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Abstract

This paper proposes to use set features for detecting anomalies in samples that consist
of unusual combinations of normal elements. Many leading methods discover anomalies
by detecting an unusual part of a sample. For example, state-of-the-art segmentation-
based approaches, first classify each element of the sample (e.g., image patch) as normal
or anomalous and then classify the entire sample as anomalous if it contains anomalous
elements. However, such approaches do not extend well to scenarios where the anomalies
are expressed by an unusual combination of normal elements. In this paper, we overcome
this limitation by proposing set features that model each sample by the distribution of its
elements. We compute the anomaly score of each sample using a simple density estimation
method, using fixed features. Our approach outperforms the previous state-of-the-art in
image-level logical anomaly detection and sequence-level time series anomaly detection.

1 Introduction

Anomaly detection aims to automatically identify samples that exhibit unexpected behavior. In some anomaly
detection tasks anomalies are quite subtle. For example, let us consider an image of a bag containing screws,
nuts, and washers (Fig.1). There are two ways in which a sample can be anomalous: (i) one or more of the
elements in the sample are anomalous. E.g., a broken screw. (ii) the elements are normal but appear in an
anomalous combination. E.g., one of the washers might be replaced with a nut.

In recent years, remarkable progress has been made in detecting samples featuring anomalous elements.
Segmentation-based methods were able to achieve very strong results on industrial inspection datasets
Bergmann et al. (2019). Such methods operate in two stages: First, we perform anomaly segmentation by
detecting which (if any) of the elements of the sample are anomalous, e.g., by density estimation Cohen &
Hoshen (2020); Defard et al. (2021); Roth et al. (2022). Given an anomaly segmentation map, we compute
the sample-wise anomaly score as the number of anomalous elements, or the abnormality level of the most
anomalous element. If the anomaly score exceeds a threshold, the entire sample is denoted as an anomaly.
We denote this paradigm detection-by-segmentation.

Here, we tackle the more challenging case of detecting anomalies consisting of an unusual combination of
normal elements. For example, consider the case where normal images contain two washers and two nuts, but
anomalous images may contain one washer and three nuts. As each of the elements (nuts or washers) occur
in natural images, detection-by-segmentation methods will not work. Instead, a more holistic understanding
of the image is required to apply density estimation techniques. While simple global representations, such as
taking the average of the representations of all elements might work in some cases, the result is typically too
coarse to detect challenging anomalies.

Existing approaches tackle logical anomalies in images by reconstruction-based approaches - e.g., an autoen-
coder combining local and global classes Bergmann et al. (2022); Batzner et al. (2023). These approaches
have obtained strong results on some object types, while anomaly detection on other anomaly types remains
low. Other approaches provide strong results on all object types but rely on additional supervision Kim
et al. (2024). For the analog time-series tasks, where there is a global anomaly in the time series, the
best-performing approach is currently a generalization-based approach Qiu et al. (2021). We aim here to
provide strong results on both tasks using a unified density-estimation approach
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We propose to detect anomalies consisting of unusual combinations of normal elements using set representations.
The key insight in this work, that we should treat a sample as the set of its elements, is driven by the assumption
that in many cases the distribution of elements in a sample is more correlated with it being anomalous than
with the ordering of the elements. Each sample is therefore modeled as an orderless set. The elements are
represented using standard fixed feature embeddings, e.g., a deep representation extracted by a pre-trained
neural network or handcrafted features. To describe this set of features we model their distribution as a set
using a collection of histograms. We compute a histogram for a collection of random projection directions
in feature space. The bin occupancies from all the histograms are concatenated together, forming our set
representation. Finally, we score anomalies using density estimation on this set representation. We compare
our set descriptor to previous approaches and highlight its connection to the sliced Wasserstein distance
(SWD).

Our method, SINBAD (Set IN spection Based Aomalies Detection) is evaluated on two diverse tasks. The
first task is image-level logical anomaly detection on the MVTec-LOCO datasets. Our method outperforms
more complex state-of-the-art methods, while not requiring any training. We also evaluate our method on
series-level time series anomaly detection. Our approach outperforms current methods on logical anomalies
while not using augmentations or training. Note that our method relies on the prior that the elements are
normal but their combination is anomalous. In scenarios where the elements themselves are anomalous, it is
typically better to perform anomaly detection directly at the element level (e.g., detection-by-segmentation
or other methods).

We make the following contribution:

• Identifying set representation as key for detecting anomalies consisting of normal elements.

• A novel set-based method for measuring the distance between samples.

• State-of-the-art results on logical and time series anomaly detection datasets.

2 Previous work

Image Anomaly Detection. A comprehensive review of anomaly detection can be found in Ruff et al.
(2021). Early approaches (Glodek et al. (2013); Latecki et al. (2007); Eskin et al. (2002)) used handcrafted
representations. Deep learning has provided a significant improvement on such benchmarks Larsson et al.
(2016); Ruff et al. (2018); Golan & El-Yaniv (2018); Hendrycks et al. (2019); Ruff et al. (2019); Perera &
Patel (2019); Salehi et al. (2021); Tack et al. (2020). As density estimation methods utilizing pre-trained deep
representation have made significant steps towards the supervised performance on such benchmarks Deecke
et al. (2021); Cohen & Avidan (2022); Reiss et al. (2021); Reiss & Hoshen (2021); Reiss et al. (2022), much
research is now directed at other challenges Reiss et al. (2022). Such challenges include detecting anomalous
image parts which are small and fine-grained Cohen & Hoshen (2020); Li et al. (2021); Defard et al. (2021);
Roth et al. (2022); Horwitz & Hoshen (2022). The progress in anomaly detection and segmentation has been
enabled by the introduction of appropriate datasets Bergmann et al. (2019; 2021); Carrera et al. (2016);
Jezek et al. (2021); Bonfiglioli et al. (2022). Recently, the MVTec-LOCO dataset Bergmann et al. (2022) has
put the spotlight on fine-grained anomalies that cannot be identified using single patches, but can only be
identified when examining the connection between different (otherwise normal) elements in an image. Here,
we will focus on detecting such logical anomalies.

