
LCA-on-the-Line: Benchmarking Out of Distribution
Generalization with Class Taxonomies

Jia Shi1∗† Gautam Gare1 Jinjin Tian1 Siqi Chai1
Zhiqiu Lin1 Arun Vasudevan1 Di Feng2

Francesco Ferroni 3 Shu Kong 4,5 Deva Ramanan1

1Carnegie Mellon University 2Apple 3Nvidia
4Texas A&M University 5University of Macau

Abstract

We introduce ‘Least Common Ancestor (LCA)-on-the-line’ as a method for pre-
dicting models’ Out-of-Distribution (OOD) performance using in-distribution
measurements, without the need for OOD data. We revisit the LCA distance, a
concept from the pre-deep-learning era, which calculates the hierarchical distance
between labels and predictions in a predefined class hierarchy tree, such as Word-
Net. Our evaluation of 75 models across five significantly shifted ImageNet-OOD
datasets demonstrates the robustness of LCA-on-the-line. It reveals a strong linear
correlation between in-domain ImageNet LCA distance and OOD Top-1 accuracy
across various datasets, including ImageNet-S/R/A/ObjectNet. Compared to pre-
vious methods such as Accuracy-on-the-line [47] and Agreement-on-the-line [2],
LCA-on-the-line shows superior generalization across a wide range of models.
This includes models trained with different supervision types, such as class labels
for vision models (VMs) and textual captions for vision-language models (VLMs).
Our method offers a compelling alternative perspective on why vision-language
models tend to generalize better to OOD data compared to vision models, even
those with similar or lower in-domain (ID) performance. In addition to presenting
an OOD performance indicator, we also demonstrate that aligning model predic-
tions more closely with the class hierarchy and integrating a training loss objective
with soft-labels can enhance model OOD performance.

1 Introduction

Generalizing models trained on in-distribution (ID) data to out-of-distribution (OOD) conditions is a
notoriously challenging task. Distribution shifts can undermine the identical independent distribution
(IID) assumption between training and testing data, thereby affecting robust performance. Recent
works in OOD detection have targeted shifts in distribution by identifying anomalies [64, 54, 37,
40]. Additionally, numerous OOD datasets have been proposed to study the effects of different
interventions, such as temporal shifts [26, 43, 38], artificial noise [21, 1, 33], and natural distribution
shifts [23, 21, 3, 52]. Notably, the challenge of maintaining model robustness becomes significantly
more difficult with severe visual shifts in the image domain.

Estimating OOD Generalization: In the sphere of model generalization, numerous attempts have
been made to predict a model’s performance on OOD datasets based on in-domain measurements,
following the concept of effective robustness [69] (Fig 1). These approaches, referred to as ‘XX-on-
the-line’[47, 2], suggest that a model’s OOD performance is correlated to in-domain accuracy [47,
52, 46, 55] or models consensus on in-domain accuracy [29, 2].
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Figure 1: We focus on estimating how well
models generalize to unseen, out-of-distribution
(OOD) datasets. Specifically, we aim to predict
a model’s OOD performance from its in-domain
performance.

Several methods in prior attempts rely on do-
main generalization strategies that necessitate
prior knowledge of the target domain or re-
quire an estimation of OOD domain informa-
tion [8, 34]. These can lead to computationally
intensive processes, particularly when involving
multiple models or inferences [2, 13].

Furthermore, many studies evaluate general-
ization on OOD datasets with limited visual
shifts or only involve artificial noise, such as
ImageNet-v2 or ImageNet-C [52, 1]. Such
datasets fail to fully reflect a model’s general-
ization capability when confronted with severe
distribution shifts[23, 21, 3], as there is often
limited transfer of robustness from synthetic to natural distribution shifts [69].

Moreover, most prior research has focused solely on estimating generalization among vision models
(VMs) supervised on class labels trained on ImageNet [69, 48]. However, the rise of large-scale
language models trained on datasets like LAION, particularly given their impressive performance
in robust OOD generalization, underscores the necessity to evaluate and compare models across
different families under a unified evaluation framework.

Unlike Vision Models (VMs), Vision-Language Models (VLMs) leverage more diverse training
data, contrastive base loss, and language supervision. There have been attempts to measure VLM
generalization [19, 15, 58, 30], specifically suggesting that training data diversity is an indicator of
model generalization. However, collecting or training on such extensive data can be non-trivial [58].
Prior attempts still lack a unified, simple measurement for both VMs and VLMs to explain model
generalization and convert it into actionable improvements.

Our experiment observed that prior art, like accuracy-on-the-line[47], fails to explain the increment
in effective robustness[69] in VLMs compared to VMs. Recently, [61] observed the same problem
and proposed evaluating OOD accuracy using multiple ID test sets, but their method still requires
multiple run evaluations.

To address the issues of (1) lack of unified metrics on VLMs; (2) less robust to large domain shift; (3)
computation expensive, we propose to adopt the Least Common Ancestor (LCA) score, to measure
model generalization. The LCA distance is the taxonomic distance between labels and predictions,
given a predefined class hierarchy, such as WordNet. Through a series of empirical experiments
involving 75 models of different modalities (36 VMs and 39 VLMs), we show, for the first time to
our knowledge, that the in-domain LCA metric strongly correlates with multiple ImageNet-OOD
datasets under severe visual shifts (ImageNet-Rendition [23], Sketch [21], Adversarial [23], and
ObjectNet [3]). This finding may help explain the surprising result that zero-shot vision-language
models with poor top-1 accuracy generalize better to novel datasets compared to state-of-the-art
vision models, which spurs us to further investigate and discuss the potential of the LCA benchmark
for improving model generalization. Please refer to section 7 for our motivation and hypothesis of
adopting LCA, and Fig 2 illustrate settings comparison to prior work.

2 LCA Distance Measure Mistake Severity

We propose using the in-domain Lowest Common Ancestor (LCA) distance, or taxonomy loss, as
a predictor for model generalization. Here, we will formally define how taxonomy loss can be
measured using in-domain data. Taxonomy loss measures the class ranking difference between
a model’s prediction based on class likelihood, and a predefined class order encoded by class
taxonomy. Lower taxonomy loss is expected when a model assigns higher likelihood to classes
that are semantically closer to the ground truth class, in other words, ‘making better mistakes’[5].
Following previous research [5, 11], we utilize WordNet[45], a large-scale lexical database inspired
by psycholinguistic theories of human lexical memory [44], to encode class taxonomy. An example
of LCA distance is shown in Fig 3.
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Given two classes, y (the ground truth class) and y′ (the prediction class), we define the LCA
distance according to [5] as DLCA(y

′, y) := f(y)−f(NLCA(y, y
′)), where f(y) ≥ f(NLCA(y, y

′))
and NLCA(y

′, y) denotes the lowest common ancestor class node for classes y and y′ within the
hierarchy, and f(·) represents a function of a node, such as the tree depth or entropy. We use the
information content as described in [70]. For each sample Xi in the given dataset M := X1, . . . , Xn:
DLCA(model,M) := 1

n

∑n
i=1 DLCA(ŷi, yi) ⇐⇒ yi ̸= ŷi, where ŷi is the predicted class for

sample Xi using the model, yi is the ground truth class for sample Xi, and yi ̸= ŷi. Intuitively, a
model with a lower LCA distance demonstrates a greater semantic understanding of class ontology in
WordNet.

3 Experiment

In this section, we present an experiment benchmarking the relationship between Lowest Common
Ancestor (LCA) and generalization.

