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Abstract

Bivariate partial information decomposition (PID) has emerged as a promising
tool for analyzing interactions in complex systems, particularly in neuroscience.
PID achieves this by decomposing the information that two sources (e.g., different
brain regions) have about a target (e.g., a stimulus) into unique, redundant, and
synergistic terms. However, the computation of PID remains a challenging problem,
often involving optimization over distributions. While several works have been
proposed to compute PID terms numerically, there is a surprising dearth of work
on computing PID terms analytically. The only known analytical PID result
is for jointly Gaussian distributions. In this work, we present two theoretical
advances that enable analytical calculation of the PID terms for numerous well-
known distributions, including distributions relevant to neuroscience, such as
Poisson, Cauchy, and binomial. Our first result generalizes the analytical Gaussian
PID result to the much larger class of stable distributions. We also discover a
theoretical link between PID and the emerging fields of data thinning and data
fission. Our second result utilizes this link to derive analytical PID terms for two
more classes of distributions: convolution-closed distributions and a sub-class
of the exponential family. Furthermore, we provide an analytical upper bound
for approximately computing PID for convolution-closed distributions, whose
tightness we demonstrate in simulation.

1 Introduction

Bivariate partial information decomposition1 (PID) is an information-theoretic framework developed
for answering a central inquiry in many neuroscientific and machine learning studies: how do
two sources, X and Y , jointly process information about a target M? PID answers this question
by quantifying the M -specific information contained in different interactions between X and Y .
Specifically, it decomposes the total information X and Y have about M into four components: (i)
the information about M contained uniquely in X , (ii) the information about M contained uniquely
in Y , (iii) the redundant information about M contained in both X and Y , and (iv) the synergistic
information about M which arises from the interaction between X and Y .

The PID terms offer novel insights for understanding interactions within complex systems, particularly
in neuroscience. For instance, PID has been used to understand the firing patterns of grid cells [1, 2]
and to study the flow of information in the visual cortex [3]. The following list of works [1,
3, 4, 5, 6, 7, 8] demonstrate the application of PID in studying diverse neuroscientific questions.

1Throughout this work we refer to bivariate PID as PID.
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Beyond neuroscience, PID has found applications in multimodal learning for interpreting model
predictions [9, 10], fair machine learning for defining and quantifying bias [11, 12, 13, 14], and
understanding financial markets [15].

However, the primary constraint hindering broader adoption of PID is the difficulty of computing
and estimating the PID terms. BROJA-PID [16], a widely applied PID framework, requires solving a
constrained minimization problem over a set of probability distributions (see Sec. 2). This minimiza-
tion problem can pose a considerable challenge, particularly when the underlying distributions are
continuous. As a result, several recent works have been dedicated to providing numerical algorithms
that solve the aforementioned minimization problem exactly or approximately [3, 9, 17, 18, 19, 20],
with more emphasis on the case of discrete distributions.

Despite significant progress in numerically calculating PID (typically through discrete approxima-
tions), very few works exist on analytically2 calculating PID. As of this writing, the only known
analytical PID expressions exist for jointly Gaussian M , X , and Y [21, 22]. A fundamental property
of the Gaussian system is that one of the unique information (UI) terms in its PID is guaranteed to
be zero. This property greatly simplifies the computation of PID for Gaussian systems, as the rest
of the PID terms can be easily derived by solving desirable linear equations specified in many PID
frameworks (see Sec 2), bypassing the need for optimizing over distributions (see Sec. 3).

In this work, we show that numerous systems of random variables M , X , and Y expressing a
particular “affine dependence structure” also exhibit the same fundamental property that at least one
of the UI terms is zero. Consequently, we expand significantly on the existing Gaussian PID result by
using this fundamental property to analytically compute PID for various systems of M , X , and Y
employing well-known distributions such as Poisson, exponential, gamma, beta, negative binomial,
multinomial, Cauchy, Lévy-stable and more. The main contributions of this work are:

1. We extend the Gaussian PID result to a much larger class of distributions, known as the stable
distribution family [23, 24] in Sec. 4. These results provide the first known analytical PID for
fat-tailed distributions.

2. We highlight a theoretical link between PID calculation and the fields of data thinning [25] and data
fission [26] in Sec. 5. We utilize this link to derive analytical PID terms for two more distribution
families: convolution-closed distributions [25] and certain exponential family distributions [26].

3. For convolution-closed distributions, we further derive an analytical upper bound on the objective
of the minimization used for computing BROJA-PID. We use this upper bound to approximately
compute PID for systems of M , X , and Y having a non-affine dependence structure. We show the
goodness of our approximation by a simulation study in Sec. 6.

2 Background

Notation: We denote the set of all natural numbers, real numbers, and positive real numbers as N,
R, and R+, respectively. Vectors are denoted by bold-faced font and an arrow, and matrices are
denoted by bold-faced font. Define N0 = N ∪ {0}. Let Id be the identity matrix of size d× d and
[d] = {1, . . . , d} ∀ d ∈ N. We denote 1⃗d and 0⃗d as d-dimensional vectors having all elements as 1
and 0, respectively. For brevity, the probability notations of the form P (A|B) and P (A) are always
understood to be as P (A = a|B = b) and P (A = a), respectively. The general term ‘distribution’
is used to refer to both probability density function (p.d.f.) and probability mass function (p.m.f.)
(whichever is appropriate depending upon the context). The symbol A ⊥⊥ B|C denotes that A and B
are conditionally independent given C, and similarly, A ⊥⊥ B implies A and B are independent. The
Lp-norm is denoted by ∥(·)∥p ∀ p ∈ [0,∞), and |(·)| denotes the absolute function.

PID Background: Suppose M,X, Y are random variables with joint distribution P (M,X, Y ).
According to [16, 27], three desirable equalities for a bivariate PID are as follows:

IP (M ; [X,Y ]) = UI(M ;X\Y ) + UI(M ;Y \X) +RI(M ;X,Y ) + SI(M ;X,Y ),

IP (M ;X)=UI(M ;X\Y )+RI(M ;X,Y ),

IP (M ;Y )=UI(M ;Y \X)+RI(M ;X,Y ). (1)

2Section 2 precisely defines the notion of “analytical calculating PID” adopted in this work.
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Here, IP (M ;X) and IP (M ;Y ) denote the mutual information [28] between M and X , and M
and Y , respectively, under the distribution P (M,X, Y ). Similarly, IP (M ; [X,Y ]) denotes the joint
mutual information between M and [X,Y ] under the distribution P (M,X, Y ). UI(M ;X\Y ) and
UI(M ;Y \X) are the unique information about M in X and Y , respectively. SI(M ;X,Y ) and
RI(M ;X,Y ) denote the respective synergistic and redundant information shared between X and Y
about M . The linear system defined in (1) contains four variables in three equations. Hence, only
one of UI,RI , or SI need be defined to evaluate all four PID terms. Proposing a suitable definition
of PID is the focus of much research [16, 27, 29, 30, 31, 32, 33, 34, 35] and all our theoretical results
are applicable for any Blackwellian PID [22, 36] or a PID definition satisfying the assumption (∗)
of Bertschinger et al. [16] (see Appx. B for a formal justification). For example, our results are
applicable for the PID definitions proposed in [16, 22, 27, 29, 37]. In this work, we discuss our
results in the context of the BROJA-PID [16, 38], which is the definition of PID adopted in previous
works [3, 9, 20]:

UI(M ;X\Y ) = min
Q∈∆P

IQ(M ;X|Y ) or equivalently UI(M ;Y \X) = min
Q∈∆P

IQ(M ;Y |X), (2)

where ∆P ={Q(M,X, Y ):Q(M,X)=P (M,X), Q(M,Y ) =P (M,Y )} and IQ(M ;X|Y ) is the
conditional mutual information under the distribution Q(M,X, Y ). Note that the minimizing distribu-
tions for both problems shown in (2) are the same [16], and consequently, both minimization problems
are equivalent. We refer the reader to [39] for a review on PID. In this work, we define “analytically
calculating PID” as analytically solving (2) by providing an explicit construction of the minimizing
distribution Q∗(M,X, Y ) that minimizes (2). Note that only the distributions Q∗(M,X, Y ) and
P (M,X, Y ) are needed to compute the BROJA-PID terms.

We briefly describe two distribution families used in Sec. 4 and Sec. 5 (see Appx. N for more details).

Stable distribution family: Stable distributions are a family of distributions that naturally arise in
the context of generalized central limit theorems. Some well-known members of this family are
the Gaussian, Cauchy, Poisson, and Lévy distributions. A defining feature of stable distributions
is that the sum of two independent copies of a random variable X , denoted as X1 and X2, has the
same distribution as a translated and scaled version of X [23, 24, 40]. In this work, we consider five
sub-classes of stable distributions:

(i) Continuous stable distributions are parameterized through four parameters: stability parameter
α ∈ (0, 2], skewness parameter β ∈ [−1, 1], scale parameter γ ∈ (0,∞), and location parameter
µ ∈ R. We denote its p.d.f. as pCS(α, β, γ, µ). Note that all continuous stable distribution (except
Gaussian) are fat-tailed.

(ii) Independent component multivariate stable distributions describe the distribution of X⃗ consisting
of d independent random variables {Xj}dj=1, such that each Xj ∼ pCS(α, βj , γj , µj). We denote its
p.d.f. as pCS−IC(α, β⃗, γ⃗, µ⃗).

(iii) Elliptically-contoured multivariate stable distributions are the distributions of continuous stable
random vectors whose p.d.f. has elliptical contours, e.g., the multivariate Gaussian distribution. We
denote its p.d.f. as pCS−EC(α,Σ, µ⃗). Here, Σ is a positive definite matrix, µ⃗ ∈ Rd, and α ∈ (0, 2].

(iv) Discrete stable distributions are the discrete analogues of the continuous stable distributions.
The p.m.f. of discrete stable distributions, denoted as PDS(ν, τ), are parameterized through two
parameters: rate parameter τ > 0 and exponent 0 < ν ≤ 1. Discrete stable distributions do not have
well-known multivariate generalizations except the Poisson distribution.

(v) Multivariate Poisson distribution: We use the multivariate Poisson distribution proposed in [41,
42, 43, 44], denoted as Poisson(d, d′, Λ⃗), which represents each random variable in the random
vector N⃗ as a sum of independent Poisson random variables. Formally, N⃗ ∼ Poisson(d, d′, Λ⃗) if
N⃗ = AN⃗g, where A = [A1 . . .Ad′ ]. Here, Ai denotes a d ×

(
d
i

)
submatrix having no duplicate

columns, where each of its columns contain exactly i ones and (d− i) zeros [44]. The vector

N⃗g = [Ng
1 . . . Ng

d Ng
12 . . . N

g
d−(d′−1)...d]

T

with mutually independent Ng
i1...ij

∼ Poisson(λi1...ij ) ∀ (i1, . . . , ij) ∈ Ad
j , j ∈ [d′], where Ad

i =

{(j1, . . . , ji):j1 < j2 < . . . < ji, and j1, . . . , ji ∈ [d]}, e.g., A3
2 = {(1, 2), (1, 3), (2, 3)}. Note that

d′ ≤ d, and Λ⃗ =
[
λ1 . . . λd−(d′−1)...d

]T
.
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We refer the reader to [23, 24, 40, 42, 44, 45, 46, 47] for more details on stable distributions.

Convolution-closed distributions: Convolution-closed distributions form a large class of distribu-
tions that are closed under convolution in some parameter δ. Formally, we define the convolution-
closed distribution as follows: Let FD denote a family of distributions, where each member dis-
tribution f(δ) ∈ FD is indexed by a parameter δ ∈ D. Consider X1 ∼ f(δ1), X2 ∼ f(δ2), and
X1 ⊥⊥ X2 for some δ1, δ2 ∈ D. Then, FD is convolution-closed in the parameter δ if

X1 +X2 ∼ f(δ1) ∗ f(δ2) = f(δ1 + δ2) ∀ δ1, δ2 ∈ D such that δ1 + δ2 ∈ D, (3)

where ∗ denotes the convolution operator. Many well-known distributions can be considered
convolution-closed in some parameter [25], such as the Poisson distribution, Gaussian distribution,
gamma distribution, etc. Table 1 in [25] lists various examples of convolution-closed distributions.

3 A sufficient condition for computing PID terms analytically

The main focus of this work is to analyze the cases where (2) is analytically solvable. A sufficient
condition for solving (2) is to show that ∆P contains a distribution QMC(M,X, Y ) with the Marko-
vian structure M → X → Y or M → Y → X . We briefly discuss the argument justifying this
sufficient condition. Consider the case where QMC(M,X, Y ) ∈ ∆P and has the Markovian structure
M → X → Y . First, we note that UI(M ;Y \X) = minQ∈∆P

IQ(M ;Y |X) ≥ 0 due to the non-
negativity of conditional mutual information [28]. Second, Y ⊥⊥ M |X due to the Markovian structure
of QMC(M,X, Y ), which implies that IQMC

(M ;Y |X) = 0 (conditionally independent random
variables have zero conditional mutual information [28]). Hence, QMC(M,X, Y ) achieves the lower
bound of zero for the minimization problem minQ∈∆P

IQ(M ;Y |X), showing that QMC(M,X, Y )
indeed minimizes (2). A similar argument can be made for the case when QMC(M,X, Y ) has the
Markovian structure M → Y → X . Proposition 1 in Appx. A formalizes the above argument.

The above sufficient condition provides an easy way to analytically calculate the PID terms, as it
ensures one of the unique information terms is always zero. Consequently, the remaining PID terms
can be calculated by substituting zero for the appropriate unique information term in (1) and solving
the resultant linear system. Hence, if applicable, the above sufficient condition considerably simplifies
the calculation of PID terms by circumventing the need for optimizing over a set of distributions.
Surprisingly, many well-known distribution families allow intuitive constructions of P (M,X, Y ),
for which the above sufficient condition is applicable. In the following sections, we provide theorems
that specify sufficient conditions under which the existence of these Markov chains in ∆P can be
guaranteed for these P (M,X, Y ).

4 Computing PID for stable distributions

In this section, we extend existing results for analytical PID computation of jointly Gaussian M , X ,
and Y [21, 22] to the much larger class of stable distributions. Our results utilize two key observations
to provide the generalization of the Gaussian results: (i) We first identify that the analytical computa-
tion of PID for jointly Gaussian systems is due to their particular “affine dependence” structure; (ii)
We show that these particular affine dependence structures are not unique to Gaussian systems, but
rather extend to many members of the stable distribution family.

For jointly Gaussian M , X , and Y , the conditional distributions P (X|M)=N (aM + b, σ2
X) and

P (Y |M)=N (cM + d, σ2
Y ) are also Gaussian distributions, where their means are an affine function

of M and their variances are fixed with respect to M . This particular affine dependence of X and
Y on M is the key to the analytical calculation of their PID, as it guarantees existence of a Markov
chain QMC(M,X, Y ) ∈ ∆P . Thus, we can apply the sufficient condition described in Sec. 3 to
compute the PID terms. We illustrate through an example: consider P (X|M)=N (M,σ2

X) and
P (Y |M)=N (M,σ2

Y ) where σ2
X < σ2

Y , and M ∼ P (M) for some appropriate P (M). Then, we can
explicitly construct QMC(M,X, Y ) ∈ ∆P with the Markovian structure M → X → Y as follows:
Choose QMC(M,X, Y )=P (M)P (X|M)QMC(Y |X) where QMC(Y |X) is specified through the
addition of independent Gaussian noise, i.e., Y =X + ϵ. Here, ϵ ∼ N (0, σ2

Y −σ2
X) and ϵ ⊥⊥ (M,X).

It is easy to verify that QMC(Y |M)=N (M,σ2
Y ), which implies that QMC(M,Y )=P (M,Y ). By

construction, QMC(M,X)=P (M,X), and hence, QMC(M,X, Y ) ∈ ∆P .
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The above example is a special case of a well-known result where, for a scalar M , one can always
construct a lower signal-to-noise ratio (SNR) “Gaussian channel”, i.e. P (Y |M) in our example, by
adding independent Gaussian noise to a higher SNR “Gaussian channel” [22, 48], i.e. P (X|M) in
our example. Surprisingly, the technique of adding independent noise to construct Markov chains
contained in ∆P can be extended to P (X|M) and P (Y |M) as members of stable distributions.
Theorems 1 and 4 generalize the above construction for P (X|M) and P (Y |M) as members of
univariate continuous and univariate discrete stable distributions, respectively. Theorems 2, 3, and 5
consider the case of multivariate stable distributions (see Sec. 2). The key technique for proving
these theorems is that a Markov chain QMC(M,X, Y ) ∈ ∆P can always be constructed by adding
appropriate independent noise to a higher SNR P (X|M) to obtain a lower SNR P (Y |M), similar to
our above example.

4.1 PID of univariate affine continuous stable system

Theorem 1 can be viewed as a direct generalization of Barrett’s Gaussian PID result [21] to stable
distributions, showing one of the UI terms is always zero. We begin by formally describing the
univariate affine continuous stable system that generalizes the Gaussian system of Barrett’s [21].
Let the joint distribution of M,X, and Y , denoted as P (M,X, Y ), satisfy the following properties:
(i) M ∼ P (M) with support set M ⊆ R; (ii) P (X|M) and P (Y |M) are univariate continuous
stable distributions with an affine dependence on M , i.e., P (X|M)= pCS(α, βX , γX , aM + b) and
P (Y |M)=pCS(α, βY sgn(ac), γY , cM + d), where a, b, c, d ∈ R.

Theorem 1. Let M,X, and Y be random variables whose joint distribution P (M,X, Y ) is described
by a univariate affine continuous stable system. Without the loss of generality, assume |a|/γX ≥ |c|/γY .
If 1 − βY ≥ (γX |c|/γY |a|)

α
(1 − βX) and 1 + βY ≥ (γX |c|/γY |a|)

α
(1 + βX), then ∆P contains a

Markov chain of the form M → X → Y and UI(M ;Y \X) = 0.

Proof. See Appx. F for the proof. Here, |a|/γX and |c|/γY are the SNR analogues.

4.2 PID of multivariate affine continuous stable systems

We analyze two multivariate generalizations of Theorem 1 in Theorems 2 and 3. Namely, we consider
independent component multivariate stable distribution (where all the components of the random
vector are independent) and elliptically-contoured multivariate stable distribution (where the p.d.f.
is elliptically contoured, similar to multivariate Gaussian distributions). We construct two systems
employing these two sub-classes of multivariate continuous stable distributions and show that one of
the UI terms is always zero for these systems. For both cases, denote the joint distribution of M , X⃗,
and Y⃗ as P (M, X⃗, Y⃗), where the support set of M is M ⊆ R. The dimensions of M , X⃗, and Y⃗ are
1, dX , and dY , respectively.

System 1: The random vectors X⃗ and Y⃗ satisfy the following equations:

X⃗ = H⃗XM +AXZ⃗X + b⃗X and Y⃗ = H⃗Y M +AY Z⃗Y + b⃗Y , (4)

where Z⃗X ∼ pCS−IC(α, 0⃗dX
, 1⃗dX

, 0⃗dX
), Z⃗Y ∼ pCS−IC(α, 0⃗dY

, 1⃗dY
, 0⃗dY

), AX and AY are
invertible matrices, H⃗X , b⃗X ∈ RdX , and H⃗Y , b⃗Y ∈ RdY .

Theorem 2. Let System 1 describe the joint distribution P (M, X⃗, Y⃗) of M , X⃗, and Y⃗. Without
the loss of generality, assume ∥A−1

Y H⃗Y ∥κ ≤ ∥A−1
X H⃗X∥κ, where κ = α/α−1 ∀ α ∈ (1, 2] and

κ = ∞ ∀ α ∈ (0, 1]. Then, ∆P contains a Markov chain of the form M → X⃗ → Y⃗ and
UI(M ; Y⃗\X⃗) = 0.

Proof. See Appx. G for the proof. Here, ∥A−1
Y H⃗Y ∥κ and ∥A−1

X H⃗X∥κ are the SNR analogues.

System 2: The conditional distribution of X⃗ and Y⃗ conditioned on M are as follows: P (X⃗|M) =

pCS−EC(α,ΣX , H⃗XM + b⃗X) and P (Y⃗|M) = pCS−EC(α,ΣY , H⃗Y M + b⃗Y ), where ΣX and
ΣY are positive definite matrices, H⃗X , b⃗X ∈ RdX , and H⃗Y , b⃗Y ∈ RdY .
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Theorem 3. Let System 2 describe the joint distribution P (M, X⃗, Y⃗) of M , X⃗, and Y⃗. Define Σ−1/2
X

and Σ
−1/2
Y as the respective inverses of the matrices Σ

1/2
X and Σ

1/2
Y which satisfy: (Σ

1/2
X )TΣ

1/2
X = ΣX ,

and (Σ
1/2
Y )TΣ

1/2
Y = ΣY . Without the loss of generality, assume ∥Σ−1/2

Y H⃗Y ∥2 ≤ ∥Σ−1/2
X H⃗X∥2. Then,

∆P contains a Markov chain of the form M → X⃗ → Y⃗ and UI(M ; Y⃗\X⃗) = 0.

Proof. See Appx. H for the proof. Here, ∥Σ−1/2
Y H⃗Y ∥2 and ∥Σ−1/2

X H⃗X∥2 are the SNR analogues.

4.3 PID of univariate affine discrete stable system

The univariate affine discrete stable system is the discrete counterpart of the univariate affine con-
tinuous stable system described in Sec. 4.1. The formal description of the univariate affine discrete
stable system is as follows. Let the joint distribution of M,X, and Y , denoted as P (M,X, Y ),
satisfy the following properties: (i) M ∼ P (M) with support set M ⊆ (0,∞); (ii) P (X|M)
and P (Y |M) are univariate discrete stable distributions with an affine dependence on M , i.e.,
P (X|M=m)=PDS(ν, am+ b) and P (Y |M=m)=PDS(ν, cm+ d), where a, b, c, d ∈ (0,∞).
Theorem 4. Let M,X, and Y be random variables whose joint distribution P (M,X, Y ) is described
by a univariate affine discrete stable system. Without the loss of generality, assume a ≥ c. If a/b ≥ c/d,
then ∆P contains a Markov chain of the form M → X → Y and UI(M ;Y \X) = 0.

Proof. See Appx. I for the proof. Here, a and c are the SNR analogues.

4.4 PID of multivariate linear Poisson system

The Poisson distribution is the only the discrete stable distribution with a well-known multivariate
extension. Hence, we analyze vector-generalizations of Theorem 4 only for the Poisson distribution.
We now describe the multivariate linear Poisson system: Let the joint distribution P (M, X⃗, Y⃗) of
M, X⃗, and Y⃗ satisfy the following properties: (i) M ∼ P (M) with support set M ⊆ (0,∞); (ii)
P (X⃗|M)= Poisson(dX , d′X , Λ⃗X) and P (Y⃗|M)=Poisson(dY , d′Y , Λ⃗Y ), with:

Λ⃗X=
[
λX
1 . . . λX

dX−(d′
X−1)...dX

]T
, λX

i1...ij = γX
i1...ijM

j ∀ j ∈ [dX ] and (i1, . . . , ij) ∈ AdX
j ,

Λ⃗Y =
[
λY
1 . . . λY

dY −(d′
Y −1)...dY

]T
, λY

i1...ij = γY
i1...ijM

j ∀ j ∈ [dY ] and (i1, . . . , ij) ∈ AdY
j . (5)

Theorem 5. Let the joint distribution P (M, X⃗, Y⃗) of M , X⃗, and Y⃗ be described by the multi-
variate linear Poisson system defined above. Without the loss of generality, assume d′X ≥ d′Y . If∑

(i1,...,ij)∈AdX
j

γX
i1...ij

≥
∑

(i1,...,ij)∈AdY
j

γY
i1...ij

∀ j ∈ [d′Y ], then ∆P contains a Markov chain of

the form M → X⃗ → Y⃗ and UI(M ; Y⃗\X⃗) = 0.

Proof. See Appx. J for the proof. Here, γX
1 , . . . , γX

dX−(d′
X−1)...dX

, γY
1 , . . . , γY

dY −(d′
Y −1)...dY

∈ R+

are the SNR analogues.

5 Computing PID using data thinning and data fission strategies

Data thinning and data fission are emerging fields in machine learning and statistics dedicated
to studying the procedures of splitting a random variable X into N different component random
variables. These splitting procedures provide an attractive alternative to the standard splitting of
datasets into training, validation, and test splits for performing cross-validation to select statistical
model parameters, as they enable users to perform cross-validation even for the extreme case of a
dataset containing a single datapoint. We refer the reader to the recent works of Neufeld et al. [25]
and Leiner et al. [26] for a more comprehensive discussion on data thinning and fission, respectively.

The fields of data thinning and data fission share an important theoretical link with analytically
calculating PID terms. Specifically, the tools developed for splitting random variables for data
thinning and data fission can be readily used to calculate PID terms analytically. To give an intuition,
suppose X contains more information about M than Y . Then, we can employ data fission and
thinning strategies to decompose X into two components, f1(X) and f2(X), such that f2(X)
follows the same distribution as Y . Then, f2(X) and Y convey the same information about M as they

6



are identically distributed and represent the redundant component of the PID terms. Similarly, f1(X)
contains the information uniquely contained in X about M . Thus, f1(X) represents the unique
information term. Theorems 6 and 7 utilize the data thinning and data fission proposed in [25, 26]
to construct a Markov chain QMC(M,X, Y ) ∈ ∆P for several systems of random variables M , X ,
and Y . This allows us to use the sufficient condition discussed in Sec. 3 to compute their PID.

5.1 PID for convolution-closed distribution based on data thinning strategies of Neufeld et al.

Neufeld et al. [25] introduces data thinning for a large family of distributions known as convolution-
closed distributions (see Sec. 2). An attractive property of convolution-closed distributions is
that they provide a natural way to define a dilation/thinning operation. Formally, let X ∼ f(δ),
then we define Xϵ as the ϵ-dilated version of X if Xϵ ∼ f(ϵδ) for some ϵ ∈ (0, 1) such that
ϵδ ∈ D. Furthermore, if we assume (1 − ϵ)δ ∈ D, then P (Xϵ|X)=P (Xϵ|Xϵ + X1−ϵ), where
X1−ϵ ∼ f((1 − ϵ)δ) and Xϵ ⊥⊥ X1−ϵ (see lemma 19 for a formal justification). We denote
P (Xϵ|X = x) = P (Xϵ|Xϵ +X1−ϵ = x) as G(ϵδ, (1 − ϵ)δ, x). This dilation operation forms the
basis of data thinning, as it enables X to be split into its dilated components Xϵ and X1−ϵ, such that
X = Xϵ +X1−ϵ, where Xϵ ⊥⊥ X1−ϵ. We utilize this dilation operation for analytically calculating
the PID terms of the following linear convolution-closed system:

Linear convolution-closed system: Let FD be a convolution-closed distribution family as described
in Sec. 2. The joint distribution P (M,X, Y ) of the random variables M , X , and Y describes a linear
convolution-closed system if the distributions P (X|M) and P (Y |M) are defined as follows:

P (X|M=m) = f(δXm) and P (Y |M=m) = f(δYm) such that δXm , δYm ∈ D ∀m ∈ M, (6)

where M is the support of M . Furthermore, we assume δXm = γδYm ∀m ∈ M for some γ ∈ R+.
Theorem 6. Let the joint density P (M,X, Y ) of random variables M , X , and Y be described by a
linear convolution-closed system. Without the loss of generality, assume γ ≤ 1. If

(a) (1− γ)δYm ∈ D ∀m ∈ M,

(b) P (Xγ |Xγ + X1−γ=x,M=m) = G(γδXm , (1 − γ)δXm , x) does not depend on m, where
P (Xγ |M) = f(γδXm), P (X1−γ |M) = f((1− γ)δXm) and Xγ ⊥⊥ X1−γ |M ,

then ∆P contains a Markov chain of the form M → X → Y and UI(M ;Y \X) = 0.

The proof of Theorem 6 is provided in Appx. K. Theorem 6 enables PID calculation for several
well-known distributions such as gamma, Poisson, beta etc. (see Appx. C for a (non-exhaustive) list).

5.2 PID for distributions based on data fission strategies of Leiner et al.

Leiner et al. [26] propose a “conjugate-prior reversal” strategy for splitting a random variable X into
two components, f(X) and g(X), for certain exponential family distributions. The distributions pro-
posed for performing conjugate-prior reversal provide natural descriptions of P (M,X, Y ) (specified
in theorem 7) for which PID can be calculated analytically. We briefly describe the distributions used
in the conjugate-prior reversal strategy. Let X ∼ pexp1(X), where

pexp1(X = x; θ1, θ2) = H(θ1, θ2) exp(θ
T
1 x− θT2 A(x)), (7)

for some appropriately defined H(·, ·), A(·), θ1 and θ2. Furthermore, define a random variable Y
through its conditional density p(Y |X = x):

p(Y = y|X = x; θ3) = h(y) exp
(
xTT (y)− θT3 A(x)

)
, (8)

for some h(·), T (·), and θ3, such that p(Y = y|X = x; θ1, θ2) is a well-defined distribution. Then,
the decomposition terms f(X) and g(X) are Y and X , respectively, in the conjugate-prior reversal
strategy. Furthermore, the marginal distribution of Y is expressed as:

pexp2(Y = y; θ1, θ2, θ3) = h(y)H(θ1, θ2)/H(θ1+T (y), θ2+θ3) (see proof of Theorem 1 in [26]).

Theorem 7. Let M,X, and Y be random variables having the joint distribution P (M,X, Y ).
Furthermore, the conditional distribution of X and Y conditioned on M are as follows:
P (X|M=m)=pexp1(X; θ1(m), θ2(m)) and P (Y |M=m)=pexp2(Y ; θ1(m), θ2(m), θ3). Then,
∆P contains a Markov chain of the form M → X → Y and UI(M ;Y \X) = 0.
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The proof of Theorem 7 can be found in Appx. L. The proof essentially stems from observing that the
joint distribution QMC(M,X, Y )=P (M)P (X|M)QMC(Y |X) lies in ∆P , where QMC(Y |X)=
h(y) exp

(
xTT (y)− θT3 A(x)

)
. A (non-exhaustive) list of well-known distributions for which the-

orem 7 is applicable is provided in Appx. D. Leiner et al. [26] also discuss some more strategies
for performing data fission that do not follow the conjugate-prior reversal strategy. We provide the
corresponding results for computing PID for these remaining data fission strategies and for additional
miscellaneous distributions in Appx. E.

6 Upper bound for convolution-closed distributions

a cb

Figure 1: a and b, respectively, show the box plot of the difference IQA
(M,X, Y )− IQN

(M,X, Y )
and the corresponding values of IQN

(M,X, Y ) for the 20 different function pairs across the 75
different P (M) distributions. The light-blue dots show the corresponding data points used for
making the box plots. c shows the ratio of the median difference IQA

(M,X, Y )− IQN
(M,X, Y )

and the median value of IQN
(M,X, Y ) in percentage, for each function pair.

Several numerical methods, such as [3, 9, 20], approximately solve (2) by considering a smaller
constraint set or minimizing an appropriate upper bound for calculating the PID terms. These
numerical methods employ general approximations that rely on weak assumptions on the underlying
distributions for solving (2), as their goal is to estimate PID for a large class of distributions. However,
for specific applications, it is possible to make stronger assumptions on the underlying distributions
(e.g., assuming the Poisson distribution for modeling neural spikes). This section illustrates how our
theoretical analysis can benefit these numerical algorithms by providing more refined approximations
for solving (2) that harness these stronger assumptions. Specifically, we construct an upper bound for
the objective of (2) for convolution-closed distributions and show that, under certain assumptions, the
upper bound can be analytically minimized over ∆P in Sec. 6.1. Note that these upper bounds are
applicable for more general cases than our theoretical results, as they do not require the sources X
and Y to have an affine dependence on M . Consequently, our upper bound is also applicable in cases
where both of the UI terms in the PID are non-zero, unlike our results in Sec. 4 and 5 We demonstrate
the tightness of our upper bound through a simulation study in Sec. 6.2.

Notations and assumptions: We consider the minimization problem minQ∈∆P
IQ(M ; [X,Y ])

for deriving the upper bound, as it was shown to be equivalent to (2) in [16]. The distribution
P (M,X, Y ) for which we will construct our upper bound is specified as follows. The random
variable M has support over M, the conditional distributions P (X|M) and P (Y |M) are members
of some convolution-closed distribution family FD, and there exists some δXbias, δ

Y
bias ∈ D such that

P (X|M=m)=f(δXm) and P (Y |M=m)=f(δYm) where δXm , δYm ∈ D ∀m ∈ M, with

(δYm − δYbias), (δ
X
m − δXbias), (δ

X
m − δYm − (δXbias − δYbias)) ∈ D and δXm − δXbias=ϵ(1)m (δYm−δYbias),

δYm = ϵ(2)m (δYm − δYbias), and δXm = ϵ(3)m (δXm − δXbias) for ϵ(1)m , ϵ(2)m , ϵ(3)m ∈ [0, 1] ∀ m ∈ M. (9)

The above assumptions ensure that X and Y can always be decomposed into new random variables
X ′, Y ′′, nX , Y ′, and nY (see (10)). We utilize these decomposed random variables to construct
our upper bound. Hence, our upper bound is only applicable for systems satisfying (9). The
above assumptions describe a large class of systems. For example, in the Poisson case, our upper
bound is applicable for any P (M,X, Y ) having P (X|M) = Poisson(f1(M)) and P (Y |M) =
Poisson(f2(M)), as long as f1(M) ≥ f2(M) over M. In Appx. C, we provide numerous examples
of systems for which (9) holds to illustrate the assumptions of (9).
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6.1 Upper bound construction

First, we consider an arbitrary distribution Q(M,X, Y ) ∈ ∆P . Therefore, we know
Q(X|M=m)=P (X|M=m)=f(δXm) and Q(Y |M=m)=P (Y |M=m)=f(δYm). We use the di-
lation properties of convolution-closed distributions (Sec. 5.1) to decompose X and Y into their
respective dilated versions: (X ′, Y ′′, nX) and (Y ′, nY ). From the results of Appx. M.1, we know
that X = X ′ + Y ′′ + nX and Y = Y ′ + nY . Furthermore, (X ′, Y ′′, nX) are mutually conditionally
independent given M and Y ′ ⊥⊥ nY |M . Hence, we can construct the following Markov chain for
any arbitrary Q(M,X, Y ) ∈ ∆P :

M → [X ′ Y ′′ Y ′ nX nY ]
T → [X ′ + Y ′′ + nX Y ′ + nY ]

T
= [X Y ]

T
. (10)

We denote the joint distribution of (M,X ′, Y ′′, Y ′, nX , nY ) as Q̄(M,X ′, Y ′′, Y ′, nX , nY ). We ap-
propriately choose the dilation amounts for X and Y such that the respective conditional distributions
of (X ′, Y ′′, Y ′, nX , nY ) are as follows:

Q̄(X ′|M=m)=f(δXm−δYm − (δXbias−δYbias)), Q̄(Y ′′|M=m) = f(δYm − δYbias),

Q̄(Y ′|M=m)=f(δYm − δYbias), Q̄(nX |M) = f(δXbias), and Q̄(nY |M) = f(δYbias). (11)

The distributions in (11) are well-defined due to (9). Appx. M.1 formally shows that a Q̄, defined as
above, exists for each Q ∈ ∆P . We use data-processing inequality and (10) to conclude:

IQ̄(M ; [X ′, Y ′′, nX , Y ′, nY ]) ≥ IQ(M ; [X,Y ]) ∀ Q(M,X, Y ) ∈ ∆P . (12)

Hence, (12) provides us the desired upper bound for our objective IQ(M ; [X,Y ]). Furthermore,
the minimization problem minQ∈∆P

IQ̄(M ; [X ′, Y ′′, nX , Y ′, nY ]) is analytically solvable, and the
minimizing distribution Q̄∗ has the structure:

Y ′ = Y ′′ and (nX , nY ) ⊥⊥ (M,X ′, Y ′).

The corresponding distribution of (M,X, Y ), denoted as QA(M,X, Y ), can be found by appropri-
ately manipulating Q̄∗, as X = X ′ + Y ′′ + nX and Y = Y ′ + nY . The distribution QA serves as an
approximate solution for the problem minQ∈∆P

IQ(M ; [X,Y ]) and, consequently, (2). Note that if
multiple δXbias and δYbias exist satisfying (9), we optimize over the pairs (δXbias, δ

Y
bias) to further refine

our approximate solution of (2).