Time series Anomaly detection. A general review on anomaly detection in time series can be found in
Blázquez-García et al. (2021). In this paper, we are concerned with anomaly detection of entire sequences,
i.e., cases where an entire signal may be abnormal. Traditional approaches for this task include generic
anomaly detection approaches such as k nearest neighbors (kNN) based methods, e.g., vanilla kNN Eskin
et al. (2002) and Local Outlier Factor (LOF) Breunig et al. (2000), Tree-based methods Liu et al. (2008),
One-class classification methods Tax & Duin (2004) and SVDD Schölkopf et al., and auto-regressive methods
that are particular to time series anomaly detection Rousseeuw & Leroy (2005). With the advent of deep
learning, the traditional approaches were augmented with deep-learned features: Deep one-class classification
methods include DeepSVDD Ruff et al. (2018) and DROCC Goyal et al. (2020). Deep auto-regressive methods
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Figure 1: In set anomalies, each image element (e.g., patch) may be normal even when their combination is
anomalous. This is challenging as the variation in the normal data may be higher than between normal and
anomalous elements (e.g., swapping a bolt and a washer in the screw bag class).

include RNN-based prediction and auto-encoding methods Bontemps et al. (2016); Malhotra et al. (2016).
In addition, some deep learning anomaly detection approaches are conceptually different from traditional
approaches. These methods use classifiers trained on normal data, assuming they will struggle to generalize
to anomalous data Bergman & Hoshen (2020); Qiu et al. (2021).

Discretized Projections. Discretized projections of multivariate data have been used in many previous
works. Locally sensitive hashing Dasgupta et al. (2011) uses random projection and subsequent binary
quantization as a hash for high-dimensional data. It was used to facilitate fast k nearest neighbor search.
Random projections transformation is also highly related to the Radon transform Radon (1917). Kolouri
et al. Kolouri et al. (2015) used this representation as a building block in their set representation. HBOS
Goldstein & Dengel (2012) performs anomaly detection by representing each dimension of multivariate data
using a histogram of discretized variables. LODA Pevnỳ (2016) extends this work, by first projecting the
data using a random projection matrix. We differ from LODA in the use of a different density estimator and
in using sets of multiple elements rather than single sample descriptions. Rocket and mini-rocket Dempster
et al. (2020; 2021) represent time series for classification using the averages of their window projection.

3 Set Features for Anomaly Detection

3.1 A Set is More Than the Sum of Its Parts

Detecting anomalies in complex samples consisting of collections of elements requires understanding how
the different elements of each sample interact with one another. As a motivating example let us consider
the screw bag class from the MVTec-LOCO dataset (Fig. 1). Each normal sample in this class contains
two screws (of different lengths), two nuts, and two washers. Anomalies may occur, for example, when an
additional nut replaces one of the washers. Detecting anomalies such as these requires describing all elements
within a sample together, since each local element on its own could have come from a normal sample.

A typical way to aggregate element descriptor features is by average pooling taking the average of the features
describing each element. Yet, this is not always suitable for set anomaly detection. In supervised learning,
average pooling is often built into architectures such as ResNet He et al. (2016) or DeepSets Zaheer et al.
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(2017), in order to aggregate local features. Therefore, deep features learnt with a supervised loss are already
trained to be effective for pooling. However, for lower-level feature descriptors this may not be the case. As
demonstrated in Fig.2, the average of a set of features is far from a complete description of the set. This
is especially true in anomaly detection, where density estimation approaches require more discriminative
features than those needed for supervised learning Reiss et al. (2022). Even when an average pooled set of
features works for a supervised task, it might not work for anomaly detection.

Therefore, we choose to model a set by the distribution of its elements in the embedded feature space, ignoring
the ordering between them. A naive way of doing so is using a discretized, volumetric representation, similar
to 3D voxels for point clouds. Unfortunately, such approaches cannot scale to high dimensions, and more
compact representations are required. We choose to represent sets using a collection of 1D histograms. Each
histogram represents the density of the elements of the set when projected along a particular direction. We
take the bins occupancies of such histograms as our features. We provide an illustration of this idea in
Figure 2.

In some cases, projecting a set along its original axes may not be discriminative enough. Histograms along
the original axes correspond to 1D marginals, and may map distant elements to the same histogram bins
(see Fig.2 for an illustration). On the other side, we can see at the bottom of the figure that when the set
elements are first projected along another direction, the histograms of the two sets are distinct. This suggests
a set description method: first project each set along a shared random direction and then compute a 1D
histogram for each set along this direction. We can obtain a more powerful descriptor by repeating this
procedure with projections along multiple random directions. We analyze this approach in section 3.5.

3.2 Preliminaries

We are provided a training set S containing a set of NS samples, we denote a sample as x ∈ S. We assume
that all the training samples are normal. We wish to learn a model that operates on a new, test sample x̃
and outputs an anomaly score. We label samples with anomaly scores higher than a predetermined threshold
value as anomalies. The unique aspect of our method is that it treats each sample x as consisting of a set of
NE elements, where we denote each element as e ∈ x. Examples of such elements include patches for images,
or temporal windows for time series. We assume the existence of a powerful feature extractor F that maps
each raw element e into an element feature descriptor F (e). We will describe specific implementations of the
feature extraction for two important applications: images and time series, in section 4.

3.3 Set Features by Histogram of Projections

Motivated by the toy example in section 3.1, we propose to model each set x by the histogram of the values
of its elements along a collection of directions. We provide an algorithm box Alg.1 summarizing our steps.

Feature extractor. We split each samples to elements e ∈ x and extract a feature representation for each
{F (e) | e ∈ x}. We describe the implementation of this step in Sec.4 as it differs for the time series and image
modalities.

Histogram descriptor. While average pooling the features of all elements in the set in an obvious set
descriptor, it may result in insufficiently informative representations (section 3.1). Instead, we describe the
set by computing the set histogram for each feature dimension and concatenating them.

For each sample, we denote the set of values for the jth dimension of the feature embeddings as s[j] =
{F (e)[j] | e ∈ x}. Note that each set s[j] consists of NE scalar elements coming for each sample. We compute
the maximal and minimal values of s[j] for each dimension j, among all the elements from all samples
combined (NS · NE), and divide the region between them into K bins. Finally, we compute histograms h[j]
for each of the ND dimensions, describing the set s[j], and concatenate each histogram of K bins of each
histogram to a single set descriptor h ∈ RND·K .

Projection. As discussed before, not all projection directions are equally informative for describing the
distributions of sets. In the general case, it is unknown which directions are the most informative for capturing
the difference between normal and anomalous sets. As we cannot tell the best projection directions in advance,
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Figure 2: Random projection histograms allow us to distinguish between sets where other methods could
not. The two sets are similar in their averages and histograms along the original axes, but result in different
histograms when projected along a random axis.