Setup This paper leverages 75 pretrained models sourced from open repositories on GitHub for
empirical analysis. Our selection comprises 36 Vision Models (VMs) pretrained on ImageNet
and supervised from class labels, alongside 39 Vision-Language Models (VLMs) that incorporate
language as part of the supervision. A comprehensive list of model details, ensuring reproducibility,
will be provided in Section 6. We use ImageNet[11] as the source in-distribution (ID) dataset, while
ImageNet-v2[52], ImageNet-Sketch[21], ImageNet-Rendition[23], ImageNet-Adversarial[23], and
ObjectNets[3] are employed as out-of-distribution datasets, exemplifying severe natural distribution
shifts. The ImageNet hierarchy, as depicted in [5], is utilized.

For our correlation experiment, we use R2 (Coefficient of Determination) and PEA (Pearson correla-
tion coefficient) to measure the strength and direction of linear relationships between two variables.
Additionally, we employ KEN (Kendall rank correlation coefficient) and SPE (Spearman rank-order
correlation coefficient) to assess the correspondence of the rankings of two variables.

The importance of these measurements lies in their different focuses. Linearity measures, such as
R2 and PEA, are primarily concerned with the fit of a linear model to data points, allowing us to
quantify the predictability of changes in one variable based on the other. Ranking measures, like
KEN and SPE, provide insights into how the rankings of variables relate to each other, which is
crucial in downstream applications such as image retrievals and search engine optimization, where
understanding and predicting the ordering of data points is often more important than predicting their
exact values. For prediction experiments, we utilize MAE (Mean Absolute Error) to quantify the
absolute difference between predictions and ground truth.

Although ImageNet-v2 is predominantly deemed an OOD dataset in most prior literature [59, 47, 2],
our experiments suggest that ImageNet-v2 aligns more closely with ImageNet than with other OOD
datasets; we delve into these details in Appendix 9.

Element ImageNetv2 ImageNet-S ImageNet-R ImageNet-A ObjectNet
ID OOD R^2 PEA R^2 PEA R^2 PEA R^2 PEA R^2 PEA

ALL

Top1 Top1 0.962 0.980 0.075 0.275 0.020 0.140 0.009 0.094 0.273 0.522
LCA Top1 0.339 0.582 0.838 0.915 0.779 0.883 0.869 0.932 0.915 0.956
Top1 Top5 0.889 0.943 0.052 0.229 0.004 0.060 0.013 0.115 0.262 0.512
LCA Top5 0.445 0.667 0.883 0.940 0.738 0.859 0.909 0.953 0.924 0.961

Table 1: Correlation measurement (R2PEA) of ID LCA/Top1 with OOD Top1/Top5 across 75 models
spanning modalities (36 VMs and 39 VLMs) as shown in Figure 4. We demonstrate that LCA has a strong
correlation with OOD performance on all datasets (except ImageNet-v2). We take the absolute value of all
correlations for simplicity.

3.1 LCA-on-the-Line: In-Domain Taxonomy Distance (LCA) as an Out of Distribution
(OOD) Performance Benchmark

Accuracy-on-the-line [47] corroborated that a model’s in-distribution (ID) accuracy and its out-of-
distribution (OOD) accuracy are largely considered to be strongly correlated. This potent correlation
forms a significant baseline for comparison in our research. Unlike the framework presented in [47],
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which only compares models within the same modality, our work bridges the gap by contrasting
models of different modalities, involving both Vision Models (VM) and Vision-Language Models
(VLM). In addition to the Top1 OOD accuracy, we also incorporate Top5 OOD accuracy, yielding a
more comprehensive evaluation of model generalization.

As displayed in Table 1, the ImageNet in-domain accuracy [47] forms a robust predictor for most
OOD datasets, when the comparison is limited to models with similar setups (VMs or VLMs).
However, this predictor fails to provide a unified explanation of generalization across models from
both families. As highlighted in Figure 4 (indicated in red), when adhering to ‘accuracy on the
line’ [47], all four OOD datasets plotted showcase two separate linear trends, representing models
that belong to each family. This observation aligns with [9], where it was found that VLM models,
despite exhibiting significantly lower ID accuracy, could attain higher OOD performance than their
state-of-the-art VM counterparts.

As shown in Figure 5, our method, adopting in-domain LCA distance, could unify models from
both families. As demonstrated in Table 1 and Figure 4 (colored in green), the severity of in-domain
mistakes serves as a more effective indicator of model performance compared to in-domain accuracy.
It consistently exhibits a strong linear correlation with all OOD benchmark accuracies for natural
distribution shifts (both R2 and the Pearson correlation coefficient approach 0.9, while [47] drop to 0
in ImageNet-A). Notably, our experiments showed that [47] is a more reliable indicator solely for
ImageNet-v2, given its visual similarity to ImageNet. We will further discuss this in Appendix 9. In
Section12, we will also include measurements from the KEN and SPE, which similarly demonstrate
robust scores in preserving the relative ordering of model OOD performance.

3.2 Predicting OOD Performance with In-Domain LCA

We further highlight the effectiveness of the LCA-on-the-Line’ approach by estimating model OOD
performance using a linear function derived from in-domain LCA distance. For comparison, we
included four competitive baselines: Average Confidence (AC), which leverages OOD logits after
temperature scaling; two methods from Agreement-on-the-Line (Aline-D and Aline-S), utilizing
consensus of pairs of models on OOD benchmarks; and Accuracy on the Line’ (ID Top1), employing
in-domain accuracy of established measurement models to fit a linear function. Instead of performing
a probit transform as done in [2] and [47], we implemented min-max scaling because LCA does not
fall within the [0,1] range.

ImageNetv2 ImageNet-S ImageNet-R ImageNet-A ObjectNet
ALL ID Top1 [47] 0.040 0.230 0.277 0.192 0.178

AC [22] 0.043 0.124 0.113 0.324 0.127
Aline-D [2] 0.121 0.270 0.167 0.409 0.265
Aline-S [2] 0.072 0.143 0.201 0.165 0.131
(Ours) ID LCA 0.162 0.078 0.107 0.061 0.048

Table 2: Error Prediction of OOD Datasets across 75 models of diverse settings with MAE loss ↓MAE loss ↓. Top1
in bold and Top2 in underline. Despite ImageNet’s in-domain accuracy remaining a significant indicator
of ImageNet-v2 accuracy, the in-domain LCA outperforms it as a robust error predictor across four severe
distributed OOD datasets, particularly ImageNet-A, which stumps other methods.

As illustrated in Table 2, in-domain LCA distance proves to be a significantly more robust OOD error
predictor than other baselines across four OOD benchmarks with varying distribution shifts. This
robustness is especially evident for ImageNet-A, an adversarial dataset derived from ResNet50’s
misclassifications on ImageNet. Consequently, models pre-trained on ImageNet tend to underperform
on this dataset, especially those with lower accuracy than ResNet50. This leads to decreased
robustness for in-domain indicators like in-domain accuracy [47], methods calibrated from in-domain
validation sets [22], and OOD agreement of models from different families [2]. In contrast, LCA,
relying solely on the relative ranking of class predictions from a single model, is less sensitive to
these issues and thus delivers more consistent performance. This further underscores the efficacy of
LCA as a powerful predictor in challenging OOD scenarios.
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Appendix
4 Figure illustration

Figure 2: Illustration of settings comparison to prior work. Left: prior work settings; Right: our
settings. To the best of our knowledge, LCA-on-the-line is the first approach to uniformly measure
model robustness across VMs and VLMs, on OOD datasets with significant distribution shifts.

