Soros, 2017), where
evolving environments alongside agents triggers an automated curriculum driving continual change
(Clune, 2020; Wang et al., 2019). Works in this community have, in particular, shown that evolution
can handle and often benefits from environmental variability (Lehman & Miikkulainen, 2015).

Despite its relevance, to the best of our knowledge, no previous study has attempted to benchmark
evolution’s abilities in lifelong learning against those of reinforcement learning. Here, we offer
such a study. We consider a collection of tasks that pose a wide diversity of challenges, such as
sparse exploration and control of large ANNs, including feedforward, convolutional networks and a
Transformer-based architecture. We examine two distnct NE approaches: genetic algorithms (GA)
and evolution strategies (ES). We benchmark them against PPO (Schulman et al., 2017a), a state-of-
the-art RL algorithm as well as a recent variant explicitly designed for such lifelong settings. Our
study shows that NE exhibits an impressive ability at learning in the phase of enviromental shifts,
surpassing the state-of-the-art in lifelong control.

To understand how NE achieves this, we analyze the population dynamics in the presence of envi-
ronmental shifts. In particular, we focus on the diversity within the population. We observe that,
under environmental shifts, populations evolve higher diversity compared to ones being in a constant
environment. In a long evolutionary run, we see that, after prolonged environmental variability the
population experiences a phase transition: a gradual increase in diversity leads the population to-
wards an abrupt shift to the optimal solution This ability is contingent on the size of the population,
with small population instead experiencing a collapse. Isolating the highest performing individuals
in a given shift reveals they differ significantly from each other: evolution adapts by finding special-
ist agents rather than a single generalist agent. ES differs significantly in how it deal with variation
in comparison to the GA: diversity remains low and the population progress slowly. Overall, the GA
outperforms ES, except when faced with sparse reward problems.

We provide code for reproducing our study at an anonymous github repo.

2 BACKGROUND AND RELATED WORKS

The problem of plasticity loss in artificial neural networks (ANNs) has been recognized since the
1980s, when catastrophic forgetting was identified as a key weakness of gradient-based learning
compared to symbolic or non-connectionist approaches (McCloskey & Cohen, 1989). In deep rein-
forcement learning (RL), where ANNs serve as policy approximators, this issue is magnified by the
non-stationarity of the environment. Algorithms such as PPO introduced stabilizing mechanisms
like clipped objectives and trust regions (Schulman et al., 2017a), which improved reliability but
further reduced adaptability. Continual RL methods have attempted to restore plasticity through
techniques like dynamic regularization or masked networks (Muppidi et al., 2024), but they often
require privileged information about when shifts occur and remain brittle under rapid change. Even
large-scale pre-trained models such as LLMs exhibit similar fragility when deployed out of distri-
bution (Kirk et al., 2023), suggesting that the stability–plasticity dilemma persists across domains.

Population-based methods, such as neuroevolution (NE), provide a fundamentally different way to
address this challenge. Instead of optimizing a single solution, they maintain a diverse set of can-
didates that evolve over time. Diversity allows populations to explore multiple adaptive pathways,
recover from dead ends, and naturally specialize after environmental shifts (Salimans et al., 2017;
Chalumeau et al., 2023). This makes NE well-suited for lifelong learning, where continuous adapta-
tion is essential. Related approaches in multi-task learning, such as mixtures of experts or modular
networks, also leverage specialization, but they rely on a fixed set of experts and explicit coordina-
tion mechanisms, making them less open-ended than evolutionary search.
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In this work, we compare three representative evolutionary algorithms. The genetic algorithm (GA)
explicitly maintains a population, selecting top-performing individuals and generating new candi-
dates through mutation while preserving an elite subset for stability (Such et al., 2018). CMA-ES
models the population as a multivariate Gaussian, adapting both its mean and covariance to explore
promising search directions (?). Finally, OpenES (Salimans et al., 2017) provides a scalable alter-
native by maintaining only the mean and sampling perturbations, sacrificing rich diversity modeling
for efficiency. These methods span the spectrum from explicit to implicit populations, enabling us
to study how population structure impacts plasticity and lifelong adaptation.