Figure 3: For both image and time series samples, we extract set elements at different granularity. For
images (left), the sets of elements are extracted from different ResNet levels. For time series (right), we take
pyramids of windows at different strides around each time step.

we randomly project the features. This makes catastrophically poor projection directions, such as those in
the example in Fig.2, unlikely.

In practice, we generate a random projection matrix P ∈ RND×NP by sampling values for each dimension
from the Gaussian distribution N(0, 1). We project the features of each element of x, yielding projected
features f :

f = PF (e) (1)

We run the histogram descriptor procedure described above on the projected features. The final set descriptor
h ∈ RNP ·K is the concatenation of the NP histograms.
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3.4 Anomaly scoring

We perform density estimation on the set descriptors, expecting unusual test samples to have unusual
descriptors, far from those of the normal train set. We define the anomaly score as the Mahalanobis distance,
the negative log-likelihood in feature space. We denote the mean and covariance of the histogram projection
features of the normal data as µ and Σ:

a(h) = (h − µ)T Σ−1(h − µ) (2)

3.5 Connection to Previous Set Descriptors and the Wasserstein Distance

Classical set descriptors. Many prior methods have been used to describe sets of image elements, among
them Bag-of-Features Csurka et al. (2004), VLAD Jégou et al. (2010), and Fisher-Vectors Sánchez et al.
(2013). These begin with a preliminary clustering stage (K-means or Gaussian Mixture Model). They then
describe the set using the zeroth, first, or second moments of each cluster. The comparison in Appendix C
shows that our method outperforms clustering-based methods in describing our feature sets.

Wasserstein distance. Our method is closely related to the Wasserstein distance, which measures the
minimal distance required to transport the probability mass from one distribution to the other. As computing
the Wasserstein distance for high-dimensional data such as ours is computationally demanding, the Sliced
Wasserstein Distance (SWD) Bonneel et al. (2015), was proposed as an alternative. The SWD1 between two
sets, x and y, has a particularly simple form:

SWD1(x, y) = ∥hP x − hP y∥1 (3)

where hP x, hP y are the random projections histogram of sets x and y, that we defined in Sec.3.3.

As the histogram projections have a high correlation between them, it is necessary to decorrelate them.
This is done here using a Gaussian model. See Appendix H for an explanation of why a Gaussian model
is appropriate here. The Mahalanobis distance used here therefore performs better than the simple SWD1
distance. While this weakens the connection to the Wasserstein distance, this was crucial for most time-series
datasets (see Table 13). In practice, we opted to use kNN with the Mahalanobis distance rather than simply
computing the Mahalanobis distance to µ as it worked slightly better (see Appendix C).

We note that the Sliced Wasserstein distance can be calculated directly, without using the suggested histogram
binning. However, our histogram-based feature approach is necessary for our density estimation method.
Namely, to compute kNN using the Mahalanobis distance, we require a feature representation for each point,
rather than relying just on a pairwise distance function between samples. We compare our approach directly
with the precise and binned Sliced Wasserstein distance in Appendix G.

4 Application to Image and Time Series Anomaly Detection

4.1 Images as Sets

Images can be seen as consisting of a set of elements of different levels of granularity. This ranges from pixels
to small patches, to low-level elements such as lines or corners, up to high-level elements such as objects.
For anomaly detection, we typically do not know in advance the correct level of granularity for separating
between normal and anomalous samples Heckler et al. (2023). This depends on the anomalies, which are
unknown during training. Instead, we first use multiple levels of granularity, describing image patches of
different sizes, and combine their scores.

In practice, we use representations from intermediate blocks of a pre-trained ResNet He et al. (2016). As a
ResNet network simultaneously embeds many local patches of each image, we pass the image samples through
the network encoder and extract our representations from the intermediate activations at the end of different
ResNet blocks (see Fig.3). We define each spatial location in the activation map as an element. Note that as
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Algorithm 1 Set-based Anomaly Detection with Histogram Projections
1: Input: Training set S with NS normal samples, feature extractor F , number of projections NP , number

of histogram bins K
2: Output: An anomaly detection score
3: Generate random projection matrix P ∈ RND×NP

4: for each sample x ∈ S do
5: for each element e ∈ x do
6: Extract features F (e)
7: Project features: f = P · F (e)
8: end for
9: for each projection dimension j = 1 to NP do

10: Build and histogram for each projected dimension, each with K bins
11: For each sample we populate the histogram hS [j] of projected features in the j′th dimension f [j]

▷ Each histogram is populated with NE values, as the number of elements extracted from each sample
12: end for
13: Concatenate histograms for each sample: hS = [hS [1], . . . , hS [NP ]] ▷ resulting dimension is K · NP

14: end for
15: Compute mean µ and covariance Σ of all hS

16: for test sample x̃ do
17: Compute hx̃ as above
18: Calculate anomaly score: a(hx̃) = (hx̃ − µ)T Σ−1(hx̃ − µ)
19: end for

different blocks have different resolutions, they yield different numbers of elements per layer. We run our set
methods with the elements at the end of each residual block used and combine the results in an ensemble as
detailed in the supplementary material (App.D.1).

4.2 Time Series as Sets

Time series data can be viewed as a set of temporal windows. Similarly to images, it is generally not known
in advance which temporal scale is relevant for detecting anomalies; i.e., what is the duration of windows
which includes the semantic phenomenon. Inspired by Rocket Dempster et al. (2020), we define the basic
elements of a time series as a collection of temporal window pyramids. Each pyramid contains L windows.
All the windows in a pyramid are centered at the same time step, each containing τ samples (Fig.3). The
first level window includes τ elements with stride 1, the second level window includes τ elements with stride
2, etc. Such a window pyramid is computed for each time step in the series. The entire series is represented
as a set of pyramids of its elements. Implementation details for both modalities are described in Sec.D.2.

5 Results

5.1 Logical Anomaly Detection Results

Logical Anomalies Dataset. We use the recently published MVTec-LOCO dataset Bergmann et al.
(2022) to evaluate our method’s ability to detect anomalies caused by unusual configurations of normal
elements. This dataset features five different classes: breakfast box, juice bottle, pushpins, screw bag and
splicing connector (see Fig.1). Each class includes: (i) a training set of normal samples (∼ 350 samples). (ii)
a validation set, containing a smaller set of normal samples (∼ 60 samples). (iii) a test set, containing normal
samples, structural anomalies, and logical anomalies (∼ 100 each).