Figure 3: Our method estimates a model’s generalization based on its in-domain semantic severity of
mistakes. We use the ’Least Common Ancestor’ (LCA) distance, the ranking distance between the
model’s prediction and the ground truth class from a predefined taxonomy hierarchy, like WordNet.
The LCA distance is proportional to the shortest path from the prediction to the ground truth class in
the hierarchy tree.
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Figure 4: Correlating OOD Top-1/Top-5 Accuracy (VM+VLM, 75 models) on 4 ImageNet-OOD Datasets.
Following Table 1. The plots clearly demonstrate that the in-domain LCA has a stronger correlation with the
model’s OOD performance across all OOD datasets over accuracy-on-the-line [47]. Each plot’s x-axis represents
the OOD dataset metric (with OOD Top-1 in the top row, and OOD Top-5 accuracy in the bottom row); Red
represents in-domain classification accuracy (Top-1); Green denotes in-domain taxonomy distance (LCA). As
interpreted in Figure 5, accuracy-on-the-line only explains generalization of models with similar settings (VMs
or VLMs), but does not unify both model families. For better legibility, please find a PNG of this image in the
supplementary material.

Figure 5: Our method restores the "on-the-line" linear relationship by unifying both VMs and VLMs.
Our method provides a compelling alternative to understand why vision-language models with lower
in-domain accuracy might generalize better to OOD datasets than vision models.
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5 Ethics Statement

This research aims to enhance our understanding of model generalization mechanisms. However,
it’s crucial to recognize its potential misuse, such as in guiding adversarial attacks that reduce the
generalization capabilities of existing models. Although not the intended purpose of our research, the
dual potential of our findings in model generalization underscores the need for robust, secure model
development and the implementation of ethical guidelines for deploying this knowledge.

6 Model Architectures

We list all models used in ours experiment as follows, including 36 Vision Only Models ( VM ) and
39 Vision-Language Models ( VLM ).
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Model Category Architecture Number of models Checkpoint Link

VM (Vision-Only-Models)

AlexNet [32] 1 alexnet
ConvNeXt [42] 1 convnexttiny

DenseNet [27] 4

densenet121
densenet161
densenet169
densenet201

EfficientNet [67] 1 efficientnet_b0
GoogLeNett [65] 1 googlenet
Inceptionv3 [66] 1 inceptionV3

MnasNet [68] 4

mnasnet0.5
mnasnet0.75
mnasnet1.0
mnasnet1.3

Mobilenet-V3 [25] 2 mobilenetv3_small
mobilenetv3_large

Regnet [51] 1 regnet_y_1_6gf
Wide ResNet [75] 1 wide_resnet101_2

ResNet [20] 5

resnet18
resnet34
resnet50
resnet101
resnet152

ShuffleNet [77] 1 shufflenet_v2_x2_0

SqueezeNet [28] 2 squeezenet1_0
squeezenet1_1

Swin Transformer [41] 1 swin_b

VGG [62] 8

vgg11
vgg13
vgg16
vgg19
vgg11_bn
vgg13_bn
vgg16_bn
vgg19_bn

ViT [14] 2 vit_b_32
vit_l_32

VLM (Vision-Language-Models)

ALBEF [35] 1 albef_feature_extractor
BLIP [36] 1 blip_feature_extractor_base

CLIP [50] 7

RN50
RN101
RN50x4
ViT-B-32.pt
ViT-B-16.pt
ViT-L-14.pt
ViT-L-14-336px

OpenCLIP [10] 30

openCLIP:
openCLIP_(’RN101’, ’openai’)
openCLIP_(’RN101’, ’yfcc15m’)
openCLIP_(’RN101-quickgelu’, ’openai’)
openCLIP_(’RN101-quickgelu’, ’yfcc15m’)
openCLIP_(’RN50’, ’cc12m’)
openCLIP_(’RN50’, ’openai’)
openCLIP_(’RN50’, ’yfcc15m’)
openCLIP_(’RN50-quickgelu’, ’cc12m’)
openCLIP_(’RN50-quickgelu’, ’openai’)
openCLIP_(’RN50-quickgelu’, ’yfcc15m’)
openCLIP_(’RN50x16’, ’openai’)
openCLIP_(’RN50x4’, ’openai’)
openCLIP_(’RN50x64’, ’openai’)
openCLIP_(’ViT-B-16’, ’laion2b_s34b_b88k’)
openCLIP_(’ViT-B-16’, ’laion400m_e31’)
openCLIP_(’ViT-B-16’, ’laion400m_e32’)
openCLIP_(’ViT-B-16-plus-240’, ’laion400m_e31’)
openCLIP_(’ViT-B-16-plus-240’, ’laion400m_e32’)
openCLIP_(’ViT-B-32’, ’laion2b_e16’)
openCLIP_(’ViT-B-32’, ’laion2b_s34b_b79k’)
openCLIP_(’ViT-B-32’, ’laion400m_e31’)
openCLIP_(’ViT-B-32’, ’laion400m_e32’)
openCLIP_(’ViT-B-32’, ’openai’)
openCLIP_(’ViT-B-32-quickgelu’, ’laion400m_e31’)
openCLIP_(’ViT-B-32-quickgelu’, ’laion400m_e32’)
openCLIP_(’ViT-L-14’, ’laion2b_s32b_b82k’)
openCLIP_(’ViT-L-14’, ’laion400m_e31’)
openCLIP_(’ViT-L-14’, ’laion400m_e32’)
openCLIP_(’coca_ViT-B-32’, ’laion2b_s13b_b90k’)
openCLIP_(’coca_ViT-L-14’, ’laion2b_s13b_b90k’)
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https://pytorch.org/vision/main/models/generated/torchvision.models.alexnet.html
https://pytorch.org/vision/main/models/generated/torchvision.models.convnext_tiny.html
https://pytorch.org/vision/main/models/generated/torchvision.models.densenet121.html
https://pytorch.org/vision/main/models/generated/torchvision.models.densenet161.html
https://pytorch.org/vision/main/models/generated/torchvision.models.densenet169.html
https://pytorch.org/vision/main/models/generated/torchvision.models.densenet201.html
https://pytorch.org/vision/main/models/generated/torchvision.models.efficientnet_b0.html
https://pytorch.org/vision/main/models/generated/torchvision.models.googlenet.html
https://pytorch.org/vision/main/models/generated/torchvision.models.quantization.inception_v3.html
https://pytorch.org/vision/main/models/generated/torchvision.models.mnasnet0_5.html
https://pytorch.org/vision/main/models/generated/torchvision.models.mnasnet0_75.html
https://pytorch.org/vision/main/models/generated/torchvision.models.mnasnet1_0.html
https://pytorch.org/vision/main/models/generated/torchvision.models.mnasnet1_3.html
https://pytorch.org/vision/main/models/generated/torchvision.models.mobilenet_v3_small.html
https://pytorch.org/vision/main/models/generated/torchvision.models.mobilenet_v3_large.html
https://pytorch.org/vision/main/models/generated/torchvision.models.regnet_y_1_6gf.html
https://pytorch.org/vision/main/models/generated/torchvision.models.wide_resnet101_2.html
https://pytorch.org/vision/main/models/generated/torchvision.models.resnet18.html
https://pytorch.org/vision/main/models/generated/torchvision.models.resnet34.html
https://pytorch.org/vision/main/models/generated/torchvision.models.resnet50.html
https://pytorch.org/vision/main/models/generated/torchvision.models.resnet101.html
https://pytorch.org/vision/main/models/generated/torchvision.models.resnet152.html
https://pytorch.org/vision/stable/models/generated/torchvision.models.shufflenet_v2_x2_0.html
https://pytorch.org/vision/main/models/generated/torchvision.models.squeezenet1_0.html
https://pytorch.org/vision/main/models/generated/torchvision.models.squeezenet1_1.html
https://pytorch.org/vision/main/models/generated/torchvision.models.swin_b.html
https://pytorch.org/vision/main/models/generated/torchvision.models.vgg11.html
https://pytorch.org/vision/main/models/generated/torchvision.models.vgg13.html
https://pytorch.org/vision/main/models/generated/torchvision.models.vgg16.html
https://pytorch.org/vision/main/models/generated/torchvision.models.vgg19.html
https://pytorch.org/vision/main/models/generated/torchvision.models.vgg11_bn.html
https://pytorch.org/vision/main/models/generated/torchvision.models.vgg13_bn.html
https://pytorch.org/vision/main/models/generated/torchvision.models.vgg16_bn.html
https://pytorch.org/vision/main/models/generated/torchvision.models.vgg19_bn.html
https://pytorch.org/vision/main/models/generated/torchvision.models.vit_b_32.html
https://pytorch.org/vision/main/models/generated/torchvision.models.vit_l_32.html
https://github.com/salesforce/LAVIS/blob/main/lavis/configs/models/albef_feature_extractor.yaml
https://github.com/salesforce/LAVIS/blob/main/lavis/configs/models/blip_feature_extractor_base.yaml.yaml
https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt
https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt
https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt
https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt
https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt
https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt
https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt
https://github.com/mlfoundations/open_clip


7 The Suitability of LCA as a Benchmark for Model Generalization

This section explores the hypothesis that links taxonomy loss (LCA) with a model’s generalization
ability. Furthermore, we discuss how such insights can be put into meaningful, actionable use.