6.2 Simulation study for numerically validating the upper bound

We illustrate the tightness of our upper bound through a simulation study on the Poisson distribution
(a convolution-closed distribution). The reason for choosing the Poisson distribution is two-fold: (i)
Poisson distribution is easily approximated as a discrete distribution over finite support, enabling
calculation of ground-truth PID terms through numerical solvers such as [10, 17, 18], which are
not readily available for continuous distributions; (ii) Many practical applications of PID have
been in neuroscience, and the Poisson distribution is frequently used for modeling neural spikes in
neuroscientific studies [49].

We compare the performance of our analytical estimate QA(M,X, Y ) with the numerical ground-
truth estimate QN (M,X, Y ) for the Poisson distribution. The simulation setup is as follows: We
choose a P (M,X, Y ) such that P (X|M) = Poisson(f1(M)) and P (Y |M) = Poisson(f2(M)).
We chose 20 different pairs of non-linear f1(·) and f2(·) (enumerated in Table 1 in Appx. M), such
that the assumptions in (9) are satisfied. The distribution P (M) is chosen to be a discrete distribution.
For each function pair, we compare QA(M,X, Y ) and QN (M,X, Y ) over 75 different distributions
of P (M) as shown in Fig. 1a. The 75 distributions are further sub-divided into three groups of 25
based on the number of the outcomes of M , which are 2, 4, and 8. For each of the 75 distributions,
the values of M are randomly sampled from [1, 4] and the values of P (M) are randomly sampled
from a simplex of appropriate dimensions. We compare the mutual information IQA

(M ; [X,Y ])
calculated using QA with the numerical ground-truth IQN

(M ; [X,Y ]) calculated using numerical
solvers (Fig. 1b). For calculating IQN

(M ; [X,Y ]), we approximate the Poisson distribution as a finite
discrete distribution by terminating its support at the smallest integer where its cumulative distribution
is greater than 0.99. We use the code provided in [50] (under Apache 2.0-license) to numerically
solve (2) using this discrete approximation of the Poisson distribution. Fig. 1c demonstrates that the
analytical upper bound provided by QA is very tight for the tested function pairs (within < 1% of
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the numerical ground-truth for 16 function pairs) and serves as a good approximation for solving (2).
Furthermore, the tightness of our analytical upper bound suggests that QA might be an analytical
solution of (2) for a larger class of systems of M , X , and Y having non-affine dependence on
M . Similar results demonstrating the tightness of upper-bound for negative-binomial and binomial
distributions are presented in Appx. M.4.

7 Discussion and Limitations

In this work, we analytically compute PID for large classes of distributions, greatly expanding upon
the analytical result for the Gaussian system. We provide the first known analytical PID for systems
employing Poisson, gamma, exponential, Cauchy, beta, Dirichlet, Lévy-stable, binomial, multinomial,
negative binomial, and uniform distributions. Furthermore, we generalize the previous Gaussian
PID result [21] in an additional way by showing the target M need not be Gaussian. Our stable
distribution results provide the first known analytical computation of PID for fat-tailed distributions
(all continuous stable distributions have infinite variance except the Gaussian distribution). A practical
utility of our analytical results is that they provide a large test bed in which the performance of
numerical PID estimators can be compared and evaluated. This test bed may benefit future works on
numerical PID estimation by enabling more comprehensive testing of PID estimators.

Our results on the Poisson, Cauchy, and binomial are of particular relevance in the neuroscientific
context. Poisson and Cauchy distributions are widely used to model neural spikes [49] and network
dynamics in the brain [51]. Binomial thinning is a frequently-used operator in neuroscience [49].
Our generalization of the Gaussian result could be helpful in refining approximations already used
in computing PID for neural data [3], e.g., by relaxing the assumption of joint Gaussianity. As
continuous stable distributions have been shown to better model Magnetic Resonance Imaging
data [52, 53], our results may also be helpful in computing PID in this application.

We also connect the fields of data thinning and data fission with PID by using their decomposition
strategies for analytically computing the PID of systems based on convolution-closed distributions (see
Sec. 5). Conversely, our PID results also suggest decomposition strategies for data thinning/fission
purposes, e.g., our stable distribution results suggest that stable random variables can be decomposed
by adding independent noise (similar to the Gaussian case discussed in [26]). Convolution-closed
distributions are particularly promising for studying PID as they allow intuitive construction of upper
bounds that can be analytically minimized (see Sec. 6). These upper bounds can complement the
work on numerical estimation of PID by providing more refined approximations. Another promising
avenue is to combine our upper bounds with lower bounds (e.g., from [54]) to create branch and
bound algorithms [55] for solving (2). Overall, our analytical results greatly facilitate the computation
of PID, either by directly using the analytical expressions or by providing refined approximations for
numerical methods.

Limitations and Future Work: We study PID for univariate M , X , and Y and provide some vector
extensions. More vector extensions of our results are a promising direction for subsequent works.
Most of our analytical results require P (X|M) and P (Y |M) to depend on some affine functions
of M . The existence of analytical solutions for the cases where P (X|M) and P (Y |M) depend on
non-affine functions of M remains an open question. The upper bound discussed in Sec. 6 can be
further refined with more careful analysis, and more rigorous testing of these upper bounds is required
to understand in which cases the upper bound is a good approximation for solving (2). We defer
the testing and refinement of these upper bounds for subsequent works, as our primary goal in this
work is to study analytical solutions of PID. Niu & Quinn [56] also propose a duality result between
the synergistic and redundant components in the Gaussian broadcast and multiple-access channels
utilizing the analytical PID expressions of the Gaussian system. It may be possible to derive similar
duality results for appropriately defined broadcast and multiple-access channels employing other
distributions (e.g., Poisson or Cauchy) with our theoretical results.

Broader Impact: Due to their theoretical nature, our results’ negative impact primarily depends
on how they are used and interpreted. Our theoretical results are applicable only under the specific
assumptions outlined in this work, and using these results without ensuring that the theorem’s
assumptions are satisfied can lead to incorrect scientific conclusions. We also caution reader against
naively using PID to draw causal inferences, as PID is inherently a correlational quantity.
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A Formal proof of the sufficient condition for solving (2) discussed in Sec. 3

Proposition 1. For the minimization problem defined in (2), if there exists a joint density
QMC(M,X, Y ) ∈ ∆P , having the Markovian structure of the form M → X → Y or M → Y → X ,
then QMC(M,X, Y ) minimizes (2). Furthermore,

1. If QMC(M,X, Y ) has the Markovian structure M → X → Y , then UI(M ;Y \X) =
IQMC

(M ;Y |X) = 0.

2. If QMC(M,X, Y ) has the Markovian structure M → Y → X , then UI(M ;X\Y ) =
IQMC

(M,X|Y ) = 0.

Proof. Case 1: QMC(M,X, Y ) ∈ ∆P having the Markovian structure M → X → Y .

By the definition of the Markov chain, we know that M and Y are conditionally independent given
X . Denote QMC(M,X, Y ) as the joint distribution of the Markov chain M → X → Y . Then,

IQMC
(M ;Y |X) = 0, (13)

where IQMC
(M ;Y |X) is the conditional mutual information between M and Y given X under

the distribution QMC(M,X, Y ). Equation (13) follows from a well-known property of conditional
mutual information which states that I(A;B|C) = 0 iff A ⊥⊥ B|C [28].

Since IQ(M ;Y |X) ≥ 0 ∀Q ∈ ∆P , due to the non-negativity of conditional mutual information [28],
we can conclude that minQ∈∆P

IQ(M ;Y |X) ≥ 0. The joint distribution QMC(M,X, Y ) having
the Markovian structures M → X → Y achieves the lower bound of 0 for the minimization problem
minQ∈∆P

IQ(M ;Y |X) implying QMC(M,X, Y ) minimizes (2).

Case 2: QMC(M,X, Y ) ∈ ∆P having the Markovian structure M → Y → X .

A similar argument as case 1, with the random variables X and Y switched, would allow us to
conclude that the joint distribution QMC(M,X, Y ) specifying the Markov chain M → Y → X
minimizes (2).

B Other PID definitions for which theorems 1-7 are valid

Our theoretical results (Theorems 1-7) hold for a wide range of PID measures. Particularly, our
results hold for two broad classes of PID definitions: PID definitions satisfying assumption (∗) in
Bertschinger et al. [16] and Blackwellian PIDs (see Appendix B-C of Venkatesh & Schamberg [22]
for a deeper discussion on differences between these two families of PID definition). Some examples
of PID definitions satisfying assumption (∗) in Bertschinger et al. [16] are the Williams & Beer’s PID
definition [27], the PID definition proposed in Harder et al. [29], and I-PID proposed in Venkatesh
et al. [37]. Similarly, an example of a Blackwellian PID is the δ-PID discussed in Venkatesh &
Schamberg [22]. Section III-F of Venkatesh et al. [37] further discusses a family of Blackwellian PID
definitions for which our theorems are also applicable. We now provide formal arguments showing
that our theoretical results are applicable for PID definitions that either satisfy assumption (∗) of
Bertschinger et al. [16] or are Blackwellian

PID definitions satisfying assumption (∗): We invoke the argument presented in the proof dis-
cussed in Section 4.2 of Barrett [21] to show that our results hold for any PID definition satisfying
assumption (∗) in Bertschinger et al. [16]. Barrett’s argument relies on the key observation that
the UI calculated using BROJA-PID upper bounds the UI calculated using any other PID definition
satisfying assumption (∗) in Bertschinger et al. Entropy’14. Consequently, if one of the UI atoms of
the BROJA-PID is zero then the corresponding UI atom of the other PID definitions must also be
zero due to BROJA PID upper-bounding them and the non-negativity of the PID atoms. Since the
remaining PID atoms are calculated using (1), it must be the case that the PID atoms calculated using
any PID definition satisfying assumption (∗) must be the same as the PID atoms calculated using
BROJA-PID whenever one of the UI terms of BROJA-PID is zero.

Blackwellian PID: The defining feature of a Blackwellian PID is that the UI atom is zero iff it is
possible to construct the Markovian structure between the random variables (i.e., M → X → Y
or M → Y → X), while preserving their pairwise marginals (see Venkatesh et al. [22] for more
details). In all our theoretical results, we show that the random variables in the analyzed system admit
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a Markovian structure, while preserving the pairwise marginal structure. Hence, the UI atom for the
systems analyzed in Theorems 1-7 is zero for any Blackwellian PID. Consequently, as the rest of
the PID terms are calculated using (1), it must be the case that the PID atoms calculated using any
Blackwellian PID must be the same as the PID atoms calculated using BROJA-PID in our results.

C Lists of Systems that can solved using Theorem 6

In this section, we provide examples of systems of random variables (M,X, Y ) employing well-
known distributions whose PID terms can be obtained through theorem 6. The following list is
modified from Table 2 of [25]. Note that for the joint distribution P (M,X, Y ) of the system of
random variable (M,X, Y ), we only specify P (M), P (X|M), and P (Y |M), as any P (M,X, Y )
having these marginals can be solved through theorem 6. We also discuss some possible extensions
of the corresponding systems for which the upper bound discussed in Sec. 6 is applicable. Note that
the extension of the systems provided are not exhaustive, and there exists more systems for which the
upper bound is applicable. In the following examples, we assume a > b.

1. System: The distributions of P (M), P (X|M), and P (Y |M) are as follows:
(a) M ∼ P (M) having support (0,∞).
(b) P (X|M)=Poisson(aM).
(c) P (Y |M) = Poisson(bM).

The corresponding G(γδXm , (1 − γ)δXm , x) specified in theorem 6 is Binomial(x, γ) with
γ = b/a, and a, b > 0.
Result: The Markov chain M → X → Y ∈ ∆P and UI(M ;Y \X) = 0.
An extension of the system for which the upper bound of Sec. 6 in applicable: The
distributions of P (M), P (X|M), and P (Y |M) are as follows:
(a) M ∼ P (M) having support M.
(b) P (X|M)=Poisson(f1(M)), for f1(M) > 0 ∀m ∈ M.
(c) P (Y |M) = Poisson(f2(M)), for f2(M) > 0 ∀ m ∈ M.
(d) f1(m) ≥ f2(m) ∀m ∈ M and all the underlying distributions are well-defined.

2. System: The distributions of P (M), P (X|M), and P (Y |M) are as follows:
(a) M ∼ P (M) having support (−∞,∞).
(b) P (X|M)=N (aM, aσ2).
(c) P (Y |M) = N (bM, bσ2).

The corresponding G(γδXm , (1 − γ)δXm , x) specified in theorem 6 is N (γx, γ(1 − γ)σ2)
with γ = b/a, and a, b > 0.
Result: The Markov chain M → X → Y ∈ ∆P and UI(M ;Y \X) = 0.
An extension of the system for which the upper bound of Sec. 6 in applicable: The
distributions of P (M), P (X|M), and P (Y |M) are as follows:
(a) M ∼ P (M) having support M.
(b) P (X|M)=Gaussian(f1(M), f1(M)), for f1(M) > 0 ∀m ∈ M.
(c) P (Y |M) = Gaussian(f2(M), f2(M)), for f2(M) > 0 ∀ m ∈ M.
(d) f1(m) ≥ f2(m) ∀m ∈ M and all the underlying distributions are well-defined.

3. System: The distributions of P (M), P (X|M), and P (Y |M) are as follows:
(a) M ∼ P (M) having support (0, 1].
(b) P (X|M)=Negative Binomial(a,M).
(c) P (Y |M) = Negative Binomial(b,M).

The corresponding G(γδXm , (1 − γ)δXm , x) specified in theorem 6 is Beta-Binomial(x,
γa, (1−γ)a) with γ = b/a, and a, b ∈ N.
Result: The Markov chain M → X → Y ∈ ∆P , and UI(M ;Y \X) = 0.
An extension of the system for which the upper bound of Sec. 6 in applicable: The
distributions of P (M), P (X|M), and P (Y |M) are as follows:
(a) M ∼ P (M) having support M.
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(b) P (X|M)=Negative Binomial(f1(M), p), for f1(M) ∈ N0 ∀ m ∈ M and p ∈ [0, 1].
(c) P (Y |M)=Negative Binomial(f2(M), p), for f2(M) ∈ N0 ∀ m ∈ M.
(d) f1(m) ≥ f2(m) ∀m ∈ M and all the underlying distributions are well-defined.

4. System: The distributions of P (M), P (X|M), and P (Y |M) are as follows:

(a) M ∼ P (M) having support (0,∞).
(b) P (X|M)=Gamma(a,M).
(c) P (Y |M) = Gamma(b,M).

The corresponding G(γδXm , (1 − γ)δXm , x) specified in theorem 6 is obtained as follows:
G(γδXm , (1− γ)δXm , x)=xZ, Z ∼ Beta(b, (1− b)) with γ = b/a, and a, b ∈ (0,∞). Note
that we are following the Gamma(α, β) notation.
Result: The Markov chain M → X → Y ∈ ∆P and UI(M ;Y \X) = 0.
An extension of the system for which the upper bound of Sec. 6 in applicable: The
distributions of P (M), P (X|M), and P (Y |M) are as follows:

(a) M ∼ P (M) having support M.
(b) P (X|M)=Gamma(f1(M), β), for f1(M) > 0 ∀ m ∈ M and β > 0.
(c) P (Y |M) = Gamma(f2(M), β), for f2(M) > 0 ∀m ∈ M.
(d) f1(m) ≥ f2(m) ∀m ∈ M and all the underlying distributions are well-defined.

5. System: The distributions of P (M), P (X|M), and P (Y |M) are as follows:

(a) M ∼ P (M) having support (0,∞).
(b) P (X|M)=Exponential(M).
(c) P (Y |M) = Gamma(b,M).

The corresponding G(γδXm , (1 − γ)δXm , x) specified in theorem 6 is obtained as follows:
G(γδXm , (1 − γ)δXm , x)=xZ, Z ∼ Beta(b, (1 − b)), and 0 < b ≤ 1. Note that we are
following the Gamma(α, β) notation.
Result: The Markov chain M → X → Y ∈ ∆P and UI(M ;Y \X) = 0.
An extension of the system for which the upper bound of Sec. 6 in applicable: The
distributions of P (M), P (X|M), and P (Y |M) are as follows:

(a) M ∼ P (M) having support M.
(b) P (X|M)=Exponential(f1(M)), for f1(M) > 0 ∀ m ∈ M.
(c) P (Y |M) = Gamma(f2(M), f1(M)), for f2(M) > 0 ∀m ∈ M.
(d) f2(m) ≤ 1 ∀ m ∈ M and all the underlying distributions are well-defined.

6. System: The distributions of P (M), P (X|M), and P (Y |M) are as follows:

(a) M ∼ P (M) having support [0, 1].
(b) P (X|M)=Binomial(a,M).
(c) P (Y |M) = Binomial(b,M).

The corresponding G(γδXm , (1 − γ)δXm , x) specified in theorem 6 is Hypergeometric(x,
γa, (1− γ)a) with γ = b/a, and a, b ∈ N.
Result: The Markov chain M → X → Y ∈ ∆P and UI(M ;Y \X) = 0.
An extension of the system for which the upper bound of Sec. 6 in applicable: The
distributions of P (M), P (X|M), and P (Y |M) are as follows:

(a) M ∼ P (M) having support M.
(b) P (X|M)=Binomial(f1(M), p), for f1(M) ∈ N0 ∀ m ∈ M and p ∈ [0, 1].
(c) P (Y |M) = Binomial(f2(M), p), for f2(M) ∈ N0 ∀m ∈ M.
(d) f1(m) ≥ f2(m) ∀m ∈ M and all the underlying distributions are well-defined.

7. System: The distributions of P (M⃗), P (X⃗|M⃗), and P (Y⃗|M⃗) are as follows:

(a) M⃗ ∼ P (M⃗) having support over a k-dimensional simplex.

(b) P (X⃗|M⃗)=Multinomialk(a, M⃗).

(c) P (Y⃗|M⃗) = Multinomialk(b, M⃗).
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The correspondingG(γδXm , (1− γ)δXm , x) specified in theorem 6 is Multivariate Hypergeo-
metric (x⃗, γY ) with γ = b/a, and a, b ∈ N.

Result: The Markov chain M⃗ → X⃗ → Y⃗ ∈ ∆P and UI(M⃗; Y⃗\X⃗) = 0.
An extension of the system for which the upper bound of Sec. 6 in applicable: The
distributions of P (M), P (X⃗|M), and P (Y⃗|M) are as follows:
(a) M ∼ P (M) having support M.
(b) P (X⃗|M)=Multinomialk(f1(M), p⃗), for f1(M) ∈ N0 ∀m ∈ M.
(c) P (Y⃗|M) = Multinomial(f2(M), p⃗), for f2(M) ∈ N0 ∀m ∈ M.
(d) f1(m) ≥ f2(m) ∀ m ∈ M, p⃗ is a valid probability vector, and all the underlying

distributions are well-defined.

D Lists of Systems that can solved using Theorem 7

In this section, we provide examples of systems of random variables (M,X, Y ) employing well-
known distributions whose PID terms can be obtained through theorem 7. The following list is
appropriately modified from Appendix A of [26]. Similar to Appx. C, we only specify specify P (M),
P (X|M), and P (Y |M) of the joint distribution P (M,X, Y ), as any P (M,X, Y ) having the same
marginals can be solved through theorem 7. In the following examples, we assume a > b.

1. System: The distributions of P (M), P (X|M), and P (Y |M) are as follows:
(a) M ∼ P (M) having support (0,∞).
(b) P (X|M)=Exponential(M).
(c) P (Y |M) = Geometric(M/(τ+M)), where τ ∈ (0,∞).

Results: The Markov chain M → X → Y ∈ ∆P , and UI(M ;Y \X) = 0. The corre-
sponding QMC(Y |X) required for constructing the Markov chain is Poisson(τX).

2. System: The distributions of P (M), P (X|M), and P (Y |M) are as follows:
(a) M ∼ P (M) having support M.
(b) P (X|M)=Gamma(f1(M), f2(M)), where f1(m), f2(m) > 0 ∀ m ∈ M.
(c) P (Y |M) = Negative Binomial(f1(M), f2(M)/(f2(M)+τ)), where τ ∈ (0,∞)

Results: The Markov chain M → X → Y ∈ ∆P , and UI(M ;Y \X) = 0. The corre-
sponding QMC(Y |X) required for constructing the Markov chain is is Poisson(τX).

3. System: The distributions of P (M), P (X|M), and P (Y |M) are as follows:
(a) M ∼ P (M) having support (0,∞).
(b) P (X|M)=Beta(M, 1).
(c) P (Y |M) is a discrete distribution with over support set {0, 1, . . . , N}, with

P (Y = y|M = m) = m
Γ(y +m)N !

Γ(N + 1 +m)y!
,

where Γ(.) is the Gamma function.
Results: The Markov chain M → X → Y ∈ ∆P , and UI(M ;Y \X) = 0. The corre-
sponding QMC(Y |X) required for constructing the Markov chain is Binomial(N,X).

4. System: The distributions of P (M), P (X|M), and P (Y |M) are as follows:
(a) M ∼ P (M) having support (0,∞).
(b) P (X|M)=Beta(1,M).
(c) P (Y |M) is a discrete distribution with over support set {0, 1, . . . , N}, with

P (Y = y|M = m) = m
Γ(y +m)N !

Γ(N + 1 +m)y!
,

where Γ(.) is the Gamma function.
Results: The Markov chain M → X → Y ∈ ∆P , and UI(M ;Y \X) = 0. The correspond-
ing QMC(Y |X) required for constructing the Markov chain is is Binomial(N, 1−X).
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5. System: The distributions of P (M⃗), P (X⃗|M⃗), and P (Y⃗|M⃗) are as follows:

(a) M⃗ ∼ P (M⃗) having support (0,∞)d for some dimension d.
(b) P (X⃗|M⃗)=Dirichlet(M1, . . . ,Md).
(c) P (Y⃗|M⃗) is a discrete distribution having support {yi ∈ {1, . . . , N} ∀ i ∈

[d]|
∑d

i=1 yi = N}, and

P (Y⃗|M⃗) =
Γ
(∑d

i=1 Mi

)
N !

Γ
(∑d

i=1 Mi +N
) d∏

i=1

Γ (Mi + Yi)

Γ (Mi)Yi!
,

where Γ(.) is the Gamma function.

Results: The Markov chain M⃗ → X⃗ → Y⃗ ∈ ∆P , and UI(M⃗; Y⃗\X⃗) = 0. The corre-
sponding QMC(Y⃗|X⃗) required for constructing the Markov chain is Multinomiald(N, X⃗).

E Miscellaneous PID Results

This section explores the analytical calculation of PID terms for five more systems of random variables
(M,X, Y ) with joint distribution P (M,X, Y ). These five systems’ P (M,X, Y ) employ well-
known distributions, but their respective analytical PID calculation does not result from Theorem 1-
Theorem 7. Of note are the results of P (M,X, Y ) employing exponential and uniform distribution,
which states that these systems will always have both unique information terms zero.

E.1 PID for the miscellaneous system M1.

Miscellaneous system M1: Let (M,X, Y ) be a system of random variables with joint distribution
P (M,X, Y ). The joint distribution P (M,X, Y ) describes the miscellaneous system M1 if it satisfies
the following two properties:

1. M ∼ P (M), and has support (0,∞).
2. P (X|M)=Exponential(γXM), and P (Y |M)=Exponential(γY M), where γX , γY ∈

(0,∞).
Proposition 2. Let M,X, and Y be random variables whose joint distribution P (M,X, Y ) describes
the miscellaneous system M1 defined above. Then, ∆P contains a distribution QMC(M,X, Y ),
which admits both Markovian structures, i.e., M → X → Y and M → Y → X . Consequently, both
UI(M ;Y \X) = UI(M ;X\Y ) = 0.

Proof. We prove proposition 2 by explicitly constructing a joint distribution QMC(M,X, Y ) ∈ ∆P

that admits both Markovian structures, namely, M → X → Y and M → Y → X . A necessary and
sufficient condition for the distribution QMC(M,X, Y ) to admit both Markovian structures is that it
should satisfy (14).

QMC(M,X, Y )=QMC(M)QMC(X|M)QMC(Y |X)=QMC(M)QMC(Y |M)QMC(X|Y ).
(14)

We now briefly outline the structure of the proof. The rest of the proof can be divided into three parts:

1. In the first part, we explicitly construct QMC(M,X, Y ).

2. In the second part, we show that the QMC(M,X, Y ) constructed in the first part lies in ∆P .

3. In the third part, we conclude our proof by showing that QMC(M,X, Y ) satisfies (14) and,
consequently, admits both Markovian structures.

Part 1: Specifying QMC(M,X, Y )

We specify QMC(M,X, Y ) by individually specifying QMC(M), QMC(X|M), and QMC(Y |X).
We choose QMC(M) and QMC(X|M) as follows:

QMC(M) = P (M), and QMC(X|M) = P (X|M). (15)
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The distribution QMC(Y |X) is specified through the following deterministic transformation:

Y =
γX
γY

X. (16)

Part 2: Showing QMC(M,X, Y ) ∈ ∆P

For showing QMC(M,X, Y ) ∈ ∆P , we first need to calculate QMC(Y |M):

Calculating QMC(Y |M): By lemma 1, if X ∼ Exp(λ), then aX ∼ Exponential(λ/a). Since
QMC(X|M)=Exponential(γXM), we can use the result of lemma 1 to calculate QMC(Y |M) as
follows:

QMC(Y |M) = QMC

(
γX
γY

X

∣∣∣∣M) = Exponential
(
γY
γX

γXM

)
= Exponential (γY M) = P (Y |M). (17)

Then, from (15) and (17), we can conclude:

QMC(M,X) = QMC(M)QMC(X|M) = P (M)P (X|M) = P (M,X), (18)
QMC(M,Y ) = QMC(M)QMC(Y |M) = P (M)P (Y |M) = P (M,Y ). (19)

Hence, QMC(M,X, Y ) ∈ ∆P .

Part 3: Showing QMC(M,X, Y ) satisfies (14)

It is trivial to see that by the construction of QMC(M,X, Y ) given in Part 1, we have:

QMC(M,X, Y ) = QMC(M)QMC(X|M)QMC(Y |X). (20)

By the chain rule, we have:

QMC(M,X, Y ) = QMC(M)QMC(Y |M)QMC(X|Y,M). (21)

Hence, for showing that QMC(M,X, Y ) satisfies (14), we only need to show that
QMC(X|Y,M) = QMC(X|Y ).

Showing QMC(X|Y,M) = QMC(X|Y ): Observe that Y = γX/γY X by construction. Therefore,
we can equivalently express X = γY/γXY . Consequently,

QMC(X|Y,M) = I[X = γY/γXY ] as X = γY/γXY, (22)

where I[·] is the indicator function. Since R.H.S of the above equation does not depend on M , we
have:

QMC(X|Y,M) = I[X = γY/γXY ] = QMC(X|Y ). (23)

Combining (21) and (23), we have:

QMC(M,X, Y ) = QMC(M)QMC(Y |M)QMC(X|Y ). (24)

Combining (20) and (24), we can show that QMC(M,X, Y ) satisfies (14).

Conclusion: Combining the results of parts 2 and 3, we can conclude that the QMC(M,X, Y ) ∈
∆P and contains both Markovian structure M → X → Y and M → Y → X . A unique
implication of QMC(M,X, Y ) admitting both Markovian structures is that both IQMC

(M ;X|Y ) =
IQMC

(M ;Y |X) = 0. Consequently, both minimization problems presented in (2) are minimized
by QMC(M,X, Y ) with UI(M ;X\Y ) = minQ∈∆P

IQ(M ;X|Y ) = 0 and UI(M ;Y \X) =
minQ∈∆P

IQ(M ;Y |X) = 0, completing our proof.

Lemma 1. If X ∼ Exponential(λ) with λ ∈ (0,∞), then γX ∼ Exponential(λ/γ) for γ ∈ (0,∞).

Proof. We denote the p.d.f. of the random variable X as pX(·) and, by lemma statement, we know:

pX(X = x) = Exponential(λ) =
{

λe−xλ x ≥ 0
0 otherwise . (25)
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Denote the p.d.f. of the function f(X) of the random variable X as pf(X)(·). We want to derive
pf(X)(·) for f(X) = γX . Since, f(X) = γX is an invertible function, we can use the change-of-
variable technique for deriving pf(X)(·):

pf(X)(f(X) = y) = pX(X = f−1(y))

∣∣∣∣df−1(y)

dy

∣∣∣∣ = { λ
γ e

−yλ/γ y ≥ 0
0 otherwise

= Exponential(λ/γ). (26)

E.2 PID for the miscellaneous system M2.

Miscellaneous System M2: Let (M,X, Y ) be a system of random variables with joint distribution
P (M,X, Y ). The joint distribution P (M,X, Y ) describes the miscellaneous system M2 if it satisfies
the following two properties:

1. M ∼ P (M) and has support (0,∞).

2. P (X|M)=Negative Binomial(M,pX), and P (Y |M)=Negative Binomial(M,pY ).

This system is adapted from the negative binomial decomposition listed in Appendix A [26].

Proposition 3. Let M,X, and Y be random variables whose joint distribution P (M,X, Y ) describes
the miscellaneous system M2 defined above.

1. If pX ≤ pY , then ∆P contains a Markov chain of the form M → X → Y , and
UI(M ;Y \X) = 0.

2. If pX ≥ pY , then ∆P contains a Markov chain of the form M → Y → X , and
UI(M ;X\Y ) = 0.

Proof. We only provide an explicit proof of condition 1. The proof of condition 2 follows the same
steps as the proof of condition 1 with parameters of X and Y switched.

Proof of condition 1: We briefly outline the proof structure. The proof can be divided into two parts:

1. In the first part, we explicitly construct a joint distribution QMC(M,X, Y ) having the
Markovian structure M → X → Y .

2. In the second part, we conclude our proof by showing the QMC(M,X, Y ) constructed in
the first part, lies in ∆P .

Part 1: Specifying QMC(M,X, Y )

Since QMC(M,X, Y ) is the joint distribution of a Markov chain M → X → Y , we have
QMC(M,X, Y ) = QMC(M)QMC(X|M)QMC(Y |X). Taking advantage of this special structure
of QMC(M,X, Y ), we specify QMC(M,X, Y ) by individually specifying QMC(M), QMC(X|M),
and QMC(Y |X). We choose QMC(M), QMC(X|M) and QMC(Y |X) as follows:

QMC(M) = P (M), QMC(X|M) = P (X|M) and QMC(Y |X) = Binomial(X, p),

where p =
pX(1− pY )

pY (1− pX)
. (27)

Part 2: Showing QMC(M,X, Y ) ∈ ∆P

For showing QMC(M,X, Y ) ∈ ∆P , we first need to calculate QMC(Y |M):

Calculating QMC(Y |M): Since QMC(X|M) = Negative Binomial(M,pX) and QMC(Y |X) =
Binomial(N, p), we can use lemma 2 for calculating Q(Y |M):

QMC(Y |M) = Negative Binomial(M,pY ) = P (Y |M). (28)
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Then, from (27) and (28), we can conclude:

QMC(M,X) = QMC(M)QMC(X|M) = P (M)P (X|M) = P (M,X), (29)
QMC(M,Y ) = QMC(M)QMC(Y |M) = P (M)P (Y |M) = P (M,Y ). (30)

Hence, QMC(M,X, Y ) ∈ ∆P and consequently, by proposition 1, UI(M ;Y \X) = 0. This
concludes our proof.

Lemma 2. Let X ∼ Negative Binomial(N, pX) and P (Y |X) = Binomial(X, p) with p =
pX(1−pY )
pY (1−pX) , pY ≥ pX , pY , pX ∈ [0, 1], and N ∈ N0. Then, Y ∼ Negative Binomial(N, pY ).

Proof. First, in order for P (Y |X) to be a legitimate distribution, we need to ensure that p ∈ [0, 1],
i.e., we need to show that:

0 ≤ p ≤ 1. (31)

Since pX , (1− pY ), (1− pX), pY ≥ 0 as pX , pY ∈ [0, 1], we can easily verify the first inequality:

p =
pX(1− pY )

(1− pX)pY
≥ 0. (32)

For verifying p ≤ 1, we will use the assumption that pY ≥ pX :

pX ≤ pY ⇒ 1

pY
≤ 1

pX
. (33)

Subtracting 1 from both sides of the above inequality.

1

pY
− 1 ≤ 1

pX
− 1 ⇒ 1− pY

pY
≤ 1− pX

pX
. (34)

Rearranging terms, we obtain:

pX(1− pY )

(1− pX)pY
≤ 1 ⇒ p ≤ 1

(
as p =

pX(1− pY )

(1− pX)pY

)
. (35)

For calculating P (Y ), we borrow the result of proposition 13 in [26], which states that
if X ∼ Negative Binomial(M,pX) and P (Y |X) = Binomial(X, p), then P (Y ) =

Negative Binomial
(
N, pX

pX+p−ppX

)
. Hence,

P (Y ) = Negative Binomial
(
N,

pX
pX + p− ppX

)
= Negative Binomial

(
N,

pX
pX + p(1− pX)

)

= Negative Binomial

N,
pX

pX + pX(1−pY )
(1−pX)pY

(1− pX)


= Negative Binomial

(
N,

pX

pX + pX(1−pY )
pY

)

= Negative Binomial
(
N,

pXpY
pXpY + pX(1− pY )

)
= Negative Binomial

(
N,

pXpY
pX

)
= Negative Binomial (N, pY ) . (36)
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E.3 PID for the miscellaneous system M3.

Miscellaneous System M3: Let (M,X, Y ) be a system of random variables with joint distribution
P (M,X, Y ). The joint distribution P (M,X, Y ) describes the miscellaneous system M3 if it satisfies
the following two properties:

1. M ∼ P (M) and has support (0,∞).

2. P (X|M)=Uniform(0, γXM) and P (Y |M)=Uniform(0, γY M), where γX , γY ∈
R\{0}.

Proposition 4. Let M,X, and Y be random variables whose joint distribution P (M,X, Y ) describes
the miscellaneous system M3 defined above. Then, ∆P contains a distribution QMC(M,X, Y ),
which admits both Markovian structures, i.e., M → X → Y and M → Y → X . Consequently, both
UI(M ;Y \X) = UI(M ;X\Y ) = 0.

Proof. We prove proposition 4 by explicitly constructing a joint distribution QMC(M,X, Y ) ∈ ∆P

that admits both Markovian structures, namely, M → X → Y and M → Y → X . A necessary and
sufficient condition for the distribution QMC(M,X, Y ) to admit both Markovian structures is that it
should satisfy (37):

QMC(M,X, Y )=QMC(M)QMC(X|M)QMC(Y |X)=QMC(M)QMC(Y |M)QMC(X|Y ).
(37)

We now briefly outline the structure of the proof. The rest of the proof can be divided into three parts:

1. In the first part, we explicitly construct QMC(M,X, Y ).

2. In the second part, we show that the QMC(M,X, Y ) constructed in the first part, lies in
∆P .

3. In the third part, we conclude our proof by showing that QMC(M,X, Y ) satisfies (37) and,
consequently, admits both Markovian structures.

Part 1: Specifying QMC(M,X, Y )

We specify QMC(M,X, Y ) by individually specifying QMC(M), QMC(X|M), and QMC(Y |X).
We choose QMC(M) and QMC(X|M) as follows:

QMC(M) = P (M), and QMC(X|M) = P (X|M). (38)

The distribution QMC(Y |X) is specified through the following deterministic transformation:

Y =
γY
γX

X. (39)

Part 2: Showing QMC(M,X, Y ) ∈ ∆P

For showing QMC(M,X, Y ) ∈ ∆P , we first need to calculate QMC(Y |M):

Calculating QMC(Y |M): Since QMC(X|M)=Uniform(0, γXM), and Y = γY/γXX , we can use
the result of lemma 3 to calculate QMC(Y |M) as follows:

QMC(Y |M) = QMC

(
γY
γX

X

∣∣∣∣M) = Uniform
(
0,

γY
γX

γXM

)
= Uniform (0, γY M)

= P (Y |M). (40)

Then, from (38) and (40), we can conclude:

QMC(M,X) = QMC(M)QMC(X|M) = P (M)P (X|M) = P (M,X), (41)
QMC(M,Y ) = QMC(M)QMC(Y |M) = P (M)P (Y |M) = P (M,Y ). (42)

Hence, QMC(M,X, Y ) ∈ ∆P .

Part 3: Showing QMC(M,X, Y ) satisfies (37)
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It is trivial to see that by the construction of QMC(M,X, Y ) given in Part 1, we have:

QMC(M,X, Y ) = QMC(M)QMC(X|M)QMC(Y |X). (43)

By the chain rule, we have:

QMC(M,X, Y ) = QMC(M)QMC(Y |M)QMC(X|Y,M). (44)

Hence, for showing that QMC(M,X, Y ) satisfies (37), we only need to show that QMC(X|Y,M) =
QMC(X|Y ).