3 EMPIRICAL STUDY

How does NE behave in control tasks with shifting dynamics? Does it exhibit similar limitations to
RL, in particular when it comes to loss of plasticity? To answer these questions, we here evaluate
a variety of NE and RL algorithms in lifelong learning tasks with the aim of observing and under-
standing differences in their ability to handle environmental shifts. We focus on two distinct NE
approaches: a genetic algorithm (GA) (Such et al., 2018) and an evolution strategies (ES) (Salimans
et al., 2017). We benchmark these methods against PPO, a state-of-the-art RL algorithm, and TRAC
PPO, a variant that adds adaptive regularization to PPO to address the loss of plasticity (Muppidi
et al., 2024).

To ensure a fair comparison we employ the same budget of experience for the different approaches.
We have matched the sample complexity of the methods by considering a fixed number of episodes
for NE in a certain environment and multiplying this number with the population size and episode
length to determine the number of steps for PPO. While it is possible to match complexity through
other metrics, such as execution time, we believe that, from the perspective of lifelong learning in
the real world, environment steps are what matters. All conditions have been ran for 10 trials and
we provide mean and variance estimates.

Note on hyperparameter tuning We have tuned all methods separately for each family of tasks
(but not for each task, we picked a random task within a family) to ensure that the methods work
well for the classical version of all tasks. In some cases we have employed well-performing hyper-
parameters suggested in previous works. We have not performed exhaustive tuning for NE: we have
employed the default hyperparameters provided by evosax (Lange, 2022a) and manually searched
for well-performing values when needed. While we expect benefits in some conditions by further
tuning, we believe that it should not play a central part in our study. First, a major reason for the
attractiveness of NE approaches is their remarkable robustness to hypeparameters compared to other
deep learning algorithms(Chalumeau et al., 2023; Such et al., 2018). Second, when comparing NE
approaches our focus is not on their performance but on their distinct dynamics which, due to the
aforementioned robustness, do not depend on the hyper-parameterization except for edge cases.

We, first, describe the tasks we have considered in Section 3.1. We, then, take an overall look at
performance differences. across all tasks and methods in Section 3.2. In Section 3.3, we dive into
an analysis of the behavior of NE.

Our study is accompanied by appendices that provide implementation details and hyperparameters
employed and additional empirical result that we refer to throughout the reset of the paper.

3.1 TASKS

We consider three task families for lifelong learning, which we explain next.

Classic control We use the tasks Cartpole, Acrobot, and MountainCar, implemented in the gym-
nax library (Lange, 2022b). These are test-beds with discrete actions and continuous observations
that pose simple control challenges and can be solved by small feedfoward networks. Cartpole is an
easy balancing task with immediate and dense rewards. Acrobot and MountainCar are more chal-
lenging sparse reward environments, with the latter being significantly easier as good solutions can
be reached through random actions.

For each of the three tasks we employ a lifelong-learning variation originally introduced in Muppidi
et al. (2024). Every 200 generations we sample a vector from a normal distribution with standard
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Figure 1: Overall comparison across tasks: we benchmark two NE approaches (SimpleGA and
OpenES) against two RL variants (PPO and Trac-PPO, a variant designed specifically for lifelong
learning). (Top) Simple control tasks (Middle) Minatar tasks: we consider the order Breakout, As-
terix, Space-Invaders, going through four phases. (Bottom) Kinetix enviroments of medium difficult.

deviation 1.0 and add it element-wise to the observations (i.e. the vector remains constant for 200
generations). This variation was found to be more challenging for RL compared to other approaches
that vary the dynamics of these tasks. It can be seen as a model of distribution shifts in the sensory
perception of the agent.