Obstacles to Model Generalization. In deep learning, models form connections between distinguish-
able image features and class labels. However, these discriminative associations are vulnerable to
spurious correlations in training data [76]. An example is erroneously associating the class ‘ostriches’
with the feature ‘grass in the background’, as ostriches often appear in grasslands. These correlations
may fail when applied to an OOD dataset [76].

Essentials for Model Generalization.

Figure 6: Capturing transferable features for model
generalization. Despite pronounced distribution shifts,
ImageNet-R serves as a valid OOD test set for Ima-
geNet classes, as the images of ostriches, for instance,
still maintain shape information [18] like ’long neck’,
’big belly’, and ’long legs’. We hypothesize that mod-
els exhibiting good generalization should capture these
transferable features rather than succumb to spurious
correlations on features like ’grass’.

Figure 6 demonstrates a severely shifted OOD
dataset, ImageNet-R, where, despite significant
distribution shifts, humans can effortlessly iden-
tify the correct classes. This is because humans
can discern universally transferable distinctions
between classes as distinguishable features for
classification. Therefore, we posit that a model’s
generalization capability depends on the trans-
ferability of these learned features during train-
ing, and only features that align with human
understanding of object definitions are univer-
sally transferable to any OOD dataset.

But how can we measure what features a model
has learned during training? The decision-
making process of deep neural networks trained
end-to-end has become less interpretable. At-
tempts to decipher the decision process of mod-
els and form decision-tree-like models [72, 17]
have been made, but these efforts have not linked
this understanding to model generalization.

Alignment to Class Taxonomy as a Represen-
tation Measurement.

Ideally, a model that captures more generalizable features tends to ’make better mistakes’ by predicting
classes that are semantically closer to the ground truth class. As illustrated in Fig 7, a model that
learns to associate ostriches with features like ’long legs’ and ’long neck’, which are more transferable
to OOD datasets, will likely predict classes like flamingos or cranes. In contrast, a model influenced
by spurious correlations and associating ostriches with grass might predict a semantically distant
class, like jaguars or lions, which also often appear on grass.

Our method involves measuring a model’s generalization based on its in-domain semantic severity of
mistakes. We use the ’Least Common Ancestor’ (LCA) distance, the taxonomic distance between the
model’s prediction and the ground truth class in a predefined taxonomy hierarchy, like WordNet. If
a model consistently makes better mistakes on in-domain data, we can reasonably assume that the
model has captured more transferable features for class discrimination.

Class Taxonomy and Mistake Severity: Class taxonomy or ontology has been widely utilized in
literature to indicate class formation [11, 71] and semantic relationships [16, 4, 72, 53, 39] between
classes, offering a hierarchical organization of classes or categories. Following these works, we
consider the WordNet class taxonomy [44] as an approximation of natural class taxonomy. The
severity of a mistake in many studies is quantified as the shortest path from the prediction node to the
least common ancestor (LCA) in a predefined class hierarchy. This metric, known as ’LCA distance’
or ’hierarchical error’, was used in the early years of the ImageNet [11] challenge. However, it was
largely dismissed as it was widely believed to follow the same ordering as Top 1 accuracy [11, 5]. In
this work, we revisit this metric and empirically demonstrate that Top 1 accuracy and LCA distance
do not always align when VLMs are involved, challenging the common notion. We also appeal for
community attention to revisit this metric with its potential usage in measuring a model’s feature
awareness to indicate generalization.
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Figure 7: We hypothesize that models capturing
more transferable features tend to predict classes
that are semantically closer to the ground truth.

Causal/Invariant Representation Learning
for OOD Generalization. Recently, there has
been an increase in OOD generalization research
towards formulating training and testing distri-
butions with causal structures [1, 7, 49], where
shifts in distribution primarily arise from inter-
ventions or confounding factors. Building upon
this, methods[57, 60, 63] such as CausalVAE
[74] have been proposed, leveraging learned
causal representations to capture the causal re-
lationships underlying the data generation pro-
cess [30], which helps mitigate the distributional
shifts caused by interventions.

While the connection between OOD generaliza-
tion and causal concepts is not entirely novel, those attempts have focused on the causal structure at
the latent or abstract level, lacking both interpretability and transparency. Our method aligns with
this growing interest in Causal/Invariant learning, which aims to capture the invariant latent data
generation process. One should expect a model prediction that better aligns with the data generation
process to be more robust under intervention, thus generalizing better. Although it’s less feasible
to model the data generation process of natural images (ImageNet), we essentially follow the same
intuition and hypothesize that the WordNet class hierarchy serves as an approximation of the invariant
relationship between class concepts [56]. WordNet is a widely recognized and effective means of
encoding semantic relationships between concepts, making it an appropriate proxy for aligning human
semantic knowledge [45]. Unlike previous work, the WordNet hierarchy provides interpretability,
adding a level of transparency to our understanding of model generalization.

8 Enhancing Generalization through Class Taxonomy Alignment.

Building upon the earlier discussion, we explore how the devised method can be utilized to enhance a
model’s generalization capability.

8.1 Improving Generalization by Class Taxonomy Alignment with taxonomy loss

Inferring Class Taxonomy from a Pretrained Model Using K-Means Clustering. In a previous
experiment, we adopted the WordNet hierarchy as class taxonomy to calculate LCA distance. While
the number of publicly available datasets providing class taxonomy is limited [11, 71], the usefulness
of our method is unquestionable. Hence, we propose a method to construct a latent class taxonomy,
expanding the potential applications of our work. We show that such a constructed taxonomy could
achieve similar performance to the WordNet hierarchy.

Stats among 75 latent hierarchy Element ImageNetV2 ImageNet-S ImageNet-R ImageNet-A ObjectNetID OOD
Top1 Top1 Top1 0.980 0.274 0.141 0.093 0.522

LCA (Mean) LCA Top1 0.815 0.773 0.712 0.662 0.930
LCA (Min) LCA Top1 0.721 0.715 0.646 0.577 0.890
LCA (Max) LCA Top1 0.863 0.829 0.780 0.717 0.952
LCA (std) LCA Top1 0.028 0.022 0.027 0.025 0.010

Table 3: Correlation Measurement(R2) between ID LCA/Top1 and OOD Top1 across 75 Latent Hier-
archies Derived from K-means. Our latent hierarchy construction is robust among 75 different pretrained
model adoptions. For each pretrained model, we constructed a 75-class taxonomy hierarchy using the K-means
clustering method described previously. We then calculated the LCA for each hierarchy as an in-domain indicator
and compared it to OOD accuracy using the same settings as in 1.