Showing QMC(X|Y,M) = QMC(X|Y ): Observe that Y = γY/γXX by construction. Therefore,
we can equivalently express X = γX/γY Y . Consequently,

QMC(X|Y,M) = I[X = γX/γY Y ] as X = γX/γY Y, (45)

where I[·] is the indicator function. Since R.H.S of the above equation does not depend on M , we
have:

QMC(X|Y,M) = I[X = γX/γY Y ] = QMC(X|Y ). (46)

Combining (44) and (46), we have:

QMC(M,X, Y ) = QMC(M)QMC(Y |M)QMC(X|Y ). (47)

Combining (43) and (47), we can show that QMC(M,X, Y ) satisfies (37).

Conclusion: Combining the results of parts 2 and 3, we can conclude that QMC(M,X, Y ) ∈
∆P and contains both Markovian structures: M → X → Y and M → Y → X . A unique
implication of QMC(M,X, Y ) admitting both Markovian structures is that both IQMC

(M ;X|Y ) =
IQMC

(M ;Y |X) = 0. Consequently, both minimization problems presented in (2) are minimized
by QMC(M,X, Y ) with UI(M ;X\Y ) = minQ∈∆P

IQ(M ;X|Y ) = 0 and UI(M ;Y \X) =
minQ∈∆P

IQ(M ;Y |X) = 0, completing our proof.

Lemma 3. Let X ∼ Uniform(0, a) for some a ∈ R, then γX ∼ Uniform(0, γa) for γ ∈ R and
a, γ ̸= 0.

Proof. We denote the p.d.f. of the random variable X as pX(·). By lemma statement, we know:

pX(X = x) = Uniform(0, a) =

{
1
|a| x ∈ [0, a]

0 otherwise
. (48)

Denote the p.d.f. of the function f(X) of the random variable X as pf(X)(·). We want to derive
pf(X)(·) for f(X) = γX . Since, f(X) = γX is an invertible function, we can use the change-of-
variable technique for deriving pf(X)(·):

pf(X)(f(X) = y) = pX(X = f−1(y))

∣∣∣∣df−1(y)

dy

∣∣∣∣ = { 1/|γa| y ∈ [0, γa]
0 otherwise = Uniform(0, γa).

E.4 PID for the miscellaneous system M4.

Miscellaneous System M4: Let (M,X, Y ) be a system of random variables with joint distribution
P (M,X, Y ). The joint distribution P (M,X, Y ) describes the miscellaneous system M4 if it satisfies
the following two properties:

1. M ∼ P (M) and has support [0, 1].
2. P (X|M)=Bernoulli(M), and P (Y |M)=Bernoulli(M + p− 2pM), where p ∈ [0, 1].

This system is adapted from the Bernoulli decomposition listed in Appendix A [26].
Proposition 5. Let M,X, and Y be random variables whose joint distribution P (M,X, Y ) describes
the miscellaneous system M4 defined above. Then, ∆P contains a Markov chain of the form
M → X → Y and UI(M ;Y \X) = 0.
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Proof. We briefly outline the proof structure. The proof can be divided into two parts:

1. In the first part, we explicitly construct a joint distribution QMC(M,X, Y ) having the
Markovian structure M → X → Y .

2. In the second part, we conclude our proof by showing the QMC(M,X, Y ) constructed in
the first part, lies in ∆P .

Part 1: Specifying QMC(M,X, Y )

Since QMC(M,X, Y ) is the joint distribution of a Markov chain M → X → Y , we have
QMC(M,X, Y ) = QMC(M)QMC(X|M)QMC(Y |X). Leveraging the special structure of
QMC(M,X, Y ), we specify QMC(M,X, Y ) by individually specifying QMC(M), QMC(X|M),
and QMC(Y |X). We choose QMC(M), QMC(X|M) as follows:

QMC(M) = P (M), and QMC(X|M) = P (X|M). (49)

The distribution QMC(Y |X) is specified through the following stochastic transformation:

Y = X(1− Z) + Z(1−X), (50)

where Z ∼ Bernoulli(p) and Z ⊥⊥ (X,M).

Part 2: Showing QMC(M,X, Y ) ∈ ∆P

For showing QMC(M,X, Y ) ∈ ∆P , we first need to calculate QMC(Y |M):

Calculating QMC(Y |M): For calculating Q(Y |M), we use the result of proposition 10 in [26], which
states that if X ′ ∼ Bernoulli(θ), Z ′ ∼ Bernoulli(p′), Z ′ ⊥⊥ X ′, and Y ′ = X ′(1−Z ′)+(1−X ′)Z ′,
then Y ∼ Bernoulli(θ + p′ − 2p′θ).

Noting that QMC(X|M) = Bernoulli(M) and Y = X(1−Z)+Z(1−X), where Z ∼ Bernoulli(p)
and Z ⊥⊥ X|M , we can calculate QMC(Y |M) as follows:

QMC(Y |M) = Bernoulli(M + p− 2pM) = P (Y |M). (51)

Then, from (49) and (51), we can conclude:

QMC(M,X) = QMC(M)QMC(X|M) = P (M)P (X|M) = P (M,X), (52)
QMC(M,Y ) = QMC(M)QMC(Y |M) = P (M)P (Y |M) = P (M,Y ). (53)

Hence, QMC(M,X, Y ) ∈ ∆P and consequently, by proposition 1, UI(M ;Y \X) = 0. This
concludes our proof.

E.5 PID for the miscellaneous system M5.

Miscellaneous System M5: Let (M⃗, X, Y ) be a system of random variables with joint distribution
P (M⃗, X, Y ). The joint distribution P (M⃗, X, Y ) describes the miscellaneous system M5 if it satisfies
the following two properties:

1. M⃗ ∼ P (M⃗) and has support over simplex of dimension d.

2. P (X|M⃗)=Categorical(M1, . . . ,Md), and P (Y |M⃗)=Categorical(ϕ1, . . . , ϕd), where
ϕi = (1− p)Mi + p/d.

This system is adapted from the categorical decomposition listed in Appendix A [26].

Proposition 6. Let M⃗, X, and Y be random variables whose joint distribution P (M⃗, X, Y ) describes
the miscellaneous system M5 defined above. Then, ∆P contains a Markov chain of the form
M⃗ → X → Y and UI(M⃗;Y \X) = 0.

Proof. We briefly outline the proof structure. The proof can be divided into two parts:

1. In the first part, we explicitly construct a joint distribution QMC(M⃗, X, Y ) having the
Markovian structure M⃗ → X → Y .
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2. In the second part, we conclude our proof by showing the QMC(M⃗, X, Y ) constructed in
the first part, lies in ∆P .

Part 1: Specifying QMC(M⃗, X, Y )

Since QMC(M⃗, X, Y ) is the joint distribution of a Markov chain M⃗ → X → Y , we
have QMC(M⃗, X, Y ) = QMC(M⃗)QMC(X|M⃗)QMC(Y |X). Taking advantage of this special
structure of QMC(M⃗, X, Y ), we specify QMC(M⃗, X, Y ) by individually specifying QMC(M⃗),
QMC(X|M⃗), and QMC(Y |X). We choose QMC(M⃗), QMC(X|M⃗) as follows:

QMC(M⃗) = P (M⃗), and QMC(X|M⃗) = P (X|M⃗). (54)

The distribution QMC(Y |X) is specified through the following transformation:

Y = X(1− Z) + ZD, (55)

where Z ∼ Bernoulli(p), D ∼ Categorical
(
1
d , . . . ,

1
d

)
, and D, Z, and (X, M⃗) are jointly indepen-

dent.

Part 2: Showing QMC(M⃗, X, Y ) ∈ ∆P

For showing QMC(M⃗, X, Y ) ∈ ∆P , we first need to calculate QMC(Y |M⃗):

Calculating QMC(Y |M⃗): For calculating QMC(Y |M⃗), we use the result of proposition 11 in [26],
which states that:

If X ′ ∼ Categorical(θ1, . . . , θd), Z ′ ∼ Bernoulli(p′), D′ ∼ Categorical (1/d, . . . , 1/d), and Y ′ =
X ′(1 − Z ′) + Z ′D′ with X ′, Z ′, and D′ jointly independent, then Y ′ ∼ Categorical(ϕ′

1, . . . , ϕ
′
d)

with ϕ′
i = (1− p′)θi + p′

/d.

Noting that QMC(X|M⃗) = Categorical(M1, . . . ,Md) and Y = X(1− Z) + ZD, with X ,D, and
Z jointly conditionally independent conditioned on M , we have:

QMC(Y |M⃗) = Categorical(ϕ1, . . . , ϕd), with ϕi = Mi(1− p) +
p

d
= P (Y |M⃗). (56)

From (54) and (56), we can conclude:

QMC(M⃗, X) = QMC(M⃗)QMC(X|M⃗) = P (M)P (X|M⃗) = P (M⃗, X), (57)

QMC(M⃗, Y ) = QMC(M⃗)QMC(Y |M⃗) = P (M)P (Y |M⃗) = P (M⃗, Y ). (58)

Hence, QMC(M⃗, X, Y ) ∈ ∆P and consequently, by proposition 1, UI(M⃗;Y \X) = 0. This
concludes our proof.

E.6 PID for the miscellaneous system M6.

Miscellaneous System M6: Let (M, X⃗, Y⃗) be a system of random variables with joint distribution
P (M, X⃗, Y⃗). The joint distribution P (M, X⃗, Y⃗) describes the miscellaneous system M6 if it
satisfies the following two properties:

1. M ∼ P (M) and has support N.

2. P (X⃗|M)=MultinomialdX
(X⃗;M, p⃗X), and P (Y⃗|M)=MultinomialdY

(Y⃗;M, p⃗Y ).

Proposition 7. Let M be a random variable. Furthermore, assume X⃗ and Y⃗ are random vectors of
size dX and dY , respectively, such that P (M, X⃗, Y⃗) describes miscellaneous system M6.

1. If, mini∈[dY ] p
Y
i ≥ mini∈[dX ] p

X
i , then there exists a Markov chain of the form M → X⃗ →

Y⃗ in ∆P , and UI(M ; Y⃗\X⃗) = 0.

2. If, mini∈[dY ] p
Y
i ≤ mini∈[dX ] p

X
i , then there exists a Markov chain of the form M → Y⃗ →

X⃗ in ∆P , and UI(M ; X⃗\Y⃗) = 0.
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Proof. We only provide an explicit proof of condition 1. The proof of condition 2 follows the same
steps as the proof of condition 1 with parameters of X⃗ and Y⃗ switched.

We briefly outline the proof structure. The proof can be divided into two major parts:

1. In the first part, we explicitly construct a joint distribution QMC(M, X⃗, Y⃗) having the
Markovian structure M → X⃗ → Y⃗.

2. In the second part, we conclude our proof by showing the QMC(M, X⃗, Y⃗) constructed in
the first part, lies in ∆P .

Part 1: Specifying QMC(M, X⃗, Y⃗)

Since QMC(M, X⃗, Y⃗) is the joint distribution of a Markov chain M → X⃗ → Y⃗, we
have QMC(M, X⃗, Y⃗) = QMC(M)QMC(X⃗|M)QMC(Y⃗|X⃗). Taking advantage of this special
structure of QMC(M, X⃗, Y⃗), we specify QMC(M, X⃗, Y⃗) by individually specifying QMC(M),
QMC(X⃗|M), and QMC(Y⃗|X⃗). We choose QMC(M), QMC(X⃗|M) as follows:

QMC(M) = P (M), and QMC(X⃗|M) = P (X⃗|M). (59)

Specifying Q(Y⃗|X⃗): Let k∗X = argmini∈[dX ] p
X
i , and k∗Y = argmini∈[dY ] p

Y
i . Then,

Q(Y⃗|X⃗)=MultinomialdY

(
Y⃗;
∑

i∈[dX ]\k∗
X
xi,p

∗
Y

)
, where

p∗
Y =

[
pY
1∑

i∈[dX ]\k∗
X

pX
i

. . .
pY
dY −1∑

i∈[dX ]\k∗
X

pX
i

1−
∑dY −1

i=1 pY
i∑

i∈[dX ]\k∗
X

pX
i

]T
. (60)

We first show the proposed QMC(Y⃗|X⃗) is a valid distribution. By condition 1:

min
i∈[dY ]

pYi ≥ min
i∈dX

pXi (61)

⇒
∑

i∈[dX ]\k∗
X

pXi ≥
∑

i∈[dY ]\k∗
Y

pYi ≥ pYj , ∀ j ∈ [dY ] (62)

⇒ 1 ≥
pYj∑

i∈[dX ]\k∗
X
pXi

≥ 0, ∀ j ∈ [dY ], (63)

where the last inequality is due to p⃗X and p⃗Y forming valid multinomial distributions.

Part 2: Showing QMC(M, X⃗, Y⃗) ∈ ∆P

For showing QMC(M, X⃗, Y⃗) ∈ ∆P , we first need to calculate QMC(Y⃗|M):

Calculating QMC(Y⃗|M): We use lemma 4 to calculate Q(Y⃗|M). Note that QMC(X⃗|M) =
MultinomialdX

(M, p⃗X), hence we have:

QMC(Y |M) = MultinomialdY
(M, p⃗′

Y ), where ,

p⃗′
Y =

[
pY
1

∑
i∈[dX ]\k∗

X
pX
i∑

i∈[dX ]\k∗
X

pX
i

. . .
pY
dY −1

∑
i∈[dX ]\k∗

X
pX
i∑

i∈[dX ]\k∗
X

pX
i

1−
∑

i∈[dX ]\k∗
X

pX
i

∑dY −1

i=1 pY
i∑

i∈[dX ]\k∗
X

pX
i

]
⇒p⃗′

Y =
[
pY1 . . . pYdY −1 1−

∑
i∈[dY ] p

Y
i

]
= p⃗Y

⇒QMC(Y |M) = MultinomialdY
(M, p⃗Y ) = P (Y |M). (64)

Then, from (59) and (64), we can conclude:

QMC(M, X⃗) = QMC(M)QMC(X⃗|M) = P (M)P (X⃗|M) = P (M, X⃗), (65)

QMC(M, Y⃗) = QMC(M)QMC(Y⃗|M) = P (M)P (Y⃗|M) = P (M, Y⃗). (66)

Hence, QMC(M, X⃗, Y⃗) ∈ ∆P and consequently, by proposition 1, UI(M ; Y⃗\X⃗) = 0. This
concludes our proof.
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Lemma 4. Suppose X⃗ ∼ MultinomialdX
(n, p⃗X) and Y⃗|X⃗ ∼ MultinomialdY

(∑
j∈I Xj , q⃗

)
,

where I ⊂ {1, . . . , dX}. Then Y⃗ ∼ MultinomialdY
(n, q⃗∗), where

qi
∗ =


[∑

j∈I pj

]
· qi, 1 ≤ i < dY

1−
[∑

j∈I pj

]
·
[∑dY −1

j=1 qj

]
, i = dY

. (67)

Proof. Without loss of generality, reshuffle the class indices of Y⃗ such that I={i:1 ≤ i ≤ w},
where |I|=w. Let C={x⃗′ ∈ NdX−1

0 :
∑dX−1

i=1 xi ≤ n}. By the law of total probability,

P (Y⃗ = y⃗) =
∑
x⃗∈C

P (X⃗ = x⃗)P (Y⃗ = y⃗|X⃗ = x⃗) (68)

=
∑
x⃗∈C

n!∏dX

i=1 xi!

dX∏
i=1

pxi
i ·

(∑
j∈I xj

)
!∏dY

i=1 yi!

dY∏
i=1

qyi

i . (69)

Remove from the sum all terms that do not depend on x⃗. Note that ydY
=
∑

j∈I xj −
∑dY −1

i=1 yi and

q
ydY

dY
=
(
1−

∑dY

i=1 qi

)ydY

are both functions of y⃗. Let ys=
∑dY −1

i=1 yi and qs=
∑dY −1

i=1 qi.

P (Y⃗ = y⃗) =

(
n!∏dY −1

i=1 yi!

dY −1∏
i=1

qyi

i

)∑
x⃗∈C

∏dX

i=1 p
xi
i ·
(∑

j∈I xj

)
!∏dX

i=1 xi!
(∑

j∈I xj − ys

)
!
(1− qs)

∑
j∈I xj−ys .

Form a multinomial coefficient outside the sum:

P (Y⃗ = y⃗) =

(
n!∏dY −1

i=1 yi! · (n− ys)!

dY −1∏
i=1

qyi

i

)
(70)

×
∑
x⃗∈C

(n− ys)!
∏dX

i=1 p
xi
i ·
(∑

j∈I xj

)
!∏dX

i=1 xi!
(∑

j∈I xj − ys

)
!

(1− qs)
∑

j∈I xj−ys . (71)

Let I0 = {i:w < i ≤ dX} be the set of indices that are not taken in the number of trials for Y⃗.
Consider the sum over x⃗ ∈ C alone in (71). Separating terms that belong to I and I0,

∑
x⃗∈C

(n− ys)!∏
j∈I0 xj !

(∑
j∈I xj − ys

)
!

∏
j∈I0

p
xj

j (1− qs)
∑

j∈I xj−ys ·

(∑
j∈I xj

)
!∏

j∈I xj !

∏
j∈I

p
xj

j .

Let C ′ = {x⃗′ ∈ NdX−1
0 :

∑dX−1
i=1 xi −

∑dY −1
i=1 yi ≤ n−

∑dY −1
i=1 yi}. Note x⃗ ∈ C ⇔ x⃗ ∈ C ′, so we

can equivalently sum over elements in C ′. Perform a change of variable with u =
∑

j∈I xj − ys and
define B = {xj ∈ x⃗:j ∈ I,

∑
j∈I xj = u+ ys}. Then the sum becomes

=
∑
x⃗∈C′

(n− ys)!∏
j∈I0 xj !u!

∏
j∈I0

p
xj

j (1− qs)
u
∑
xj∈B

(
u+ ys

xj1 , ..., xjm

)∏
j∈I

p
xj

j . (72)

Note that the inner sum simplifies by the multinomial theorem:

=
∑
x⃗∈C′

(n− ys)!∏
j∈I0 xj !u!

∏
j∈I0

p
xj

j (1− qs)
u

∑
j∈I

pj

u+ys

(73)

=

∑
j∈I

pj

ys ∑
x⃗∈C′

(n− ys)!∏
j∈I0 xj ! · u!

∏
j∈I0

p
xj

j

∑
j∈I

pj − qs
∑
j∈I

pj

u

. (74)
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Reapply the multinomial theorem to the sum of x⃗ over C ′:

=

∑
j∈I

pj

ys
∑

j∈I0

pj +
∑
j∈I

pj − qs
∑
j∈I

pj

n−ys

(75)

=

∑
j∈I

pj

ys
1− qs

∑
j∈I

pj

n−ys

. (76)

Inserting (76) into (71), the marginal becomes

P (Y⃗ = y⃗) =
n!
∏dY −1

i=1 qyi

i∏dY −1
i=1 yi! · (n− ys)!

∑
j∈I

pj

ys
1− qs

∑
j∈I

pj

n−ys

(77)

=
n!
∏dY −1

i=1

(∑
j∈I pj · qi

)yi

∏dY −1
i=1 yi! · (n− ys)!

1− qs
∑
j∈I

pj

n−ys

(78)

= MultinomialdY
(n, q⃗∗) (79)

where q⃗∗ is defined as in (67).

F Proof of Theorem 1

In this section, we provide the proof of theorem 1. Since theorem 1 provides the analytical PID terms
for the univariate affine continuous stable system defined in Sec. 4, we briefly restate certain key
properties of the univariate stable distributions and the corresponding univariate affine continuous
stable system for convenience.

F.1 Univariate continuous stable distribution

Univariate continuous stable distribution are a large class of distributions that naturally arise in the
context of generalized central limit theorems. We refer the reader to Appx. N.2 for more details on
univariate continuous stable distributions. We now list certain key properties of univariate continuous
stable distributions that we make use of in the proof of theorem 1:

1. If X is distributed according to a univariate continuous stable distribution, then the sum of
two independent copies of X , denoted as X1 and X2, follows the same univariate continuous
stable distribution upto a scaling and translation operation, i.e., aX1 + bX2

d
= cX + d for

a, b, c > 0 and d ∈ R.

2. The p.d.f. of univariate continuous stable distributions is characterized by four parameters:
stability parameter denoted as α ∈ (0, 2], skewness parameter denoted as β ∈ [−1, 1], scale
parameters denoted as γ ∈ (0,∞), and location parameter denoted as µ ∈ R. We denote
the p.d.f. of a univariate continuous stable distribution as pCS(α, β, γ, µ).

F.2 Definition of univariate affine continuous stable system

Let (M,X, Y ) be a system of random variables with joint distribution P (M,X, Y ). The joint
distribution P (M,X, Y ) describes the univariate affine continuous stable system if it satisfies the
following two properties:

1. M ∼ P (M) having some support set M ⊆ R.

2. The conditional distributions of random variables X and Y conditioned on M can be
expressed through univariate continuous stable distributions with an affine dependence on M ,
i.e., P (X|M)=pCS(α, βX , γX , aM+b) and P (Y |M)=pCS(α, βY sgn(ac), γY , cM+d),
where a, b, c, d ∈ R.
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F.3 Formal proof of Theorem 1

We first discuss and provide the provide the proofs of lemma 5 and lemma 6 that we will use for
proving theorem 1. In the following proofs, sgn(x) denotes the sign function:

sgn(x) =

{
1 x > 0
0 x = 0
−1 x < 0

. (80)

Lemma 5. If X ∼ pCS(α, β, γ, µ), then for any η ̸= 0 and κ ∈ R, we have

ηX + κ ∼
{

pCS(α, sgn(η)β, |η|γ, ηµ+ κ) α ̸= 1
pCS (α, sgn(η)β, |η|γ, ηµ+ κ− 2/πβγη log(|η|)) α = 1

.

Proof. See the proof of proposition 1.4 part (b) in [23].

Lemma 6. If X1 ∼ pCS(α, β1, γ1, µ1) and X2 ∼ pCS(α, β2, γ2, µ2) are independent, then X1 +
X2 ∼ pCS(α, β, γ, µ) where

β =
β1γ

α
1 + β2γ

α
2

γα
1 + γα

2

, γα = γα
1 + γα

2 , and µ = µ1 + µ2.

Proof. See the proof of proposition 1.4 part (c) in [23].

Theorem 1. Let M,X, and Y be random variables whose joint distribution P (M,X, Y ) describes
a univariate affine continuous stable system. Without the loss of generality, assume |a|/γX ≥ |c|/γY .
If 1 − βY ≥ (γX |c|/γY |a|)

α
(1 − βX), and 1 + βY ≥ (γX |c|/γY |a|)

α
(1 + βX), then ∆P contains a

Markov chain of the form M → X → Y and UI(M ;Y \X) = 0.

Proof. We first note that we can always assume |a|/γX ≥ |c|/γY without the loss of generality because
if |c|/γY ≥ |a|/γX , then we can always switch our nomenclature to refer to Y as X , and X as Y .

We now briefly outline the proof structure. We divide the proof into two cases |a|/γX > |c|/γY and
|a|/γX = |c|/γY . The proof for both cases follows essentially the same structure consisting of two
major parts:

1. In the first part, we explicitly construct a joint distribution QMC(M,X, Y ) having the
Markovian structure M → X → Y .

2. In the second part, we show that the QMC(M,X, Y ) constructed in the first part, lies in ∆P .
Therefore, we can then apply the result of proposition 1 to conclude UI(M ;Y \X) = 0.

Case 1: |a|/γX > |c|/γY

Part 1: Specifying QMC(M,X, Y )

We explicitly construct the desired Markov chain M → X → Y by constructing a larger Markov
chain M → X → X ′ → Y ′ → Y and then marginalizing the larger Markov chain to obtain the
desired Markov chain M → X → Y .

Denote the joint distribution of the Markov chain M → X → X ′ → Y ′ → Y as
QMC(M,X,X ′, Y ′, Y ). We can decompose QMC(M,X,X ′, Y ′, Y ) by utilizing its Markovian
structure as follows:

QMC(M,X,X ′, Y ′, Y ) = QMC(M)QMC(X|M)QMC(X
′|X)QMC(Y

′|X ′)QMC(Y |Y ′).

Consequently, we can specify/construct the distribution QMC(M,X,X ′, Y ′, Y ) by individually
specifying QMC(M), QMC(X|M), QMC(X

′|X), QMC(Y
′|X ′), and QMC(Y |Y ′).

Specifying QMC(M) and QMC(X|M): We choose QMC(M) and QMC(X|M) as follows:

QMC(M) = P (M) and QMC(X|M) = P (X|M), (81)

where P (M) and P (X|M) are marginal distributions derived from the original joint distribution
P (M,X, Y ) (discussed in the theorem statement) over which the bivariate PID is being calculated.
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Specifying QMC(X
′|X): The distribution QMC(X

′|X) is specified by the following deterministic
transformation:

X ′ =

{
1
aX α ̸= 1

1
aX + (2βXγX log(|1/a|))/(πa) α = 1

(82)

We will also derive the distribution Q(X ′|M) before proceeding with our construction, as we will
need it later in the proof to show that the constructed QMC(M,X, Y ) ∈ ∆P .

Deriving QMC(X
′|M): Since QMC(X|M = m) = pCS(α, βX , γX , am + b) for a fixed m and

X ′ is scaled and translated version of X , we can use lemma 5 to derive QMC(X
′|M). The exact

expression of QMC(X
′|M = m) is provided in (83).

QMC(X
′|M = m) = pCS(α, βX′ , γX′ , µX′), where

βX′ =

{
sgn(1/a)βX α ̸= 1
sgn(1/a)βX α = 1

= sgn(1/a)βX = sgn(a)βX ,

γX′ =

{
|1/a| γX α ̸= 1
|1/a| γX α = 1

=
γX
|a|

,

µX′ =

{
1
a (am+ b) α ̸= 1

1
a (am+ b) + 2βXγX log(|1/a|)/πa − 2βXγX log(|1/a|)/πa α = 1

= m+
b

a
,

⇒ QMC(X
′|M = m) = pCS(α, βXsgn(a), γX/|a|,m+ b/a). (83)

Specifying QMC(Y
′|X ′): In order to define QMC(Y

′|X ′), we need to define an auxiliary variable ϵ.
The random variable ϵ ∼ pCS(ϵ;α, β

′, γ′, µ′), where

β′ = sgn(a)
(γY/|c|)

α
βY − (γX/|a|)

α
βX

(γY/|c|)
α − (γX/|a|)

α , γ′ =

((
γY
|c|

)α

−
(
γX
|a|

)α) 1
α

, µ′ =
d

c
− b

a
. (84)

In order for ϵ to have a legitimate continuous stable distribution, we need to ensure that β′, γ′, and µ′

lie within their appropriate bounds as specified in Appx. F.1. It is trivial to see that µ′ ∈ R.

Showing γ′ ∈ (0,∞). Under the assumption of the case 1, we know that:

|a|
γX

>
|c|
γY

.

Manipulating the above inequality, we obtain:

γY
|c|

>
γX
|a|

⇒
(
γY
|c|

)α

>

(
γX
|a|

)α

⇒
(
γY
|c|

)α

−
(
γX
|a|

)α

> 0

⇒
((

γY
|c|

)α

−
(
γX
|a|

)α) 1
α

= γ′ > 0. (85)

Hence, (85) shows that γ′ ∈ (0,∞).

Lastly, showing that β′ ∈ [−1, 1]. Note that the condition β′ ∈ [−1, 1] can be equivalently expressed
as |β′| ≤ 1. For showing that β′ ∈ [−1, 1], we will show that the inequality |β′| ≤ 1 is equivalent to
the inequalities: (γX |c|/|a|γY )

α
(1 − βX) ≤ 1 − βY and (1 + βX) (γX |c|/|a|γY )

α ≤ 1 + βY , where
the last two inequalities hold by the theorem assumptions:

|β′| ≤ 1 ⇒
∣∣∣∣sgn(a)

(γY/|c|)
α
βY − (γX/|a|)

α
βX

(γY/|c|)
α − (γX/|a|)

α

∣∣∣∣ ≤ 1 ⇒
∣∣∣∣ (γY/|c|)

α
βY − (γX/|a|)

α
βX

(γY/|c|)
α − (γX/|a|)

α

∣∣∣∣ ≤ 1,

⇒− 1 ≤ (γY/|c|)
α
βY − (γX/|a|)

α
βX

(γY/|c|)
α − (γX/|a|)

α ≤ 1. (86)

Multiplying (γY/|c|)
α − (γX/|a|)

α on both sides of the inequalities in (86).

(γX/|a|)
α − (γY/|c|)

α ≤ (γY/|c|)
α
βY − (γX/|a|)

α
βX ≤ (γY/|c|)

α − (γX/|a|)
α
. (87)
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Adding (γX/|a|)
α
βX on both sides of the inequalities in (87).

(γX/|a|)
α
+ (γX/|a|)

α
βX − (γY/|c|)

α ≤ (γY/|c|)
α
βY ≤ (γY/|c|)

α − (γX/|a|)
α
+ (γX/|a|)

α
βX ,

⇒(1 + βX) (γX/|a|)
α − (γY/|c|)

α ≤ (γY/|c|)
α
βY ≤ (γY/|c|)

α
+ (γX/|a|)

α
(βX − 1). (88)

Dividing (γY/|c|)
α on both sides of the inequalities in (88).

(1 + βX) (γX |c|/|a|γY )
α − 1 ≤ βY ≤ 1 + (γX |c|/|a|γY )

α
(βX − 1). (89)

Simplifying the inequalities in (89).

(1 + βX) (γX |c|/|a|γY )
α ≤ 1 + βY , (90)

βY − 1 ≤ (γX |c|/|a|γY )
α
(βX − 1). (91)

Multiplying −1 on both sides in (91):

(γX |c|/|a|γY )
α
(1− βX) ≤ 1− βY . (92)

Hence, by above analysis we can conclude that the inequality |β′| ≤ 1 is equivalent to the inequalities:
(γX |c|/|a|γY )

α
(1−βX) ≤ 1−βY and (1+βX) (γX |c|/|a|γY )

α ≤ 1+βY , which ensures β′ ∈ [−1, 1].

As β′ ∈ [−1, 1], γ′ ∈ (0,∞) and µ′ ∈ R, we can conclude ϵ follows a legitimate univariate
continuous stable distribution. Furthermore, we define ϵ ⊥⊥ (M,X,X ′), i.e., Pr(ϵ|M,X,X ′) =
Pr(ϵ) and Pr(M,X,X ′|ϵ) = Pr(M,X,X ′).

We now use ϵ to specify QMC(Y
′|X ′) as follows:

Y ′ = X ′ + ϵ. (93)

We also derive the distribution Q(Y ′|M) before proceeding with our construction, as we will need it
later in the proof to show that the constructed QMC(M,X, Y ) ∈ ∆P .

Deriving QMC(Y
′|M): We will use the distributions QMC(X

′|M) and QMC(ϵ) to derive the
distribution of QMC(Y

′|M):

QMC(Y
′=y′|M=m) = QMC(X

′ + ϵ=y′|M=m),

=

∫ ∞

k=−∞
QMC(X

′=k, ϵ=y′ − k|M=m)dk,

=

∫ ∞

k=−∞
QMC(ϵ = y′−k|M=m)QMC(X

′=k|ϵ = y′−k,M=m)dk.

Using the fact that ϵ ⊥⊥ M and ϵ ⊥⊥ X ′|M , we have:

QMC(Y
′ = y′|M = m) =

∫ ∞

k=−∞
QMC(ϵ = y′−k)QMC(X

′=k|M=m)dk. (94)

Since QMC(ϵ) and QMC(X
′|M = m) are univariate continuous stable distributions for a fixed

m (see (84) and (83)), equation (94) describes a convolution of two univariate stable distributions
for a fixed m. Convolution of two univariate continuous stable distribution is akin to summing
two independent random variable having the same univariate continuous stable distributions, and
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consequently QMC(Y
′|M) can be derived using lemma 6. Hence,

QMC(Y
′|M = m) = pCS(α, β̃, γ̃, µ̃), where

µ̃ = m+
b

a
+ µ′ = m+

b

a
+

d

c
− b

a
= m+

d

c
,

γ̃ =

((
γX
|a|

)α

+ γ′α
) 1

α

=

((
γX
|a|

)α

+

(
γY
|c|

)α

−
(
γX
|a|

)α) 1
α

=
γY
|c|

,

β̃ =
(γX/|a|)

α sgn(a)βX + γ′αβ′

(γX/|a|)
α
+ γ′α

=
(γX/|a|)

α sgn(a)βX + ((γY/|c|)
α − (γX/|a|)

α
)
(

sgn(a) (
γY/|c|)αβY −(γX/|a|)αβX

(γY/|c|)α−(γX/|a|)α

)
(γX/|a|)

α
+ (γY/|c|)

α − (γX/|a|)
α

= sgn(a)
(γX/|a|)

α
βX + (γY/|c|)

α
βY − (γX/|a|)

α
βX

(γY/|c|)
α = sgn(a)

(γY/|c|)
α
βY

(γY/|c|)
α

= sgn(a)βY . (95)

Specifying QMC(Y |Y ′): QMC(Y |Y ′) is specified by the following deterministic transformation:

Y =

{
cY ′ α ̸= 1

cY ′ + (2sgn(a)cβY γY log(|c|))/π α = 1
. (96)

Finally, we construct the desired QMC(M,X, Y ) from QMC(M,X,X ′, Y ′, Y ) by marginalizing
X ′ and Y ′.

Part 2: Showing QMC(M,X, Y ) ∈ ∆P

For showing that QMC(M,X, Y ) ∈ ∆P , we first need to calculate QMC(Y |M).

Calculating Q(Y |M): We use lemma 5 to calculate Q(Y |M) as from (95), we know that
QMC(Y

′|M) = pCS(Y
′;α, sgn(a)βY , γY/|c|,M + d/c) is a continuous stable distribution for a

fixed m, and Y a translated and scaled version of Y ′. The exact expression of QMC(Y |M = m) is
provided in (97).

QMC(Y |M = m) = pCS(α, β̃Y , γ̃Y , µ̃Y ), where

β̃Y =

{
sgn(c)sgn(c)βY α ̸= 1
sgn(c)sgn(a)βY α = 1

= sgn(a)sgn(c)βY = sgn(ac)βY ,

γ̃Y =

{ |c| γY

|c| α ̸= 1

|c| γY

|c| α = 1
= γY ,

µ̃Y =

{
c(m+ d

c ) α ̸= 1
c(m+ d

c ) +
2sgn(a)cβY γY log(|c|)/π − 2sgn(a)cβY γY log(|c|)/π α = 1

= cm+ d,

⇒ QMC(Y |M = m) = pCS(α, βY sgn(ac), γY , cm+ d) = P (Y |M). (97)

From (81) and (97), we can conclude:
QMC(M,X) = QMC(M)QMC(X|M) = P (M)P (X|M) = P (M,X), (98)
QMC(M,Y ) = QMC(M)QMC(Y |M) = P (M)P (Y |M) = P (M,Y ). (99)

Hence, QMC(M,X, Y ) ∈ ∆P and consequently, by proposition 1, UI(M ;Y \X) = 0, concluding
our proof for case 1.

Case 2: |a|/γX = |c|/γY

The proof of case 2 is extremely similar to case 1. For case 2, we are able to directly construct the
distribution QMC(M,X, Y ) without the need of specifying a larger Markov chain.

Part 1: Specifying QMC(M,X, Y )

Similarly to case 1, we specify QMC(M,X, Y ) by individually specifying QMC(M), QMC(X|M)
and QMC(Y |X). The distributions QMC(M) and QMC(X|M) are as follows:

QMC(M) = P (M) and QMC(X|M) = P (X|M). (100)
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The distribution QMC(Y |X) is defined using the following deterministic transformation:

Y =

{
c/aX − cb/a + d α ̸= 1

c
aX + 2c/aπβγX log (|c/a|)− cb/a + d α = 1

. (101)

Part 2: Showing QMC(M,X, Y ) ∈ ∆P

For showing that QMC(M,X, Y ) ∈ ∆P , we first need to calculate QMC(Y |M).

Calculating Q(Y |M): We use lemma 5 to calculate Q(Y |M) as QMC(X|M=m) is a continuous
stable distribution for a fixed m, and Y a translated and scaled version of X . The exact expression of
QMC(Y |M = m) is provided in (102).