The anomalies in each class are divided into structural anomalies and logical anomalies. Structural anomalies
feature local defects, somewhat similar to previous datasets such as Bergmann et al. (2019). Conversely,
logical anomalies may violate ‘logical’ conditions expected from the normal data. As one example, an anomaly
may include a different number of objects than the numbers expected from a normal sample (while all the
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Table 1: Anomaly detection on MVTec-LOCO. ROC-AUC (%). See Tab.6 for the full table.
f-AnoGAN MNAD ST SPADE PCore GCAD SINBAD

L
og

ic
al

A
n

o.

Breakfast box 69.4 59.9 68.9 81.8 77.7 87.0 97.7 ± 0.2
Juice bottle 82.4 70.5 82.9 91.9 83.7 100.0 97.1 ± 0.1
Pushpins 59.1 51.7 59.5 60.5 62.2 97.5 88.9 ± 4.1
Screw bag 49.7 60.8 55.5 46.8 55.3 56.0 81.1 ± 0.7
Splicing connectors 68.8 57.6 65.4 73.8 63.3 89.7 91.5 ± 0.1
Avg. Logical 65.9 60.1 66.4 71.0 69.0 86.0 91.2 ± 0.8

S
tr

u
ct

u
ra

l
A

n
o. Breakfast box 50.7 60.2 68.4 74.7 74.8 80.9 85.9 ± 0.7

Juice bottle 77.8 84.1 99.3 84.9 86.7 98.9 91.7 ± 0.5
Pushpins 74.9 76.7 90.3 58.1 77.6 74.9 78.9 ± 3.7
Screw bag 46.1 56.8 87.0 59.8 86.6 70.5 92.4 ± 1.1
Splicing connectors 63.8 73.2 96.8 57.1 68.7 78.3 78.3 ± 0.3
Avg. Structural 62.7 70.2 88.3 66.9 78.9 80.7 85.5 ± 0.7

Avg. Total 64.3 65.1 77.4 68.9 74.0 83.4 88.3 ± 0.7

Table 2: Anomaly detection on MVTec-LOCO. ROC-AUC (%). See Tab.6 for the full table.
SINBAD EfficientAD (reported) EfficientAD (reproduced) PUAD SINBAD+EfficientAD

Logical 91.2 ± 0.8 86.8 85.9 ± 0.4 92.0 92.7 ± 0.6
Structural 85.5 ± 0.7 94.7 93.8 ± 0.4 94.1 95.8 ± 0.5
All 88.3 ± 0.7 90.8 89.8 ± 0.5 93.1 94.2 ± 0.6

featured object types exist in the normal class Fig.1). Other types of logical anomalies in the dataset may
include cases where distant parts of an image must correlate with one another. For instance, within the
normal data, the color of one object may correlate with the length of another object. These correlations may
break in an anomalous sample.

Baselines. We compare to baseline methods used by the paper which presented the MVTec-LOCO dataset
Bergmann et al. (2022): Variational Model (VM) Steger (2001), MNAD, f-AnoGAN Schlegl et al. (2017),
AE / VAE. Student Teacher (ST), SPADE, PatchCore (PCore) Roth et al. (2022). We also compare to
GCAD Bergmann et al. (2022) - a reconstruction-based method, based on both local and global deep ResNet
features, which was explicitly designed for logical anomaly detection. EfficientAD - Batzner et al. (2023), a
reconstruction-based method, with a loss aimed at preventing an autoencoder from reconstructing unseen
images well. We also report the results by PUAD Sugawara & Imamura (2024), an ensemble method
combining Batzner et al. (2023) and Rippel et al. (2021). Finally, we report SINBAD+EfficientAD, a simple
average of our and EfficientAD’s per-sample results. As the last set of baselines does not always report
per-class accuracies, we report them in a different table.

Metric. Following the standard metric in image-level anomaly detection we use the ROC-AUC metric.

Results. We report per-class results on image-level detection of logical anomalies and structural anomalies
in Tab.1. Interestingly, we find complementary strengths between our approach and GCAD, a reconstruction-
based approach by Bergmann et al. (2022). Although GCAD performed better on specific classes (e.g.,
pushpins), our approach provides better results on average. Notably, our approach provides non-trivial
anomaly detection capabilities on the screw bag class, while baseline approaches are close to the random
baseline. EfficientAD Batzner et al. (2023), focuses on structural anomalies and achieves impressive results
on them, but underperforms on logical anomalies (see Tab.2).

As our method is comparatively strong on specific classes (e.g., Screw bag Logical, 81.1% compared to 56.0% of
GCAD and 55.5% of EfficientAD), it makes a strong contributor to ensemble methods. For example, a simple
combination of our method with EfficientAD Batzner et al. (2023) (SINBAD+EfficientAD) outperforms all
other methods and ensembles (See table 2).

8



Under review as submission to TMLR

Table 3: Anomaly detection on the UEA datasets, average ROC-AUC (%) over all classes.
See Tab.7 for the full table. σ presented in Tab. 8

OCSVM IF RNN ED DSVDD DAG GOAD DROCC NeuTraL Ours

EPSY 61.1 67.7 80.4 82.6 57.6 72.2 76.7 85.8 92.6 98.1
NAT 86.0 85.4 89.5 91.5 88.6 78.9 87.1 87.2 94.5 96.1
SAD 95.3 88.2 81.5 93.1 86.0 80.9 94.7 85.8 98.9 97.8
CT 97.4 94.3 96.3 79.0 95.7 89.8 97.7 95.3 99.3 99.7
RS 70.0 69.3 84.7 65.4 77.4 51.0 79.9 80.0 86.5 92.3

Avg. 82.0 81.0 86.5 82.3 81.1 74.6 87.2 86.8 94.4 96.8

Our approach also provides an improvement over detection-by-segmentation in the detection of structural
anomalies in some classes. This is somewhat surprising, as one may assume that detection-by-segmentation
approaches would perform well in these cases. One possible reason for that is the high variability of the
normal data in some of the classes (e.g., breakfast box, screw bag, Fig.1). This high variability may induce false
positive detections for baseline approaches. Taken together, while different methods provide complementary
strengths, on average, our method provides state-of-the-art results in logical anomaly detection. See also the
discussion at Sec.6

5.2 Time series anomalies detection results

Time series dataset. We compared on the five datasets used in NeurTraL-AD Qiu et al. (2021): RacketSports
(RS). Accelerometer and gyroscope recording of players playing different racket sports. Each sport is designated
as a class. Epilepsy (EPSY). Accelerometer recording of healthy actors simulating four activity classes, e.g.
an epileptic shock. Naval air training and operating procedures standardization (NAT). Positions of sensors
mounted on body parts of a person performing activities. There are six different activity classes in the dataset.
Character trajectories (CT). Velocity trajectories of a pen on a WACOM tablet. There are 20 characters in
this dataset. Spoken Arabic Digits (SAD). MFCC features ten Arabic digits spoken by 88 speakers.