The essence of class taxonomy lies in its representation of inter-class distance, encoding class
proximity and identifying which classes cluster closely in semantic space. In this spirit, we construct
a class taxonomy matrix using K-means clustering. As illustrated in Fig 8, we adopt average class
features to cluster data hierarchically at 10 different levels, with an increasing number of clusters to
indicate class adjacency. Experiments in Tab 3 show that our method is very robust regardless of which
model was used to construct the class hierarchy. Further implementation details in appendix 11.1.
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Figure 8: Visualization of K-mean clustering. We
adopt a pre-trained model and perform K-mean clus-
tering with various numbers of K over encoded image
features to construct a latent hierarchy for calculating
LCA distance. In Tab 3, we show that robust perfor-
mance can be achieved among 75 different pretrained
models.

Employing Class Taxonomy as Soft Labels.
We propose a straightforward approach to
demonstrate the potential of LCA as a bench-
marking tool for generalization. We encode the
normalized pairwise LCA between each class
as soft labels and apply linear probing over the
pretrained model. Contrary to the rigid proba-
bilistic distribution of single-label classification,
we formulate the problem as multi-labeling. Be-
sides, we employ a sigmoid-style [6] BCE loss
instead of softmax, relaxing the constraints on
inter-class interaction. A more detailed setup
will be included in the appendix.

Following the methods above, we constructed
class taxonomy matrices for AlexNet [32] and
Swin Transformer[41], representing the best and
worst performing models on ImageNet in our model pool. Following the intuition of model distilla-
tion [24], the hierarchy constructed from the model’s pretrained features partially encapsulates the
model’s interpretation of interclass relationships. As illustrated in Table 4, incorporating more accu-
rate inter-class distances consistently enhances OOD performance across all four OOD benchmarks,
albeit with slightly lower Top 1 accuracy.

However, this approach does lead to a slight drop in in-domain accuracy as it less intensively optimizes
towards the ground truth class. Inspired by the notion that models are more confident where they
excel [73], we apply linear interpolation between linear layers trained from cross-entropy and our
proposed loss function. The results suggest that this method strikes a balance, delivering competitive
performance on both ID and OOD datasets.

Importantly, we find that models using hierarchies constructed from pretrained models fall short in
OOD generalization compared to those utilizing the WordNet hierarchy, even though they exhibit
slightly improved ID performance. This indicates that enforcing arbitrary inter-class relationships,
derived from in-domain datasets, can negatively affect OOD performance.

ImageNet ImageNetv2 ImageNet-S ImageNet-R ImageNet-A ObjectNet
Baseline 0.690 0.5618 0.199 0.322 0.010 0.267
AlexNet Hier 0.665 0.5402 0.189 0.294 0.017 0.247
Swin-T Hier 0.668 0.5429 0.196 0.312 0.023 0.259
WordNet Hier 0.664 0.5387 0.199 0.329 0.024 0.272
(CE + CE) Interp 0.695 0.5645 0.196 0.325 0.011 0.273
(AlexNet + CE) Interp 0.694 0.5665 0.200 0.325 0.012 0.274
(Swin-T + CE) Interp 0.695 0.5694 0.202 0.331 0.012 0.274
(WordNet + CE) Interp 0.694 0.5638 0.2073 0.335 0.014 0.282

Table 4: Interpolating Class Taxonomy to Linear Probing on ResNet18 Feature. Training with a WordNet
hierarchy delivers the most significant improvements across OOD benchmarks despite lower Top 1 accuracy,
whereas models using hierarchies inferred from pretrained models yield lesser gains. The top table displays
results from models trained using latent hierarchy constructed from the indicated model via K-means. The
bottom table presents the results of the aforementioned models when interpolated with layers trained from cross
entropy in the weight space [73].

8.2 Improving Generalization by Class Taxonomy Alignment with Prompt Engineering

In this section, we discuss results on enhancing model generalization through Taxonomy Integration
in Vision-Language Models.

For vision-language models, integrating taxonomy-specific knowledge during zero-shot evaluation
is straightforward. The WordNet hierarchy naturally indicates inter-class distances during data
generation. For example, ‘dalmatian’ and ‘husky’ are semantically close, both originating from
the parent node ‘dog’. We detail the results with CLIP-vit32 [50] in Tab 5. To test our hypothesis,
we explicitly integrated hierarchical taxonomy relationships into the prompt for zero-shot VLM
prediction. The prompt was designed as ‘A, which is a type of B, which is a type of C’, informing
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the model to make taxonomy-aligned predictions. Additionally, we included two ablation studies: 1)
providing the correct taxonomy path without informing the model of the class name relationships
(Stack Parent); and 2) informing the model of the hierarchical ‘is-a’ relationship but providing
an incorrect taxonomy relationship randomly sampled from the tree (Shuffle Parent). Our results
demonstrate that informing the model of both the correct taxonomy and their hierarchical relationships
significantly improves generalization, as evidenced by improvements in Top-1 accuracy, ELCAD,
and test-time Cross-Entropy(CE) across all datasets for all tested models.

Model ImageNet ImageNetv2 ImageNet-S ImageNet-R ImageNet-A ObjectNet
Top1 Test CE ELCA Top1 Test CE ELCA Top1 Test CE ELCA Top1 Test CE ELCA Top1 Test CE ELCA Top1 Test CE ELCA

Baseline 0.589 1.635 9.322 0.517 2.014 9.384 0.379 2.817 9.378 0.667 1.348 8.790 0.294 3.098 9.358 0.394 2.631 8.576
Stack Parent 0.381 3.730 9.389 0.347 3.948 9.395 0.219 5.540 9.561 0.438 3.287 9.258 0.223 4.469 9.364 0.148 5.127 9.076

Shuffle Parent 0.483 2.236 9.679 0.432 2.586 9.696 0.329 3.251 9.718 0.557 1.919 9.281 0.236 3.532 9.586 0.329 3.067 8.785
Taxonomy Parent 0.626 1.457 9.102 0.553 1.824 9.165 0.419 2.544 9.319 0.685 1.279 8.658 0.319 2.839 9.171 0.431 2.433 8.515

Table 5: Accuracy on OOD dataset by enforcing class taxonomy: Baseline: <dalmatian>; Stack
Parent: <dalmatian, dog, animal>; Taxonomy Parent:<dalmatian, which is type of a dog, which
is type of an animal>; Shuffle Parent: <dalmatian, which is type of an organism, which is type of
a seabird>; We demonstrate that integrating both the correct structural information (informing the
hierarchical ‘is-a’ relationship between class names) and valid taxonomy relationships from WordNet
significantly boosts model performance and generalization.

9 Discussion

Reestablishing LCA as a Comprehensive Measure of Model Generalization. While Top 1
ID accuracy [47] demonstrates a clear linear trend with OOD datasets in models with similar
training mechanisms, this relationship becomes less distinct in vision-only and VLMs. This finding,
echoed in earlier studies[15, 73, 9], suggests a more nuanced understanding of how zero-shot
VLMs with lower Top-1 accuracy can outperform competitive vision models in generalizing to
unfamiliar datasets. While previous works have emphasized the significant impact of data diversity
on generalization[15, 58, 30], our results indicate that the LCA offers a more all-encompassing
assessment of model generalization. By considering factors such as training data size, architecture,
loss, and others, LCA provides a fuller measure of a model’s ability to accurately capture semantic
distinctions common across ID and OOD benchmarks. This establishes a comprehensive benchmark
that encompasses various generalization factors, addressing the issue of inflated VLM effectiveness
on "Effective Robustness[69]." Future research should delve into large-scale analytic studies of
generalization factors in conjunction with LCA.