QMC(Y |M = m) = pCS(y;α, β̃, γ̃, µ̃),

µ̃ =

{
ca/am+ cb

a − bc
a + d α ̸= 1

ca/am+ cb
a − bc

a + d− 2c/aπβγX log (|c/a|) + 2c/aπβγX log (|c/a|) α = 1

= cm+ d,

γ̃ = |c|γX/|a| = |c|γY/|c| = γY , ( using the fact that γX/|a| = γY/|c| by assumption)

β̃ = βsgn(c/a) = βsgn(ac),
⇒ QMC(Y |M = m) = pCS(α, sgn(ac)βY , γY , cm+ d) = P (Y |M). (102)

From (100) and (102), we can conclude:

QMC(M,X) = QMC(M)QMC(X|M) = P (M)P (X|M) = P (M,X), (103)
QMC(M,Y ) = QMC(M)QMC(Y |M) = P (M)P (Y |M) = P (M,Y ). (104)

Hence, QMC(M,X, Y ) ∈ ∆P and consequently, by proposition 1, UI(M ;Y \X) = 0, concluding
our proof for case 2 and theorem 1.

G Proof of Theorem 2

In this section, we provide the proof of theorem 2. Since theorem 2 provides the analytical PID terms
for system 1 of the multivariate affine continuous stable system defined in Sec. 4, we briefly restate
certain key properties of the corresponding independent component multivariate stable distributions
and the corresponding multivariate affine continuous stable system for convenience.

G.1 Independent component multivariate stable distribution

Independent component multivariate stable distributions are a specific multivariate generalization of
univariate continuous stable distributions describing a collection of independent random variables,
with each random variable distributed according to a univariate continuous stable distribution. We
refer the reader to Appx. N.3 for more details on multivariate continuous stable distributions. We
now list certain key properties of independent component multivariate stable distributions that we
make use of in the proof of theorem 2:

1. If X⃗ is distributed according to an independent component multivariate stable distribution,
then the sum of two independent copies of X⃗, denoted as X⃗1 and X⃗2, follows an independent
component multivariate stable distribution up to a scaling and translation operation, i.e.,
aX⃗1 + bX⃗2

d
= cX⃗+ d⃗ for a, b, c > 0 and d⃗ ∈ R.

2. We denote the p.d.f. of the independent component multivariate stable continuous distribu-
tion as pCS−IC(α, β⃗, γ⃗, µ⃗), where

β⃗ = [β1 . . . βd]
T
, with βj ∈ [−1, 1], γ⃗ = [γ1 . . . γd]

T with γj ∈ (0,∞),

µ⃗ = [µ1 . . . µd]
T ∈ Rd, and α ∈ (0, 2].

In general, the p.d.f. of independent component multivariate stable distribution do not have
a closed-form analytical expression, and are expressed through their characteristic function.
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3. The characteristic function of a d-dimensional random vector X⃗ having independent compo-
nent multivariate distribution pCS−IC(α, β⃗, γ⃗, µ⃗) is expressed as follows:

E
[
ei⃗t

T X⃗
]
= exp

−
d∑

j=1

|γjtj |α(1− iβjsgn(tj)Φ(α)) + i⃗tT µ⃗

 ∀ t⃗ ∈ Rd, (105)

where Φ(α) =

{
tan

(
πα
2

)
α ̸= 1

−2
π log(|t|) α = 1

, sgn(t) =

{ −1 t < 0
0 t = 0
1 t > 0

.

4. The random vector X⃗ = [X1 . . . Xd]
T having the distribution pCS−IC(α, β⃗, γ⃗, µ⃗)

is essentially a collection of independent random variables {Xj}dj=1, where Xj ∼
pCS(α, βj , γj , µj).

G.2 Definition of the system 1 of the multivariate affine continuous stable system

Let the random variable M ∼ P (M) with support M ⊆ R. X⃗ and Y⃗ are dX -dimensional and
dY -dimensional random vectors, respectively. The joint distribution P (M, X⃗, Y⃗) describes system 1
of the multivariate affine continuous stable system if it satisfies the following two properties

1. M ∼ P (M) having some support set M ⊆ R.

2. The conditional distributions of random variables X⃗ and Y⃗ conditioned on M are expressed
as follows:

X⃗=H⃗XM +AXZ⃗X + b⃗X and Y⃗=H⃗Y M +AY Z⃗Y + b⃗Y , (106)

where Z⃗X ∼ pCS−IC(α, 0⃗dX
, 1⃗dX

, 0⃗dX
), Z⃗Y ∼ pCS−IC(α, 0⃗dY

, 1⃗dY
, 0⃗dY

), AX and
AY are invertible matrices, H⃗X , b⃗X ∈ RdX , and H⃗Y , b⃗Y ∈ RdY .

G.3 Formal proof of Theorem 2

Theorem 2. Let the joint distribution P (M, X⃗, Y⃗) of M , X⃗, and Y⃗ describe the system 1 of the
multivariate affine continuous stable system. Without the loss of generality, assume ∥A−1

Y H⃗Y ∥κ ≤
∥A−1

X H⃗X∥κ, where κ = α/α−1 ∀ α ∈ (1, 2] and κ = ∞ ∀ α ∈ (0, 1]. Then, ∆P contains a Markov
chain of the form M → X⃗ → Y⃗ and UI(M ; Y⃗\X⃗) = 0.

Proof. We first note that we can always assume ∥A−1
Y H⃗Y ∥κ ≤ ∥A−1

X H⃗X∥κ without the loss of
generality because if ∥A−1

Y H⃗Y ∥κ ≥ ∥A−1
X H⃗X∥κ, then we can always switch our nomenclature to

refer to Y⃗ as X⃗, and X⃗ as Y⃗.

The proof of above theorem relies on the result of lemma 7 and the fact that the linear system
described in (106) can always be reduced to the special case of the linear system used in lemma 7.
We briefly outline the proof structure.

1. In the first part, we explicitly construct a joint distribution QMC(M, X⃗, Y⃗) having the
Markovian structure M → X⃗ → Y⃗.

2. In the second part, we show that the QMC(M, X⃗, Y⃗) constructed in the first part, lies in ∆P .
Therefore, we can then apply the result of proposition 1 to conclude UI(M ; Y⃗\X⃗) = 0.

Part 1: Specifying QMC(M, X⃗, Y⃗)

We explicitly construct the desired Markov chain M → X⃗ → Y⃗ by constructing a larger Markov
chain M → X⃗ → X⃗′ → Y⃗′ → Y⃗ and then marginalizing the larger Markov chain to obtain the
desired Markov chain M → X⃗ → Y⃗.
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Denote the joint distribution of the Markov chain M → X⃗ → X⃗′ → Y⃗′ → Y⃗ as
QMC(M, X⃗, X⃗′, Y⃗′, Y⃗). We can decompose QMC(M, X⃗, X⃗′, Y⃗′, Y⃗) by utilizing its Markovian
structure as follows:

QMC(M, X⃗, X⃗′, Y⃗′, Y⃗) = QMC(M)QMC(X⃗|M)QMC(X⃗
′|X⃗)QMC(Y⃗

′|X⃗′)QMC(Y⃗|Y⃗′).

Consequently, we can specify/construct the distribution QMC(M, X⃗, X⃗′, Y⃗′, Y⃗) by individually
specifying QMC(M), QMC(X⃗|M), QMC(X⃗

′|X⃗), QMC(Y⃗
′|X⃗′), and QMC(Y⃗|Y⃗′). We specify

QMC(M, X⃗) = P (M, X⃗) and Q(X⃗′|X⃗) using the following deterministic transformation:

X⃗′ = A−1
X

(
X⃗− b⃗X

)
. (107)

Substituting (106) in the above equation:

X⃗′ = A−1
X

(
H⃗XM +AXZ⃗X + b⃗X − b⃗X

)
= A−1

X H⃗XM + Z⃗X . (108)

Specifying QMC(Y⃗
′|X⃗′): We define Y⃗′ according to the following affine system:

Y⃗′ = A−1
Y H⃗Y M + Z⃗Y . (109)

Observe that both X⃗′ and Y⃗′ can be described as an affine function of M satisfying the special
structure described in lemma 7 (see (115)). Furthermore, QMC(M) = P (M) by construction.
Consequently, QMC(M) satisfies the properties required by the distribution of M outlined in
lemma 7, as P (M) in both lemma 7 and theorem 2 follow the same properties. Since ∥A−1

Y H⃗Y ∥κ ≤
∥A−1

X H⃗X∥κ by the assumption in the theorem, we can apply the result of lemma 7 to construct
QMC(Y⃗

′|X⃗′), where H⃗X and H⃗Y would be replaced by A−1
X H⃗X and A−1

Y H⃗Y , respectively.

Lastly, we specify QMC(Y⃗|Y⃗′) through the following linear system:

Y⃗ = AY Y⃗
′ + b⃗Y . (110)

Finally, we construct the desired QMC(M, X⃗, Y⃗) from QMC(M, X⃗, X⃗′, Y⃗′, Y⃗) by marginalizing
X⃗′ and Y⃗′.

Part 2: Showing QMC(M, X⃗, Y⃗) ∈ ∆P

For showing that QMC(M, X⃗, Y⃗) ∈ ∆P , we first need to derive QMC(Y⃗|M).

Deriving Q(Y⃗|M): Substituting (109) in (110) we obtain:

Y⃗ = AY (A
−1
Y H⃗Y M + Z⃗Y ) + b⃗Y = H⃗Y M +AY Z⃗Y + b⃗Y . (111)

Inspecting the above equation, we can conclude:

QMC(Y⃗|M) = P (Y⃗|M). (112)

From (112), we can conclude:

QMC(M, Y⃗) = QMC(M)QMC(Y⃗|M) = P (M)P (Y⃗|M) = P (M, Y⃗). (113)

We know that by construction:

QMC(M, X⃗) = P (M, X⃗). (114)

Hence, QMC(M, X⃗, Y⃗) ∈ ∆P and consequently, by proposition 1, UI(M ; Y⃗\X⃗) = 0, concluding
our proof.

Lemma 7. Let the joint distribution of M , X⃗ and Y⃗, denoted as P (M, X⃗, Y⃗), describe the system 1
of the multivariate affine continuous stable system. Furthermore, assume AX = IdX

, AY = IdY
,

b⃗X = 0⃗dX
and b⃗Y = 0⃗dY

, where Id is a d × d identity matrix and 0⃗d is d-dimensional vector of
zeros. Then,
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1. If ∥H⃗Y ∥κ ≤ ∥H⃗X∥κ, where κ = α/α−1 ∀ α ∈ (1, 2] and κ = ∞ ∀ α ∈ (0, 1], then ∆P

contains a Markov chain of the form M → X⃗ → Y⃗ and UI(M ; Y⃗/X⃗) = 0.

2. If ∥H⃗X∥κ ≤ ∥H⃗Y ∥κ, where κ = α/α−1 ∀ α ∈ (1, 2] and κ = ∞ ∀ α ∈ (0, 1], then ∆P

contains a Markov chain of the form M → Y⃗ → X⃗ and UI(M ; X⃗/Y⃗) = 0.

Proof. We only provide an explicit proof of condition 1. Condition 2 is essentially the same as
condition 1, with the parameters of X and Y switched. Consequently, the proof of condition 2 follows
the same steps as the proof of condition 1, with parameters about X and Y switched.

Proof of condition 1:

We briefly outline the proof structure.

1. In the first part, we explicitly construct a joint distribution QMC(M, X⃗, Y⃗) having the
Markovian structure M → X⃗ → Y⃗.

2. In the second part, we show that the QMC(M, X⃗, Y⃗) constructed in the first part, lies in ∆P .
Therefore, we can then apply the result of proposition 1 to conclude UI(M ; Y⃗\X⃗) = 0.

Part 1: Specifying QMC(M, X⃗, Y⃗)

We explicitly construct the desired Markov chain M → X⃗ → Y⃗ by constructing a larger Markov
chain M → X⃗ → X⃗′ → Y⃗ and then marginalizing the larger Markov chain to obtain the desired
Markov chain M → X⃗ → Y⃗.

Denote the joint distribution of the Markov chain M → X⃗ → X⃗′ → Y⃗ as QMC(M, X⃗, X⃗′, Y⃗). We
can decompose QMC(M, X⃗, X⃗′, Y⃗) by utilizing its Markovian structure as follows:

QMC(M, X⃗, X⃗′, Y⃗) = QMC(M)QMC(X⃗|M)QMC(X⃗
′|X⃗)QMC(Y⃗|X⃗′).

Consequently, we can specify/construct the distribution QMC(M, X⃗, X⃗′, Y⃗) by individually specify-
ing QMC(M), QMC(X⃗|M), QMC(X⃗

′|X⃗), and QMC(Y⃗|X⃗′).

Under the assumptions of lemma 7, we can simplify the linear system describing P (M, X⃗, Y⃗) shown
in (106) as follows:

X⃗=H⃗XM + Z⃗X and Y⃗=H⃗Y M + Z⃗Y . (115)

Correspondingly, we can write the characteristic functions of conditional distributions P (X⃗|M = m)

and P (Y⃗|M = m) for a fixed m by employing lemma 9:

E[ei⃗t
T X⃗|M=m] = exp

−
n∑

j=1

|tj |α + i⃗tT H⃗Xm

 ,

E[ei⃗t
T Y⃗|M=m] = exp

−
n∑

j=1

|tj |α + i⃗tT H⃗Y m

 , (116)

where the characteristic function can be derived by realizing that for a given m, H⃗Xm and H⃗Y m

are constants being added to the random vectors Z⃗X ∼ pCS−IC(α, 0⃗dx
, 1⃗dx

, 0⃗dx
) and Z⃗Y ∼

pCS−IC(α, 0⃗dy , 1⃗dy , 0⃗dy ), respectively, and then using the result of lemma 9.

Specifying QMC(M) and QMC(X⃗|M): We specify QMC(M) and QMC(X⃗|M) as follows:

QMC(M) = P (M) and QMC(X⃗|M) = P (X⃗|M), (117)

where P (M) and P (X⃗|M) are marginal distributions derived from the original joint distribution
P (M, X⃗, Y⃗) (discussed in the lemma statement) over which the bivariate PID is being calculated.
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Specifying QMC(X⃗
′|X⃗): We specify QMC(X⃗

′|X⃗) through the following deterministic transforma-
tion:

X⃗′ = H⃗Y (H⃗
k
X)T X⃗, (118)

where H⃗k
X is as defined in lemma 10, and k ∈ [0,∞].

We will also derive the distribution Q(X⃗′|M) before proceeding with our construction, as we will
need it later in the proof to show that the constructed QMC(M, X⃗, Y⃗) ∈ ∆P .

Deriving QMC(X⃗
′|M): To derive QMC(X⃗

′|M), we represent X⃗′ as function of M and Z⃗X in a
similar manner to X⃗ in (115), and then use the result of lemma 9 to derive its conditional characteristic
function E[et⃗T X⃗′ |M ], and correspondingly the desired QMC(X⃗

′|M) .

We multiply H⃗Y (H⃗
k
X)T on both sides of equality in (115) to obtain the following linear equation:

H⃗Y (H⃗
k
X)T X⃗ = H⃗Y (H⃗

k
X)T (H⃗XM + Z⃗X) = H⃗Y (H⃗

k
X)T H⃗XM + H⃗Y (H⃗

k
X)T Z⃗X .

Substituting (118) in the above equation, we obtain:

X⃗′ = H⃗Y (H⃗
k
X)T X⃗ = H⃗Y (H⃗

k
X)T H⃗XM + H⃗Y (H⃗

k
X)T Z⃗X . (119)

Using the result of lemma 10, i.e., H⃗Y (H⃗
k
X)T H⃗X = H⃗Y , in the above equation we obtain:

X⃗′ = H⃗Y M + H⃗Y (H⃗
k
X)T Z⃗X . (120)

From (120), we can observe that X⃗′ is an affine function of Z⃗X for a fixed m. Hence, we can employ
the result of lemma 9 to derive the distribution of QMC(X⃗

′|M) (by deriving its corresponding
characteristic function).

Note that the j-th column of H⃗Y (H⃗
k
X)T can be expressed as h′

jH⃗Y , where h′
j is the j-th component

of H⃗k
X . Consequently:

E
[
ei⃗t

T X⃗′
∣∣∣M = m

]
= exp

−
dX∑
j=1

∣∣∣h′
jH⃗

T
Y t⃗
∣∣∣α + i⃗tT H⃗Y m


= exp

−
dX∑
j=1

∣∣h′
j

∣∣α ∣∣∣H⃗T
Y t⃗
∣∣∣α + i⃗tT H⃗Y m


= exp

−
∣∣∣H⃗T

Y t⃗
∣∣∣α
 dX∑

j=1

∣∣h′
j

∣∣α+ i⃗tT H⃗Y m

 . (121)

We substitute the value h′
j in (121) using the definition of H⃗k

X given in lemma 10. We will divide the
substitution into two cases:

Case 1: k is finite, i.e., k ∈ [0,∞). Then, we have h′
j = |hX

j |k/∥H⃗X∥1+k
1+k, which implies:

E
[
ei⃗t

T X⃗′
∣∣∣M = m

]
= exp

−
∣∣∣H⃗T

Y t⃗
∣∣∣α dX∑

j=1

∣∣hX
j

∣∣kα
∥H⃗X∥α+kα

1+k

+ i⃗tT H⃗Y m


= exp

−

∣∣∣H⃗T
Y t⃗
∣∣∣α

∥H⃗X∥α+kα
1+k

dX∑
j=1

∣∣hX
j

∣∣kα + i⃗tT H⃗Y m


= exp

−

∣∣∣H⃗T
Y t⃗
∣∣∣α ∥∥∥H⃗X

∥∥∥kα
kα∥∥∥H⃗X

∥∥∥α+kα

1+k

+ i⃗tT H⃗Y m

 . (122)
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Case 2: k is infinite, i.e., k = ∞. Then, we have h′
j = 0 ∀ j ̸= j∗, and h′

j∗ = 1/hX
1 , which implies:

E
[
ei⃗t

T X⃗′
∣∣∣M = m

]
= exp

(
−
∣∣∣H⃗T

Y t⃗
∣∣∣α ∣∣∣∣∣ 1

hX
j∗

∣∣∣∣∣
α

+ i⃗tT H⃗Y m

)

= exp

−

∣∣∣H⃗T
Y t⃗
∣∣∣α∥∥∥H⃗X

∥∥∥α
∞

+ i⃗tT H⃗Y m

 . (123)

Combining (122) and (123), we can re-write E
[
ei⃗t

T X⃗′
∣∣∣M = m

]
as:

E
[
ei⃗t

T X⃗′
∣∣∣M = m

]
= exp

(
−f(k)

∣∣∣H⃗T
Y t⃗
∣∣∣α + i⃗tT H⃗Y m

)
, where

f(k) =

{
∥H⃗X∥kα

kα/∥H⃗X∥α+αk
1+k k finite

1/∥H⃗X∥α
∞ k infinite . (124)

Specifying QMC(Y⃗|X⃗′): We specify QMC(Y⃗|X⃗′) through the following stochastic transformation:

Y⃗ = X⃗′ + ϵ⃗, (125)

where ϵ⃗ follows a multivariate stable distribution. Furthermore, we assume that ϵ⃗ is jointly inde-
pendent from (X⃗, X⃗′,M), i.e., ϵ⃗ ⊥⊥ (X⃗, X⃗′,M). The characteristic function of ϵ⃗ is defined as
follows:

E
[
ei⃗t

T ϵ⃗
]
= exp

−
dY∑
j=1

|tj |α + f(k)
∣∣∣H⃗T

Y t⃗
∣∣∣α
 . (126)

In order for QMC(Y⃗|X⃗′) to be a valid distribution, we need to ensure that the distribution of ϵ⃗
defined in (126) is a legitimate multivariate stable distribution. We will utilize property 1 for showing
that ϵ⃗ follows a stable multivariate stable distribution. Property 1 states a random vector is distributed
according to an independent component multivariate stable distribution iff every 1-dimensional
projection of this random vector follows a univariate stable continuous distribution. Hence, to show
that ϵ⃗ is distributed according to a legitimate multivariate stable distribution, we will show that every
1-dimensional projection of ϵ⃗ follows a univariate stable continuous distribution.

Let t⃗ ∈ RdY , then the characteristic function of the 1-dimensional projection of ϵ⃗ along t⃗, i.e., t⃗T ϵ⃗
can be trivially deduced using (126).

E
[
ei⃗t

T ϵ⃗
]
= exp

−
dY∑
j=1

|tj |α + f(k)
∣∣∣H⃗T

Y t⃗
∣∣∣α


= exp
(
−
∥∥∥⃗t∥∥∥α

α
+ f(k)

∣∣∣H⃗T
Y t⃗
∣∣∣α) . (127)

Comparing the characteristic function of t⃗T ϵ⃗ described in (127) with the standard characteristic
function of a univariate stable characteristic function defined in (323), we can conclude t⃗T ϵ⃗ ∼
pCS(α, β(⃗t), γ(⃗t), µ(⃗t)), where:

γ(⃗t) =
∥∥∥⃗t∥∥∥α

α
− f(k)

∣∣∣H⃗T
Y t⃗
∣∣∣α , µ(⃗t) = 0, and β(⃗t) = 0. (128)

In order for t⃗T ϵ⃗ to have a legitimate univariate stable distribution, we just need to show that
γ(⃗t) ≥ 0 ∀ t⃗ ∈ RdY . Note that γ(⃗t) = 0 would correspond to the case where all the mass of
the distribution is centered at 0, which does satisfy definition 2, and is an example of a degenerate
univariate stable distribution. Let us analyze the function γ(⃗t):

γ(⃗t) =
∥∥∥⃗t∥∥∥α

α
− f(k)

∣∣∣H⃗T
Y t⃗
∣∣∣α , (129)
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Applying lemma 8 on the term
∣∣∣H⃗T

Y t⃗
∣∣∣, we obtain:

∣∣∣H⃗T
Y t⃗
∣∣∣ ≤ { ∥⃗t∥αα∥H⃗Y ∥αα/α−1

α ∈ (1, 2]

∥⃗t∥α1 ∥H⃗Y ∥α∞ α ∈ (0, 1]
. (130)

Applying (130) in (129), we obtain:

γ(⃗t) ≥

{
∥⃗t∥αα − f(k)∥⃗t∥αα∥H⃗Y ∥αα/α−1

α ∈ (1, 2]

∥⃗t∥αα − f(k)∥⃗t∥α1 ∥H⃗Y ∥α∞ α ∈ (0, 1]
.

(131)

Denote l(⃗t, α) as follows:

l(⃗t, α) =

{
∥⃗t∥αα − f(k)∥⃗t∥αα∥H⃗Y ∥αα/α−1

α ∈ (1, 2]

∥⃗t∥αα − f(k)∥⃗t∥α1 ∥H⃗Y ∥α∞ α ∈ (0, 1]
. (132)

In order to show γ(⃗t) ≥ 0 ∀ t⃗ ∈ RdY , it suffices to show that l(⃗t, α) ≥ 0 ∀ t⃗ ∈ RdY and α ∈ (0, 2].

Case 1: α ∈ (1, 2].

For α ∈ (1, 2], we have:

l(⃗t, α) =
∥∥∥⃗t∥∥∥α

α
− f(k)

∥∥∥⃗t∥∥∥α
α

∥∥∥H⃗Y

∥∥∥α
α/α−1

=
∥∥∥⃗t∥∥∥α

α

(
1− f(k)

∥∥∥H⃗Y

∥∥∥α
α/α−1

)
. (133)

Since, the above equation holds for any k ∈ [0,∞], we choose k = 1/(α−1). Substituting the form
f(k) from (124) in the above equation, we obtain:

l(⃗t, α) =
∥∥∥⃗t∥∥∥α

α

1−

∥∥∥H⃗Y

∥∥∥α
α/α−1

∥∥∥H⃗X

∥∥∥α/α−1

α/α−1∥∥∥H⃗X

∥∥∥α(1+ 1
α−1 )

1+ 1
α−1

 =
∥∥∥⃗t∥∥∥α

α

1−

∥∥∥H⃗Y

∥∥∥α
α/α−1

∥∥∥H⃗X

∥∥∥α/α−1

α/α−1∥∥∥H⃗X

∥∥∥α( α
α−1 )

α/α−1



=
∥∥∥⃗t∥∥∥α

α

1−

∥∥∥H⃗Y

∥∥∥α
α/α−1∥∥∥H⃗X

∥∥∥α( α
α−1 )−

α
α−1

α/α−1

 =
∥∥∥⃗t∥∥∥α

α

1−

∥∥∥H⃗Y

∥∥∥α
α/α−1∥∥∥H⃗X

∥∥∥α
α/α−1

 . (134)

Note that
∥∥∥⃗t∥∥∥α

α
≥ 0, and by condition 1 we know that ∥H⃗Y ∥α/α−1 ≤ ∥H⃗X∥α/α−1 ⇒ ∥H⃗Y ∥αα/α−1

≤

∥H⃗X∥αα/α−1
. Hence, using these two previous facts and the above equation, we can conclude:

l(⃗t, α) =
∥∥∥⃗t∥∥∥α

α︸ ︷︷ ︸
≥0

1−

∥∥∥H⃗Y

∥∥∥α
α/α−1∥∥∥H⃗X

∥∥∥α
α/α−1


︸ ︷︷ ︸

≥0

⇒ l(⃗t, α) ≥ 0. (135)

Case 2: α ∈ (0, 1].

l(⃗t, α) =
∥∥∥⃗t∥∥∥α

α
− f(k)

∥∥∥⃗t∥∥∥α
1

∥∥∥H⃗Y

∥∥∥α
∞

(a)

≥
∥∥∥⃗t∥∥∥α

α
− f(k)

∥∥∥⃗t∥∥∥α
α

∥∥∥H⃗Y

∥∥∥α
∞

, (136)

where (a) is derived using the monotonicity of Lp norms in p, see [57]. More precisely, we use the
inequality ∥⃗t∥α ≥ ∥⃗t∥1 ∀ α ∈ (0, 1]. Simplifying the above equation, we have:

l(⃗t, α) ≥
∥∥∥⃗t∥∥∥α

α

(
1− f(k)

∥∥∥H⃗Y

∥∥∥α
∞

)
. (137)
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Since, the above equation holds for any k ∈ [0,∞], we choose k = ∞. Substituting the form f(k)
from (124) in the above equation, we obtain:

l(⃗t, α) ≥
∥∥∥⃗t∥∥∥α

α

(
1− ∥H⃗Y ∥α∞

∥H⃗X∥α∞

)
. (138)

Note that
∥∥∥⃗t∥∥∥α

α
≥ 0, and by condition 1 we know that ∥H⃗Y ∥∞ ≤ ∥H⃗X∥∞ ⇒ ∥H⃗Y ∥α∞ ≤ ∥H⃗X∥α∞.

Hence, using these two facts and the above equation, we can conclude:

l(⃗t, α) ≥
∥∥∥⃗t∥∥∥α

α︸ ︷︷ ︸
≥0

1−

∥∥∥H⃗Y

∥∥∥α
∞∥∥∥H⃗X

∥∥∥α
∞


︸ ︷︷ ︸

≥0

⇒ l(⃗t, α) ≥ 0. (139)

From (135) and (139), we can conclude that l(⃗t, α) ≥ 0 ∀ t⃗ ∈ RdY and α ∈ (0, 2], which implies
γ(⃗t) ≥ 0 ∀ t⃗ ∈ RdY . Hence, ϵ⃗ follows a legitimate multivariate stable distribution.

Finally, we construct the desired QMC(M, X⃗, Y⃗) from QMC(M, X⃗, X⃗′, Y⃗) by marginalizing X⃗′.

Part 2: Showing QMC(M, X⃗, Y⃗) ∈ ∆P

For showing that QMC(M, X⃗, Y⃗) ∈ ∆P , we first need to derive QMC(Y⃗|M).

Deriving Q(Y⃗|M): We will derive QMC(Y⃗|M) by using the fact that ϵ⃗ ⊥⊥ X⃗′|M , hence their
conditional characteristic functions would just result in multiplication.

E
[
ei⃗t

T Y⃗
∣∣∣M = m

]
= E

[
ei⃗t

T (X⃗′+ϵ⃗)
∣∣∣M = m

]
= E

[
ei⃗t

T X⃗′+i⃗tT ϵ⃗
∣∣∣M = m

]
= E

[
ei⃗t

T X⃗′
ei⃗t

T ϵ⃗
∣∣∣M = m

]
(a)
= E

[
ei⃗t

T X⃗′
∣∣∣M = m

]
E
[
ei⃗t

T ϵ⃗
∣∣∣M = m

]
, (140)

where (a) is due to ϵ⃗ ⊥⊥ X⃗′|M . Substituting the characteristic functions of X⃗′ and ϵ⃗ from (124)
and (126), respectively, in (140):

= exp

−
dY∑
j=1

|tj |α + f(k)
∣∣∣H⃗T

Y t⃗
∣∣∣α
 exp

(
−f(k)

∣∣∣H⃗T
Y t⃗
∣∣∣α + i⃗tT H⃗Y m

)

= exp

−
dY∑
j=1

|tj |α + f(k)
∣∣∣H⃗T

Y t⃗
∣∣∣α − f(k)

∣∣∣H⃗T
Y t⃗
∣∣∣α + i⃗tT H⃗Y m


= exp

−
dY∑
j=1

|tj |α + i⃗tT H⃗Y m

 . (141)

By comparing the characteristic function shown in (141) with the characteristic function derived
using P (Y⃗|M) shown in (116), we can conclude:

QMC(Y⃗|M) = P (Y⃗|M). (142)

From (142) and (117), we can conclude:

QMC(M, Y⃗) = QMC(M)QMC(Y⃗|M) = P (M)P (Y⃗|M) = P (M, Y⃗). (143)

We know that by construction:

QMC(M, X⃗) = P (M, X⃗). (144)

Hence, QMC(M, X⃗, Y⃗) ∈ ∆P and consequently, by proposition 1, UI(M ; Y⃗\X⃗) = 0, concluding
our proof.
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Lemma 8. Let a⃗ = [a1 . . . ad] ∈ Rd and b⃗ = [b1 . . . bd] ∈ Rd, then we have:∣∣∣a⃗T b⃗∣∣∣α ≤

{
∥a⃗∥αα∥b⃗∥αα/(α−1)

α ∈ (1, 2]

∥a⃗∥α1 ∥b⃗∥α∞ α ∈ (0, 1]
, (145)

where ∥(·)∥p is the standard Lp norm.

Proof. Case 1: α ∈ (1, 2]

Analysing the LHS of (145)

∣∣∣a⃗T b⃗∣∣∣ = ∣∣∣∣∣
d∑

i=1

aibi

∣∣∣∣∣ (a)≤
d∑

i=1

|aibi|
(b)

≤

(
d∑

i=1

|ai|α
) 1

α
(

d∑
i=1

|bi|
α

(α−1)

) (α−1)
α

= ∥a⃗∥α∥b⃗∥α/α−1,

(146)

where (a) is due to the sub-additivity of |(·)| operator, and (b) is due to Hölder’s inequality [57].
Raising both sides of the inequality to α in (146) gives us the desired inequality. Since, α > 0 raising
both sides of the inequalities to power α does not change the direction of inequality.∣∣∣a⃗T b⃗∣∣∣α ≤ ∥a⃗∥αα∥b⃗∥αα/α−1

. (147)

Case 2: α ∈ (0, 1]

Analysing the LHS of (145)

∣∣∣a⃗T b⃗∣∣∣= ∣∣∣∣∣
d∑

i=1

aibi

∣∣∣∣∣ (a)≤
d∑

i=1

|aibi|
(b)

≤

(
d∑

i=1

|ai|

)
max

i∈{1,...,d}
|bi| = ∥a⃗∥1∥b⃗∥∞, (148)

where (a) is again due to the sub-additivity of |(·)| operator, and (b) is due to the fact that |aibi| ≤
|ai|maxi∈{1,...,d} |bi| ∀ i ∈ {1, . . . , d}. Raising both sides of the inequality to α in (148) gives us
the desired inequality. Since, α > 0 raising both sides of the inequalities to power α does not change
the direction of inequality.∣∣∣a⃗T b⃗∣∣∣α ≤ ∥a⃗∥α1 ∥b⃗∥α∞. (149)

Combining (147) and (149), we obtain the desired inequality.

Lemma 9. Let Z⃗ ∼ pCS−IC(α, 0⃗d, 1⃗d, 0⃗d) be a d-dimensional random vector, A = [aij ]
n,d
i,j=1 ∈

Rn×d be a n× d matrix, and b⃗ ∈ Rd. Then, the characteristic function of AZ⃗+ b⃗ is given by (150)

E
[
ei⃗t

T (AZ⃗+b⃗)
]
= exp

−
d∑

j=1

∣∣∣a⃗Tj t⃗∣∣∣α + i⃗tT b⃗

 ∀ t⃗ ∈ Rd, (150)

where a⃗i is the i-th column of A.

Proof. Analyzing L.H.S of (150)

E
[
ei⃗t

T (AZ⃗+b⃗)
]
= E

[
ei⃗t

TAZ⃗+t⃗T b⃗
]
= E

[
ei⃗t

TAZ⃗ei⃗t
T b⃗
]

(151)

Using the fact that ei⃗t
T b⃗ is constant w.r.t expectation over Z⃗, and linearity of expectation, we have:

E
[
ei⃗t

T (AZ⃗+b⃗)
]
= ei⃗t

T b⃗E
[
exp

(
i⃗tTAZ⃗

)]
,

= ei⃗t
T b⃗E

[
exp

(
i⃗tT [⃗a1 . . . a⃗d] Z⃗

)]
,

= ei⃗t
T b⃗E

[
exp

(
i
[⃗
tT a⃗1 . . . t⃗T a⃗d

]
Z⃗
)]

,
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Simplifying the term
[⃗
tT a⃗1 . . . t⃗T a⃗d

]
Z⃗ by substituting Z = [Z1 . . . Zd]

T , we obtain:

= ei⃗t
T b⃗E

exp
i

d∑
j=1

(⃗tT a⃗j)Zj

 ,

Using properties of exponentials, we obtain:

= ei⃗t
T b⃗E

 d∏
j=1

exp
(
i⃗tT a⃗jZj

) ,

Using the fact {Zj}dj=1 are jointly independent we obtain:

= ei⃗t
T b⃗

d∏
j=1

E
[
exp

(
i⃗tT a⃗jZj

)]
,

Using the fact that Zj ∼ pCS(α, 0, 1, 0) and the result of lemma 5, we know that t⃗T a⃗jZj ∼
pCS(α, 0, |⃗tT a⃗j |, 0). Substituting the corresponding characteristic function of t⃗T a⃗jZj using (323)

= ei⃗t
T b⃗

d∏
j=1

exp
(
−
∣∣∣⃗tT a⃗i

∣∣∣α) = ei⃗t
T b⃗ exp

−
d∑

j=1

∣∣∣⃗tT a⃗i

∣∣∣α


= exp

−
d∑

j=1

∣∣∣⃗tT a⃗i

∣∣∣α + i⃗tT b⃗

 . (152)

Lemma 10. Let H⃗1 =
[
h
(1)
1 . . . h

(1)
d1

]T
∈ Rd1 and H⃗2 =

[
h
(2)
1 . . . h

(2)
d2

]T
∈ Rd2 . Define

H⃗k
1 as follows:

H⃗k
1 =

1

∥H⃗1∥1+k
1+k

[
sgn(h(1)

1 )|h(1)
1 |k . . . sgn(h(1)

d1
)|h(1)

d1
|k
]T

∀ k ∈ [0,∞).

Furthermore, define H⃗∞
1 as follows:

j∗ = argmax
j∈{1,...,d1}

∣∣∣h(1)
j

∣∣∣ ,
H⃗∞

1 =
[
h∞
1 . . . h∞

d1

]T
, with h∞

j = 0 ∀ j ∈ {1, . . . , d1}\{j∗}, and h∞
j =

1

h
(1)
j∗

. (153)

Then, we have:
H⃗2(H⃗

k
1)

T H⃗1 = H⃗2 ∀ k ∈ [0,∞) and H⃗2(H⃗
∞
1 )T H⃗1 = H⃗2, (154)

where ∥(·)∥1+k is the standard L1+k norm [57]. We can alternatively state (154) in a more compact
notation:

H⃗2(H⃗
k
1)

T H⃗1 = H⃗2 ∀ k ∈ [0,∞], (155)

where the case of k = ∞ is to be understood as H⃗k
1 = H⃗∞

1 .

Proof. Case 1: k ∈ [0,∞), i.e., k is finite,

H⃗2(H⃗
k
1)

T H⃗1 =
1

∥H⃗1∥1+k
1+k

H⃗2

[
sgn(h(1)

1 )|h(1)
1 |k . . . sgn(h(1)

d1
)|h(1)

d1
|k
]h

(1)
1
...

h
(1)
d1


=

1

∥H⃗1∥1+k
1+k

 d∑
j=1

|hj |1+k


︸ ︷︷ ︸

=∥H⃗1∥1+k
1+k

H⃗2 = H⃗2.
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Case 2: k = ∞,

H⃗2(H⃗
∞
1 )T H⃗1 = H⃗2

 d1∑
j=1

h∞
j h

(1)
j

 (a)
= H⃗2

(
h∞
j∗h

(1)
j∗

)
(b)
= H⃗2

1

h
(1)
j∗

h
(1)
j∗ = H⃗2,

where (a) is due to the fact that all elements of H⃗∞
1 are 0 except the j∗ element, and (b) is due to the

fact that h∞
j∗ = 1/h(1)

j∗ .