Baselines. We compare the results of several baseline methods reported by Qiu et al. (2021). The methods
cover the following paradigms: One-class classification: One-class SVM (OC-SVM), and its deep versions,
DeepSVDD (“DSVDD”) Ruff et al. (2018), DROCC Goyal et al. (2020). Tree-based detectors: Isolation
Forest (IF) Liu et al. (2008). Density estimation: LOF, a specialized version of nearest neighbor anomaly
detection Breunig et al. (2000). DAGMM (“DAG”) Zong et al. (2018): density estimation in an auto-encoder
latent space Auto-regressive methods - RNN and LSTM-ED (“ED”) - deep neural network-based version of
auto-regressive prediction models Malhotra et al. (2016). Transformation prediction - GOAD Bergman &
Hoshen (2020) and NeuTraL-AD Qiu et al. (2021) are based on transformation prediction, and are adaptations
of RotNet-based approaches (such as GEOM Golan & El-Yaniv (2018)).

Metric. Following Qiu et al. (2021), we use the series-level ROC-AUC metric.

Results. Our results are presented in Tab. 3. We can observe that different baseline approaches are
effective for different datasets. kNN-based LOF is highly effective for SAD which is a large dataset but
achieves worse results for EPSY. Auto-regressive approaches achieve strong results on CT. Transformation-
prediction approaches, GOAD and NeuTraL achieve the best performance of all the baselines. The learned
transformations of NeuTraL achieved better results than the random transformations of GOAD.

Our method achieves the best overall results both on average and individually on all datasets apart from
SAD (where it is comparable but a little lower than NeuTraL). Note that unlike NeuTraL, our method is
far simpler, does not use deep neural networks, and is very fast to train and evaluate. It also has fewer
hyperparameters.
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Table 4: MVTec-LOCO ablation (no raw-pixels): ROC-AUC (%).
Sim. Avg. No Proj. No Whit. Ours

Breakfa. 84.6 91.7 95.9 97.0
Juice bo. 98.0 97.3 97.5 96.2
Pushpins 63.5 69.3 73.4 73.7
Screw b. 65.0 68.2 72.5 77.5
Splicing. 87.4 84.5 87.9 85.9

Average 79.7 82.2 85.5 86.1

5.3 Implementation Details

We provide here the main implementation details for our image anomaly detection application. Further
implementation details for the image application can be found in the supplementary material (App.D.1).
Implementation details for the time series experiments can be found in the supplementary material as well
(App.D.2).

Multiple crops for image anomaly detection. Describing the entire image as a single set might sometimes
lose discriminative power when the anomalies are localized. To mitigate this issue, we can treat only a part
of an image as our entire set. To do so, we crop the image to a factor of c, and compare the elements taken
only from these crops. We compute an anomaly score for each crop factor and for each center location. We
then average over the anomaly scores of the different crop center locations for the same crop factor c. Finally,
for each ResNet level (described above), we average the anomaly scores over the different crop ratios c. We
use crop ratios of {1.0, 0.7, 0.5, 0.33}. The different center locations are taken with a stride of 0.25 of the
entire image. We note that feeding an image to the network multiple provides only a marginal advantage
(table 5), and that baseline methods used a significantly larger of forward passes with the feature extractors
Roth et al. (2022).

Runtime. A simple implementation of our method can run in real time (> 20 images per second) without
multiple crops. Using multiple crops can be simply parallelized on multiple GPUs.

5.4 Ablations

We present ablations for the image logical AD methods. For further ablations of the histogram parameters
and for the time series modality, see appendix G.

Using individual ResNet levels. In Tab.5 we report the results when different components of our
multi-level ResNet ensemble are removed. We report the results using only the representation from the third
or fourth ResNet block (“Only 3 / 4”). We report the results of using both ResNet blocks but without the
raw-pixels level (“No Pixels").

No multiple crops ablation. We also report our results without the multiple crops ensemble (described in
Sec.5.3). We feed only the entire image for the set extraction stage (“Only full”). As expected, using multiple
receptive fields is beneficial for classes where small components are important to determine abnormality.

Ablating our histogram density-estimation method. In Tab.4 we ablate different aspects of our
histogram set descriptors. Simple averaging. We show a simple averaging Lee et al. (2018) of the set features
(Fig. 2), ablating our entire set-features approach. This yields a significantly worse performance. No random
projection. We ablate our use of random projections (Sec.3.3). We replace the random histograms with
similar histograms using the raw given features. No whitening. We ablate our Gaussian modeling of the set
features. The whitening is not essential for the image modality, as it is for the time-series data (Table 13).

Density estimation with histogram ablation. We compare our method for density estimation of the elements
collection as explained in Sec.5.4. We evaluate these methods using the 3rd and 4th ResNet blocks, as the
raw pixels level adds significant variance over shading the difference between some of the alternatives. While
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Table 5: Ablation for logical image AD. ROC-AUC (%).
Only 3 Only 4 No pixels Only full Ours

Breakfa. 95.9 95.7 96.8 97.2 97.7
Juice bo. 93.0 97.0 95.8 97.0 97.1
Pushpins 79.2 67.0 74.0 89.9 88.9
Screw b. 79.8 70.4 76.6 76.2 81.1
Splicing. 84.7 85.6 86.1 90.7 91.5

Average 86.5 83.1 85.9 90.2 91.2

ablation may give stronger results in specific cases, our set approach (instead of the feature average as in
Fig.2) together with the random projections and whitening generally outperforms.

Ablating the number of bins and the number of projections. While generally we would like to have as many
random projections as possible; and a large number of bins per histogram (as long we have enough statistics
to estimate the occupancy in each of them) we find that in practice the values we choose are large enough.
We show in the supplementary material (App. Tab.11,12) that while significantly lower values in these
parameters degrade our performance, the benefit from using larger values saturates.