ImageNet-v2 Demonstrates Similar Class Discrimination Features to ImageNet. ImageNet-v2,
a recollection of ImageNet, is often used as an OOD dataset for ImageNet-based studies[59, 47, 2].
Our experiments indicate that ImageNet-v2 more closely resembles ImageNet than other OOD
datasets. We hypothesize that the minimal external intervention in ImageNet-v2’s data generation
process results in visual similarities to ImageNet, allowing even spurious relationships encoded from
ImageNet to transfer successfully to ImageNet-v2. Consequently, models pretrained on ImageNet
(VMs) inflate accuracy on ImageNet-v2, disrupting the alignment with trends observed in VLMs.

Is it Possible for a Semantically-Aware (Low LCA) Model to Have Low Top 1 Accuracy? Our
empirical analysis indicates a correlation: models not specifically tuned on class taxonomy, with
lower Top 1 accuracy, tend to exhibit higher LCA distances. However, this relationship is correlational
rather than causal. It remains feasible to design a model adversarially so it consistently predicts
the semantically nearest class to the true class. In such cases, the model would show a low LCA
distance while maintaining zero Top 1 accuracy. Therefore, while a correlation exists between Top
1 accuracy and LCA, causality cannot be inferred, and this relationship can be disrupted under
deliberate adversarial training.

Does ImageNet LCA (Taxonomy Distance) Reflect ImageNet Top 1 Accuracy? It is often
suggested that LCA and Top-1 accuracy exhibit similar trends on the same dataset [11, 5]. Intuitively,
a high-performing model better fits the data distribution, leading to fewer severe errors. This
pattern generally holds true for models under similar settings (either VM or VLM). However, when
considering both VM and VLM models, ImageNet and ImageNet-v2 exhibit only a weak correlation
between LCA and Top-1 accuracy, whereas other semantically distinct OOD datasets show a stronger
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relationship. This finding challenges the prevailing belief that in-domain Top-1 accuracy and LCA
maintain the same ranking[12, 5].

10 Metric

In this section, we outline the metrics adopted for our experiment.

10.1 Correlation Measurement

Correlation measurements quantify the degree of association between two variables. This can be
further subdivided into linearity and ranking measurements.

10.1.1 Linearity Measurement

Linearity measurement evaluates the strength and direction of a linear relationship between two
continuous variables. We use the R² and Pearson correlation coefficients to assess linearity.

R² (Coefficient of determination): The R², or coefficient of determination, quantifies the proportion
of the variance in the dependent variable that can be predicted from the independent variable(s). It
ranges from 0 to 1, where 1 indicates perfect predictability. It is defined as:

R2 = 1−
∑n

i=1(yi − f(xi))
2∑n

i=1(yi − ȳ)2
(1)

where f(xi) is the prediction of yi from the model, ȳ is the mean of the actual y values, and n is the
number of data points.

PEA (Pearson correlation coefficient): The Pearson correlation coefficient, denoted as r, measures
the linear relationship between two datasets. It is defined as:

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(2)

where x̄ and ȳ are the mean values of the datasets x and y, respectively, and n is the number of data
points.

10.1.2 Ranking measurement

Ranking measurement evaluates the degree of correspondence between the rankings of two variables,
even when their relationship is non-linear. The Kendall and Spearman rank correlation coefficients
are metrics used for this purpose.

KEN (Kendall rank correlation coefficient): Also known as Kendall’s tau (τ ), this coefficient
measures the ordinal association between two variables. It is defined as:

τ =
(number of concordant pairs)− (number of discordant pairs)

1
2n(n− 1)

(3)

where n is the number of data points.

SPE (Spearman rank-order correlation coefficient): The Spearman rank-order correlation co-
efficient, denoted as ρ, assesses the monotonic relationship between two variables. It is defined
as:

ρ = 1−
6
∑n

i=1 d
2
i

n(n2 − 1)
(4)

where di is the difference between the ranks of corresponding data points in the two datasets and n is
the number of data points.

10.2 Taxonomy Measurement

Taxonomy measurement is designed to assess the alignment between the model-predicted class
ranking and the predefined class taxonomy hierarchy tree. This is also referred to as ’mistake severity’
or ’taxonomy distance’.
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10.2.1 LCA distance

Following [5, 70], we define LCA distance using a predefined hierarchy tree, as indicated in Fig3.
We adopt class distance in a hierarchical tree format to denote inter-class relationships, which is
necessary to calculate LCA and ELCA. Given a ground truth node y (node 1 in the plot) and a model
prediction node y′ (node 3 in the plot), their LCA node LCA(y, y′) is node 6 in the plot. We define
it as:

DLCA(y
′, y) := f(LCA(y′, y))− f(y), (5)

where f(·) represents a function for a node’s score, such as the tree depth or information content.

Scores as tree depths: We define a function P (x) to retrieve the depth of node x from tree T. Then,
LCA distance is defined as:

DLCA(y
′, y)P := (P (y)− P (LCA(y′, y))) + (P (y′)− P (LCA(y′, y))), (6)

where we also append P (LCA(y′, y))− P (y′) to counter tree imbalance.

Scores as information: Defining score as tree depth may be vulnerable to an imbalanced hierarchical
tree. Thus, we also define a node’s score as information to put more weight on nodes with more
descendants. Formally, following [70], we apply a uniform distribution p to all leaf nodes in the tree
that indicate a class in the classification task. The probability of each intermediate node in the tree is
calculated by recursively summing the scores of its descendants. Then, the information of each node
is calculated as I(node) := −log2(p). The LCA distance is then defined as:

DI
LCA(y

′, y) := I(y)− I(LCA(y′, y)), (7)

In this work, we adopt DI
LCA(y

′, y) for objectNet, ImageNet-R, and ImageNet-v2, and DP
LCA(y

′, y)
for ImageNet-S, and ImageNet-A to achieve optimal performance. Both metrics can significantly
outperform Top1 in-domain accuracy.

10.3 Generalizate LCA to Expected LCA

We can also generalize the LCA distance to settings where the model outputs a distribution over
all possible classes for each sample (like using softmax). For a sample Xi whose ground truth
class is yi, and the model outputs (p̂1,i, . . . , p̂K,i) over the K classes (e.g., 1000 in ImageNet),
we define the Expected Lowest Common Ancestor Distance (ELCA): DELCA(model,M) :=
1

nK

∑n
i=1

∑K
k=1 p̂k,i ·DLCA(k, yi). From a probabilistic perspective, DELCA is a weighted measure

of mistake severity according to the model’s confidence in each node in the hierarchy. Intuitively, it
combines the LCA distance with a cross-entropy measurement.

Model ImageNet ImageNetv2 ImageNet-S ImageNet-R ImageNet-A ObjectNet
LCA ELCA Top1 LCA ELCA Top1 LCA ELCA Top1 LCA ELCA Top1 LCA ELCA Top1 LCA ELCA Top1

ResNet18 [20] 6.643 7.505 0.698 6.918 7.912 0.573 8.005 9.283 0.202 8.775 8.853 0.330 8.449 9.622 0.011 8.062 8.636 0.272
ResNet50 [20] 6.539 7.012 0.733 6.863 7.532 0.610 7.902 9.147 0.235 8.779 8.668 0.361 8.424 9.589 0.018 8.029 8.402 0.316

CLIP_RN50 [50] 6.327 9.375 0.579 6.538 9.442 0.511 6.775 9.541 0.332 7.764 9.127 0.562 7.861 9.526 0.218 7.822 8.655 0.398
CLIP_RN50x4 [? ]radford2021learning} 6.166 9.473 0.641 6.383 9.525 0.573 6.407 9.518 0.415 7.435 8.982 0.681 7.496 9.388 0.384 7.729 8.354 0.504

Table 6: Model performance corresponds to mistake severity. LCA ↓LCA ↓ / ELCA ↓ELCA ↓ /Top1 ↑Top1 ↑ indicate measure-
ments on a given dataset. We present two pairs of model comparisons from the VMs and VLMs families with
different generalization abilities. Note that ELCA should not be compared across modalities, as it is sensitive to
logit temperature.