H Proof of Theorem 3

In this section, we provide the proof of theorem 3. Since theorem 3 provides the analytical PID
terms for the system 2 of the multivariate affine continuous stable system defined in Sec. 4, we
briefly restate certain key properties of the corresponding elliptically-contoured multivariate stable
distributions and the corresponding multivariate affine continuous stable system for convenience.

H.1 Elliptically-contoured multivariate stable distribution

Elliptically-contoured multivariate stable distributions are another example of a multivariate general-
ization of univariate continuous stable distributions. As the name suggests, the defining features of
these distributions is that the corresponding p.d.f. has elliptical contours, similar to the multivariate
Gaussian distribution. We refer the reader to Appx. N.3 for more details on multivariate continuous
stable distributions. We now list certain key properties of elliptically-contoured multivariate stable
distributions that we make use of in the proof of theorem 3:

1. We denote the p.d.f. of the elliptically-contoured continuous stable distribution as
pCS−EC(α,Σ, µ⃗), where Σ is a positive definite matrix, µ⃗ ∈ Rd, and α ∈ (0, 2]. In
general, the p.d.f. of Elliptically-contoured multivariate stable distribution do not have a
closed-form analytical expression, and are expressed through their characteristic function.

2. The characteristic function of a d-dimensional random vector X⃗ having elliptically-
contoured multivariate distribution pCS−EC(α,Σ, µ⃗) is expressed as follows:

E
[
ei⃗t

T X⃗
]
= exp

(
−
(⃗
tTΣt⃗

)α/2

+ i⃗tT µ⃗

)
∀ t⃗ ∈ Rd. (156)

H.2 Definition of the system 2 of the multivariate affine continuous stable system

Let the random variable M ∼ P (M) with support M ⊆ R. X⃗ and Y⃗ are dX -dimensional and
dY -dimensional random vectors, respectively. The joint distribution P (M, X⃗, Y⃗) describes the
second system of the multivariate affine continuous stable distribution if it satisfies the following two
properties:

1. M ∼ P (M) having some support set M ⊆ R.

2. The conditional distributions of X⃗ and Y⃗ are expressed as follows:

P (X⃗|M) = pCS−EC(α,ΣX , H⃗XM + b⃗X), and

P (Y⃗|M) = pCS−EC(α,ΣY , H⃗Y M + b⃗Y ), (157)

where ΣX and ΣY are positive definite matrices, H⃗X , b⃗X ∈ RdX , and H⃗Y , b⃗Y ∈ RdY .

H.3 Formal proof of theorem 3

Theorem 3. Let the joint distribution P (M, X⃗, Y⃗) of M , X⃗, and Y⃗ describe the system 2 of the
multivariate affine continuous stable system. Define Σ

−1/2
X and Σ

−1/2
Y as the respective inverses of

the matrices Σ
1/2
X and Σ

1/2
Y which satisfy: (Σ

1/2
X )TΣ

1/2
X = ΣX , and (Σ

1/2
Y )TΣ

1/2
Y = ΣY . Without the

loss of generality, assume ∥Σ−1/2
Y H⃗Y ∥2 ≤ ∥Σ−1/2

X H⃗X∥2. Then, ∆P contains a Markov chain of the
form M → X⃗ → Y⃗ and UI(M ; Y⃗\X⃗) = 0.
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Proof. We first note two important observations:

1. We can always assume ∥Σ−1/2
Y H⃗Y ∥2 ≤ ∥Σ−1/2

X H⃗X∥2 without the loss generality because
if ∥Σ−1/2

Y H⃗Y ∥2 ≥ ∥Σ−1/2
X H⃗X∥2, then we can always switch our nomenclature to refer to

Y⃗ as X⃗, and X⃗ as Y⃗.

2. Properties of positive definite matrices guarantee the existence of an invertible Σ
1/2
X and

Σ
1/2
Y [58].

The proof of this theorem is a generalization of the proof used for the deriving a similar result for the
special case of the multivariate Gaussian distribution discussed in [22], which borrows known results
from Gaussian interference channels discussed in [48]. This proof follows the same structure as our
earlier proofs.

1. In the first part, we explicitly construct a joint distribution QMC(M, X⃗, Y⃗) having the
Markovian structure M → X⃗ → Y⃗.

2. In the second part, we show that the QMC(M, X⃗, Y⃗) constructed in the first part, lies in ∆P .
Therefore, we can then apply the result of proposition 1 to conclude UI(M ; Y⃗\X⃗) = 0.

Part 1: Specifying QMC(M, X⃗, Y⃗)

We explicitly construct the desired Markov chain M → X⃗ → Y⃗ by constructing a larger Markov
chain M → X⃗ → X⃗′ → X⃗′′ → Y⃗′ → Y⃗, and then marginalizing the larger Markov chain to obtain
the desired Markov chain M → X⃗ → Y⃗.

Denote the joint distribution of the Markov chain M → X⃗ → X⃗′ → X⃗′′ → Y⃗′ →
Y⃗ as QMC(M, X⃗, X⃗′, X⃗′′, Y⃗′, Y⃗). We can decompose QMC(M, X⃗, X⃗′, X⃗′′, Y⃗′, Y⃗) by utiliz-
ing its Markovian structure as follows: QMC(M, X⃗, X⃗′, X⃗′′, Y⃗′, Y⃗) = QMC(M)QMC(X⃗|M)

QMC(X⃗
′|X⃗) QMC(X⃗

′′|X⃗′)QMC(Y⃗
′|X⃗′′)QMC(Y⃗|Y⃗′). Consequently, we can specify/construct

the distribution QMC(M, X⃗, X⃗′, X⃗′′, Y⃗′, Y⃗) by individually specifying QMC(M), QMC(X⃗|M),
QMC(X⃗

′|X⃗), QMC(X⃗
′′|X⃗′), QMC(Y⃗

′|X⃗′′), and QMC(Y⃗|Y⃗′).

Specifying QMC(M) and QMC(X⃗|M): We choose QMC(M) and QMC(X⃗|M) as follows:

QMC(M) = P (M) and QMC(X⃗|M) = P (X⃗|M). (158)

Specifying QMC(X⃗
′|X⃗): QMC(X⃗

′|X⃗) is specified through the following deterministic transforma-
tion:

X⃗′ = (Σ
−1/2
X )T (X⃗− b⃗X). (159)

We will also derive the distribution Q(X⃗′|M) before proceeding with our construction, as we will
need it later in the proof to show that the constructed QMC(M, X⃗, Y⃗) ∈ ∆P .

Deriving QMC(X⃗
′|M): We use lemma 11 to derive QMC(X⃗

′|M = m), as QMC(X⃗|M = m) is an
elliptically contoured multivariate stable distribution for a fixed m, and (159) defines a scaling and
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translation operation.

QMC(X⃗
′|M = m) = pCS−EC

(
α, (Σ

−1/2
X )TΣXΣ

−1/2
X , (Σ

−1/2
X )T H⃗Xm+(Σ

−1/2
X )T (b⃗X−b⃗X)

)
,

⇒ QMC(X⃗
′|M = m) = pCS−EC

(
α, (Σ

−1/2
X )TΣXΣ

−1/2
X , (Σ

−1/2
X )T H⃗Xm

)
,

⇒ QMC(X⃗
′|M = m) = pCS−EC

(
α, (Σ

−1/2
X )T (Σ

1/2
X )TΣ

1/2
X Σ

−1/2
X , (Σ

−1/2
X )T H⃗Xm

)
,

⇒ QMC(X⃗
′|M = m) = pCS−EC

(
α, (Σ

1/2
X Σ

−1/2
X )TΣ

1/2
X Σ

−1/2
X , (Σ

−1/2
X )T H⃗Xm

)
,

⇒ QMC(X⃗
′|M = m) = pCS−EC

(
α, IdX

, (Σ
−1/2
X )T H⃗Xm

)
,

⇒ QMC(X⃗
′|M = m) = pCS−EC

(
α, IdX

, K⃗Xm
)
, (160)

where IdX
is a dX × dX identity matrix, and K⃗X = (Σ

−1/2
X )T H⃗X .

Specifying QMC(X⃗
′′|X⃗′): QMC(X⃗

′′|X⃗′) is again specified through a deterministic transformation:

X⃗′′ = K⃗Y (K⃗
1
X)T X⃗′, (161)

where K⃗Y = (Σ
−1/2
Y )T H⃗Y and K⃗1

X = 1/∥K⃗X∥2
2K⃗X . We also derive the distribution Q(X⃗′|M)

which will be needed for showing that the constructed QMC(M, X⃗, Y⃗) ∈ ∆P .

Deriving QMC(X⃗
′′|M = m): We again use lemma 11 to calculate QMC(X⃗

′′|M = m), as
QMC(X⃗

′|M = m) is an elliptically contoured multivariate stable distribution (see (160)) for a
fixed m, and (159) defines a scaling and translation operation.

QMC(X⃗
′|M = m) = pCS−EC

(
α, (K⃗Y (K⃗

1
X)T )IdX

(K⃗Y (K⃗
1
X)T )T , K⃗Y (K⃗

1
X)T K⃗Xm

)
,

= pCS−EC

(
α, (K⃗Y (K⃗

1
X)T )(K⃗Y (K⃗

1
X)T )T , K⃗Y (K⃗

1
X)T K⃗Xm

)
,

From lemma 10, we know that K⃗Y (K⃗
1
X)T K⃗X = K⃗Y , which implies

QMC(X⃗
′|M = m) = pCS−EC

(
α, (K⃗Y (K⃗

1
X)T )(K⃗Y (K⃗

1
X)T )T , K⃗Y m

)
. (162)

Specifying QMC(Y⃗
′|X⃗′′): We specify QMC(Y⃗

′|X⃗′′) through the following stochastic transforma-
tion:

Y⃗′ = X⃗′′ + ϵ⃗, (163)

where ϵ⃗ follows a multivariate stable distribution. Furthermore, we assume that ϵ⃗ is jointly indepen-
dent from (X⃗, X⃗′, X⃗′′,M), i.e., ϵ⃗ ⊥⊥ (X⃗, X⃗′, X⃗′′,M). The characteristic function of ϵ⃗ is defined as
follows:

E
[
ei⃗t

T ϵ⃗
]
= exp

(
−
(⃗
tT IdY

t⃗
)α/2

+
(⃗
tT (K⃗Y (K⃗

1
X)T )(K⃗Y (K⃗

1
X)T )T t⃗

)α/2
)
. (164)

In order for QMC(Y⃗
′|X⃗′′) to be a valid distribution, we need to ensure that the distribution of ϵ⃗

defined in (164) is a legitimate multivariate stable distribution. Similarly to the proof of theorem 2, we
will utilize property 1 for showing that ϵ⃗ follows a stable multivariate stable distribution. Property 1
states a random vector is distributed according to a multivariate stable distribution iff every 1-
dimensional projection of this random vector follows a univariate stable continuous distribution.
Hence, to show that ϵ⃗ is distributed according to a legitimate multivariate stable distribution, we will
show that every 1-dimensional projection of ϵ⃗ follows a univariate stable continuous distribution.

Let t⃗ ∈ RdY , then the characteristic function of the 1-dimensional projection of ϵ⃗ along t⃗, i.e., t⃗T ϵ⃗
can be trivially derived from (164).

E
[
ei⃗t

T ϵ⃗
]
= exp

(
−
(⃗
tT IdY

t⃗
)α/2

+
(⃗
tT (K⃗Y (K⃗

1
X)T )(K⃗Y (K⃗

1
X)T )T t⃗

)α/2
)
. (165)
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Comparing the characteristic function of t⃗T ϵ⃗ described in (127) with the standard characteristic
function of a univariate stable characteristic function defined in (323), we can conclude t⃗T ϵ⃗ ∼
pCS(α, β(⃗t), γ(⃗t), µ(⃗t)), where:

γ(⃗t) =
(⃗
tT IdY

t⃗
)α/2

−
(⃗
tT (K⃗Y (K⃗

1
X)T )(K⃗Y (K⃗

1
X)T )T t⃗

)α/2

, µ(⃗t) = 0, and β(⃗t) = 0. (166)

In order for t⃗T ϵ⃗ to have a legitimate univariate stable distribution, we just need to show that
γ(⃗t) ≥ 0 ∀ t⃗ ∈ RdY . Note that γ(⃗t) = 0 would correspond to the case where all the mass of
the distribution is centered at 0, which does satisfy definition 2, and is an example of a degenerate
univariate stable distribution.

By the assumption in theorem, ∥K⃗Y ∥2 = ∥Σ−1/2
Y H⃗Y ∥2 ≤ ∥K⃗X∥2 = ∥Σ−1/2

X H⃗X∥2. Hence, we can
use the result of lemma 12, which shows that (K⃗Y (K⃗

1
X)T )(K⃗Y (K⃗

1
X)T )T ⪯ IdY

. Using the fact
that (IdY

− (K⃗Y (K⃗
1
X)T )(K⃗Y (K⃗

1
X)T )T ) is a positive semi-definite matrix, we have:

t⃗T
(
IdY

− (K⃗Y (K⃗
1
X)T )(K⃗Y (K⃗

1
X)T )T

)
t⃗ ≥ 0 ∀ t⃗ ∈ RdY ,

⇒ t⃗T IdY
t⃗ ≥ t⃗T (K⃗Y (K⃗

1
X)T )(K⃗Y (K⃗

1
X)T )T t⃗ ∀ t⃗ ∈ RdY ,

⇒
(⃗
tT IdY

t⃗
)α/2

≥
(⃗
tT (K⃗Y (K⃗

1
X)T )(K⃗Y (K⃗

1
X)T )T t⃗

)α/2

∀ t⃗ ∈ RdY ,

⇒γ(⃗t) =
(⃗
tT IdY

t⃗
)α/2

−
(⃗
tT (K⃗Y (K⃗

1
X)T )(K⃗Y (K⃗

1
X)T )T t⃗

)α/2

≥ 0 ∀ t⃗ ∈ RdY . (167)

Hence, we know that ϵ⃗ follows a legitimate multivariate stable distribution. We also derive
QMC(Y⃗

′|M) which is needed for showing QMC(M, X⃗, Y⃗) ∈ ∆P .

Deriving QMC(Y⃗
′|M): We will derive QMC(Y⃗

′|M) using the fact that ϵ⃗ ⊥⊥ X⃗′′|M = m, hence
their conditional characteristic functions would just result in multiplication.

E
[
ei⃗t

T Y⃗′
∣∣∣M = m

]
= E

[
ei⃗t

T (X⃗′′+ϵ⃗)
∣∣∣M = m

]
= E

[
ei⃗t

T X⃗′′+i⃗tT ϵ⃗
∣∣∣M = m

]
,

= E
[
ei⃗t

T X⃗′′
ei⃗t

T ϵ⃗
∣∣∣M = m

]
(a)
= E

[
ei⃗t

T X⃗′′
∣∣∣M = m

]
E
[
ei⃗t

T ϵ⃗
∣∣∣M = m

]
, (168)

where (a) is due to ϵ⃗ ⊥⊥ X⃗′′|M . Substituting the characteristic functions of X⃗′′ and ϵ⃗ from (162)
and (164), respectively, in (168)

= exp

(
−
(⃗
tT (K⃗Y (K⃗

1
X)T )(K⃗Y (K⃗

1
X)T )T t⃗

)α/2

+ i⃗tT K⃗Y m

)
×

exp

(
−
(⃗
tT IdY

t⃗
)α/2

+
(⃗
tT (K⃗Y (K⃗

1
X)T )(K⃗Y (K⃗

1
X)T )T t⃗

)α/2
)
,

= exp

(
−
(⃗
tT IdY

t⃗
)α/2

+ i⃗tT K⃗Y m

)
. (169)

By inspecting the characteristic function shown in (169), we can conclude:

QMC(Y⃗
′|M = m) = pCS−EC(α, IdY

, K⃗Y m). (170)

Specifying QMC(Y⃗|Y⃗′): Lastly, we specify QMC(Y⃗|Y⃗′) through the following deterministic trans-
formation:

Y⃗ = (Σ
1/2
Y )T Y⃗′ + b⃗Y . (171)

Finally, we construct the desired QMC(M, X⃗, Y⃗) from QMC(M, X⃗, X⃗′, X⃗′′, Y⃗′, Y⃗) by marginaliz-
ing X⃗′, X⃗′′, and Y⃗′.

Part 2: Showing QMC(M, X⃗, Y⃗) ∈ ∆P

For showing that QMC(M, X⃗, Y⃗) ∈ ∆P , we first need to derive QMC(Y⃗|M).
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Deriving Q(Y⃗|M): We use lemma 11 to calculate QMC(Y⃗|M = m), as QMC(X⃗|M = m) is an
elliptically contoured multivariate continuous stable distribution for a fixed m (see (170)), and (171)
defines a scaling and translation operation.

QMC(X⃗
′|M = m) = pCS−EC

(
α, (Σ

1/2
Y )TΣ

1/2
Y , (Σ

1/2
Y )T K⃗Y m+ b⃗Y

)
,

(a)
= pCS−EC

(
α,ΣY , (Σ

1/2
Y )T K⃗Y m+ b⃗Y

)
,

(b)
= pCS−EC

(
α,ΣY , (Σ

1/2
Y )T (Σ

−1/2
Y )T H⃗Y m+ b⃗Y

)
, (172)

= pCS−EC

(
α,ΣY , H⃗Y m+ b⃗Y

)
, (173)

where (a) is due to the fact that (Σ
1/2
Y )TΣ

1/2
Y = ΣY , and (b) is due to the fact that K⃗Y = Σ

−1/2
Y H⃗Y .

Comparing (173) with P (Y⃗|M = m) shown in Appx. H.2, we can conclude:

QMC(Y⃗|M) = P (Y⃗|M). (174)

From (174) and (158), we can conclude:

QMC(M, Y⃗) = QMC(M)QMC(Y⃗|M) = P (M)P (Y⃗|M) = P (M, Y⃗). (175)

We know that by construction:

QMC(M, X⃗) = P (M, X⃗). (176)

Hence, QMC(M, X⃗, Y⃗) ∈ ∆P and consequently, by proposition 1, UI(M ; Y⃗\X⃗) = 0, concluding
our proof.

Lemma 11. Let X⃗ ∼ pCS−EC(α,Σ, µ⃗) be a d-dimensional random vector, where Σ is a d × d

positive definite matrix, µ⃗ ∈ Rd, and α ∈ (0, 2]. Furthermore, let A ∈ Rn×d and b⃗ ∈ Rd. Then,

AX⃗+ b⃗ ∼ pCS−EC(α,AΣAT ,Aµ⃗+ b⃗).

Proof. Calculating the characteristic function of AX⃗+ b⃗:

E
[
exp

(
i⃗tT (AX⃗+ b⃗)

)]
= E

[
exp

(
i⃗tTAX⃗+ i⃗tT b⃗

)]
= E

[
exp

(
i⃗tTAX⃗

)
exp

(
i⃗tT b⃗

)]
,

Employing linearity of expectation to pull the term exp
(
i⃗tT b⃗

)
out of the expectation, as it is

constant with respect to X⃗:

E
[
exp

(
i⃗tT (AX⃗+ b⃗)

)]
= exp

(
i⃗tT b⃗

)
E
[
exp

(
i⃗tTAX⃗

)]
. (177)

Substituting t⃗′ = t⃗TA in (177):

E
[
exp

(
i⃗tT (AX⃗+ b⃗)

)]
= exp

(
i⃗tT b⃗

)
E
[
exp

(
i(⃗t′)T X⃗

)]
.

Substituting the formula of the characteristic function of an Elliptically-contoured multivariate stable
distribution (given in (156)) for calculating E

[
exp

(
i(⃗t′)T X⃗

)]
as X⃗ ∼ pCS−EC(α,Σ, µ⃗):

E
[
exp

(
i⃗tT (AX⃗+ b⃗)

)]
= exp

(
i⃗tT b⃗

)
exp

(
−
(
(⃗t′)TΣt⃗′

)α/2

+ i(⃗t′)T µ⃗

)
.

Re-substituting t⃗′ = t⃗TA in the above equation

= exp
(
i⃗tT b⃗

)
exp

(
−
(⃗
tTAΣAT t⃗

)α/2

+ i⃗tTAµ⃗

)
,

= exp

(
−
(⃗
tTAΣAT t⃗

)α/2

+ i⃗tT (Aµ⃗+ b⃗)

)
. (178)
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By inspecting the characteristic function described in (178), we can determine that AX⃗ + b⃗ is
distributed according to an elliptically-contoured multivariate stable distribution, i.e., AX⃗ + b⃗ ∼
pCS−EC

(
α,AΣAT ,Aµ⃗+ b⃗

)
.

Lemma 12. Let H⃗1 ∈ Rd1 and H⃗2 ∈ Rd2 . Then, ∥H⃗1∥2 ≥ ∥H⃗2∥2 if and only if ∃ a matrix
A ∈ Rd2×d1 such that H⃗2 = AH⃗1, and AAT ⪯ Id2

, with A = H⃗2(H⃗
1
1)

T , where B ⪯ C means
B−C is a positive semi-definite matrix, H⃗1

1 is as defined in lemma 10, and Id2
is d2 × d2 identity

matrix.

Proof. See the proof of lemma 5 in [48] for the special case t = 1.

I Proof of Theorem 4

In this section, we provide the proof of theorem 4. Since theorem 4 provides the analytical PID
terms for the univariate affine discrete stable system defined in Sec. 4, we briefly restate certain
key properties of the univariate discrete stable distributions and the corresponding univariate affine
discrete stable system for convenience.

I.1 Univariate discrete stable distribution

Univariate discrete stable distributions are the discrete analogues of univariate continuous stable dis-
tributions. We refer the reader to Appx. N.4 for more details on univariate discrete stable distributions.
We now list certain key properties of univariate continuous stable distributions that we make use of in
the proof of theorem 4:

1. If X is distributed according to a univariate discrete stable distribution, then X
d
= γ ◦X1 +

(1− γν)1/ν ◦X2, where X1 and X2 are two independent copies of X , ν ∈ (0, 1], γ ∈ [0, 1],
and ◦ denotes the binomial thinning operation.

2. The p.m.f. of discrete stable distributions are characterized by two parameters: exponent
ν ∈ (0, 1], and rate parameter τ ∈ (0,∞). We denote the p.m.f. of a univariate discrete
stable distribution as PDS(ν, τ). In general, discrete stable distributions do not have a “nice”
analytical form consisting of well-known elementary functions. Consequently, the univariate
discrete stable distribution are typically expressed through their probability generating
function.

3. The probability generating function of a discrete random variable N having a stable discrete
distribution is given by (179):

PN (z) = exp(−τ(1− z)γ). (179)

I.2 Definition of univariate affine discrete stable system

Let M ,X , and Y be a system of random variables with the joint distribution P (M,X, Y ). The
joint distribution P (M,X, Y ) describes the univariate affine discrete stable system if it satisfies the
following two properties:

1. M ∼ P (M) having some support set M ⊆ (0,∞).

2. The conditional distributions of random variables X and Y conditioned on M can be
expressed through discrete stable family distributions with an affine dependence on M .
Formally, P (X|M=m)=PDS(ν, am + b) and P (Y |M=m)=PDS(ν, cm + d), where
a, b, c, d ∈ (0,∞).

I.3 Formal proof of Theorem 4

Theorem 4. Let M,X, and Y be random variables whose joint distribution P (M,X, Y ) describes
a univariate affine discrete stable system. Without the loss of generality, assume a ≥ c. If a/b ≥ c/d,
then ∆P contains a Markov chain of the form M → X → Y and UI(M ;Y \X) = 0.
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Proof. We first note that we can always assume a ≥ c without the loss of generality because if a ≤ c,
then we can always switch our nomenclature to refer to Y as X , and X as Y .

We briefly outline the proof structure.

1. In the first part, we explicitly construct a joint distribution QMC(M,X, Y ) having the
Markovian structure M → X → Y .

2. In the second part, we show that the QMC(M,X, Y ) constructed in the first part lies in ∆P .
Therefore, we can then apply the result of proposition 1 to conclude UI(M ;Y \X) = 0.

Part 1: Specifying QMC(M,X, Y )

We explicitly construct the desired Markov chain M → X → Y by constructing a larger Markov
chain M → X → X ′ → Y and then marginalizing the larger Markov chain to obtain the desired
Markov chain M → X → Y .

Denote the joint distribution of the Markov chain M → X → X ′ → Y as QMC(M,X,X ′, Y ). We
can decompose QMC(M,X,X ′, Y ) by utilizing its Markovian structure as follows:

QMC(M,X,X ′, Y ) = QMC(M)QMC(X|M)QMC(X
′|X)QMC(Y |X ′).

Consequently, we can specify/construct the distribution QMC(M,X,X ′, Y ) by individually specify-
ing QMC(M), QMC(X|M), QMC(X

′|X), and QMC(Y |X ′).

Specifying QMC(M) and QMC(X|M): We choose QMC(M) and QMC(X|M) as follows:

QMC(M) = P (M) and QMC(X|M) = P (X|M), (180)

where P (M) and P (X|M) are marginal distributions derived from the original joint distribution
P (M,X, Y ) (discussed in the theorem statement) over which the bivariate PID is being calculated.

Specifying QMC(X
′|X): QMC(X

′|X) is specified through a binomial thinning operation, specifi-
cally:

X ′ = X ◦ (c/a)1/ν . (181)

Note that the above binomial thinning operation is valid as c ≤ a by the assumption in the theorem
statement. We also derive QMC(X

′|M) as it is needed for showing QMC(M,X, Y ) ∈ ∆P .

Deriving QMC(X
′|M): We use lemma 13 to derive QMC(X

′|M = m) as QMC(X|M = m)
describes a univariate discrete stable distribution for a fixed m, and X ′ is a binomially-thinned
version of X . The exact expression of QMC(X

′|M = m) is provided in (182).

QMC(X
′|M = m) = PDS(ν, (c/a)

ν/ν(am+ b/a)),

= PDS(ν, cm+ cb/a). (182)

Specifying QMC(Y |X ′): QMC(Y |X ′) is specified through the following stochastic transformation:

Y = X ′ + ϵ, (183)

where ϵ ∼ PDS (ν, d− cb/a). For QMC(Y |X ′) to be a valid distribution, we need to ensure that ϵ
is distributed according to a legitimate discrete stable distribution. In order to show ϵ is distributed
according to a legitimate discrete stable distribution, we need to ensure that ν and d− cb/a lie within
their appropriate bounds as specified in Sec. I.1. It is trivial to see ν ∈ (0, 1].

From the assumptions in the theorem statement, we know that

a

b
≥ c

d
⇒ d ≥ bc

a
⇒ d− bc

a
≥ 0. (184)

Hence, ϵ follows a legitimate discrete stable distribution. Furthermore, we choose ϵ ⊥⊥ (M,X,X ′).

Finally, we construct the desired QMC(M,X, Y ) from QMC(M,X,X ′, Y ) by marginalizing X ′.

Part 2: Showing QMC(M,X, Y ) ∈ ∆P

For showing that QMC(M,X, Y ) ∈ ∆P , we first need to derive QMC(Y |M).
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Deriving Q(Y |M): Note that ϵ follows discrete stable distribution PDS(ν, d − bc/a) and
QMC(X

′|M = m) is also a discrete stable distribution PDS(X
′; ν, cm + bc/a) for a fixed m

(see (182)). Furthermore, ϵ ⊥⊥ X ′|M . Hence, using lemma 14, we have

QMC(Y |M = m) = PDS(ν, cm+ bc/a − bc/a + d) = PDS(ν, cm+ d). (185)

As P (Y |M) = PDS(ν, cM + d) (see Appx. I.2), we have:

Q(Y |M) = P (Y |M). (186)

From (180) and (186), we can conclude:

QMC(M,X) = QMC(M)QMC(X|M) = P (M)P (X|M) = P (M,X), (187)
QMC(M,Y ) = QMC(M)QMC(Y |M) = P (M)P (Y |M) = P (M,Y ). (188)

Hence, QMC(M,X, Y ) ∈ ∆P and consequently, by proposition 1, UI(M ;Y \X) = 0, concluding
our proof.

Lemma 13. Let N ∼ PDS(ν, τ). Then, N1 = γ ◦N ∼ PDS(ν, γ
ντ) ∀ γ ∈ [0, 1], where ◦ is the

binomial thinning operation.

Proof. The probability generating function of N , denoted as PN (z), can be described using (179):

PN (z) = exp (−τ(1− z)ν) . (189)

For calculating the probability generating function of N1, we use the following relationship between
the probability generating function of a random variable R and its binomially-thinned version R ◦ p,
with p ∈ [0, 1]:

PR◦p(z) = PR(1− p(1− z)) (see equation 3.3 in [24]). (190)

From (189) and (190), we can calculate the probability generating function of N1 as follows:

PN1
(z) = PN◦γ(z) = PN (1− γ(1− z)) = exp (−τ (1− (1− γ(1− z)))

ν
)

= exp (−τ (γ(1− z))
ν
) = exp (−τγν (1− z)

ν
) . (191)

Inspecting the probability generating function of N1 in (191), we can conclude that N1 ∼
PDS(ν, γ

ντ).

Lemma 14. Let N1 ∼ PDS(ν, τ1), N2 ∼ PDS(ν, τ2), and N1 ⊥⊥ N2. Then, N1 + N2 = N ∼
PDS(n; ν, τ1 + τ2).

Proof. The probability generating function of N1 and N2, denoted as PN1(z) and PN2(z), can be
described using (179):

PN1
(z) = exp (−τ1(1− z)ν) and PN2

(z) = exp (−τ2(1− z)ν) . (192)

Calculating the probability generating function of N = N1 +N2,

PN (z) = PN1+N2
(z)

(a)
= PN1

(z)PN2
(z)

(b)
= exp (−τ1 (1− z)

ν
) exp (−τ2 (1− z)

ν
) ,

= exp (−(τ1 + τ2) (1− z)
ν
) (193)

where (a) is due to the fact that N1 ⊥⊥ N2, and (b) is achieved by substituting the explicit forms of
PN1

(z) and PN2
(z) from (192). Inspecting the probability generating function of N1 +N2 in (193),

we can conclude that N1 +N2 = N ∼ PDS(n1; ν, τ1 + τ2).

J Proof of Theorem 5

In this section, we provide the proof of theorem 5. Since theorem 5 provides the analytical PID terms
for the multivariate linear Poisson system defined in Sec. 4, we briefly restate certain key properties
of multivariate Poisson distributions and the multivariate linear Poisson system for convenience.
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J.1 Multivariate Poisson Distribution

We use the multivariate Poisson distribution proposed in [42]. For more details, see Appx. N.5. We
list certain key properties of multivariate Poisson distributions that we make use of in the proof of
theorem 5:

1. Under the definition of the multivariate Poisson distribution proposed in [42], each compo-
nent of the random vector is a sum of independent Poisson random, i.e.,

N⃗ = AN⃗g, (194)

where A is an appropriate matrix of 0’s and 1’s. We can decompose A = [A1 . . . Ad′ ],
where Ai is a d ×

(
d
i

)
submatrix having no duplicate columns, and each of its columns

containing exactly i ones and (d − i) zeros [44], and N⃗g = [Ng
1 . . . Ng

d Ng
12 . . .

Ng
(d−1)d . . . N

g
d−(d′−1)...d]

T , with Ng
i1...ij

∼ Poisson(λi1...ij ) ∀ (i1, . . . , ij) ∈ Ad
j , j ∈ [d′].

Furthermore, the random variables {N1, . . . , Nd−(d′−1)...d} are mutually independent.

2. We denote the p.m.f. of the multivariate Poisson distribution as Poisson(d, d′, Λ⃗), where
d ≥ d′, and

Λ⃗ =
[
λ1 . . . λd λ12 . . . λd−(d′−1)...d

]T
. (195)

3. For d′ = 1, we have that N⃗ is a collection of independent Poisson random variables,
and when both d = d′ = 1, we recover the scalar Poisson distribution: Pr(N = n) =
e−λλn

n! , ∀ n ∈ N0.

4. Let N⃗ ∼ Poisson(d, d′, Λ⃗), where N⃗ is a d-dimensional random vector. Then the corre-
sponding p.m.f. of N⃗ is described below:

Let n⃗′=
[
n12 . . . n(d−1)d . . . nd−(d′−1)...d

]T
, and dn⃗′ be the dimension of n⃗′, then:

P (N⃗=n⃗)=e−1⃗T Λ⃗
d∏

i=1

λni
i

∑
n⃗′∈C

 ∏
(i1,i2)∈Ad

2

(
λi1i2

λi1λi2

)ni1i2

×

. . .×
∏

(i1,...,id′ )∈Ad
d′

(
λi1...id′∏d′

j=1 λij

)ni1...i
d′

×Q(n⃗, n⃗′)

 , (196)

where C = {n⃗′ ∈ Ndn⃗′
0 :(a⃗′i)

T n⃗′ ≤ ni ∀ i ∈ [d]}, and

Q(n⃗, n⃗′) =

d∏
i=1

1

(ni − a⃗′Ti n⃗′)!

d′∏
j=2

∏
(i1,...,ij)∈Ad

j

1

ng
i1...ij

!
,

with a⃗′i being the i-th row of the matrix A′ = [A2 . . .Ad′ ].

J.2 Definition of the multivariate linear Poisson system

Let the random variable M ∼ P (M). X⃗ and Y⃗ are dX -dimensional and dY -dimensional random
vectors, respectively. The joint distribution P (M, X⃗, Y⃗) describes the multivariate linear Poisson
system if it satisfies the following two properties:

1. M ∼ P (M) having some support set M ⊆ (0,∞).

2. The conditional distributions of random vectors X⃗ and Y⃗ are multivariate Poisson distributions,
i.e., P (X⃗|M)=Poisson(dX , d′X , Λ⃗X) and P (Y⃗|M)=Poisson(dY , d′Y , Λ⃗Y ), with:

Λ⃗X=
[
λX
1 . . . λX

dX−(d′
X−1)...dX

]T
, λX

i1...ij = γX
i1...ijM

j ∀ j ∈ [dX ] and (i1, ..., ij) ∈ AdX
j ,

ΛY =
[
λY
1 . . . λY

dY −(d′
Y −1)...dY

]T
, λY

i1...ij = γY
i1...ijM

j ∀ j ∈ [dY ] and (i1, ..., ij) ∈ AdY
j .

Here, γX
1 , . . . , γX

dX−(d′
X−1)...dX

, γY
1 , . . . , γY

dY −(d′
Y −1)...dY

∈ R+.
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Furthermore, let AX , and AY be the corresponding A-matrices (defined in (194)) associated with
P (X⃗|M) and P (Y⃗|M), respectively.

J.3 Formal proof of Theorem 5

Theorem 5. Let the joint distribution P (M, X⃗, Y⃗) of M , X⃗, and Y⃗ describe the multivariate linear
Poisson system. Without the loss of generality, assume d′X ≥ d′Y . If

∑
(i1,...,ij)∈AdX

j

γX
i1...ij

≥∑
(i1,...,ij)∈AdY

j

γY
i1...ij

∀ j ∈ [d′Y ], then ∆P contains a Markov chain of the form M → X⃗ → Y⃗

and UI(M ; Y⃗\X⃗) = 0.

Proof. We first note that we can always assume d′X ≥ d′Y without the loss of generality because if
d′X ≤ d′Y , then we can always switch our nomenclature to refer to Y⃗ as X⃗, and X⃗ as Y⃗.

We provide an explicit construction of the Markov chain M → X⃗ → X⃗g → Y⃗g → Y⃗ having
the marginals P (M, X⃗), and P (M, Y⃗). Denote the joint density of M → X⃗ → X⃗g → Y⃗g → Y⃗

as Q(M, X⃗, X⃗g, Y⃗g, Y⃗). For Q(M) and Q(X⃗|M), we choose them to be equal to P (M) and
P (X⃗|M), i.e. Q(M) = P (M), and Q(X⃗|M) = P (X⃗|M). Note that due to this construction,
P (M, X⃗) = Q(M, X⃗) holds trivially.