Minatar From the popular Atari benchmark we use Breakout, Asterix, SpaceInvaders, all im-
plemented in the gymnax library (Lange, 2022b). Originally introduced by Young & Tian (2019),
these tasks simplify the original Atari games by reducing the size of the grid and replacing RGB
observations with pixel-centric symbolic information. Due to their lower complexity, they are often
solved with feedforward networks by collapsing the input pixels. Here we employ CNNs to extend
the breadth of architectures considered in our study. Achieving high score in these games requires
sophisticated strategies to deal with complex challenges, such as exploration under high risk in As-
terix, temporal credit assignment in Breakout and long-term planning in SpaceInvaders. Despite this
reduction in complexity, these tasks still pose pose challenges for NE (Lange et al., 2023) and some
RL methods.

As commonly done in continual learning studies, we chain these environments one after another in
repeated phases with the order: Breakout, Asterix, SpaceInvaders. (Muppidi et al., 2024).

Kinetix Kinetix is a test-bed for testing the generalisation capabilities of RL agents (Matthews
et al., 2024). It contains a variety of procedurally-generated and handcrafted environments that
vary in their complexity and size. A Transformer-based architecture enables controlling robots of
varying morphology and solving tasks differing in their input/output size. The ANN employed here
is significantly larger than the networks we used in the previous tasks (about 750000 parameters).
To the best of our knowledge, our study is the first to attempt optimizing a Transformer of this size
with NE. As we will see, the GA exhibited impressive performance in these tasks while for ES we
did not manage to find a well-working solution (even without shifts, see our note on tuning above).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

To formulate a lifelong learning set-up we employ the set of 20 manually designed tasks of medium
difficulty and go through them in a sequence. While they have not been specifically designed to
exhibit a curriculum, these tasks become increasingly progressive.

We refer to intervals between shifts in the environments as phases. When we employ the original
version of an environment, without environment shifts, we refer to is as the original version.

3.2 OVERALL COMPARISON

Figure 1 presents an overall comparison for the different methods and tasks. In particular, we visual-
ize the progression of rewards accumulated in a given episode across training, where the horizontal
axis indicates the number of environmental steps passed for a method. Shifts in the environment are
indicated with vertical dotted lines. For the RL methods, these values are computed by evaluating
the current policy in deterministic episodes, where we average across 20 seeds for the environment.
For the evolutionary approaches, the fitness of the best individual in the current generation/episode
is reported (which is an average across 20 environment seeds). This process is repeated 10 time
to get the reported means and confidence intervals. These results are accompanied by a table with
cumulative fitness scores and tests for statistical significance in Figure 5 in Appendix A.

To facilitate our analysis we also provide in Figure 6 of Appendix A the performance of methods
in the absence of environmental shifts. This information is necessary, as low performance in the
continual learning setting may be due to the inability of a method to master the task rather than the
added challenge of shifts.

Overall failure of RL We observe that methods exhibit significant differences in their perfor-
mance. PPO succeeds in the first phase but fails in subsequent ones, being the lowest performing
method in most tasks (the only exception is OpenES in Kinetix but as we will see later OpenES
could not master this task ). As we see in Figure 6, PPO is the best-performing method in the nor-
mal versions of these tasks so its failure is caused by the shifts. The failure of PPO is particularly
pronounced in the simple control tasks, where it performs worse than random search (Acrobot and
Cartpole can be easily solved through random search (Oller et al., 2020)). In Minatar, PPO con-
verges to complete failure in two of the tasks, while accumulating a small reward in one of them
(Breakout). This result indicates a complete loss of plasticity. In the Kinetix environments, PPO
solves some of the tasks (9 out of 20) in some trials, exhibiting high instability. In contrast, in the
original version of these tasks (Figure 6) PPO solves 19/20 tasks. Trac-PPO improves upon the per-
formance of PPO in all cases but its performance remains unstable and lower than the one achieved
by the NE methods.

Turning to the NE methods, we observe that they both accumulate high rewards during environmen-
tal shifts, performing comparably to each other. The relative performance of these methods varies in
the original version of these tasks, so, to compare them, we need to carefully examine each condition
in isolation.