6 Discussion

Complementary strength of density estimation and reconstruction based approaches for logical
anomaly detection. Our method and GCAD Bergmann et al. (2022), a reconstruction-based approach,
exhibit complementary strengths. Our method is most suited to detect anomalies resulting from the
distribution of featured objects in each image. E.g., object replacements, additional or missing objects, or
colors indicating a logical inconsistency with the rest of the image. The generative modeling by GCAD gives
stronger results when the positions of the objects are anomalous (e.g., one object containing another when
it should not, or vice versa, as in the Pushpins class). The intuition here is that our approach treats the
patches as an unordered set, and might not capture exact spatial relations between the objects. Therefore, it
may be a natural direction to try and use both approaches together. A practical way to take advantage of
both approaches would be an ensemble. Ultimately, future research is likely to lead to the development of
better approaches, combining the strengths of both methods.

Relation to previous random projection methods. Our method is related to several previous methods.
HBOS Goldstein & Dengel (2012) and LODA Pevnỳ (2016) also used similar projection features for anomaly
detection. Yet, these methods perform histogram-based density estimation by ignoring the dependency across
projections. As they can only be applied to a single element, they do not achieve competitive performance
for time series AD. Rocket/mini-rocket Dempster et al. (2020; 2021) also average projection features across
windows but do not tackle anomaly detection nor do they apply to image data.

Further discussion points can be found in App.I.

7 Limitations

Detecting structural anomalies. Our approach aims to detect specific, yet important, types of anomalies
- image-level logical anomalies and the analogues time-series sequence-level anomalies. It is not particularly
effective for detecting local structural anomalies, such as scratches or dents in images of objects Bergmann
et al. (2019); Zou et al. (2022), object-level anomalies Reiss et al. (2021), or local time-series anomalies
Blázquez-García et al. (2021). We evaluate our method on appropriate datasets. Currently, only one dataset
evaluates logical anomalies Bergmann et al. (2022) but it is very comprehensive, containing 5 different
sub-tasks, where each sub-task contains numerous different types of anomalies.

Anomaly detection must rely on some assumptions regarding the nature of the anomalies one wishes to
discover Reiss et al. (2023). Therefore, in practice, when the type of expected anomalies is unknown, we
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recommend combining our method with others that are tailored to different types of anomalies Reiss et al.
(2022); Roth et al. (2022); Batzner et al. (2023).

Element-level anomaly detection. Our method focuses on sample-level time series and image-level
anomaly detection. In some applications, a user may also want a segmentation map of the most anomalous
elements of each sample. We note that for logical anomalies, this is often not well defined. E.g., when we
have an image with 3 nuts as opposed to the normal 2, each of them may be considered anomalous. To
provide element-level information, our method can be combined with current segmentation approaches by
incorporating the knowledge of a global anomaly (e.g., removing false positive segmentations if an image is
normal). Directly applying our set features for anomaly segmentation is left for future research.

Class-specific performance. In some classes we do not perform as well compared to baseline approaches.
A better understanding of the cases where our method fails would be beneficial for deploying it in practice.

8 Conclusion

We presented a method for detecting anomalies caused by unusual combinations of normal elements. We
introduce set features dedicated to capturing such phenomena and demonstrate their applicability for images
and time series. Extensive experiments established the strong performance of our method. As with any
anomaly detection method, our approach is biased to detect some abnormality modes rather than others.
Using a few anomaly detection methods together may allow enjoying their complimentary benefits, and is
advised in many practical cases.
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A Full Results Tables

The full table image logical anomaly detection experiments can be found in Tab.6. The full table for the time
series anomaly detection experiments can be found in Tab.7.

Table 6: Anomaly detection on the MVTec-LOCO dataset. ROC-AUC (%).
VM AE VAE f-AG MNAD

L
og

ic
al

A
n

om
. Breakfast box 70.3 58.0 47.3 69.4 59.9

Juice bottle 59.7 67.9 61.3 82.4 70.5
Pushpins 42.5 62.0 54.3 59.1 51.7
Screw bag 45.3 46.8 47.0 49.7 60.8
Splicing connectors 64.9 56.2 59.4 68.8 57.6
Avg. Logical 56.5 58.2 53.8 65.9 60.1

S
tr

u
ct

u
ra

l
A

n
o. Breakfast box 70.1 47.7 38.3 50.7 60.2

Juice bottle 69.4 62.6 57.3 77.8 84.1
Pushpins 65.8 66.4 75.1 74.9 76.7
Screw bag 37.7 41.5 49.0 46.1 56.8
Splicing connectors 51.6 64.8 54.6 63.8 73.2
Avg. Structural 58.9 56.6 54.8 62.7 70.2

Avg. Total 57.7 57.4 54.3 64.3 65.1

ST SPADE PCore GCAD SINBAD

L
og

ic
al

A
n

om
. Breakfast box 68.9 81.8 77.7 87.0 97.7 ± 0.2

Juice bottle 82.9 91.9 83.7 100.0 97.1 ± 0.1
Pushpins 59.5 60.5 62.2 97.5 88.9 ± 4.1
Screw bag 55.5 46.8 55.3 56.0 81.1 ± 0.7
Splicing connectors 65.4 73.8 63.3 89.7 91.5 ± 0.1
Avg. Logical 66.4 71.0 69.0 86.0 91.2 ± 0.8

S
tr

u
ct

u
ra

l
A

n
o. Breakfast box 68.4 74.7 74.8 80.9 85.9 ± 0.7

Juice bottle 99.3 84.9 86.7 98.9 91.7 ± 0.5
Pushpins 90.3 58.1 77.6 74.9 78.9 ± 3.7
Screw bag 87.0 59.8 86.6 70.5 92.4 ± 1.1
Splicing connectors 96.8 57.1 68.7 78.3 78.3 ± 0.3
Avg. Structural 88.3 66.9 78.9 80.7 85.2 ± 0.7

Avg. Total 77.4 68.9 74.0 83.4 88.3 ± 0.7

B UEA Results with Standard Errors

We present an extended version of the UEA results including error bounds for our method and baselines that
reported them. The difference between the methods is significantly larger than the standard error.
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Table 7: UEA datasets, average ROC-AUC (%) over all classes. (σ presented in Tab. 8)
OCSVM IF LOF RNN ED

EPSY 61.1 67.7 56.1 80.4 82.6
NAT 86.0 85.4 89.2 89.5 91.5
SAD 95.3 88.2 98.3 81.5 93.1
CT 97.4 94.3 97.8 96.3 79.0
RS 70.0 69.3 57.4 84.7 65.4

Avg. 82.0 81.0 79.8 86.5 82.3

DSVDD DAGMM GOAD DROCC NeuTraL Ours

EPSY 57.6 72.2 76.7 85.8 92.6 98.1
NAT 88.6 78.9 87.1 87.2 94.5 96.1
SAD 86.0 80.9 94.7 85.8 98.9 97.8
CT 95.7 89.8 97.7 95.3 99.3 99.7
RS 77.4 51.0 79.9 80.0 86.5 92.3