For Q(X⃗g|X⃗), we use the result described in lemma 17. Note that the construction for
Q(X⃗g|X⃗) is not explicit but rather implicit. Let dΛ⃗X

be the dimension of Λ⃗X , then we explic-

itly choose: Q(X⃗|X⃗g,M) = δK(X⃗ = AXX⃗g), and Q(Y⃗g|M)=Poisson(dΛ⃗X
, 1, Λ⃗Y). Note

that Q(X⃗|M)=Poisson(dX , d′X , Λ⃗X) by construction, and we derive Q(X⃗g|X⃗,M) through the
Bayes theorem. Here, δK(·) is the Kronecker delta function [59]. By lemma 17, we know that
Q(X⃗g|X⃗,M) = Q(X⃗g|X⃗), and hence we have the Markov chain M → X⃗ → X⃗g .

For choosing Q(Y⃗g|X⃗g), we rely on the result of lemma 18. Let us define the random vectors:

X⃗j=
[
Xg

i1...ij

]T
(i1,...,ij)∈Ad1

j

, and Y⃗j=
[
Y g
i1...ij

]T
(i1,...,ij)∈Ad2

j

,

i.e., X⃗j and Y⃗j are random vectors containing all terms of the form Xg
i1,...,ij

, and Y g
k1,...,kj

,

where (i1, . . . , ij) ∈ Ad1
j and (k1, . . . , kj) ∈ Ad2

j , respectively. Note that we can write

X⃗g=
[
X⃗T

1 . . . X⃗T
d′
1

]T
, and we define Y⃗g =

[
Y⃗T

1 . . . Y⃗T
d′
2

]T
. Then, we construct Q(Y⃗g|X⃗g)

as a product of d′Y multinomial distributions, described below:

Q(Y⃗g|X⃗g) =

d′
Y∏

j=1

Q(Y⃗j |X⃗j),

where Q(Y⃗j=y⃗j |X⃗j=x⃗j) = Multinomial(kj ;Nj ,pi), and

Nj = 1⃗T x⃗j , k⃗j =
[
y⃗T
j 1⃗T x⃗j − 1⃗T y⃗j

]T
,

p⃗i =
[
p1...j · · · pd2−(j−1)...d2

1−
∑

(i1,...,ij)∈Ad2
j

pi1...ij
]T

,

pi1...ij =
γY
i1...ij∑

(i1,...,ij)∈Ad1
j

γX
i1...ij

∀ (i1, . . . , ij) ∈ Ad2
j .

By construction X⃗g consists of mutually conditionally independent Poisson random variables (condi-
tioned on M ), and the condition of lemma 18 (specified in (219)) is satisfied by condition 1. Therefore,
using the result of lemma 18 on the Markov chain M → X⃗g → Y⃗g (obtained by marginalizing X⃗),
we conclude that Q(Y⃗g|M) = Poisson(1, dΛ⃗Y

, Λ⃗Y ), where dΛ⃗Y
is the dimension of Λ⃗Y .

We specify Q(Y⃗|Y⃗g) through the following deterministic transformation Y⃗ = AY Y⃗
g to obtain the

Markov chain M → X⃗ → X⃗g → Y⃗g → Y⃗. Marginalizing X⃗ and X⃗g in the above Markov chain,
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we get the following Markov chain: M → Y⃗g → Y⃗. Now, since Y⃗ = AY Y⃗
g and P (Y⃗g|M) =

Poisson(dΛ⃗Y
, 1, Λ⃗Y ), P (Y⃗|M) = Poisson(dY , d′Y ,ΛY ) (by definition of the multivariate Poisson

discussed in Sec. J.1). Since we have Q(M) = P (M) and Q(Y⃗|M) = P (Y⃗|M), we also have
Q(M, Y⃗) = P (M, Y⃗). Marginalizing X⃗g and Y⃗g from the Markov chain M → X⃗ → X⃗g →
Y⃗g → Y⃗ results in the desired Markov chain M → X⃗ → Y⃗ having Q(M, X⃗)=P (M, X⃗) and
Q(M, Y⃗)=P (M, Y⃗), concluding our proof.

Lemma 15. If Nj ∼ Poisson(λj) ∀ j ∈ {1, . . . , d}, and all Nj’s are mutually independent, then
P (N1, . . . , Nj |

∑d
j=1 Nj = N) = Multinomial(N1, . . . , Nj ;N, [λ1/

∑d
i=1 λj . . . λd/

∑d
i=1 λj]).

Proof. See Section 3 of [60].

Lemma 16. Let N⃗1 =
[
N

(1)
1 . . . N

(1)
d1

]T
, where Nj ∼ Poisson(λ(1)

j ) ∀ j ∈ {1, . . . , d1} and all

Nj’s are mutually independent from each other. Define P (N⃗2|N⃗1) = Multinomial
(
k⃗;N, p⃗

)
, where

N =

d1∑
j=1

N
(1)
j , k⃗ =

[
N

(2)
1 · · · N

(2)
d2

∑d1

j=1 N
(1)
j −

∑d2

j=1 Nj

]T
,

p⃗ =

[
λ
(2)
1∑d1

j=1 λ
(1)
j

· · · λ
(2)
1∑d1

j=1 λ
(1)
j

1−
∑d2

j=1 λ
(2)
j∑d1

j=1 λ
(1)
j

]T
,

where {λ(2)
j }d2

j=1 are some positive constants, i.e., λ(2)
j ∈ (0,∞), such that

∑d2

i=1 λ
(2)
j ≤

∑d1

j=1 λ
(1)
j .

Then, N⃗2 =
[
N

(2)
1 . . . N

(2)
d2

]T
, where N (2)

j ∼ Poisson(λ(2)
j ), and all N (2)

j ’s are mutually indepen-
dent form each other.

Proof. Lemma 16 is a straight-forward generalization of lemma 15. Denote the probability of
N⃗2 shown in the lemma statement as P (N⃗2). We will prove the above lemma by constructing a
Markov chain N⃗1 → N ′

1 → N ′
2 → N⃗2 with joint density Q(N⃗1, N

′
1, N

′
2, N⃗2), and showing that

Q(N⃗2) = P (N⃗2) and Q(N⃗2|N⃗1) = P (N⃗2|N⃗1).

Specifying Q(N ′
1|N⃗1): We specify Q(N ′

1|N⃗1) through the following deterministic transformation:

N ′
1 = 1⃗T N⃗1 =

d1∑
j=1

N
(1)
j . (197)

Calculating Q(N ′
1): We use the property that the sum of independent Poisson random variables

is a Poisson random variable with its rate parameter being the sum of the rate parameters of its
summands [61]. Hence, Q(N ′

1) = Poisson(
∑d1

j=1 λ
(1)
j ).

Specifying Q(N ′
2|N ′

1): We specify Q(N ′
2|N ′

1 = n′
1) as follows:

Q(N ′
2|N ′

1 = n′
1) = Binomial

(
N ′

2;n
′
1,

∑d2
j=1 λ

(2)
j /

∑d1
j=1 λ

(1)
j

)
. (198)

Calculating Q(N ′
2): We use lemma 15 to calculate Q(N ′

2). Note that Q(N ′
1) = Poisson(

∑d1

j=1 λ
(1)
j ),

and Q(N ′
2|N ′

1) = Binomial
(
N ′

2;n
′
1,

∑d2
j=1 λ

(2)
j /

∑d1
j=1 λ

(1)
j

)
. Hence, by lemma 15, we have:

Q(N ′
2) = Poisson

 d1∑
j=1

λ
(1)
j ×

∑d2

j=1 λ
(2)
j∑d1

j=1 λ
(1)
j

 = Poisson

 d2∑
j=1

λ
(2)
j

 . (199)
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Specifying Q(N ′
2|N ′

1): We specify Q(N⃗2|N ′
2 = n′

2) as follows:

Q(N⃗2|N ′
2 = n′

2) = Multinomial

(
N⃗′

2;n
′
2,

[
λ
(2)
1∑d2

j=1 λ
(2)
j

. . .
λ
(2)
d2∑d2

j=1 λ
(2)
j

]T)
. (200)

Calculating Q(N⃗2): We again use lemma 15 to calculate Q(N⃗2). Note that,

Q(N ′
2) = Poisson

 d2∑
j=1

λ
(2)
j

 , and

Q(N⃗2|N ′
2 = n′

2) = Multinomial

(
N⃗′

2;n
′
2,

[
λ
(2)
1∑d2

j=1 λ
(2)
j

. . .
λ
(2)
d2∑d2

j=1 λ
(2)
j

]T)
. (201)

Hence, by lemma 15, we have:

N⃗2 =
[
N

(2)
1 . . . N

(2)
d2

]T
, where N

(2)
j ∼ Poisson(λ(2)

j ) ∀ j ∈ [d2]. (202)

Hence, by (202), we know that Q(N⃗2) = P (N⃗2).

Calculating Q(N⃗2|N⃗1):

Q(N⃗2 = n⃗2|N⃗1 = n⃗1) =

∞∑
n′
1,n

′
2=0

Q(N ′
1 = n′

1, N
′
2 = n′

2, N⃗2 = n⃗2|N⃗1 = n⃗1),

(a)
=

∞∑
n′
1,n

′
2=0

Q(n′
1|n⃗′

2)Q(n′
2|n′

1)Q(n⃗2|n′
2),

where (a) is due to the Markovian nature of Q(N⃗1, N
′
1, N

′
2, N⃗2). We drop the random variable nota-

tion for brevity. Let n⃗1 =
[
n
(1)
1 . . . n

(1)
d1

]T
, and n⃗2 =

[
n
(2)
1 . . . n

(2)
d2

]T
. Then, substituting

the exact form of Q(n′
1|n⃗1),Q(n′

2|n′
1), and Q(n⃗2|n′

2) in the above equation:

=

∞∑
n′
1,n

′
2=0

I

n′
1 =

d1∑
j=1

n
(1)
j

 (n′
1)!

(n′
1 − n′

2)!(n
′
2)!

(∑d2

j=1 λ
(2)
j∑d1

j=1 λ
(1)
j

)n′
2
(
1−

∑d2

j=1 λ
(2)
j∑d1

j=1 λ
(1)
j

)n′
1−n′

2

×,

I

 d2∑
j=1

n
(2)
j = n′

2

 (n′
2)!∏d2

j=1(n
(2)
j )!

d2∏
j=1

(
λ
(2)
j∑d2

j=1 λ
(2)
j

)n
(2)
j

,

where I[·] is an indicator function. Simplifying the above equation by using the fact that only non-zero
term in the above summation is n′

1 =
∑d1

j=1 n
(1)
j and n′

2 =
∑d1

j=1 n
(2)
j .

=

(∑d1

j=1 n
(1)
j

)
!(∑d1

j=1 n
(1)
j −

∑d2

j=1 n
(2)
j

)
!
(∑d2

j=1 n
(2)
j

)
!

(∑d2

j=1 λ
(2)
j∑d1

j=1 λ
(1)
j

)∑d2
j=1 n

(2)
j

×

(
1−

∑d2

j=1 λ
(2)
j∑d1

j=1 λ
(1)
j

)∑d1
j=1 n

(1)
j −

∑d1
j=1 n

(2)
j

(∑d2

j=1 n
(2)
j

)
!∏d2

j=1(n
(2)
j )!

d2∏
j=1

(
λ
(2)
j∑d2

j=1 λ
(2)
j

)n
(2)
j

,

Collecting all factorial terms together, and rearranging some terms:

=

(∑d1

j=1 n
(1)
j

)
!(∑d1

j=1 n
(1)
j −

∑d2

j=1 n
(2)
j

)
!
∏d2

j=1(n
(2)
j )!

(
1−

∑d2

j=1 λ
(2)
j∑d1

j=1 λ
(1)
j

)∑d1
j=1 n

(1)
j −

∑d2
j=1 n

(2)
j

×

(∑d2

j=1 λ
(2)
j∑d1

j=1 λ
(1)
j

)∑d2
j=1 n

(2)
j d2∏

j=1

(
λ
(2)
j∑d2

j=1 λ
(2)
j

)n
(2)
j

.
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Substituting
(∑d2

j=1 λ
(2)
j /

∑d1
j=1 λ

(1)
j

)∑d2
j=1 n

(2)
j

=
∏d2

j=1

(∑d2
j=1 λ

(2)
j /

∑d1
j=1 λ

(1)
j

)n(2)
j

in the above equa-
tion:

=

(∑d1

j=1 n
(1)
j

)
!(∑d1

j=1 n
(1)
j −

∑d2

j=1 n
(2)
j

)
!
∏d2

j=1(n
(2)
j )!

(
1−

∑d2

j=1 λ
(2)
j∑d1

j=1 λ
(1)
j

)∑d1
j=1 n

(1)
j −

∑d2
j=1 n

(2)
j

×

d1∏
j=1

(∑d2

j=1 λ
(2)
j∑d1

j=1 λ
(1)
j

)n
(2)
j d2∏

j=1

(
λ
(2)
j∑d2

j=1 λ
(2)
j

)n
(2)
j

=

(∑d1

j=1 n
(1)
j

)
!(∑d1

j=1 n
(1)
j −

∑d2

j=1 n
(2)
j

)
!
∏d2

j=1(n
(2)
j )!

(
1−

∑d2

j=1 λ
(2)
j∑d1

j=1 λ
(1)
j

)∑d1
j=1 n

(1)
j −

∑d2
j=1 n

(2)
j

×

d1∏
j=1

(∑d2

j=1 λ
(2)
j∑d1

j=1 λ
(1)
j

)n
(2)
j
(

λ
(2)
j∑d2

j=1 λ
(2)
j

)n
(2)
j

=

(∑d1

j=1 n
(1)
j

)
!(∑d1

j=1 n
(1)
j −

∑d2

j=1 n
(2)
j

)
!
∏d2

j=1(n
(2)
j )!

(
1−

∑d2

j=1 λ
(2)
j∑d1

j=1 λ
(1)
j

)∑d1
j=1 n

(1)
j −

∑d2
j=1 n

(2)
j

×

d1∏
j=1

(
λ
(2)
j∑d1

j=1 λ
(1)
j

)n
(2)
j

. (203)

By inspecting (203), we can see that Q(N⃗2|N⃗1) = Multinomial(k⃗;N, p⃗) with,

N =

d1∑
j=1

N
(1)
j , k⃗ =

[
N

(2)
1 · · · N

(2)
d2

∑d1

j=1 N
(1)
j −

∑d2

j=1 Nj

]T
, (204)

p⃗ =
[
λ
(2)
1 /

∑d1
j=1 λ

(1)
j · · · λ

(2)
1 /

∑d1
j=1 λ

(1)
j 1−

∑d2
j=1 λ

(2)
j /

∑d1
j=1 λ

(1)
j

]T
, (205)

Hence, by (205), we can conclude that Q(N⃗2|N⃗1) = P (N⃗2|N⃗1) finishing our proof.

Lemma 17. Let N⃗ be a d-dimensional vector and M be a positive random variable, i.e. M ∼
P (M), P (M ≤ 0) = 0. Let P (N⃗|M) = Poisson(d, d′, Λ⃗), where:

Λ⃗ =
[
λ1 . . . λd λ12 . . . λd−(d′−1)...d

]T
,

λi1...ij = γi1...ijM
j ∀ j ∈ [d′] and (i1, . . . , id′) ∈ Ad

j . (206)

Let N⃗g =
[
Ng

1 . . . Ng
d Ng

12 . . . Ng
(d−1)d . . . Ng

d−(d′−1)...d

]T
, where P (N⃗g|M) =

Poisson(dΛ⃗, 1, Λ⃗) and N⃗ = AN⃗g, where dΛ is the dimension of Λ⃗, and A = [A1 . . .Ad′ ]

as defined in Sec. J.1. Then P (N⃗g|N⃗,M) = P (N⃗g|N⃗), i.e. M, N⃗g and N⃗ form the following
Markov chain M → N⃗ → N⃗g .

Proof. To prove lemma 17, all we need to show is that P (N⃗g|N⃗,M) does not depend on M . Let us
to calculate P (N⃗g|N⃗,M). By Bayes Theorem, we know:

P (N⃗g|N⃗,M) =
P (N⃗g|M)P (N⃗|N⃗g,M)

P (N⃗|M)
. (207)

Let us now write the expression for P (N⃗|M) using (196):

P (N⃗=n⃗|M)=Q(n⃗, n⃗′)e−1⃗T Λ⃗
d∏

i=1

(γiM)ni

∑
n⃗′∈C

d′∏
j=2

∏
(i1,...,ij)∈Ad

j

(
γi1...ijM

j∏j
l=1 γilM

)n′
i1...ij

 .

(208)
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Canceling M in the above equation for the terms inside the summation, we get:

P (N⃗=n⃗|M)=Q(n⃗, n⃗′)e−1⃗T Λ⃗
d∏

i=1

(γiM)ni

∑
n⃗′∈C

d′∏
j=2

∏
(i1,...,ij)∈Ad

j

(
γi1...ij∏j
l=1 γil

)n′
i1...ij

 . (209)

Absorbing all terms that do not depend upon M into B, we have

B =
∑
n⃗′∈C

d′∏
j=2

∏
(i1,...,ij)∈Ad

j

(
γi1...ij∏j
l=1 γil

)n′
i1...ij

, . (210)

Then, we can rewrite (209) as:

P (N⃗=n⃗|M) = Be−1⃗T Λ⃗
d∏

i=1

(γiM)ni = Be−1⃗T Λ⃗M
∑d

i=1 ni

d∏
i=1

(γi)
ni

(a)
= Be−1⃗T Λ⃗M

∑d
i=1 ni

(b)
= Be−1⃗T Λ⃗M 1⃗T n⃗, (211)

where, in (a) we further absorb
∏d

i=1(γi)
ni into B since it does not depend upon M , and in (b) we

substitute
∑d

i=1 ni = 1⃗T n⃗. Similarly, let us write out the expression for P (N⃗g|M):

P (N⃗g=n⃗g|M) = e−1⃗T Λ⃗
d′∏
j=1

∏
(i1,...,ij)∈Ad

j

(γi1...ijM
j)

ng
i1...ij . (212)

Collecting all the M terms, and absorbing all the terms that do not depend upon M into D, we obtain:

P (N⃗g=n⃗g|M) = De−1⃗T Λ⃗M

∑d′
j=1

∑
(i1,...,ij)∈Ad

j

(
jng

i1...ij

)
. (213)

Now let us analyze the term 1⃗TAn⃗g:

1⃗TAn⃗g (a)
= (n⃗g)TAT 1⃗

(b)
= (n⃗g)T

A
T
1 1⃗
...

AT
d′ 1⃗

 (c)
= (n⃗g)T


1⃗

21⃗
...

d′1⃗,

 ,

where (a) uses the fact that 1⃗TAn⃗g is a scalar and hence is equal to its transpose, (b) uses the fact
A=[A1 . . .Ad′ ], and (c) follows from the special structure of Ai, i.e., that each column only contains
i ones and d− i zeros, and the fact that AT

1 1⃗ is akin to summing up the columns, hence AT
i 1⃗ = i1⃗.

Equivalently we can rewrite the above equation as:

1⃗TAn⃗g =

d′∑
j=1

∑
(i1,...,ij)∈Ad

j

(
jng

i1...ij

)
. (214)

Substituting (214) into (213):

P (N⃗g|M) = De−1⃗T Λ⃗M 1⃗TAn⃗g

. (215)

Now, let us write out the expression for P (N⃗|N⃗g,M). Since N⃗ = AN⃗g, P (N⃗|N⃗g) can be
represented as a Kronecker delta function with the condition N⃗ = AN⃗g , i.e.,

P (N⃗ = n⃗|N⃗g = n⃗g,M) = P (N⃗ = n⃗|N⃗g = n⃗g) = δK (n⃗ = An⃗g) , (216)

where δK(·) is the Kronecker delta function. Substituting (211), (215) and (216) in (207), we get:

P (N⃗g|N⃗,M) =
De−1⃗T Λ⃗M 1⃗TAn⃗g

δK(n⃗ = An⃗g)

Be−1⃗T Λ⃗M 1⃗T n⃗

(a)
=

DM 1⃗TAn⃗g

δK(n⃗ = An⃗g)

BM 1⃗T n⃗
,

(b)
=

DM 1⃗TAn⃗g

δK(n⃗ = An⃗g)

BM 1⃗TAn⃗g

(c)
=

DδK(n⃗ = An⃗g)

B
, (217)
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where we obtain (a) by canceling the term e−1⃗T Λ⃗, (b) by using the fact n⃗ = An⃗g due to the delta
function, and (c) by canceling the term M 1⃗TAn⃗g

. Since the terms D,B and δK(n⃗ = An⃗g) do not
depend upon M , we can conclude P (N⃗g|N⃗,M) also does not depend upon M , i.e. P (N⃗g|N⃗,M) =

P (N⃗g|N⃗), or M → N⃗ → N⃗g .

Lemma 18. Let M ∼ P (M) have support over (0,∞). Define, X⃗ =
[
X⃗T

1 . . . X⃗T
d1

]T
and

Y⃗ =
[
Y⃗1 . . . Y⃗T

d2

]T
, where X⃗i and Y⃗j are random vectors of size qi ∈ N and rj ∈ N, respectively,

∀ i ∈ [d1], and j ∈ [d2]. Let the conditional distribution of X⃗ and Y⃗ conditioned on M be specified
as follows:

P
(
X⃗|M

)
=

d1∏
i=1

P
(
X⃗i|M

)
, and P

(
Y⃗|M

)
=

d2∏
i=1

P
(
Y⃗i|M

)
, where

P
(
X⃗i|M

)
= Poisson

(
qi, 1, Λ⃗

X

i

)
, Λ⃗

X

i =
[
γX
i1M

i . . . γX
iqi

M i
]T ∀ i ∈ [d1], and

P
(
Y⃗j |M

)
= Poisson

(
rj , 1, Λ⃗

Y

j

)
, Λ⃗

Y

i =
[
γY
i1M

j . . . γY
iri

M j
]T ∀ j ∈ [d2]. (218)

If d1 ≥ d2 and (219) hold

qi∑
j=1

γX
ij ≥

ri∑
j=1

γY
ij ∀ i ∈ [d2] (219)

then the distribution Q̃(M, X⃗, Y⃗) defined in (220) lies in ∆P .

Q̃(M, X⃗, Y⃗) = P (M)P (X⃗|M)Q̃(Y⃗|X⃗), (220)

where Q̃(Y⃗|X⃗) is a product of d2 multinomial distributions, i.e Q̃(Y⃗|X⃗) =
∏d2

i=1 Q̃(Y⃗i|X⃗i), where
Q̃(Y⃗i|X⃗i) = Multinomial(k⃗i;Ni, p⃗i) and

Ni =

ni∑
j=1

xij , k⃗i =
[
yi1 · · · yimi

∑ni

j=1 xij −
∑mi

j=1 yij
]T

,

p⃗i =

[
γY
i1∑ni

j=1 γX
ij

· · · γY
imi∑ni

j=1 γX
ij

1−
∑mi

j=1 γY
ij∑ni

j=1 γX
ij

]T
.

Proof. Lemma 18 follows from a straightforward application of lemma 16. For showing Q̃(M, X⃗, Y⃗)

specified in (220) lies in ∆P , we need to show that Q̃(M, X⃗) = P (M, X⃗) and Q̃(M, Y⃗) =

P (M, Y⃗). Q̃(M, X⃗) = P (M, X⃗) is satisfied trivially by construction of Q̃(M, X⃗, Y⃗).

Proving Q̃(Y⃗,M) = P (Y⃗,M):

For showing the second condition, we will explicitly show Q̃(Y⃗|M) = P (Y⃗|M) which, combined
with the fact that Q̃(M) = P (M) (by construction), will show Q̃(Y⃗,M) = P (Y⃗,M) completing
our proof.
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Calculating Q̃(Y⃗|X⃗): From the law of total probability, we have:

Q̃(Y⃗|M) =
∑
x⃗

P (X⃗ = x⃗|M)Q̃(Y⃗|X⃗ = x⃗)

(a)
=
∑
x⃗

d1∏
i=1

P (X⃗i = x⃗i|M)

d2∏
i=1

Q̃(Y⃗i|X⃗i = x⃗i)

(b)
=
∑
x⃗

d2∏
i=1

P (X⃗i = x⃗i|M)Q̃(Y⃗i|X⃗i = x⃗i)

d1∏
i=d2+1

P (X⃗i = x⃗i|M)

(c)
=

d2∏
i=1

∑
x⃗i

P (X⃗i = x⃗i|M)Q̃(Y⃗i|X⃗i = x⃗i)

 d1∏
i=d2+1


∑
x⃗i

P (X⃗i = x⃗i|M)︸ ︷︷ ︸
=1



(d)
=

d2∏
i=1


∑
x⃗i

P (X⃗i = x⃗i|M)Q̃(Y⃗i|X⃗i = x⃗i)︸ ︷︷ ︸
=Q̃(Y⃗i|M)

 =

d2∏
i=1

Q̃(Y⃗i|M), (221)

where (a) is due to the particular structure of P (X⃗|M) and Q̃(Y⃗|X⃗) specified in (218) and (220),
respectively, (b) is just collecting the terms of P (X⃗i|M) and Q̃(Y⃗i|X⃗i) into a single product, (c)
is due to spreading the summation of the components of x̃ over their corresponding distribution
components, and (d) is due to the fact that sum over all probabilities of all possible x̃i is 1.

Note that for a fixed m, P
(
X⃗i|M = m

)
∼ Poisson

(
ni, 1,

[
γi1m

i . . . γinim
i
]T)

, and

Q(Y⃗i|X⃗i) = Multinomial(k⃗i;Ni, p⃗i), where

Ni =

ni∑
j=1

xij , k⃗i =
[
yi1 · · · yimi

∑ni

j=1 xij −
∑mi

j=1 yij
]T

,

p⃗i =

[
γY
i1∑ni

j=1 γX
ij

· · · γY
imi∑ni

j=1 γX
ij

1−
∑mi

j=1 γY
ij∑ni

j=1 γX
ij

]T
.

Note that we can equivalently write p⃗i as follows,

p⃗i =

[
γY
i1M

i∑ni
j=1 γX

ijM
i · · · γY

imi
Mi∑ni

j=1 γX
ijM

i 1−
∑mi

j=1 γY
ijM

i∑ni
j=1 γX

ijM
i

]T
. (222)

In the setup of lemma 16, choose d1 = qi and d2 = ri, λ
(2)
j = γY

ijM
i ∀ j ∈ [ri] and λ

(1)
j =

γX
ijM

i ∀ j ∈ [qi]. From (219), we know the condition
∑d2

j=1 λ
(2)
j ≤

∑d2

j=1 λ
(2)
j is satisfied by

assumption. Hence, we use the result of lemma 15 to conclude Q̃(Y⃗i|M) = Poisson(ri, 1, Λ⃗
′
), with

Λ⃗
′
= [λi1 . . . , λiri ]

T
, with λij = γY

ijM
i. (223)

Comparing Q̃(Y⃗i|M) specified in (223) with P (Y⃗i|M) specified in (218), we can conclude
Q(Y⃗i|M) = P (Y⃗i|M). Substituting Q(Y⃗i|M) = P (Y⃗i|M) in (221), we obtain:

Q̃(Y⃗|M) =

d2∏
i=1

P (Y⃗i|M). (224)

Comparing (224) with (218), we can conclude Q̃(Y⃗|M) = P (Y⃗|M), finishing our proof.
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K Proof of Theorem 6

In this section, we provide the proof of theorem 6. Since theorem 6 provides the analytical PID terms
for the linear convolution-closed system defined in Sec. 5.1, we briefly restate certain key properties
of convolution-closed distributions and the linear convolution-closed system for convenience.

K.1 Convolution-closed distributions

Convolution-closed distributions are a large class of distributions that are defined as follows:

Definition 1. Let FD denote a family of distributions, where each member distribution, f(δ) ∈ FD,
is indexed by a parameter δ. Consider X1 ∼ f(δ1), X2 ∼ f(δ2), and X1 ⊥⊥ X2 for some δ1, δ2 ∈ D.
Then, FD is convolution-closed in the parameter δ, if

X1 +X2 ∼ f(δ1) ∗ f(δ2) = f(δ1 + δ2) ∀ δ1, δ2 ∈ D such that δ1 + δ2 ∈ D, (225)

where ∗ denotes the convolution operator.

Convolution-closed distributions define a natural dilation/thinning operator. Formally, let X ∼ f(δ).
Then, we define Xϵ as the ϵ-dilated version of X if X ∼ f(ϵδ) for some ϵ ∈ (0, 1) such that ϵδ ∈ D.
Furthermore, if we assume (1 − ϵ)δ ∈ D, then P (Xϵ|X) can be defined as P (Xϵ|Xϵ + X(1−ϵ)),
where X1−ϵ ∼ f((1 − ϵ)δ) and Xϵ ⊥⊥ X1−ϵ. Denote, P (Xϵ|X = x) = P (Xϵ|Xϵ + X(1−ϵ) =
x) = G(ϵδ, (1− ϵ)δ, x).

K.2 Definition of linear convolution-closed system

Let FD be a convolution-closed distribution family in parameter δ ∈ D, and M be a target/message
random variable having distribution P (M) over some support set M. Define the conditional
distribution of random variables X and Y conditioned on M as follows:

P (X|M=m) = f(δXm) and P (Y |M=m) = f(δYm) such that δXm , δYm ∈ D ∀m ∈ M. (226)

Furthermore, we assume that there exists γ ∈ (0,∞) such that: δXm = γδYm ∀ m ∈ M. We denote
such a system of random variables (M,X, Y ), having the joint distribution P (M,X, Y ), a linear
convolution-closed system.

K.3 Formal proof of theorem 6

Theorem 6. Let the joint density P (M,X, Y ) of random variables M , X , and Y describe a linear
convolution-closed system. Without the loss of generality, assume γ ≤ 1. If

(a) (1− γ)δYm ∈ D ∀m ∈ M,

(b) P (Xγ |Xγ + X1−γ=x,M=m) = G(γδXm , (1 − γ)δXm , x) does not depend on m, where
P (Xγ |M) = f(γδXm), P (X1−γ |M) = f((1− γ)δXm) and Xγ ⊥⊥ X1−γ |M ,

then ∆P contains a Markov chain of the form M → X → Y and UI(M ;Y \X) = 0.

Proof. We first note that we can always assume γ ≤ 1 without the loss of generality because if γ ≥ 1,
then we can always switch our nomenclature to refer to Y as X , and X as Y .

We briefly outline the proof structure.

1. In the first part, we explicitly construct a joint distribution QMC(M,X, Y ) having the
Markovian structure M → X → Y .

2. In the second part, we show that the QMC(M,X, Y ) constructed in the first part, lies in ∆P .
Therefore, we can then apply the result of proposition 1 to conclude UI(M ;Y \X) = 0.

Part 1: Specifying QMC(M,X, Y )
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Denote the joint distribution of the Markov chain M → X → Y as QMC(M,X, Y ). We can
decompose QMC(M,X, Y ) by utilizing its Markovian structure as follows:

QMC(M,X, Y ) = QMC(M)QMC(X|M)QMC(Y |X).

Consequently, we can construct the distribution QMC(M,X, Y ) by individually specifying
QMC(M), QMC(X|M), and QMC(Y |X).

Specifying QMC(M) and QMC(X|M): We specify QMC(M) and QMC(X|M) as follows:

QMC(M) = P (M) and QMC(X|M) = P (X|M). (227)

Specifying QMC(Y |X): By assumption (b) in the theorem, we know that G(γδXm , (1 − γ)δXm , x)

does not depend on m, and consequently, does not depend on δXm . Hence, we can simplify notation
of G(γδXm , (1− γ)δXm ,m) as G(γ, (1− γ), x). We specify Q(Y |X) as follows:

Q(Y |X = x) = G(γ, 1− γ, x). (228)

Part 2: Showing QMC(M,X, Y ) ∈ ∆P

For showing that QMC(M,X, Y ) ∈ ∆P , we first need to derive QMC(Y |M).

Deriving QMC(Y |M): We use the result of lemma 19 to derive QMC(Y |M). As QMC(X|M =

m) = f(δXm) is a convolution-closed distribution for a fixed m, and QMC(Y = y|X = x) =
G(γ, 1− γ, x), the result of lemma 19 shows that QMC(Y |M) can be expressed as:

QMC(Y |M = m) = f(γ × δXm) = f(γδXm)
(a)
= f(δYm) = P (Y |M = m), (229)

where (a) is due to the assumption δXm = γδYm (see Appx. K.2).

From (227) and (229), we can conclude:

QMC(M,X) = QMC(M)QMC(X|M) = P (M)P (X|M) = P (M,X), (230)
QMC(M,Y ) = QMC(M)QMC(Y |M) = P (M)P (Y |M) = P (M,Y ). (231)

Hence, QMC(M,X, Y ) ∈ ∆P and consequently, by proposition 1, UI(M ;Y \X) = 0, concluding
our proof for case 1.

Lemma 19. Let FD be a convolution-closed distribution family convolution-closed in the parameter
δ. For a δ ∈ D, assume there exists ϵ ∈ (0, 1) such that ϵδ, (1 − ϵ)δ ∈ D. Consider the following
random variables:

X ′
ϵ ∼ f(ϵδ) ∈ FD, X ′

1−ϵ ∼ f((1− ϵ)δ) ∈ FD, and X ∼ f(δ) ∈ FD,

such that X ′
ϵ ⊥⊥ X ′

1−ϵ. If P (Xϵ = xϵ|X = x) = P (X ′
ϵ = xϵ|X ′

ϵ + X ′
1−ϵ = x), then we have

P (Xϵ = xϵ) = P (X ′
ϵ = xϵ) = f(xϵ; ϵδ) or Xϵ

d
= X ′

ϵ, where d
= implies equality in distribution [57].

Proof. First let us derive the distribution of X ′ = X ′
1−ϵ +X ′

ϵ. Since, X ′
ϵ ⊥⊥ X ′

1−ϵ, we can write
P (X ′) as follows:

P (X ′) = f(ϵδ) ∗ f((1− ϵ)δ)
(a)
= f(ϵδ + (1− ϵ)δ) = f(δ)

(b)
= P (X), (232)

where ∗ is the convolution operator, (a) is due to the properties of convolution-closed distribution
(see Appx. K.1), and (b) is due to the definition of X in the lemma statement. From (232), we
can conclude P (X = x) = P (X ′ = x), and by assumption we have P (Xϵ|X) = P (X ′

ϵ|X ′) =
P (X ′

ϵ|X ′
ϵ +X ′

(1−ϵ)). Hence, we have:

P (X = x,Xϵ = xϵ) = P (X = x)P (Xϵ = xϵ|X = x) = P (X ′ = x)P (X ′
ϵ = xϵ|X ′ = x) ,

= P (X ′ = x)P
(
X ′

ϵ = xϵ|X ′
ϵ +X ′

1−ϵ = x
)

= P
(
X ′

ϵ +X ′
1−ϵ = x,X ′

ϵ = xϵ

)
. (233)

From (233), we can conclude that P (Xϵ) = P (X ′
ϵ) = f(ϵδ).
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L Proof of Theorem 7

In this section, we provide the proof of theorem 7.

L.1 Definition of pexp1 and pexp2

We restate the definitions of pexp1 and pexp2 defined in Sec. 5.2, which is used in the proof of
theorem 7. Let X ∼ pexp1(X), where

pexp1(X = x; θ1, θ2) = H(θ1, θ2) exp(θ
T
1 x− θT2 A(x)), (234)

for some appropriately defined H(·, ·), A(·), θ1 and θ2. Furthermore, define a random variable Y
through its conditional density p(Y |X = x):

p(Y = y|X = x; θ1, θ2) = h(y) exp
(
xTT (y)− θT3 A(x)

)
, (235)

for some h(·), T (·), and θ3, such that p(Y = y|X = x; θ1, θ2) is a well-defined distribution.
Furthermore, the marginal distribution of Y is expressed as:

pexp2(Y = y; θ1, θ2, θ3) = h(y)
H(θ1, θ2)

H(θ1 + T (y), θ2 + θ3)
(see proof of theorem 1 in [26]). (236)

L.2 Formal proof of theorem 7

Theorem 7. Let M,X, and Y be random variables having the joint distribution P (M,X, Y ).
Furthermore, the conditional distribution of X and Y conditioned on M are as follows:
P (X|M=m)=pexp1(X; θ1(m), θ2(m)) and P (Y |M=m)=pexp2(Y ; θ1(m), θ2(m), θ3). Then,
∆P contains a Markov chain of the form M → X → Y and UI(M ;Y \X) = 0.

Proof. We prove theorem 7 by explicitly constructing a Markov chain M → X → Y , having joint
distribution QMC(M,X, Y ), and showing that QMC(M,X, Y ) ∈ ∆P .