NE in lifelong classic control We, first, turn to Acrobot where we observe that both methods
perform well, with the GA exhibiting impressively steady good performance. In the absence of
shifts, both methods solve the task (this is true for all three tasks in this family) but ES converges
significantly more slowly, requiring about 200 generations. This is argueably the reason for its
lower performance in the lifelong setting: as we see in Figure 1 ES improves within each phase and
solves some phases perfectly. 1 In Cartpole, methods perform comparably and do not achieve a full
recovery (we will look more closely into this task and see how the GA can master it under long-term
evolution in Section 3.3). In MountainCar, we observe that OpenES outperforms the GA to some
extent. This is particularly interesting as, in the original version of this task, GA converges to the

1Here we should note an important feature we noticed in our experiments: adding a vector to the observa-
tions of the environment can make a task more difficult for NE even in the absence of shifts. This is arguably
due to the change in the range of the observations NE methods received. Differently from RL, NE here and
commonly does not employ techniques for normalizing its inputs. This means that depending on its initializa-
tion it can start off in a bad region. Therefore, we should note that the performance reported for the original
version of these tasks is an upper bound rather than an expected value for the performance in phases during
lifelong learning.
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optimal solution much quicker. This suggests that the GA is more challenged than ES when facing
environment shifts in this task. We will look deeper into this behavior in the next section

NE in lifelong Minatar While NE methods were significantly outperformed by RL in the classical
version of these tasks, we see that in the continual version both NE methods perform significantly
better. In particular, the GA exhibits the performance in the first task (Breakout) while ES exhibits
best performance in the third task (SpaceInvaders). With the exception of a large drop in th perfor-
mance of the GA for SpaceInvaders, NE has remained largely unaffected (yet low-performing) by
the shifts In the next section we will closer into this failure of the GA and relate it to its failure in
MountainCar

NE in Kinetix ES did not manage to solve this task, but the GA exhibited impressive performance.
We observed that:

• for the small tasks, PPO-Transformer can find the optimal solution in both the normal and
lifelong set-up. Interestingly, the two last tasks are only solved in the lifelong set-up which
means that the agent benefits from being pre-trained. Thus, lifelong learning is not an issue
here.

• the large tasks cannot be solved in the normal set-up. It is likely that these tasks are too
difficult to solve without pre-training.

• for the medium tasks we observe that the normal set-up works well but, under lifelong
learning, performance degrades: the tasks are solved either much more slowly or are never
solved.

We use the manually designed tasks of medium size

3.3 INSIGHTS INTO EVOLUTION

Figure 2: Population diversity in
the classic control tasks. We
study how diversity varies for two
different population sizes and two
levels of noise.

Having noted multiple intriguing behaviors in our overall
comparison, we turn towards a more in-depth look into the dy-
namics of NE populations. Considering the surprising adapt-
ability of NE we would like to develop an intuition on how
populations react and manage to deal with shifts. We are
equally interested in understanding what happens when they
fail to do so.

Understanding why a method optimising a policy parame-
terised by a neural network fails or succeeds in a control task
is not an easy feat. The complexity of environmental dynam-
ics, the black-box nature of ANNs and our frequent lack of a
formal analysis of the search method stand in the way. Large
effort in the supervised and reinforcement learning commu-
nity is nevertheless put into developing analysis techniques
with many notable successes (Sokar et al., 2023).

Due to their population-based nature, NE approaches often
lay emphasis on properties such as the diversity of population.
For some of the most popular approaches, such as Quality-
Diversity (Chalumeau et al., 2023) diversity is not just an
afterthought but an explicit optimiszation objective or con-
straint. When it comes to methods solely optimizing for per-
formance, studies rarely go into a post-hoc analysis. Excep-
tions to this primarily come from work in evolutionary op-
timization that employed small search spaces (Grove, 2014;
Ouyang et al., 2022). Applying such analyis in the search
spaces considered in modern NE significantly increases the
memory and computational requirements of a study. Thus,
unsurprisingly and to the best of our knowledge, studies of
diversity in NE remain underdeveloped.
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Figure 3: ADiversity analysis of GA (left) Cartpole (Right) Mountaincar.

Here we turn to such a study in the classic control tasks we
consider. We measure the diversity in a populations as the
mean pairwise distance computed in the original parameter space. In addition, we employ a dimen-
sionality reduction technique (PCA) to visualize the trajectories that the population follows across
evolution.