Avg. 81.1 74.6 87.2 86.8 94.4 96.8

Table 8: UEA datasets, average ROC-AUC (%) over all classes including error bounds
OCSVM IF LOF RNN LSTM-ED

EPSY 61.1 67.7 56.1 80.4 ± 1.8 82.6 ± 1.7
NAT 86 85.4 89.2 89.5 ± 0.4 91.5 ± 0.3
SAD 95.3 88.2 98.3 81.5 ± 0.4 93.1 ± 0.5
CT 97.4 94.3 97.8 96.3 ± 0.2 79.0 ± 1.1
RS 70 69.3 57.4 84.7 ± 0.7 65.4 ± 2.1

Avg. 82.0 81.0 79.8 86.5 82.3

DeepSVDD DAGMM GOAD DROCC NeuTraL Ours

EPSY 57.6 ± 0.7 72.2 ± 1.6 76.7 ± 0.4 85.8 ± 2.1 92.6 ± 1.7 98.1 ± 0.3
NAT 88.6 ± 0.8 78.9 ± 3.2 87.1 ± 1.1 87.2 ± 1.4 94.5 ± 0.8 96.1 ± 0.1
SAD 86.0 ± 0.1 80.9 ± 1.2 94.7 ± 0.1 85.8 ± 0.8 98.9 ± 0.1 97.8 ± 0.1
CT 95.7 ± 0.5 89.8 ± 0.7 97.7 ± 0.1 95.3 ± 0.3 99.3 ± 0.1 99.7 ± 0.1
RS 77.4 ± 0.7 51.0 ± 4.2 79.9 ± 0.6 80.0 ± 1.0 86.5 ± 0.6 92.3 ± 0.3

Avg. 81.1 74.6 87.2 86.8 94.4 96.8

C Set descriptor comparison

Clustering-based set descriptors. We compare our histogram-based approach to the VLAD and Bag-of-
Features approaches. It can be seen that while effective, they still underperform our method. We do not
report the results on Fisher-Vectors as the underlying GMM model (unlike K-means) requires unfeasible
computational resources with our set dimensions. Taken together, it seems that the underlying clustering
assumption does not fit the sets we wish to describe as well our set descriptors (we report in Tab.9 the results
for C = 100 cluster, but this result persists when we varied the number of clusters).

kNN versus distance to the mean. We found that using the Gaussian model only to whiten the data and
taking the distance to the 1 nearest neighbors worked better for the MVTec-LOCO dataset (see Tab.9). The
nearest neighbors density estimation algorithm better models the density distribution when the Gaussian
assumption is not an accurate description of the data.
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Table 9: MVTec-LOCO ablation: using no raw-pixels level. ROC-AUC (%).
Mahalanobis (dist. to µ) BoF VLAD Ours

Breakfa. 93.6 84.7 87.9 97.6
Juice bo. 91.6 93.8 97.5 97.0
Pushpins 79.9 78.2 79.1 88.6
Screw b. 68.2 69.9 64.1 81.7
Splicing. 78.2 85.0 89.7 91.1

Average 82.3 82.3 83.7 91.2

D Implementation Details

Histograms. In practice, we use the cumulative histograms as our set features for both data modalities (of
Sec.3.3).

D.1 Image anomaly detection

ResNet levels. We use the representations from the 3rd and 4th blocks of a WideResNet50×2 (resulting
in sets size 7 × 7 and 14 × 14 elements, respectively). We also use all the raw pixels in the image as an
additional set (resized to 224 × 224 elements). The total anomaly score is the average of the anomaly scores
obtained for the set of 3rd ResNet block features, the set of 4th ResNet block features, and the set of raw
pixels. The average anomaly score is weighted by the following factors (1, 1, 0.1) respectively (see App.E for
our robustness to the choice of weighting factor).

Parameters. For the image experiments, we use histograms of K = 5 bins and r = 1000 projections. For
the raw-pixels layer, we used a projection dimension of r = 10 and no whitening due to the low number of
channels. To avoid high variance between runs, we did 32 different repetitions for the raw-pixel scoring and
used the median. We use k = 1 for the kNN density estimation.

Preprocessing. Before feeding each image sample to the pre-trained network we resize it to 224 × 224 and
normalize it according to the standard ImageNet mean and variance.

Considering that classes in this dataset are provided in different aspect ratios, and that similar objects may
look different when resized to a square, we found it beneficial to pad each image with empty pixels. The
padded images have a 1 : 1 aspect ratio, and resizing them would not change the aspect ratio of the featured
objects.

Software. For the whitening of image features we use the ShrunkCovariance function from the scikit-learn
library Pedregosa et al. (2011) with its default parameters. For kNN density estimation we use the faiss
library Johnson et al. (2019).

Computational resources. The experiments were run on a single RTX2080-GT GPU.

D.2 Time Series anomaly detection

Padding. Prior to window extraction, the series x is first right and left zero-padded by τ
2 to form padded

series x′. The first window w1 is defined as the first τ observations in padded series S′, i.e. w1 = x′
1, x′

2..x′
τ .

We further define windows at higher scales W s, which include observations sampled with stride c. At scale c,
the original series x is right and left zero-padded by c·τ

2 to form padded series S′c.

UEA Experiments. We used each time series as an individual training sample. We chose a kernel size of 9,
100 projection, 20 quantiles, and a maximal number of levels of 10. The results varied only slightly within a
reasonable range of the hyperparameters e.g. using 5, 10, 15 levels yielded an average ROCAUC of 97, 96.8,
96.8 across the five UEA datasets.
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Table 10: Robustness to the choice of λ. Average ROC-AUC (%) on logical anomalies classes.
λ 0.2 0.1 (Ours) 0.05 0.02

90.2 91.2 91.4 90.7

Table 11: Ablation for values of (number of random projections). Average ROC-AUC on MVTec-LOCO,
logical. K = 5, σ = 0.6 (%).

r 2000 1000 500 200 100

Avg. Logical 91.2 91.2 90.6 89.6 86.1

Spoken Arabic Digits processing We follow the processing of the dataset as done by Qiu et al. Qiu et al.
(2021). In private communications the authors explained that only sequences of lengths between 20 and 50
time steps were selected. The other time series were dropped.

Computational resources. The experiments were run on a modest number of CPUs on a computing cluster.
The baseline methods were run on a single RTX2080-GT GPU.