Specifying QMC(M) and QMC(X|M): We specify QMC(M) and QMC(X|M) as follows:

QMC(M) = P (M), and QMC(X|M) = P (X|M). (237)

Specifying QMC(Y |X): We specify QMC(Y |X) = h(y) exp(xTT (y)− θT3 A(x)). Then, by (236),
we know that

Q(Y = y|M = m) = pexp2(y; θ1(m), θ2(m), θ3) =
h(y)H(θ1(m), θ2(m))

H(θ1(m) + T (y), θ2(m) + θ3(m))
. (238)

From (237) and (238), we can conclude:

QMC(M,Y ) = QMC(Y |M)QMC(M) = P (Y |M)P (M) = P (M,Y ), (239)
QMC(M,X) = QMC(X|M)QMC(M) = P (X|M)P (M) = P (M,X). (240)

Hence, QMC(M,X, Y ) ∈ ∆P and consequently, by proposition 1, UI(M ;Y \X) = 0, concluding
our proof.

M Additional proofs and details for Sec. 6

In this section, we provide the proofs of certain statements made in Sec. 6, as well as additional
details regarding the simulation study presented in the same section.

M.1 Generating Q̄ for every Q ∈ ∆P

Our goal in this section is to show that there exists a Q̄ (as described in Sec. 6) for every Q ∈ ∆P ,
where the corresponding P (M,X, Y ) is as defined in Sec. 6. We first briefly restate the assumptions
on P (M,X, Y ) described in Sec. 6. The distribution P (M,X, Y ) has the following properties: the
random variable M has support over M, the conditional distributions P (X|M) and P (Y |M) are
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members of some convolution-closed distribution family FD, and there exists some δXbias, δ
Y
bias ∈ D

such that:

P (X|M=m)=f(δXm) and P (Y |M=m)=f(δYm) where δXm , δYm ∈ D ∀ m ∈ M, with

δXm − δXbias = ϵ(1)m (δYm − δYbias) for some ϵ(1)m ∈ [0, 1] ∀m ∈ M,

δYm = ϵ(2)m (δYm − δYbias) for some ϵ(2)m ∈ [0, 1] ∀m ∈ M,

δXm = ϵ(3)m (δXm − δXbias) for some ϵ(3)m ∈ [0, 1] ∀m ∈ M, and

(δYm − δYbias), (δ
X
m − δXbias), (δ

X
m − δYm − (δXbias − δYbias)) ∈ D. (241)

As Q(M,X)=P (M,X) and Q(M,Y ) = P (M,Y ) due to Q ∈ ∆P , we have:

Q(X|M=m)=f(δXm), and Q(Y |M=m)=f(δYm) where δXm , δYm ∈ D ∀m ∈ M. (242)

M.1.1 Explicitly constructing a Q̄ for every Q ∈ ∆P

We show existence of a Q̄ for every Q ∈ ∆P by explicitly constructing a Q̄ for each Q ∈ ∆P .

We define two vectors to simplify our notations:

A⃗ = [X Y ]
T
, B⃗ = [X ′ Y ′′ nX Y ′ nY ]

T
, (243)

where X and Y are the random variables defined above. (X ′, Y ′′, nX), and (Y ′, nY ) are the
corresponding dilated versions of X and Y as defined in Sec. 6. Note that the joint distribution
of (M,X ′, Y ′′, nX , Y ′, nY ) is Q̄(M,X ′, Y ′′, nX , Y ′, nY ). We reiterate the two main properties of
Q̄(X ′, Y ′′, nX , Y ′, nY ), mentioned in Sec. 6, that we want to prove:

1. The marginal conditional distributions of (X ′, Y ′′, nX , Y ′, nY ) given M are as follows:

Q̄(X ′|M=m)=f(δXm−δYm − (δXbias−δYbias)), Q̄(Y ′′|M=m) = f(δYm − δYbias),

Q̄(Y ′|M=m)=f(δYm − δYbias), Q̄(nX |M) = f(δXbias), Q̄(nY |M) = f(δYbias).

2. The random variables (X ′, Y ′′, nX) are jointly conditionally independent given M . Simi-
larly, the random variables (Y ′, nY ) are also conditionally independent given M .

We construct B⃗ from A⃗ by specifying the conditional distribution Q̄(B⃗|A⃗,M). Note that given the
values of A⃗ and M , we can always use Q̄(B⃗|A⃗,M) to construct the random variables B⃗. The goal
of this remaining section is to show that the corresponding distribution Q̄(B⃗,M) (specified through
Q̄(B⃗|A⃗,M)) satisfies the above two properties. We first explicitly state the structure of Q̄(B⃗|A⃗,M).

Specifying Q̄(B⃗|A⃗,M):

We first impose the following structure on Q̄(B⃗|A⃗,M) as follows:

Q̄(B⃗|A⃗,M) = Q̄(X ′, Y ′′, nX |X,M)Q̄(Y ′, nY |Y,M), (244)

where Q̄(X ′, Y ′′, nX |X,M) and Q̄(Y ′, nY |Y,M) are the conditional distributions through which
we specify Q̄(B⃗|A⃗,M). Since Q̄(B⃗|A⃗,M) is a product of two well-defined distributions, it is a
valid distribution. Let us now analyze the joint distribution Q̄(M, A⃗, B⃗). By chain rule, we have:

Q̄(M, A⃗, B⃗) = Q̄(M, A⃗)Q̄(B⃗|A⃗,M). (245)

Substituting the fact that (M, A⃗) = (M,X, Y ) and using the structure of Q̄(B⃗|A⃗,M) specified
in (244), we have:

Q̄(M, A⃗, B⃗) = Q̄(M)Q̄(X,Y |M)Q̄(X ′, Y ′′, nX |X,M)Q̄(Y ′, nY |Y,M). (246)

We now specify the two components of Q̄(B⃗|A⃗,M).

Specifying Q̄(Y ′, nY |Y,M):
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Using the chain rule on Q̄(Y ′, nY |Y,M), we obtain
Q̄(Y ′, nY |Y,M) = Q̄(Y ′|Y,M)Q̄(nY |Y, Y ′,M). (247)

Choose:
Q̄(Y ′|Y =y,M=m) = G(ϵ(2)m δYm, (1− ϵ(2)m )δYm, y), where δYm=ϵ(2)m (δYm − δYbias) ∀ m ∈ M, and

Q̄(nY |Y =y, Y ′=y′,M=m) = δK(nY = y − y′). (248)

Here, δK(·) denotes the Kronecker delta function [59]. Marginalizing (X,X ′, Y ′′, nX) from (246),
we obtain:

Q̄(M,Y, Y ′, nY ) = Q̄(M)Q̄(Y |M)Q̄(Y ′, nY |M,Y ) = Q̄(M)Q̄(Y, Y ′, nY |M). (249)

Consider the distribution Q̄(Y, Y ′, nY |M). Then, we know:

Q̄(Y |M=m) = f(δYm),

Q̄(nY |Y =y, Y ′=y′M=m) = δK(nY = y − y′), and

Q̄(Y ′=y′|Y =y,M=m) = G(ϵ(2)m δYm, (1− ϵ(2)m )δYm, y). (250)

Comparing the above equation with the structure of Q̄(Y, Y ′, nY |M) specified in proposition 8,
we can conclude that (Y ′, nY ) are just dilated versions of Y . Consequently, using the result of
proposition 8, we have:

Q̄(Y ′|M=m) = f(δYm − δYbias), Q̄(nY |M) = f(δYbias), and Y ′ ⊥⊥ nY |M. (251)

Specifying Q̄(X ′, Y ′′, nX |X,M):

We similarly decompose Q̄(X ′, Y ′′, nX |X,M) using the chain rule as follows:
Q̄(X ′, Y ′′, nX |X,M) = Q̄(nX |X,M)Q̄(X ′|X,nX ,M)Q̄(Y ′′|X,nX , X ′,M). (252)

We choose:
Q̄(nY |X=x,M=m) = G((1− ϵ(3)m )δXm , ϵ(3)m δXm , x), where δXm = ϵ(3)m (δXm − δXbias) ∀ m ∈ M,

Q̄(X ′|X=x, nX=xnX
,M=m) = G((1− ϵ(1)m )(δXm − δXbias), ϵ

(1)
m (δXm − δbias), x− xnX

), where

δXm − δXbias = ϵ(1)m (δYm − δYbias) ∀m ∈ M, and

Q̄(Y ′′|X=x, nX=xnX
, X ′=x′,M=m) = δK(nX = x− x′ − xnx

). (253)
Here δK(·) denotes the Kronecker delta function [59]. Marginalizing (Y, Y ′, nY ) from (246), we
obtain:
Q̄(M,X,X ′, Y ′′, nX) = Q̄(M)Q̄(X|M)Q̄(X ′, nX , Y ′′|M,X) = Q̄(M)Q̄(X,X ′, Y ′′, nX |M).

Consider the distribution Q̄(X,X ′, nX , Y ′′|M). Then, we know:

Q̄(X|M=m) = f(δXm) and

Q̄(nY |X,M), Q̄(X ′|X,nX ,M), and Q̄(Y ′′|X,nX , , X ′,M) are as defined in (253). (254)

Comparing the above equation with the structure of Q̄(X,X ′, nX , Y ′′|M) specified in proposition 9,
we can conclude that (X ′, Y ′′, nX) are just dilated versions of X . Consequently, using the result of
proposition 9, we have:

Q̄(X ′|M=m) = f(δXm − δYm − (δXbias − δYbias)),

Q̄(nX |M) = f(δXbias),

Q̄(Y ′′|M) = f(δYm − δYbias), and

(X ′, Y ′′, nX) are jointly conditionally independent conditioned on M. (255)

This concludes our construction of Q̄(B⃗|A⃗,M). We obtain our desired Q̄(M,X ′, Y ′′, nX , Y ′, nY )

by marginalizing A⃗ out of Q̄(M, A⃗, B⃗). From (251) and (255) we know that
Q̄(M,X ′, Y ′′, nX , Y ′, nY ) satisfies the two main properties specified earlier. Since we did not
make any specific assumptions on Q aside from the fact that it lies in ∆P , the above construction
can always be used to construct (X ′, nX , Y ′′, Y ′, nY ) from (M,X, Y ) using the Q̄(B⃗|A⃗,M). Note
that due to the particular construction of Q̄(B⃗|A⃗,M), we have:

X = X ′ + nX + Y ′′ and Y = Y ′ + nY . (256)
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M.1.2 Propositions required for constructing Q̄

We describe two important propositions that we use to show the existence of a Q̄ for every Q ∈ ∆P .
Proposition 8. Suppose the random variables M and Y have the joint distribution Q(M,Y ) such
that

Q(M) = P (M) and Q(Y |M=m) = f(δYm) ∀m ∈ M, (257)

where M denotes the support of M and f(δYm) ∈ FD for some convolution-closed distribution family
FD. Furthermore, there also exists a δYbias ∈ D such that

δYm = ϵ(2)m (δYm − δYbias) for some ϵ(2)m ∈ [0, 1] and (δYm − δYbias) ∈ D ∀m ∈ M. (258)

Consider two dilated versions of Y , denoted as Y ′ and nY , defined as follows:

Q̄(Y ′|Y =y,M=m) = G(ϵ(2)m δYm, (1− ϵ(2)m )δYm, y), and nY = Y − Y ′. (259)

Then, we have

1. Y ′ ⊥⊥ nY |M

2. The conditional distributions Q̄(Y ′|M) and Q̄(nY |M) are specified as follows:

Q̄(Y ′|M = m) = f(ϵ(2)m δYm) = f(δYm − δYbias) and

Q̄(nY |M=m) = f((1− ϵ(2)m )δYm) = f(δYbias) ∀ m ∈ M. (260)

Proof. We essentially modify the argument given in theorem 1 of [25] to prove the
above proposition. Consider the conditional distribution of Y , Y ′, and nY conditioned
on M , denoted as Q̄(Y, Y ′, nY |M). Then, by chain rule, we have Q̄(Y, Y ′, nY |M) =
Q̄(Y |M)Q̄(Y ′|M,Y )Q̄(nY |Y, Y ′,M). By the assumptions in (257) and (259), we know that

Q̄(Y |M=m) = f(δYm), Q̄(Y ′|M=m,Y =y) = G(ϵ(2)m δYm, (1− ϵ(2)m )δYm, y), and

Q̄(nY |Y =y, Y ′=y′,M) = δK(nY = y − y′), (261)

where δK(·) is the Kronecker delta function [59].

Observation 1: Our first key observation is that the distribution Q̄(Y ′, Y, nY |M=m) is completely
specified through the distributions Q̄(Y |M) and Q̄(Y ′|Y,M), as nY is completely determined by
Y ′ and Y and Q̄(nY |Y, Y ′,M) is specified through a Kronecker delta function.

Similarly, consider a new pair of random variables Y ′
new, n

new
Y such that Y ′

new ⊥⊥ nnew
Y |M and the

respective conditional distributions of Y ′
new and nnew

Y are specified as follows:

Q̄new(Y
′
new|M=m) = f(ϵ(2)m δYm), and Q̄new(n

new
Y |M=m) = f((1− ϵ(2)m )δYm) ∀ m ∈ M.

(262)

We will now show two key properties for the random variables (Y ′
new, n

new
Y , Y ′

new + nnew
Y ) that will

form the crux of our argument:

Property 1: Q̄new(Y
′
new + nnew

Y =y|M=m) = Q̄(Y =y|M=m).

Let us now calculate the conditional distribution Q̄(Y ′
new + nnew

Y = y|M):

Q̄new(Y
′
new + nnew

Y = y|M) =

∫ ∞

k=−∞
Q̄new(Y

′
new = k, nnew

Y = y − k|M). (263)

Using conditional dependence of Y ′
new and nnew

Y , we have Q̄new(Y
′
new = k, nnew

Y = y − k|M) =
Q̄new(Y

′
new = k|M)Q̄new(n

new
Y = y − k|M):

Q̄new(Y
′
new + nnew

Y = y|M) =

∫ ∞

k=−∞
Q̄new(Y

′
new = k|M)Q̄new(n

new
Y = y − k|M). (264)

Note that the R.H.S of the above equation defines a convolution of Q̄new(Y
′
new|M) and Q̄(nnew

Y |M),
hence:

Q̄new(Y
′
new + nnew

Y = y|M) = Q̄new(Y
′
new = k|M) ∗ Q̄new(n

new
Y = y − k|M), (265)
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where ∗ denotes the convolution operator. Substituting (262) in the above equation:

Q̄new(Y
′
new + nnew

Y =y|M=m) = f(ϵ(2)m δYm) ∗ f((1− ϵ(2)m )δYm). (266)

Using the properties of convolution-closed distributions:

Q̄new(Y
′
new + nnew

Y =y|M=m) = f(ϵ(2)m δYm + (1− ϵ(2)m )δYm) = f(δYm). (267)

Hence, by comparing above equation with (261) we have:

Q̄new(Y
′
new + nnew

Y = y|M = m) = Q(Y = y|M = m). (268)

Property 2: Q̄(Y ′
new=y′|Y ′

new + nnew
Y =y,M=m) = G(ϵ

(2)
m δYm, 1− ϵ

(2)
m δYm, y)

By definition of G(ϵ
(2)
m δYm, (1− ϵ

(2)
m )δYm, z) given in Sec. 5.1, we have:

G(ϵ(2)m δYm, (1− ϵ(2)m )δYm, z) = Pr(Z
ϵ
(2)
m
|Z

ϵ
(2)
m

+ Z
1−ϵ

(2)
m

= z), where

Pr(Z
ϵ
(2)
m
) = f(ϵ(2)m δYm),Pr(Z

1−ϵ
(2)
m
) = f((1− ϵ(2)m )δYm), and Z

ϵ
(2)
m

⊥⊥ Z
1−ϵ

(2)
m
. (269)

In the following steps, we slightly modify the notation of G(ϵ
(2)
m δYm, (1 − ϵ

(2)
m )δYm, z) to

G(z
ϵ
(2)
m
; ϵ

(2)
m δYm, (1− ϵ

(2)
m )δYm, z) to make our notations more explicit as follows:

G(z
ϵ
(2)
m
; ϵ(2)m δYm, (1− ϵ(2)m )δYm, z) = Pr(Z

ϵ
(2)
m

= z
ϵ
(2)
m
|Z

ϵ
(2)
m

+ Z
1−ϵ

(2)
m

= z). (270)

We use the definition of the conditional distribution to express G(ϵ
(2)
m δYm, (1− ϵ

(2)
m )δYm, z) as:

G(z
ϵ
(2)
m
; ϵ(2)m δYm, (1− ϵ(2)m )δYm, z) =

Pr(Zϵ = z
ϵ
(2)
m
, Z

ϵ
(2)
m

+ Z
1−ϵ

(2)
m

= z)

Pr(Z
ϵ
(2)
m

+ Z
1−ϵ

(2)
m

= z)
(271)

=
Pr(Zϵ = z

ϵ
(2)
m
) Pr(Z

ϵ
(2)
m

+ Z
1−ϵ

(2)
m

= z|Z
ϵ
(2)
m

= z
ϵ
(2)
m
)

Pr(Z
ϵ
(2)
m

+ Z
1−ϵ

(2)
m

= z)
. (272)

Using the fact that Pr(Z
ϵ
(2)
m

+ Z
1−ϵ

(2)
m

= z|Z
ϵ
(2)
m

= z
ϵ
(2)
m
) = Pr(Z

1−ϵ
(2)
m

= z − z
ϵ
(2)
m
), since

Z
ϵ
(2)
m

⊥⊥ Z
1−ϵ

(2)
m

:

=
Pr(Zϵ = z

ϵ
(2)
m
) Pr(Z

1−ϵ
(2)
m

= z − z
ϵ
(2)
m
)

Pr(Z
ϵ
(2)
m

+ Z
1−ϵ

(2)
m

= z)
. (273)

Note that by properties of convolution-closed distributions, Pr(Z
ϵ
(2)
m

+ Z
1−ϵ

(2)
m

= z)) = f(z; δYm),
where f(z; δYm) is to be understood as the distribution f(δYm) evaluated at z. Substituting (269) in the
above equation:

=
f(z

ϵ
(2)
m
; ϵ

(2)
m δYm)f(z − z

ϵ
(2)
m
; (1− ϵ

(2)
m )δYm)

f(z; δYm)
. (274)

Now, note that by (262) and (267), we have:

Q̄new(Y
′
new=zϵ|M=m) = f(z

ϵ
(2)
m
; ϵ(2)m δYm),

Q̄new(n
new
Y =z − zϵ|M=m) = f(z − z

ϵ
(2)
m
; (1− ϵ(2)m )δYm), and

Q̄new(Y
′
new+nnew

Y =z|M=m) = f(z; δYm) (275)

Hence, combining the above equation with (274), and renaming z
ϵ
(2)
m

as y′ and z as y, we have:

G(ϵ(2)m δYm, (1− ϵ(2)m )δYm, y) =
Q̄new(Y

′
new=y′|M=m)Q̄new(n

new
Y =y − y′|M=m)

Q̄new(Y ′
new + nnew

Y =y|M=m)
.

(276)
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Noting the fact that Q̄new(n
new
Y =y − y′|M=m) = Q̄new(Y

′
new + nnew

Y =y|M=m,Y ′
new = y′)

due to Y ′
new ⊥⊥ nnew

Y |M and abbreviating notation pertaining to y′, we have:

G(ϵ(2)m δYm, (1− ϵ(2)m )δYm, y) =
Q̄new(Y

′
new|M=m)Q̄new(Y

′
new + nnew

Y =y|M=m)

Q̄new(Y ′
new + nnew

Y =y|M=m)
. (277)

Using Bayes rule in the above equation provides us with our desired property:

G(ϵ(2)m δYm, (1− ϵ(2)m )δYm, y) = Q̄new(Y
′
new|M=m,Y ′

new + nnew
Y =y) (278)

Furthermore, by comparing (259) with the above equation, we have:

Q̄new(Y
′
new = y′|Y ′

new + nnew
Y = y,M = m) = Q̄(Y ′ = y′|Y = y,M = m). (279)

Observation 2: Note that the distribution Q̄(Y ′
new, n

new
Y , Y ′

new + nnew
Y |M) is also completely deter-

mined by specifying Q̄(Y ′
new + nnew

Y |M) and Q̄(Y ′
new|Y ′

new + nnew
Y ,M) since nnew

Y is completely
determined by Y ′

new + nnew
Y and Y ′

new.

By property 1 and (279), we know that

Q̄new(Y
′
new + nnew

Y |M) = Q(Y |M), and Q̄new(Y
′
new|Y ′

new + nnew
Y ,M) = Q̄(Y ′|Y,M). (280)

Therefore, combining the above equation with observations 1 and 2,we have:

Q̄(Y ′, Y, nY |M) = Q̄(Y ′
new, Y

′
new + nnew

Y , nnew
Y |M). (281)

Consequently the distribution Q̄(Y ′, nY |M) = Q̄new(Y
′
new, n

new
Y |M). Since, Y ′

new ⊥⊥ nnew
Y |M ,

we also have Y ′ ⊥⊥ nY |M . Furthermore, by (262),

Q̄new(Y
′
new|M=m) = Q̄(Y ′|M) = f(ϵ(2)m δYm) ∀ m ∈ M, and

Q̄new(n
new
Y |M=m) = Q̄(nY |M) = f((1− ϵ(2)m )δYm) ∀m ∈ M. (282)

By (258), we know that ϵ(2)m δYm = δYm − δYbias and (1− ϵ
(2)
m )δYm = δYbias. Hence,

Q̄(Y ′|M) = f(ϵ(2)m δYm) = f(δYm − δYbias) ∀ m ∈ M, and

Q̄(nY |M) = f((1− ϵ(2)m )δYm) = f(δYbias) ∀m ∈ M. (283)

Proposition 9. Suppose the random variables M and X have the joint distribution Q(M,X), such
that

Q(M) = P (M) and Q(X|M=m) = f(δXm) ∀ m ∈ M, (284)

where M denotes the support of M and f(δXm) ∈ FD for some convolution-closed distribution family
FD. Furthermore, there also exist δXbias ∈ D, and δYm ∈ D ∀m ∈ M such that

δXm − δXbias = ϵ(1)m (δYm − δYbias) for some ϵ(1)m ∈ [0, 1],

δXm = ϵ(3)m (δXm − δXbias) for some ϵ(3)m ∈ [0, 1], and

(δXm − δYm − (δXbias − δYbias)), (δ
X
m − δXbias), (δ

Y
m − δYbias) ∈ D ∀ m ∈ M. (285)

Then consider three dilated versions of X , denoted as X ′, Y ′′, and nX , defined as follows:

Q̄(X ′, Y ′′, nX |X,M) = Q̄(nX |X,M)Q̄(X ′|X,nX ,M)Q̄(Y ′′|X,nX ,M,X ′), where

Q̄(nX |X=x,M=m) = G((1− ϵ(3)m )δXm , ϵ(3)m δXm , x),

Q̄(X ′|X=x, nX=xnX
,M=m) = G((1− ϵ(1)m )(δXm − δXbias), ϵ

(1)
m (δXm − δXbias), x− nx), and

Y ′′ = X −X − nX . (286)

Then, we have

1. (nX , X ′, Y ′′) are jointly conditionally independent conditioned on M .
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2. The conditional distributions Q̄(X ′|M), Q̄(Y ′′|M), and Q̄(nX |M) are specified as follows:

Q̄(X ′|M) = f(δXm − δYm − (δXbias − δYbias)),

Q̄(Y ′′|M) = f(δXm − δYbias), and

Q̄(nX |M) = f(δXbias). (287)

Proof. The proof essentially consists of recursively applying the proof of proposition 8. Consider
a new auxiliary random variable Z = X − nX . Then, the distribution Q̄(X,nX , Z|M) has the
following properties:

Q̄(X|M)
(a)
= f(δXm), Q̄(nX |M=m,X=x)

(b)
= G((1− ϵ(3)m )δXm , ϵ(3)m δXm , x), and

Q̄(Z|X=x, nX=xnX
,M = m) = δK(Z = x− xnX

), (288)

where δK(·) is the Kronecker delta function, and the equalities (a) and (b) follow from (284)
and (285), respectively. Note that the distribution Q̄(X,nX , Z|M) has exactly the same structure as
Q̄(Y, Y ′, nY |M) described in (261), hence Z and nY are just dilated versions of X . Consequently,
from the result of proposition 8, we know that Z ⊥⊥ nX |M , and the conditional distributions Q̄(Z|M)
and Q̄(nY |M) are described as follows:

Q̄(nX |M=m) = f((1− ϵ(3)m )δXm), and Q̄(Z|M=m) = f(ϵ(3)m δXm). (289)

From (285), we have ϵ
(3)
m δXm = δXm − δXbias and (1− ϵ

(3)
m )δXm = δXbias. Consequently,

Q̄(nX |M=m) = f(δXbias), and Q̄(Z|M=m) = f(δXm − δXbias). (290)

We alternatively express Q̃(X ′|nX , X,M) as follows:

Q̄(X ′|nX=xnX
, X=x,M=m) = G((1− ϵ(1)m )(δXm − δXbias), ϵ

(1)
m (δXm − δXbias), x− xnX

). (291)

Note that the distribution Q̄(X ′|nX=xnX
, X=x,M=m) only depends on X and nX through their

difference X − nX . Hence, substituting Z = X − nX in the above equation:

Q̄(X ′|nX=xnX
, X=x,M=m) = Q̄(X ′|Z=x− xnX

,M=m)

= G((1− ϵ(1)m )(δXm − δXbias), ϵ
(1)
m (δXm − δXbias), x− nX), (292)

⇒ Q̄(X ′|Z=z,M=m) = G((1− ϵ(1)m )(δXm − δXbias), ϵ
(1)
m (δXm − δXbias), z). (293)

Hence, consider the following distribution Q̄(Z,X ′, Y ′′|M), where from (290) and (293), we have:

Q̄(Z|M=m) = f(δXm − δXbias),

Q̄(X ′|Z = z,M = m) = G((1− ϵ(1)m )(δXm − δXbias), ϵ
(1)
m (δXm − δXbias), z). (294)

Furthermore, by (286), we have Y ′′ = X − nX −X ′ (c)
= Z −X ′, where (c) is due to Z = X − nX .

Hence,

Q̄(Y ′′|Z=z,M,X ′=x) = δK(Y ′′ = z − x). (295)

Comparing (295) and (294) with (261), we can again conclude that X ′′ and Y ′ are just dilated
versions of Z. Hence, again using the result of proposition 8, we have X ′ ⊥⊥ Y ′′|M , and

Q̄(X ′|M=m) = f((1− ϵ(1)m )(δXm − δXbias)), and Q̄(Y ′′|M=m) = f(ϵ(1)m (δXm − δXbias)). (296)

From (285), we have ϵ
(1)
m (δXm − δXbias) = δYm − δYbias and (1 − ϵ

(1)
m )(δXm − δYbias) = δXm − δYM −

(δXbias − δYbias). Consequently,

Q̄(X ′|M=m) = f(δXm − δYm − (δXbias − δYbias), and Q̄(Y ′′|M=m) = f(δYm − δYbias). (297)
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Hence, by (290) and (297), we can conclude that the conditional distributions Q̄(X ′|M), Q̄(Y ′′|M),
and Q̄(nX |M) are specified as follows:

Q̄(X ′|M = m) = f(δXm − δYm − (δXbias − δYbias)),

Q̄(Y ′′|M) = f(δXm − δYbias), and

Q̄(nX |M) = f(δXbias). (298)

Showing joint conditional independence of (nY , X
′, Y ′′) given M :

Consider the distribution Q̄(nX , Z,X ′, Y ′′|M). Using the chain rule, we have:

Q̄(nX , Z,X ′, Y ′′|M) = Q̄(nX , Z|M)Q(X ′, Y ′′|M,nX , Z),

(b)
= Q̄(nX |M)Q̄(Z|M)Q(X ′, Y ′′|M,nX , Z),

(c)
= Q̄(nX |M)Q̄(Z|M)Q(X ′, Y ′′|M,Z), (299)

where (b) follows from nX ⊥⊥ Z|M . For showing (c), observe that Y ′′ = Z −X ′, and hence we
can write Q̄(Y ′′|M,Z, nY , X

′) = Q̄(Y ′′|Z,X ′). Furthermore, by analyzing Q̄(X ′|nX , Z,M), we
can conclude:

Q̄(X ′|nX , Z,M) = Q̄(X ′|nX , X − nX ,M) = Q̄(X ′|nX , X,M) = Q̄(X ′|Z,M). (300)

Marginalizing Z out of (299), we obtain:

Q̄(nX , X ′, Y ′′|M) = Q̄(nX |M)Q̄(X ′, Y ′′|M)
(d)
= Q̄(nX |M)Q(X ′|M)Q̄(Y ′′|M), (301)

where (d) follows from X ′ ⊥⊥ Y ′′|M . By (301), we know that (nX , X ′′, Y ′) are jointly conditionally
independent given M , concluding our proof.

M.2 Analytically optimizing the upper bound

Proposition 10. Let Q̄(M,X ′, Y ′′, nX , Y ′, nY ) be the distribution derived from a distribution
Q ∈ ∆P using the construction scheme specified in Appx. M.1. Then, the minimization problem
specified in (302) is analytically solvable with the optimizing Q̄∗ given by (303).

min
Q∈∆P

IQ̄(M ; [X ′, Y ′′, nX , Y ′, nY ]), (note that Q̄ is a function of Q) (302)

Q̄∗(M,X ′, Y ′′, nX , nY , Y
′) = Q̄∗(M)Q̄∗(X ′|M)Q̄∗(Y ′′|M)Q̄∗(nX)Q̄∗(nY )Q̄

∗(Y ′|Y ′′), with

Q̄∗(M) = P (M), Q̄∗(X ′|M=m) = f(δXm − δYm − (δXbias − δYbias)), Q̄
∗(nX) = f(δXbias),

Q̄∗(Y ′′|M=m) = f(δYm − δYbias), Q̄
∗(nY ) = f(δYbias), and Q̄∗(Y ′|Y ′′) = I[Y ′′ = Y ′], (303)

where I[·] is the indicator function. Note that for the minimizing Q̄∗, we have (nX , nY , (M,X ′, Y ′′))
are jointly independent and Y ′ = Y ′′.

Proof. First note that by the construction scheme defined in Appx. M.1, we know that there is a
unique Q̄ for every Q ∈ ∆P . Hence, we can interpret Q̄ as a function of Q, and consequently the
minimization problem in (302) is well-defined. Using the chain rule of mutual information, we derive
the following lower bound for IQ̄(M ; [X ′, Y ′′, nX , Y ′, nY ]):

IQ̄(M ; [X ′, Y ′′, nX , Y ′, nY ]) = IQ̄(M ; [X ′, Y ′′]) + IQ̄(M ; [nX , Y ′, nY ]|[X ′, Y ′]) (304)

⇒IQ̄(M ; [X ′, Y ′′, nX , Y ′, nY ])
(a)

≥ IQ̄(M ; [X ′, Y ′′]), (305)

where (a) is due to the non-negativity of conditional mutual information. Furthermore, note that
by properties of Q̄ derived in Appx. M.1, we know that X ′ ⊥⊥ Y ′′|M ∀ Q ∈ ∆P . Consequently,
the term IQ̄(M ; [X ′, Y ′′]) does note vary as we choose different Q from ∆P as the corresponding
Q̄(M,X ′, Y ′′) = Q̄(M)Q̄(X ′|M)Q̄(Y ′′|M) and the terms:

Q̄(M) = Q(M) = P (M), Q̄(X ′|M=m) = f(δXm − δYm − (δXbias − δYbias)), and

Q̄(Y ′′|M) = f(δYm − δYbias) (306)
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do not vary for all Q ∈ ∆P (see Appx. M.1). Therefore, we have:
I(M ; [X ′, Y ′′]) ≤ IQ̄(M ; [X ′, Y ′′, nX , Y ′, nY ]) ∀ Q ∈ ∆P , (307)

where we forgo the subscript Q̄ for IQ̄(M ; [X ′′, Y ′]) to indicate that the term IQ̄(M ; [X ′′, Y ′])

does not vary over ∆P . Hence, if we show that the distribution Q̄∗(M,X ′, Y ′′, nX , Y ′, nY )
specified in (303) achieves the lower bound in (307), then Q̄∗(M,X ′, Y ′′, nX , Y ′, nY ) should
minimize the value of IQ̄(M ; [X ′, Y ′′, nX , Y ′, nY ]) over the set ∆P . We now calculate
IQ̄∗(M ; [X ′, Y ′′, nX , Y ′, nY ]). By the chain rule of mutual information:

IQ̄∗(M ; [X ′, Y ′′, nX , Y ′, nY ]) = IQ̄∗(M ; [nX , nY , X
′, Y ′′]) + IQ̄∗(M ;Y ′|nX , nY , X, Y ′′).

Using the fact that Y ′ = Y ′′, we know that IQ̄∗(M ;Y ′|nX , nY , X, Y ′′) is zero. A sim-
ple justification follows from the fact IQ̄∗(M ;Y ′|nX , nY , X, Y ′′) = H(Y ′|nX , nY , X, Y ′′) −
H(Y ′|nX , nY , X, Y ′′,M), where H(.|.) is the conditional entropy function [28]. Observe that
both conditional entropy terms are zero as Y ′ = Y ′′, and condition entropy of a random variable
conditioned on itself is zero. Therefore, we can simplify the above equation as:

IQ̄∗(M ; [X ′, Y ′′, nX , Y ′, nY ]) = IQ̄∗(M ; [nX , nY , X
′, Y ′′]). (308)

Applying the chain rule of mutual information again, we obtain:

IQ̄∗(M ; [X ′, Y ′′, nX , Y ′, nY ]) = IQ̄∗(M ; [nX , nY ]) + IQ̄∗(M ; [X ′, Y ′′]|nX , nY ). (309)

Using the fact that (nX , nY ) ⊥⊥ (M,X ′, Y ′′), we know that I(M ; [nX , nY ]) = 0 as mutual
information between independent random variables is zero [28]. Consequently,

IQ̄∗(M ; [X ′, Y ′′, nX , Y ′, nY ]) = IQ̄∗(M ; [X ′, Y ′′]|nX , nY )
(b)
= IQ̄∗(M ; [X ′, Y ′′]), (310)

where (b) again follows from the fact that (nX , nY ) ⊥⊥ (M,X ′, Y ′′), and, consequently, conditioning
(M,X ′, Y ′′) on (nX , nY ) has no effect. From (310), we see the proposed Q̄∗ in (303) does indeed
achieve the lower bound specified in (307), and consequently minimizes (302).

The final step remaining in our proof is to ensure that the proposed Q̄∗ corresponds to a valid
Q∗

UB(M,X, Y ) lying in ∆P , i.e., there is some Q∗
UB(M,X, Y ) ∈ ∆P that generates Q̄∗ using the

construction scheme outlined in Appx. M.1. We know that the relationship between the random
variables for (M,X ′, Y ′′, nX , Y ′, nY ) having the joint distribution Q̄ and (M,X, Y ) having the
distribution Q can be expressed as follows: X = X ′ + Y ′′ + nX and Y = Y ′ + nY . Hence, we use
these relationships for calculating the conditional marginals Q∗

UB(X|M) and Q∗
UB(Y |M) of the cor-

responding distribution Q∗
UB(M,X, Y ) for the proposed distribution Q̄∗(M,X ′, Y ′′, nX , Y ′, nY ):

Q∗
UB(X|M = m) = Q̄∗(X ′ + Y ′′ + nX |M = m)

(c)
= Q̄∗(X ′|M = m) ∗ Q̄∗(Y ′′|M = m) ∗ Q̄∗(nX |M = m)

= f(δXm − δYm − (δXbias − δYbias)) ∗ f(δYm − δYbias) ∗ f(δXbias)
(d)
= f(δXm − δYm − (δXbias − δYbias) + δYm − δYbias + δXbias)

= f(δXm) = P (X|M = m). (311)

where ∗ denotes the convolution operator, and (c) follows from the fact that (X ′, Y ′′, nX) are jointly
conditionally independent given M under Q̄∗, and (d) follows from the properties of convolution-
closed distributions. Similarly, calculating Q∗

UB(Y |M = m):

Q∗
UB(Y |M = m) = Q̄∗(Y ′ + nY |M = m)

(e)
= Q̄∗(Y ′′|M = m) ∗ Q̄∗(nY |M = m)

= f(δYm − δYbias) ∗ f(δYbias)
= f(δYm − δYbias + δXbias)

= f(δYm) = P (Y |M = m), (312)

where (e) follows from the fact that Y ′ ⊥⊥ nY |M under Q̄∗. It is easy to see that Q∗
UB(M) =

Q̄(M) = P (M). Hence, we have Q∗
UB(M,X) = P (M)P (X|M) = P (M,X) and

Q∗
UB(M,Y ) = P (M)P (X = Y |M) = P (M,Y ), which implies Q∗

UB(M,X, Y ) ∈ ∆P , con-
cluding our proof.
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M.3 Additional details regarding simulation

The list of different function pairs used in the simulation study are listed in Table 1. The function
pairs were chosen with the only requirement being that they satisfied the assumptions in (9). For
constructing the analytical estimate Q̂A(M,X, Y ), the corresponding δXbias and δYbias were chosen as
follows:

1. For each distribution and function pair, we first determine the range of possible values for
δXbias and δYbias.

2. For δYbias, we choose the range as [0,minm∈M f2(m)), where M is the support set of M for
that distribution. Note that we cannot choose δYbias > minm∈M f2(m) as the corresponding
conditional distribution Q̄∗(Y ′|M) = Poisson(f2(M) − δYbias) (required for the optimal
Q̄∗ from which QA is constructed, see Appx. M.2) would have a negative rate parameter,
which is not allowed. Within this range, we choose 10 different, uniformly spaced values
for δYbias.