Shifts promote diversity In Figure 1 we observed that the GA remains robust to shifts in Acrobot
but exhibits some instability in Cartpole. We found this intriguing as the two tasks exhibit similar
dynamics and complexity. Upon monitoring how diversity evolves for these tasks (Figure 2) we
see that the diversity in Acrobot stabilised early on while it was still ascending for CartPole at the
end of this experiment. This observation motivated us to run a very long experiment, simulating
100 environmental shifts. To our surprise, the population exhibited a stark transition around 900
generations (see Figure 3). Whether the transition was a favorable outcome or not depended on the
population. For a large population (512 individuals) 8 out of 10 trials optimally solved the task and
the rest converged to a relatively high value. When the population was smaller (256 individuals) 9
out of 10 trials converged to a minimal fitness. Looking at the diversity in this longer experiment
we see that, right at this transition point, the large population abruptly increases its fitness. Overall
this analysis shows that diversity is driven by non-stationartiy in the enviroment and that, in its turn,
drives the ablity of populations to avoid a mass extintions.

Diversity is not sufficient We now turn towards the MountainCar, one of the cases where the GA
exhibitnt a lower ability at handling non-stationarity. As we see on thebottom of Figure 2 and on the
right of Figure 3, diversity here exhibits a form qualitatively different from the other two tasks. It
increases initially (up to encountering the environment shift and then drops randomly. When looking
at the PCA plots for this task we see a starkly different behavior: there is no clear progression with
generations. Our hypothesis is that, due to the sparse reward nature of this task, the population
does not exhibit sufficient variance in its fitness for fitness-based selection to offer an improvement.
When looking at the mean performance of the population in this task we observe that all agents are
failing to collect rewards.

4 DISCUSSION

Our study demonstrates that neuroevolution (NE) offers a compelling alternative to reinforcement
learning (RL) for lifelong learning in dynamic environments. While RL methods such as PPO ex-
cel in stationary settings, they suffer from severe loss of plasticity when faced with environmental
shifts, often converging to complete failure modes. In contrast, population-based NE approaches
adapt naturally to change by maintaining and exploiting diversity within the population. This adapt-
ability enables NE to discover specialist solutions after each shift rather than relying on a single,
increasingly rigid generalist policy. These findings position NE not as a replacement for RL, but as

7
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a complementary paradigm for situations where continual adaptation and long-term autonomy are
essential.

While NE proved remarkably robust, our analysis also revealed its limitations. In particular, the
genetic algorithm (GA) struggled in sparse-reward tasks such as MountainCar and certain Minatar
environments, where diversity alone was insufficient to guide evolution toward higher-fitness solu-
tions. Similarly, the evolution strategies (ES) method showed slower adaptation overall and failed
to handle high-dimensional architectures like the Transformer-based controller in Kinetix. Further-
more, our diversity analysis suggests that population size plays a critical role: larger populations
can undergo phase transitions leading to successful adaptation, whereas smaller populations risk
collapse under rapid environmental change.

Looking ahead, our results open several exciting research directions. Future work could explore the
co-evolution of mutation rates, network architectures, and even environmental complexity to further
improve plasticity and scalability.

We believe that our observation that increased diversity can be useful in non-stationarity environem-
nts can offer insights that span beyond the field of NE and into RL. In particular, distributed RL has
shown promising results not just in helping scale up RL but also improving upon its performance,
with solutions hypothesing that the benefits comes from increased diversity (Horgan et al., 2018)
Investigating how NE can operate alongside RL in hybrid frameworks may yield agents that bal-
ance the stability of gradient-based learning with the adaptability of evolutionary search. Finally,
expanding benchmarks to more open-ended environments and real-world robotics tasks will help
clarify the limits of NE in practical applications. By demonstrating that populations can overcome
the plasticity-stability dilemma without extensive tuning or external supervision, this work suggests
that evolution remains a powerful and underutilized tool for building lifelong learning systems.
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