D.3 License:

The package faiss Johnson et al. (2019) used for kNN "MIT License".

E Logical Anomaly Detection Robustness

We check the robustness of our results for the parameter λ - the weighting between the raw-pixels level
anomaly score to the anomaly score derived from the ResNet features (Sec.5.3). As can be seen in Tab.10,
our results are robust to the choice of λ.

F Further Image Anomaly Detection Ablation

We include here the ablation tables for the number of random projections and number of bins, for logical
anomaly detection (Tab.11,12).

G Time Series Anomaly Detection Ablations

Number of projections. Using a high output dimension for projection matrix P increases the expressively
but also increases the computation cost. We investigate the effect of the number of projections on the final
accuracy of our method. The results are provided in Fig. 4. We can observe that although a small number of
projections hurts performance, even a moderate number of projections is sufficient. We found 100 projections
to be a good tradeoff between performance and runtime.

Number of bins. We compute the accuracy of our method as a function of the number of bins per projection.
Our results ( Fig. 4) show that beyond a very small number of bins - larger numbers are not critical. We
found 20 bins to be sufficient in all our experiments.

Table 12: Ablation for values of K (number of bins). Average ROC-AUC on MVTec-LOCO, logical. r = 1000,
σ = 0.6 (%).

K 20 10 5 4 3 2

Avg. Logical 91.1 91.3 91.2 91.2 90.8 90.2
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Figure 4: Ablation of accuracy vs. the number of projections (left) and the number of bins (right).

Table 13: An ablation of distance calculation methods. ROC-AUC (%).
EPSY RS NA CT SAD

Quantized SWD (No whitening) 62.1 70.9 93.6 98.5 78.8
SWD 90.7 84.8 91.9 99.3 88.4
With Whitening 98.1 92.3 96.1 99.7 97.8

Effect of Gaussian density estimation. Standard projection methods such as HBOS Goldstein & Dengel
(2012) and LODA Pevnỳ (2016) do not use a multivariate density estimator but instead estimate the density
of each dimension independently. We compare using a full and per-variable density estimation in Tab. 13. We
can see that our approach achieves far better results, attesting to the importance of modeling the correlation
between projections.

Comparison to the Sliced Wasserstein distance. In Sec.3.5 we highlight the connection between our
approach and the Sliced Wasserstein distance. An empirical comparison between the approaches can be
found in Tab. 13. Our results show that computing the SWD without histogram binning can be much more
accurate than with binning. However, without the binning representation is necessary for our whitening
technique (Sec.3.4), which significantly outperforms standard SWD. Also note that increasing the number of
bins (making the quantization finer) does not improve the accuracy of our full approach.

Comparing projection sampling methods. We compare three different projection selection procedures:
(i) Gaussian: sampling the weights in P from a random Normal Gaussian distribution (ii) Using an identity
projection matrix: P = I . (iii) PCA: selecting P from the eigenvectors of the matrix containing all (raw)
features of all training windows. PCA selects the projections with maximum variation but is computationally
expensive. The results are presented in Tab. 14. We find that the identity projection matrix under-performed
the other approaches (as it provides no variable mixing). Surprisingly, we do not see a large difference between
PCA and random projections.

Effect of number of pyramid levels and window size. We ablate the two hyperparameters of the
time-series feature extraction: the number of pyramid windows used L, and the number of samples per
window τ (see Sec.4.2). We find that in both cases the results are not sensitive to the chosen parameters
(Tab.15,16).

Table 14: An ablation of projection sampling methods. ROC-AUC (%).
EPSY RS NA CT SAD

Id. 97.1 90.2 91.8 98.2 78.3
PCA 98.2 91.6 95.8 99.7 96.7
Rand 98.1 92.3 96.1 99.7 97.8
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Table 15: An ablation of time-series number of pyramid levels. ROC-AUC (%), L = 9.
τ 5 8 10 (Ours) 12 15
Avg. Time-series 96.7 96.9 96.8 96.8 96.7

Table 16: An ablation of time-series window size. ROC-AUC (%), τ = 10.
L 5 7 9 (Ours) 11 13
Avg. Time-series 96.8 96.8 96.8 96.8 96.6

H Using the Central Limit Theorem for Set Anomaly Detection

We model the features of each window f as a normal set as IID observations coming from a probability
distribution function p(f). The distribution function is not assumed to be Gaussian. Using a Gaussian density
estimator trained on the features of elements observed in training is unlikely to be effective for element-level
anomaly detection (due to the non-Gaussian p(f)).

An alternative formulation to the one presented in section 3, is that each feature f is multiplied by projection
matrix P , and then each dimension is discretized and mapped to a one-hot vector. This formulation therefore
maps the representation of each element to a sparse binary vector. The mean of the representations of
elements in the set recovers the normalized histogram descriptor precisely (therefore this formulation is
equivalent to the one in section 3). As the histogram is a mean of the set of elements, it has superior statistical
properties. In particular, the Central Limit Theorem states that under some conditions the sample mean
follows the Gaussian distribution regardless of the distribution of windows p(f). While typically in anomaly
detection only a single sample is presented at a time, the situation is different when treating samples as
sets. Although the windows are often not IID, given a multitude of elements, an IID approximation may be
approximately correct. This explains the high effectiveness of Gaussian density estimation in our formulation.

I Further Discussion

Is our set descriptor approach beneficial for detecting structural image anomalies? While our
method lags behind the top detection-by-segmentation approaches on structural anomalies, it achieves the top
performance on specific classes. Yet, generally, detection-by-segmentation methods are better when anomalies
are contained in a single element. We hypothesize that our advantage in some classes may be due to the
high variation among the normal samples in these classes. In this case, too, future research may allow the
construction of better detectors, enjoying the combined strength of many approaches.

Incorporating deep features for time series data. Our method can outperform the state-of-the-art in
time series anomaly detection without using deep neural networks. While this is an interesting and surprising
result, we believe that deep features will be incorporated into similar approaches in the future. One direction
for doing this is replacing the window projection features with a suitable deep representation, while keeping
the set descriptors and Gaussian modeling steps unchanged.

Fine-tuning deep features for anomaly detection. Following recent works in anomaly detection and
anomaly segmentation, we used fixed pre-trained features as the backbone of our method. Although some
methods fine-tune deep features for anomaly detection based on the normal-only training set, we keep them
constant. Doing so allows an interpretable examination of the relative strength of our novel scoring function
with respect to prior works that use fixed features. Yet, we expect that fine-tuning such features could lead
to further gains in the future.
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