3. For each chosen value of δYbias, the corresponding range for δXbias is then chosen as
[0,min{minm∈M f1(m),minm∈M(f1(m) − f2(m) + δYbias)}]. Note that choosing the
upper limit of δXbias as min{minm∈M f1(m),minm∈M(f1(m)− f2(m) + δYbias)} ensures
that the distribution Q̄∗(X ′|M) = Poisson((f1(M) − δXbias) − (f2(M) − δYbias)) and
Q̄∗(Z|M) = Poisson(f1(M)− δXbias) (required for specifying the optimal Q̄∗ from which
QA is constructed, see Appx. M.1 and Appx. M.2) have positive rate parameters. For each
value of δYbias, we again choose 10 different values of δXbias within the above specified range.
In total, we chose 100 different pairs of (δXbias, δ

Y
bias).

For each pair of (δXbias, δ
Y
bias), we calculate the analytical QA(M,X, Y ) as follows:

First, we construct the optimal Q̄∗ distribution using the structure provided in proposition 10. The
exact specification of Q̄∗ is described below. We simplify the structure of Q̄∗ by using the fact that
Y ′ = Y ′′:

Q̄∗(M,X ′, Y ′, nX , nY , Y
′′) ≡ Q̄∗(M,X ′, Y ′, nX , nY ),

= Q̄∗(M)Q̄∗(X ′|M)Q̄∗(Y ′|M)Q̄∗(nX)Q̄∗(nY ), with

Q̄∗(M) = P (M),

Q̄∗(X ′|M) = Poisson(f1(M)− f2(M)− (δXbias − δYbias)),

Q̄∗(nX) = Poisson(δXbias),

Q̄∗(Y ′′|M) = Poisson(f2(M)− δYbias),

Q̄∗(nY ) = Poisson(δYbias). (313)

Then, we use the property that X = X ′ + Y ′ + nX , and Y = Y ′ + nY , and use that to appropriately
modify Q̄∗ to obtain QA as follows:

• We calculate a new distribution Q̄∗(M,X ′ + Y ′, Y ′, nX , nY ):

Q̄∗(M,X ′ + Y ′, Y ′, nX , nY ) = Q̄∗(M)Q̄∗(nX)Q̄∗(nY )Q̄
∗(X ′ + Y ′|M)×

Q̄∗(Y ′|X ′ + Y ′,M).

= Q̄∗(M)Q̄∗(nX)Q̄∗(nY )Q̄
∗(Z|M)Q̄∗(Y ′|Z,M),

(314)

where Z = X ′ + Y ′ and alternatively also Z = X − nX (as X = X ′ + Y ′ + nX ). First
note that Q̄∗(Z|M) from Appx. M.2 has the form f(δXm − δXbias), which for the Poisson case
is Poisson(f1(M)− δXbias). Furthermore, we can recognize that Q̄∗(Y ′ = y|Z = z,M =

m) = Q̄∗(Y ′ = y′|X ′ + Y ′ = x′ + y′,M = m) = G(y′; ϵ
(1)
m , 1− ϵ

(1)
m , x′ + y′), which for

the Poisson case can be written as Binomial(Z, pm) where pm = f2(M)−δYbias/f1(M)−δXbias.
• Now define Smx = {xnX

∈ Xm
nX

, z ∈ Zm : xnX
+ z = x}, where Xm

nX
and Zm are

the corresponding support sets of the distributions Q̄∗(nX |M = m) and Q̄∗(Z|M = m),
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respectively. Then, using the fact that X = Z + nX , we have:

Q̄∗(M=m,X=x, nY , Y
′) = Q̄∗(M,Z + nX , nY , Y

′) = Q̄∗(M = m)Q̄∗(nY )×∑
(xnX

,z)∈Smx

Q̄∗(nX = xnX
)Q̄∗(Z = z|M = m)Q̄∗(Y ′|Z = z,M = m), (315)

where we know that for the Poisson case:

Q̄∗(M) = P (M), Q̄∗(nY ) = Poisson(δYbias), Q̄
∗(Z|M) = Poisson(f1(M)− δXbias),

Q̄∗(nX) = Poisson(δXbias), and Q̄∗(Y ′|Z,M) = Binomial
(
Z,

f2(M)− δYbias
f1(M)− δXbias

)
. (316)

• Using a similar procedure, we derive QA(M,X, Y ) from Q̄∗(M,X, Y ′, nY ) as Y =
nY + Y ′. Define Smy = {yny

∈ Ym
nX

, z ∈ Y ′
m : ynX

+ y′ = y}, then:

QA(M,X, Y =y) = Q̄(M,X, nY + Y ′) =
∑

(xnY
,y′)∈Smy

Q̄∗(M,X, Y ′ = y′, nY = xnY
).

• After analytically calculating QA for all 100 bias pairs of (δXbias, δ
Y
bias), we chose QA corre-

sponding to the pair (δXbias, δ
Y
bias) which results in the smallest value of the corresponding

IQA
(M ; [X,Y ]).

Index f1(M) f2(M) Index f1(M) f2(M)

1 3M 3 log(1 +M) 11 MeM M
2 1.5M3 0.5eM 12 3M2 − 2M M + log(M)

3 0.5M4 0.25eM sin2(Mπ/8) 13 8 sin(Mπ/10) 2
√
M

4 7M 4M sin2(Mπ/8) 14 2cosh(M) 6 sin(Mπ/8)

5 M2 M 15 5M 5
√
M

6 M3 M2 16 eM sinh(M)
7 5M 5 sin(Mπ/8) 17 2cosh(M) sinh(M)
8 M2 +M3 2M 18 2.5M2 + 5M 0.5M3 +M
9 7M M2 cos2(Mπ/16) 19 1.5cosh(M) 0.5M3

10 8(M − cos(Mπ/8)) 2 sin(Mπ/8) 20 8M + 3 7M

Table 1: Table 1 lists the 20 different function pairs used in the simulation study described in Sec. 6
for comparing the analytical estimate of the minimizing distribution of (2) proposed in Sec. 6 with
the corresponding ground-truth numerical estimate. The index in Table 1 maps the corresponding
function pair to the results shown in Fig. 1. To illustrate, the number 1 on the x-axis of all the plots
shown in Fig. 1 corresponds to the function pair with index 1 in Table 1.

M.4 Additional results and analysis

We report the tightness of the upper-bound for systems employing binomial and negative-binomial
distributions in Fig. 2(a). We find that the results for binomial and negative-binomial remain consistent
with the Poisson study performed in Sec. 6 and the upper-bound continues to remain tight. We also
performed further analysis to understand how our upper-bound performs when both of the UI terms are
non-zero. We sub-selected the trials in the 20 pairs (analyzed in Section 6) that had both UIx > 0.01
bits and UIy > 0.01 bits, and report the corresponding median error of these sub-selected trials in
Fig. 2(d).

N Distributions

We provide brief descriptions of the distribution families and the corresponding distributions used in
this work. We also provide citations to relevant works for the reader interested in learning more about
these distributions.
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(a) Upper Bound (UB): Binomial & Neg. Binomial (b) UIx-Poisson

(c) UIy-Poisson (d) UB: Non-zero Poisson UI

Figure 2: (a) shows additional results of simulation study performed in Section 6 of the manuscript
for the distributions: Negative Binomial and Binomial. The experimental setup is the same as
described in Section 6, with the differences being that only 10 function pairs were tested, the number
of outcomes of M was restricted to 2 and 4, and the support of M was appropriately modified for
Binomial and Negative Binomial distributions (see caption of Table 2 below). The function pairs
tested are provided in Table 2. (b) and (c) show the unique information atoms of the systems having
non-zero unique information in both X and Y tested in the simulation study presented in Section 6
of the manuscript. More specifically, of the 20 pairs analyzed in Section 6, we only selected trials
that had both UIx > 0.01 bits and UIy > 0.01 bits. (d) provides the corresponding median error
for the subselected trials (originally shown in Fig.1c in the manuscript for all trials) for the systems
shown in (b) and (c).

Negative Binomial Binomial
Index f1(M) f2(M) f1(M) f2(M)

1 0.5M2 M ⌊0.5M2⌉ M
2 0.1M3 0.25M2 ⌊0.04M3⌉ ⌊0.1M2⌉
3 4M M sin2(Mπ/16)+2 4M ⌊M sin2(Mπ/16)+2⌉
4 5M 10 |sin(Mπ/16)|+2 5M ⌊10 |sin(Mπ/16)|+2⌉
5 0.05(M2+M3) M ⌊0.05(M2+M3)⌉ M
6 7M 0.5M2 cos2(Mπ

36
)+2 7M ⌊0.5M2 cos2(Mπ

36
)+2⌉

7 M− cos(Mπ/8) 2 sin(Mπ/16)+2 ⌊2(M− cos(Mπ/8))⌉ ⌊12 sin(Mπ/40)+2⌉
8 2M 0.004Me

M/2+9 2M ⌊0.004Me
M/3+5⌉

9 0.5(3M2 − 2M) M + log(M) ⌊0.1(3M2 − 2M)⌉ ⌊M + log(M)⌉
10 18 sin(Mπ/18) 5

√
M 19 sin(Mπ/40) ⌊3

√
M⌉

Table 2: For negative binomial the outcomes of M were uniformly randomly sampled from the
interval [5, 10], and for the binomial experiment the outcomes of M were uniformly chosen from the
set {5, 6, ..., 14}. The symbol ⌊·⌉ denotes the rounding to closest integer operation. The corresponding
system models of binomial and negative binomial can be found in Appendix C (systems 3 and 6,
respectively) of the manuscript.
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N.1 Common distributions used in this work

We employed various well-known distributions in this work. We refer the reader to [62, 63] for a
review of these distributions. We use the most commonly used notations in literature to represent
these distributions. Regardless, we provide explicit definitions of our notations for these distributions
to remove ambiguity.

Poisson Distribution Poisson distribution is a discrete distribution having support over all non-
negative integers. The p.m.f. of the Poisson distribution is described by a single rate parameter
λ ∈ [0,∞). We define the Poisson distribution with the rate parameter λ = 0 as a degenerate point
distribution with all its mass at 0. We use Poisson(λ) to denote the p.m.f. of a random variable X
distributed according to the Poisson distribution. The exact definition of the p.m.f. of X is provided
below:

P (X = x) = Poisson(x;λ) =
e−λλx

x!
∀ x ∈ N0.

Gaussian Distribution Gaussian distribution is a continuous distribution having support over R.
The p.d.f. of the Gaussian distribution is described by its mean µ ∈ R and variance σ2 ∈ [0,∞). We
define the Gaussian distribution with the variance σ2 = 0 as a degenerate point distribution with all
its mass at µ. We use N (µ, σ2) to denote the p.d.f. of a random variable X distributed according to
the Gaussian distribution. The exact definition of the p.d.f. of X is provided below:

p(X = x) = N (x;µ, σ2) =
1√
2πσ2

e−
(x−µ)2

2σ2 ∀ x ∈ R.

Negative Binomial Distribution Negative binomial distribution is a discrete distribution having
support over all non-negative integers. The p.m.f. of the negative binomial distribution is described
by two parameters: the number of successes r ∈ N, and the probability of success p ∈ (0, 1]. We
use Negative Binomial(r, p) to denote the p.m.f. of a random variable X distributed according to the
negative binomial distribution. The exact definition of the p.m.f. of X is provided below:

P (X = x) = Negative Binomial(x; r, p) =
(
x+r−1

x

)
(1− p)xpr ∀ x ∈ N0,

where
(
x+ r − 1

x

)
=

(x+ r − 1)!

x!(r − 1)!
.

Geometric Distribution Geometric distribution is a special case of negative binomial distribution
with r = 1. The p.m.f. of the geometric distribution is described by a success probability p ∈ (0, 1].
We use Geometric(p) to denote the p.m.f. of a random variable X distributed according to the
geometric distribution. The exact definition of the p.m.f. of X is provided below:

P (X = x) = Geometric(x; p) = p(1− p)x ∀ x ∈ N0.

Beta-Binomial Distribution Beta-binomial distribution is a discrete distribution having support
over {0, . . . , N} for some N ∈ N0. The p.m.f. of the beta-binomial distribution is described by three
parameters: N specifies the support, α ∈ (0,∞) and β ∈ (0,∞). We use Beta-Binomial(N,α, β)
to denote the p.m.f. of a random variable X distributed according to the beta-binomial distribution.
The exact definition of the p.m.f. of X is provided below:

P (X = x) = Beta-Binomial(x;N,α, β) =

(
N

x

)
B(x+ α,M − x+ β)

B(α, β)
∀ n ∈ {0, . . . , N},

where B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
is the beta function and Γ(·) is the Gamma function.

Gamma Distribution Gamma distribution is a continuous distribution having support over (0,∞).
The p.d.f. of the gamma distribution is described by its shape parameter α > 0 and rate parameter
β > 0. We use Gamma(α, β) to denote the p.d.f. of a random variable X distributed according to
the gamma distribution. The exact definition of the p.d.f. of X is provided below:

p(X = x) = Gamma(x;α, β) =
βα

Γ(α)
xα−1e−βx ∀ x ∈ (0,∞),

where Γ(·) is the Gamma function.
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Exponential Distribution Exponential distribution is special case of the Gamma distribution with
α = 1. The p.d.f. of the exponential distribution is described by its rate parameter λ > 0. We use
Exponential(λ) to denote the p.d.f. of a random variable X distributed according to the exponential
distribution. The exact definition of the p.d.f. of X is provided below:

p(X = x) = Exponential(x;λ) = λe−λx ∀ x ∈ [0,∞). (317)

Beta Distribution Beta distribution is a continuous distribution having support over [0, 1] or (0, 1)
depending upon the values of its parameter. The p.d.f. of the beta distribution is described by two
shape parameters: α > 0 and β > 0. We use Beta(α, β) to denote the p.d.f. of a random variable
X distributed according to the beta distribution. The exact definition of the p.d.f. of X is provided
below:

p(X = x) = Beta(x;α, β) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1 ∀ x ∈ (0, 1),

where Γ(·) is the Gamma function. The end-point 0 is included in the support of the beta distribution
if α ≥ 1 and the end-point 1 is included in the support of the beta distribution if β ≥ 1.

Dirichlet Distribution Dirichlet distribution is a multivariate generalization of the beta distribution.
The p.d.f. of Dirichlet distribution is described by d-shape parameters: {α1, . . . , αd}, where αi ∈
(0,∞) ∀ i ∈ [d]. We use Dirichlet(α1, . . . , αd) to denote the p.d.f. of a d-dimensional random
vector X⃗ distributed according to the Dirichlet distribution. The exact definition of the p.d.f. of X is
provided below:

p(X⃗ = x⃗) = Dirichlet(x⃗;α1, . . . , αd) =
Γ
(∑d

i=1 αi

)
∏d

i=1 Γ(αi)

d∏
i=1

xαi−1
i ,

where Γ(·) is the Gamma function, and x⃗ = [x1 . . . xd]
T , with xi ∈ [0, 1] and

∑d
i=1 xi = 1.

Binomial Distribution Binomial distribution is a discrete distribution having support over
{0, . . . , N} for some N ∈ N0. The p.m.f. of the binomial distribution is described by two pa-
rameters: the total number of trials, N , and the success probability, p . We use Binomial(N, p) to
denote the p.m.f. of a random variable X distributed according to the binomial distribution. The
exact definition of the p.m.f. of X is provided below:

P (X = x) = Binomial(x;N, p) =

(
N

x

)
px(1− p)n−x ∀ n ∈ {0, . . . , N}, (318)

where
(
N

x

)
=

N !

N !(N − x)!
.

Multinomial Distribution Multinomial distribution is a multivariate generalization of the binomial
distribution. The p.m.f. of the multinomial distribution is described by two parameters: the total
number of trials, N , and the success probability vector, p⃗. We use Multinomiald(N, p⃗) to denote the
p.m.f. of a d-dimensional random vector X⃗ distributed according to the multinomial distribution.
The exact definition of the p.m.f. of X⃗ is provided below:

P (X⃗ = x⃗) = Multinomiald(x⃗;N, p⃗) =
N !∏d
i=1 xi!

d∏
i=1

pxi
i ,

where, p⃗ = [ p1 . . . pd ]
T is a d-dimensional probability vector, i.e. 0 ≤ pi ≤ 1, ∀ 1 ≤ i ≤ d

and
∑d

i=1 pi = 1, and x⃗ = [ x1 . . . xd ]
T is a d-dimensional categorical vector, i.e. xi ∈

N0, ∀ 1 ≤ i ≤ d, and
∑d

i=1 xi = n.

Hypergeometric Distribution The p.m.f. of the hypergeometric distribution is described by three
parameters: the total number of success states in the population S ∈ N0, the total number of failure
states F ∈ N0 and the number of draws n ∈ {0, . . . , S + F}. We use Hypergeometric(S,K, n) to
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denote the p.m.f. of a random variable X distributed according to the hypergeometric distribution.
The exact definition of the p.m.f. of X is provided below:

P (X = x) = Hypergeometric(x;S,K, n)

=

(
S
x

)(
F

n−x

)(
S+F
n

) ∀ x ∈ {max{0, n− F}, ...,min{n, S}},

where
(
A

B

)
=

A!

B!(A−B)!
for some A,B ∈ N0 and B ≤ A.

Multivariate Hypergeometric Distribution Multivariate hypergeometric distribution is a mul-
tivariate generalization of hypergeometric distribution. The p.m.f. of the multivariate hyperge-
ometric distribution is described by the following parameters: the total number of object types
d ∈ N0, the size of population of each type {n1, . . . , nd} with ni ∈ N0, and the number of draws
n ∈ {0, . . . ,

∑d
i=1 ni}. Define n⃗ = [n1 . . . nd]. Then, we use Multivariate Hypergeometric(n⃗, n)

to denote the p.m.f. of a d-dimensional random vector X⃗ distributed according to the multivariate
hypergeometric distribution. The exact definition of the p.m.f. of X⃗ is provided below:

P (X⃗ = x⃗) = Multivariate Hypergeometric(x⃗; n⃗, n),

=

∏d
i=1

(
ni

xi

)(∑d
i=1 ni

n

) , (319)

where
(
A
B

)
= A!

B!(A−B)! for some A,B ∈ N0 and B ≤ A, and x⃗ = [x1 . . . xd]
T with xi ∈

{0, ni} and
∑d

i=1 xi = n.

Uniform Distribution Uniform distribution is a continuous distribution having support over (a, b)
where a, b ∈ R. We use Uniform(a, b) to denote the p.d.f. of a random variable X distributed
according to the uniform distribution. The exact definition of the p.d.f. of X is provided below:

p(X = x) = Uniform(x; a, b) =
1

|a− b|
∀ x ∈ [a, b].

For uniform distribution, we abuse notation by not ensuring a < b for representing the interval [a, b].
In the context of uniform distribution, the notation [a, b] is to be understood as [a, b] if a ≤ b and
[b, a] if a ≥ b.

Bernoulli Distribution The p.m.f. of the random variable X distributed according to the Bernoulli
distribution is denoted as Bernoulli(p) for p ∈ [0, 1]. The exact definition of the p.d.f. of X is
provided below:

P (X = 0) = p, and P (X = 1) = 1− p. (320)

Categorical Distribution The p.m.f. of a random variable X distributed according to the categorical
distribution is denoted as Categorical(p1, . . . , pd) for pi ∈ [0, 1] ∀ i ∈ [d] and

∑d
i=1 pi = 1. The

exact definition of the p.d.f. of X is provided below:

P (X = i) = pi ∀ i ∈ [d]. (321)

N.2 Univariate Stable Distribution Definition

We employ the definition of a univariate stable distribution discussed in [23]:

Definition 2. A random variable X is said to have a stable continuous distribution if, for two
independent copies of X , denoted as X1 and X2, and positive constants a > 0 and b > 0, (322)
holds for some c > 0 and d ∈ R.

aX1 + bX2
d
= cX + d, where d

= means equality in distribution [57]. (322)
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Continuous stable distributions are typically expressed through their characteristic functions, as the
analytical form of many continuous stable distributions is not known. The characteristic function
of a random variable X having a continuous stable distribution is typically parameterized by four
parameters: stability parameter denoted as α ∈ (0, 2], skewness parameter denoted as β ∈ [−1, 1],
scale parameter denoted as γ ∈ (0,∞), and location parameter denoted as µ ∈ R. The exact form of
the characteristic function is given in (323).

E
[
eitX

]
= ϕ(t;α, β, γ, µ) = exp (itµ− |γt|α(1− iβsgn(t)Φ(α))) , (323)

where Φ(α) =

{
tan

(
πα
2

)
α ̸= 1

−2
π log(|t|) α = 1

, sgn(t) =

{ −1 t < 0
0 t = 0
1 t > 0

.

We further denote the p.d.f. of X having the characteristic function defined in (323) as
pCS(X;α, β, γ, µ). Some well-known examples of continuous stable distribution are the Gaus-
sian/normal distribution, Cauchy distribution, and Lévy distribution. All univariate continuous stable
distributions have infinite variance except the Gaussian distribution, and their tails follow a power
law behavior [23]. Univariate stable distributions have been widely used to model many financial and
physical phenomena. Chapter 2 of [23] provides a list of applications where stable distributions have
been used. For a more in-depth treatment of stable distributions, we refer the reader to [23].

N.3 Multivariate Stable Distribution Definition

A multivariate stable distribution is defined similarly to a univariate stable distribution described in
Appx. N.2. We employ the definition of multivariate distribution given in [23].

Definition 3. A non-generate d-dimensional random variable X⃗ is said to have a multivariate stable
continuous distribution if, for two independent copies of X⃗, denoted as X⃗1 and X⃗2, and positive
constants a > 0 and b > 0, (324) holds for some c > 0 and d⃗ ∈ Rd.

aX⃗1 + bX⃗2
d
= cX⃗+ d⃗, where d

= means equality in distribution [57]. (324)

A main source of complexity while analyzing multivariate continuous stable distributions is the
wide range of dependence structures this family of distribution admits [23]. We refer the reader [46,
45] for a more general treatment of multivariate stable distributions. In this work, we focus on
two special classes of multivariate stable distributions: independent component multivariate stable
continuous distribution denoted as pCS−IC(α, β⃗, γ⃗, µ⃗) and elliptically contoured multivariate stable
distribution denoted as pCS−EC(α,Σ, µ⃗). Similarly to the univariate continuous stable distribution,
both independent component and elliptically contoured multivariate stable distributions do not have
explicit general analytical forms and are expressed through their characteristic functions.

The characteristic function of a d-dimensional random vector X⃗ having independent component
multivariate distribution pCS−IC(α, β⃗, γ⃗, µ⃗) is expressed as follows:

E
[
ei⃗t

T X⃗
]
= exp

−
d∑

j=1

|γjtj |α(1− iβjsgn(tj)Φ(α)) + i⃗tT µ⃗

 ∀ t⃗ ∈ Rd, (325)

where Φ(α) and sgn(·) are as defined in (323), β⃗ = [β1 . . . βd]
T with βj ∈ [−1, 1], γ⃗ =

[γ1 . . . γd]
T with γj ∈ (0,∞), µ⃗ = [µ1 . . . µd]

T ∈ Rd, and α ∈ (0, 2]. One can also alterna-
tively think of the random vector X⃗ = [X1 . . . Xd]

T having the distribution pCS−IC(α, β⃗, γ⃗, µ⃗)
as a collection of independent random variables {Xj}dj=1, where Xj ∼ pCS(α, βj , γj , µj).

The characteristic function of a d-dimensional random vector X⃗ having elliptically-contoured multi-
variate distribution pCS−EC(α,Σ, µ⃗) is expressed as follows:

E
[
ei⃗t

T X⃗
]
= exp

(
−
(⃗
tTΣt⃗

)α/2

+ i⃗tT µ⃗

)
∀ t⃗ ∈ Rd, (326)

where Σ is a positive definite matrix, µ⃗ = [µ1 . . . µd]
T ∈ Rd, and α ∈ (0, 2]. Note that allowing

Σ to be positive semi-definite will violate the fact that X⃗ should be a non-degenerate d-dimensional
random variable. We also list an important property of multivariate continuous stable distributions
used in this paper.
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Property 1. A d-dimensional random vector X⃗ has a multivariate stable continuous distribution
if and only if every 1-dimensional projection has a univariate continuous stable distribution, i.e.,
t⃗T X⃗ ∼ pCS(α, β(⃗t), γ(⃗t), µ(⃗t)) ∀ t⃗ ∈ Rd.

Proof. See the proof of P.1. in [46].

N.4 Univariate Discrete Stable Distributions

Discrete stable distributions form the discrete analogues of the continuous stable distributions. We
employ the following definition for a univariate discrete distributions taken from [24]:
Definition 4. A random variable X is said to have a discrete stable distribution with exponent
ν ∈ (0, 1] if for two independent copies of X , denoted as X1 and X2, (322) holds for all γ ∈ [0, 1].

γ ◦X1 + (1− γν)
1/ν ◦X2

d
= X, (327)

where d
= means equality in distribution [57], and ◦ implies a binomial thinning operation defined as

follows: γ ◦X =
∑X

j=1 Nj , where Nj ∼ Bernoulli(γ), and all N ′
js are jointly independent.

Similar to univariate continuous stable distributions, univariate discrete stable distribution do not have
explicit analytical forms, and are typically expressed through their probability generating functions
and/or characteristic functions . The characteristic function of a discrete random variable N having a
stable discrete distribution is given by (328):

E
[
eitN

]
= exp

(
τ(eit − 1)ν

)
= ϕ(t; ν, τ), and PN (z) = exp(−τ(1− z)γ), (328)

where PN (z; ν, τ) is the probability generating function of N , i =
√
−1, τ > 0, and 0 < ν ≤ 1. We

further denote the probability mass function of N as PDS(N = n; ν, τ). PDS(N ; 1, λ) is a standard
Poisson distribution with mean λ [24]. All discrete stable distribution asymptotically follow a power
law distribution [64].

N.5 Multivariate Poisson Distribution

To our knowledge, there are no well-known multivariate generalizations of univariate discrete stable
distributions, except for the special case of the Poisson distribution. In this section, we describe a
popular multivariate extension of the Poisson distribution.

An intuitive way to define multivariate Poisson distribution is to represent each random variable in the
multivariate Poisson distribution as a sum of independent Poisson random variables [41, 42, 43, 44].
To illustrate, let us construct a bivariate Poisson random vector N⃗ = [N1 N2]

T , where
N1 = Ng

1 +Ng
12, N2 = Ng

2 +Ng
12, (329)

and Ng
1 , N

g
2 , and Ng

12 are mutually independent Poisson random variables with rates λ1, λ2, and λ12,
respectively. Here, the dependence between N1 and N2 is expressed through Ng

12, with covariance
between N1 and N2 being equal to λ12 [47]. For dimensions d > 2, the Poisson random vector:

N⃗ = AN⃗g, (330)
where A is an appropriate matrix of 0’s and 1’s. We can decompose A = [A1 . . . Ad′ ], where
Ai is a d×

(
d
i

)
submatrix having no duplicate columns, and each of its columns containing exactly

i ones and (d − i) zeros [44], and N⃗g = [Ng
1 . . . Ng

d Ng
12 . . . Ng

(d−1)d . . . Ng
d−(d′−1)...d]

T , with
Ng

i1...ij
∼ Poisson(λi1...ij ) ∀ (i1, . . . , ij) ∈ Ad

j , j ∈ [d′]. Furthermore, the random variables
{N1, . . . , Nd−(d′−1)...d} are mutually independent. An intuitive way to think about this multivariate
Poisson distribution is to interpret {Ng

i }di=1 as the “main effect”, {Ng
i1i2

}(i1,i2)∈Ad
2

as the “two-way
covariance effects” and so on until {Ng

i1...id′
}(i1,...,id′ )∈Ad

d′
as the d′-way covariance effect in an

ANOVA-like fashion [44]. For a more detailed discussion, see [43, 44, 47, 42]. Note that d′ ≤ d. In
this work, we denote the d-dimensional random vector N⃗ having a multivariate Poisson distribution
with parameters Λ⃗ =

[
λ1 . . . λd λ12 . . . λd−(d′−1)...d

]T
specifying up to d′-way covariance effects

(where d′ ≤ d), as N⃗ ∼ Poisson(d, d′, Λ⃗). Note that for d′ = 1, we have that K is a collection of
independent Poisson random variables, and when both d = d′ = 1, we recover the scalar Poisson
distribution: Pr(K = k) = e−λλk

k! , ∀ k ∈ N0.
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Deriving the p.m.f. of the Multivariate Poisson Distribution

Let N⃗ ∼ Poisson(d, d′, Λ⃗), where N⃗ is a d-dimensional random vector. Then the corresponding
p.m.f. of N⃗ is described below:

Let n⃗′=
[
n12 . . . n(d−1)d . . . nd−(d′−1)...d

]T
, and dn⃗′ be the dimension of n⃗′, then:

P (N⃗=n⃗)=e−1T Λ⃗
d∏

i=1

λni
i

∑
n⃗′∈C

 ∏
(i1,i2)∈Ad

2

(
λi1i2

λi1λi2

)ni1i2

×

. . .×
∏

(i1,...,id′ )∈Ad
d′

(
λi1...id′∏d′

j=1 λij

)ni1...i
d′

×Q(n⃗, n⃗′)

 , (331)

where C = {n⃗′ ∈ Ndn⃗′
0 :(a⃗′i)

T n⃗′ ≤ ni ∀ i ∈ [d]}, and

Q(n⃗, n⃗′) =

d∏
i=1

1

(ni − a⃗′Ti n⃗′)!

d′∏
j=2

∏
(i1,...,ij)∈Ad

j

1

ng
i1...ij

!
,

with a⃗′i being the i-th row of the matrix A′ = [A2 . . .Ad′ ].

Proof of N⃗ ∼ Poisson(d, d′, Λ⃗) having the p.m.f. described in (331).

We know that N⃗ = AN⃗g, where A = [A1 . . .Ad′ ]. Let the dimension of N⃗g be dN⃗g and Sn⃗ =

{n⃗g ∈ NdN⃗g

0 :k = Akg}. Then, using the fact N⃗ = AN⃗g, the p.m.f. of N⃗ can be expressed using
the p.m.f. of N⃗g in the following manner:

P (N⃗ = n⃗) =
∑

n⃗g∈Sn⃗

P (N⃗g = n⃗g). (332)

Since N⃗g is just a collection of mutually independent Poisson random variables, we can write
P (N⃗g = n⃗g) as a product of scalar Poisson distributions, i.e.,

P (N⃗g = n⃗g) =

d′∏
j=1

∏
(i1,...,ij)∈Ad

j

eλi1...ij

λ
ng
i1...ij

i1...ij

ng
i1...ij

!
. (333)

Substituting (333) into (332), and collecting all eλi1...ij terms we obtain:

P (N⃗=n⃗)=e−1T Λ⃗
∑

n⃗g∈Sn⃗

d′∏
j=1

∏
(i1,...,ij)∈Ad

j

λ
ng
i1...ij

i1...ij

ng
i1...ij

!
. (334)

Decompose the matrix A = [A1 A′], where A′ = [A2 . . .Ad′ ] and n⃗g = [(n⃗g
1)

T n⃗′T ]T , where
n⃗g
1 = [ng

1 . . . n
g
d]

T and n⃗′ contains the rest of the elements in n⃗g. Using the fact that n⃗g ∈ Sn⃗ ⇒
n⃗ = An⃗g we have: n⃗ = A1n⃗

g
1 +A′n⃗′. Combining this with the fact that A1 is an identity matrix,

we obtain:

n⃗ = n⃗g
1 +A′n⃗′ ⇒ n⃗g

1 = n⃗−A′n⃗′ ⇒ ng
i = ni − (a⃗′i)

T n⃗′, (335)

where a⃗′i is the i-th row of A′ and i ∈ [d]. Substituting (335) into (334):

P (N⃗=n⃗)=e−1⃗T Λ⃗
∑

n⃗′∈Sn⃗′

 ∏
i1∈Ad

1

λ
ni−(a⃗′

i)
T n⃗′

i1

(ni − (a⃗′i)
T n⃗′)!

d′∏
j=2

∏
(i1,...,ij)∈Ad

j

λ
ng
i1...ij

i1...ij

ng
i1...ij

!

 (336)

where the summation constraint is transformed to Sn⃗′ = {n⃗′ ∈ Ndn⃗′
0 :(a⃗′i)

T n⃗′ ≤ ni ∀ i ∈ [d]}.
The equivalence of the summations over the sets Sk′ and Sk can be derived by considering that
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ng
i = ni − (a⃗′i)

T n⃗′, and ng
i ≥ 0. Collecting all the factorial terms, we get:

Q(n⃗, n⃗′) =

d∏
i=1

1

(ni − a⃗′Ti n⃗′)!

d′∏
j=2

∏
(i1,...,ij)∈Ad

j

1

ng
i1...ij

!
. (337)

Substituting (337) into (336), we obtain:

P (N⃗=n⃗)=e−1⃗T Λ⃗
∑

n⃗′∈Sn⃗′

 ∏
i1∈Ad

1

λ
ni−(a⃗′

i)
T n⃗′

i1

d′∏
j=2

∏
(i1,...,ij)∈Ad

j

λ
ng
i1...ij

i1...ij

Q(n⃗, n⃗′). (338)

Taking the term
∏

i1∈A1
λni
i1

out of the summation as it does not depend upon n⃗′, we obtain:

P (N⃗=n⃗)=e−1⃗T Λ⃗
∏

i1∈Ad
1

λni
i1

∑
n⃗′∈Sn⃗′

 ∏
i1∈Ad

1

λ
−(a⃗′

i)
T n⃗′

i1

d′∏
j=2

∏
(i1,...,ij)∈Ad

j

λ
ng
i1...ij

i1...ij

Q(n⃗, n⃗′). (339)

Notice that (a′i)
T n⃗′ contains all the elements of n⃗′ which have i in their subscript. Hence, expanding

the term
∏

i1∈Ad
1
λ
−(a⃗′

i)
T n⃗′

i1
and distributing over the product, we obtain the desired form:

P (N⃗=n⃗)=e−1⃗T Λ⃗
d∏

i=1

λni
i

∑
n⃗′∈C

 ∏
(i1,i2)∈Ad

2

(
λi1i2

λi1λi2

)ni1i2

×

. . .×
∏

(i1,...,id′ )∈Ad
d′

(
λi1...id′∏d′

j=1 λij

)ni1...i
d′

×Q(n⃗, n⃗′)

 . (340)
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The three main results of this work are clearly enumerated in Section 1 (Intro-
duction) that demonstrate the main claim of the work which is analytically computing partial
information decomposition for numerous systems employing well-known distributions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have provided a discussion on the limitations of this work in Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: A formal proof of each theorem is provided in the Appx. F- L, with clearly
stated assumptions. A formal justification of the arguments used in Sec. 6 is provided in
Appx. M. Section 3 discusses the general proof technique used in proving our main theorems.
We also provide informal discussions on the constructions used for proving theorems 1- 7 in
their respective sections, namely Sec. 4 and Sec. 5.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The details of our simulation results are provided in Section 6, followed by
more details in Appendix M.3. We have also provided the exact code used for running the
simulation study.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have provided our code with the supplementary materials.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided all simulation details in Section 6 and Appendix L.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification:We have provided a box-plot of our results accompanied by the actual data
points used for computing the box-plot in Figure 1. The factors of variability are clearly
stated in Sec. 6.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: We did not feel the need to provide information on the compute resources
required to run our simulation, as our main results are of theoretical nature. Furthermore, all
our simulation results can be reproduced on any ordinary personal laptop and do not require
any special compute resources.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted is mainly theoretical in nature and we believe it does
not violate the NeurIPS code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [Yes]

Justification: While our research is mainly theoretical, we have tried to anticipate how it
might affect the society negatively and positively.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We believe our work poses no such risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have provided the citation and the corresponding license for the code we
used for running our simulation in Section 6.

Guidelines:

• The answer NA means that the paper does not use existing assets.
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• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release any new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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