The proposed ELCA distance provides a more generalized metric for assessing model performance
compared to Top 1 accuracy, LCA distance, and cross entropy. Top 1 accuracy only considers the
top-ranked class; LCA distance measures the Top n class rankings but treats each class equally [5];
Cross-entropy solely focuses on the model’s assigned probability to the ground truth class, and ELCA
extends it to all classes. The ELCA distance captures the probabilistic distribution of mistake severity
across all candidate classes.

In Table 6, we empirically demonstrate that models with better OOD generalization (OOD Top 1
accuracy) also have lower LCA/ELCA distances.
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11 Experiment Setup

11.1 K-mean Clustering for Latent Class Hierarchy Construction

As depicted in Fig 8, we begin with a pretrained model M , in-domain image data X , and labels y for
k classes. Initially, we extract the in-domain data features M(X). With known labels, we categorize
M(X) by y, resulting in k average class features, denoted as kX . Utilizing these per-class features,
we perform a 10-layer hierarchical clustering. For kX , we apply the K-means algorithm, setting the
number of cluster centers as 2i, where i ranges from 1, 2, 3, 4, ..., 9 since 29 < 1000. This procedure
results in 9 cluster outcomes. Subsequently, we calculate the pairwise LCA between the k classes,
determining the cluster level at which both classes share the same cluster as their LCA height. By
definition, all classes share a base cluster level of 10.

11.2 Loss for Linear Probing Experiment

In our linear probing experiment, we define the loss function as follows. For a class with n
classes, we first establish an n × n LCA distance matrix M, where M[i,k] indicates the pairwise
LCA distance DLCA(i, k), with LCA calculated using either WordNet hierarchy or the hierar-
chy derived from the K-mean algorithm (as introduced in the main paper). Next, we scale M by
applying an exponential function, MinMax scaling, and normalize to 1 for each row, i.e., M =
normRow(minmaxScaling(M.exp())). For the loss computation, we use Binary Cross Entropy
(BCE) and adopt the corresponding row value as a soft label. Specifically, if class-i is the ground
truth for a given data instance, we use M[i,:] as the soft label.

11.3 LCA Matrix from Pretrained Model

Figure 9: Comparison between LCA distance matrices. From left to right: WordNet hierarchy;
matrix constructed from AlexNet [32]; and matrix constructed from CLIP ResNet50 [50]. We observe
a higher alignment between the CLIP RN50 LCA distance matrix and the WordNet hierarchy as
compared to the one from AlexNet.
In Figure 9, we present a comparison of LCA distance matrices, with the diagonal index indicating
the shortest distance. Each row signifies the class distance between a specific class and the reference
class, arranged in ascending order. Furthermore, we generated 36 LCA distance matrices from
pretrained models on ImageNet. The findings illustrated in Figure 10 and Table 7 reveal a moderate
correlation between the in-domain LCA of the source model and the generalization capabilities of
the linear probe model. They also suggest that a model’s generalization ability could be modified
by enforcing different inter-class distances, with minimal impact on in-domain accuracy. Our future
research will further explore the relationship between inter-class distance in pretrained models and
their generalization capabilities.

11.4 Hyperparameters and Computational Resources

In the linear probing experiment, we chose hyperparameters based on the task at hand. The learning
rate was set to 0.001, batch size=1024. We used the AdamW optimizer with a weight decay and a
cosine learning rate scheduler with a warm-up iteration. The warm-up type was set to ’linear’ with a
warm-up learning rate of 1e-5. The experiment was run for 50 epochs.

For our computational resources, we utilized a single NVIDIA GeForce GTX 1080 Ti GPU.
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ImageNet ImageNetv2 ImageNet-S ImageNet-R ImageNet-A ObjectNet

LCA ->Hierarchy Linear Prob PEA SPE PEA SPE PEA SPE PEA SPE PEA SPE PEA SPE
0.672 0.462 0.712 0.466 0.719 0.625 0.799 0.733 0.640 0.526 0.622 0.424

Table 7: Correlation measurement between LCA matrix and In-domain LCA on ResNet18.
Following the algorithm of K-Means Clustering, we construct 36 LCA distance matrices (class
hierarchies) from different pretrained models on ImageNet. We then use the LCA distance matrices as
soft labels to guide linear probing on ResNet18 features. The table indicates the relationship between
the In-domain LCA of the pretrained model and the out-of-distribution (OOD) accuracy on the linear
probe model using the corresponding LCA distance matrix. The result is calculated from the average
of three random seeds. Visualization is shown in Figure 10.

Figure 10: Coorelation measurement between LCA matrix and In domain LCA on ResNet18.
Visualization on result in Tab 7. Plot shows an intermediate correlation between the two variable. If
necessary, please find png of this image in supplementary for better legibility.
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12 Supplementary Result

12.1 Comprehensive results from main paper

Extended from Tab 1 and Tab 2 in main paper, we present measurement on only VMs and VLMs in
Tab 8 and Tab 9. Equivalently, LCA is also a very good OOD indicator when only involved VM or
VLM.

Element ImageNetv2 ImageNet-S ImageNet-R ImageNet-A ObjectNet
ID OOD R^2 PEA R^2 PEA R^2 PEA R^2 PEA R^2 PEA

ALL

Top1 Top1 0.962 0.980 0.075 0.275 0.020 0.140 0.009 0.094 0.273 0.522
LCA Top1 0.339 0.582 0.838 0.915 0.779 0.883 0.869 0.932 0.915 0.956
Top1 Top5 0.889 0.943 0.052 0.229 0.004 0.060 0.013 0.115 0.262 0.512
LCA Top5 0.445 0.667 0.883 0.940 0.738 0.859 0.909 0.953 0.924 0.961

VLM

Top1 Top1 0.996 0.998 0.860 0.927 0.851 0.923 0.578 0.761 0.945 0.972
LCA Top1 0.956 0.978 0.922 0.960 0.889 0.943 0.792 0.900 0.936 0.968
Top1 Top5 0.988 0.994 0.867 0.931 0.820 0.906 0.740 0.860 0.970 0.985
LCA Top5 0.930 0.964 0.949 0.974 0.848 0.921 0.828 0.910 0.931 0.965

VM

Top1 Top1 0.996 0.998 0.824 0.908 0.801 0.895 0.523 0.723 0.900 0.949
LCA Top1 0.976 0.988 0.895 0.945 0.768 0.877 0.833 0.912 0.913 0.956
Top1 Top5 0.993 0.997 0.829 0.910 0.821 0.906 0.696 0.834 0.919 0.959
LCA Top5 0.970 0.985 0.925 0.962 0.777 0.882 0.925 0.962 0.936 0.967

Table 8: Correlation measurement of ID LCA/Top1 with OOD Top1/Top5 on 75 models across modality
(36 VMs and 39 VLMs) following Fig 4. The ‘ALL grouping’ demonstrates that LCA has a strong correlation
with OOD performance on all datasets (except ImageNet-v2). We take the absolute value of all correlations for
simplicity. Equivalently, LCA is also a very good OOD indicator when only involved VM or VLM.

ImageNetv2 ImageNet-S ImageNet-R ImageNet-A ObjectNet
ALL ID Top1 [47] 0.040 0.230 0.277 0.192 0.178

AC [22] 0.043 0.124 0.113 0.324 0.127
Aline-D [2] 0.121 0.270 0.167 0.409 0.265
Aline-S [2] 0.072 0.143 0.201 0.165 0.131
(Ours) ID LCA 0.162 0.078 0.107 0.061 0.048

VLM ID Top1 [47] 0.014 0.077 0.064 0.127 0.052
AC [22] 0.029 0.050 0.044 0.217 0.088
Aline-D [2] 0.151 0.250 0.081 0.296 0.260
Aline-S [2] 0.070 0.069 0.068 0.080 0.153
(Ours) ID LCA 0.047 0.059 0.062 0.094 0.043

VM ID Top1 [47] 0.013 0.099 0.108 0.143 0.068
AC [22] 0.059 0.204 0.188 0.441 0.168
Aline-D [2] 0.083 0.427 0.313 0.665 0.364
Aline-S [2] 0.105 0.182 0.092 0.574 0.216
(Ours) ID LCA 0.029 0.079 0.113 0.080 0.056

Table 9: Error Prediction of OOD Datasets across 75 models of diverse settings with MAE loss ↓MAE loss ↓. Top1
in bold and Top2 in underline. Despite ImageNet’s in-domain accuracy maintain as a significant indicator
of ImageNet-v2 accuracy, the in-domain LCA outperforms it as a robust error predictor across four naturally
distributed OOD datasets, particularly ImageNet-A, which stumps other methods.
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12.2 Does ImageNet LCA (Taxonomy Distance) Reflect ImageNet Top 1 Accuracy?

Here, we present numerical results supporting the discussion in discussion section9. We challenge the
common belief that LCA and Top-1 accuracy follow parallel trends within the same dataset[5, 11]. As
illustrated in Figures 11 and 10, when including both VM and VLM zero-shot models, ImageNet and
ImageNet-v2 show a weak correlation between LCA and Top-1 accuracy, while other semantically
distinct OOD datasets exhibit a stronger relationship.

Figure 11: Predicting LCA (VM+VLM, 75 models) on 6 ImageNet-variant Datasets As per
Tab 10. Each plot’s x-axis represents dataset Top-1 accuracy, while the y-axis shows LCA distance.
The plots reveal that ImageNet and ImageNet-v2 do not exhibit a strong correlation between LCA and
Top-1 accuracy, in contrast to other semantically distinct OOD datasets. This observation challenges
the common belief that in-domain Top-1 accuracy and LCA distance maintain the same order[12, 5].
For further details, please refer to the discussion. For better legibility, a png of this image can be
found in the supplementary materials.

Model Group ImageNet ImageNetv2 ImageNet-S ImageNet-R ImageNet-A ObjectNet

Top1->LCA

ALL

K^2 PEA K^2 PEA K^2 PEA K^2 PEA K^2 PEA K^2 PEA
0.237 0.488 0.259 0.509 0.838 0.915 0.749 0.865 0.869 0.932 0.672 0.820
KEN SPE KEN SPE KEN SPE KEN SPE KEN SPE KEN SPE
0.293 0.302 0.298 0.380 0.828 0.937 0.600 0.795 0.813 0.948 0.727 0.901

VLM

K^2 PEA K^2 PEA K^2 PEA K^2 PEA K^2 PEA K^2 PEA
0.934 0.966 0.886 0.941 0.922 0.960 0.889 0.943 0.792 0.890 0.570 0.755
KEN SPE KEN SPE KEN SPE KEN SPE KEN SPE KEN SPE
0.848 0.955 0.684 0.853 0.867 0.959 0.686 0.861 0.689 0.879 0.494 0.704

VM

K^2 PEA K^2 PEA K^2 PEA K^2 PEA K^2 PEA K^2 PEA
0.976 0.987 0.893 0.945 0.895 0.945 0.095 0.310 0.833 0.913 0.913 0.956
KEN SPE KEN SPE KEN SPE KEN SPE KEN SPE KEN SPE
0.911 0.982 0.821 0.942 0.825 0.949 0.149 0.222 0.782 0.917 0.838 0.957

Table 10: Correlation measurement between Top 1 and LCA on 77 models across modality
(37 VM and 40 VLM) on 6 datasets; For instance, Corr(ImageNet Top1 Acc, ImageNet LCA) or
Corr(ImageNet-A Top1 Acc, ImageNet-A LCA); Follow Fig 11. We highlight strong correlation
indications. We take the absolute value of all correlations for simplicity.
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12.3 Ranking Measurement of LCA-on-the-Line

Here we present the numeric result for ranking measures of KEN (Kendall rank correlation coefficient)
and SPE (Spearman rank-order correlation coefficient) in comparision to common use Top1 In domain
accuracy in 11. Equalevently, in domain LCA measure present strong result in both preserving
linearity and ranking.

Element ImageNetv2 ImageNet-S ImageNet-R ImageNet-A ObjectNet
ID OOD KEN SPE KEN SPE KEN SPE KEN SPE KEN SPE

ALL

Top1 Top1 0.840 0.947 0.170 0.092 0.146 0.042 0.068 0.037 0.317 0.339
LCA Top1 0.421 0.517 0.828 0.937 0.761 0.911 0.813 0.948 0.867 0.967
Top1 Top5 0.672 0.818 0.151 0.059 0.134 0.004 0.108 0.021 0.279 0.297
LCA Top5 0.571 0.729 0.843 0.948 0.752 0.897 0.817 0.947 0.861 0.966

VLM

Top1 Top1 0.971 0.997 0.840 0.936 0.864 0.943 0.753 0.915 0.905 0.982
LCA Top1 0.882 0.972 0.867 0.959 0.762 0.886 0.800 0.942 0.870 0.972
Top1 Top5 0.908 0.980 0.848 0.951 0.882 0.959 0.753 0.910 0.842 0.964
LCA Top5 0.900 0.981 0.856 0.950 0.775 0.907 0.794 0.943 0.829 0.955

VM

Top1 Top1 0.948 0.993 0.771 0.901 0.743 0.887 0.735 0.877 0.822 0.927
LCA Top1 0.910 0.981 0.825 0.949 0.705 0.862 0.782 0.920 0.838 0.957
Top1 Top5 0.939 0.992 0.752 0.894 0.758 0.901 0.818 0.941 0.815 0.920
LCA Top5 0.894 0.977 0.832 0.951 0.707 0.871 0.824 0.939 0.846 0.958

Table 11: Ranking measurement of ID LCA/Top1 with OOD Top1/Top5 on 75 models across
modality(36 VM and 39 VLM); As shown in the ’ALL grouping’, LCA shows a much better result
in preserve in model relative ranking to model OOD performance on all OOD datasets (with the
exception of ImageNet-v2), which indicate the superiority for model selection.

13 Limitations, Conclusions, and Future Directions

While we benchmarked and used LCA based on class hierarchy to measure model generalization, the
findings from this work indicate that it is not an effective indicator for datasets visually similar to In-
domain data (like ImageNet2). For these datasets, In-domain Top1 remains a strong indicator, which
potentially limits the utility of LCA. Also, it’s expected that LCA will shows a weaker discrimination
between models on datasets with small number of class (like Cifar [31]).

In conclusion, this work reinvigorates LCA distance using class taxonomy like WordNet as a indicator
for model OOD generalization. Intuitionally, we discuss such semantic measurement of mistake
severity could indicate the transferablility of model’s learned feature for classification. Ideally,
models that capture more transferable feature should make fewer severe mistakes. Across multiple
ImageNet-OOD datasets, we showed that severity of in domain mistakes could served as a unified
metric to indicate model generalization among models supervised from either class label(VMs) or
captions(VLMs)

This relationship is not reflected when using the widely-accepted in-domain Top 1 accuracy [47].
Furthermore, we demonstrated that aligning model predictions with class taxonomy, whether through
prompt engineer or introducing regularization loss, can enhance model generalization. Future
direction could focus on provide theoretical justification under LCA-on-the-line, and perform larger
scale empirical study regarding this benchmark. This work provides new insights into model
generalization using existing resources and encourages further investigation in this direction.
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