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WHAT DO YOU SEE IN COMMON?
LEARNING HIERARCHICAL PROTOTYPES OVER TREE-
OF-LIFE TO DISCOVER EVOLUTIONARY TRAITS
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Black Billed Cuckoo Yellow Billed Cuckoo Mangrove Cuckoo Groove Billed Ani Northern Fulmar Sooty Albatross Laysan Albatross Black Footed Albatross

Figure 1: Sample images of bird species with zoomed-in views of learned prototypes along with their associ-
ated score maps. We consider the problem of finding evolutionary traits common to a group of species derived
from the same ancestor (blue) that are absent in other species from a different ancestor (red). We can infer that
descendants of the blue node share a common trait: long tail, absent from descendants of the red node.

ABSTRACT

A grand challenge in biology is to discover evolutionary traits—features of organ-
isms common to a group of species with a shared ancestor in the tree of life (also
referred to as phylogenetic tree). With the growing availability of image reposi-
tories in biology, there is a tremendous opportunity to discover evolutionary traits
directly from images in the form of a hierarchy of prototypes. However, current
prototype-based methods are mostly designed to operate over a flat structure of
classes and face several challenges in discovering hierarchical prototypes, includ-
ing the issue of learning over-specific prototypes at internal nodes. To overcome
these challenges, we introduce the framework of Hierarchy aligned Commonality
through Prototypical Networks (HComP-Net). The key novelties in HComP-Net
include a novel over-specificity loss to avoid learning over-specific prototypes, a
novel discriminative loss to ensure prototypes at an internal node are absent in the
contrasting set of species with different ancestry, and a novel masking module to
allow for the exclusion of over-specific prototypes at higher levels of the tree with-
out hampering classification performance. We empirically show that HComP-Net
learns prototypes that are accurate, semantically consistent, and generalizable to
unseen species in comparison to baselines.

1 INTRODUCTION

A central goal in biology is to discover the observable characteristics of organisms, or traits (e.g.,
beak color, stripe pattern, and fin curvature), that help in discriminating between species and un-
derstanding how organisms evolve and adapt to their environment (Houle & Rossoni, 2022). For
example, discovering traits inherited by a group of species that share a common ancestor on the
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Figure 2: Examples to illustrate the problem of learning “over-specific” prototypes at internal nodes, which
only cover one descendant species of the node instead of learning prototypes common to all descendants.

tree of life (also referred to as the phylogenetic tree, see Figure 1) is of great interest to biologists
to understand how organisms diversify and evolve (O’Leary & Kaufman, 2011) (see Appendix A
for more details on the biological motivation of this problem). However, the measurement of such
traits with evolutionary signals, termed evolutionary traits, is not straightforward and often relies on
subjective and labor-intensive human expertise and definitions (Simões et al., 2017; Sereno, 2007),
hindering rapid scientific advancement (Lürig et al., 2021).

With the growing availability of large-scale image repositories in biology containing tens of thou-
sands of species of organisms (Van Horn et al., 2018; Singer et al., 2018; Wah et al., 2011), there
is an opportunity for machine learning (ML) methods to discover evolutionary traits automatically
from images, especially those that differentiate visually or genetically similar species (Lürig et al.,
2021; Elhamod et al., 2023). This is especially true in light of recent advances in the field of explain-
able ML, such as the seminal work of ProtoPNet (Chen et al., 2019) and its variants (Rymarczyk
et al., 2021; 2022; Nauta et al., 2021) which find representative patches in training images (termed
prototypes) capturing discriminatory features for every class. We can thus cast the problem of dis-
covering evolutionary traits into asking the following question: what image features or prototypes
are common across a group of species with a shared ancestor in the tree of life that are absent in
species with a different shared ancestor?

For example, in Figure 1, we can see that the four species of birds on the left descending from the
blue node show the common feature of having “long tails”, unlike any of the descendant species of
the red node. Learning such common features at every internal node as a hierarchy of prototypes
can help biologists generate novel hypotheses of species diversification (e.g., the splitting of blue
and red nodes) and accumulation of evolutionary trait changes.

Despite the success of ProtoPNet (Chen et al., 2019) and its variants including HPnet (Hase et al.,
2019) that first introduced the idea of learning hierarchical prototypes at every internal node of
the tree, there are three main challenges to be addressed while learning hierarchical prototypes for
discovering evolutionary traits. First, existing methods that learn multiple prototypes for every class
are prone to learning “over-specific” prototypes at internal nodes of a tree, which cover only one (or
a few) of its descendant species. Figure 2 shows a few examples to illustrate the concept of over-
specific prototypes. Consider the problem of learning prototypes common to descendant species of
the Felidae family: Lion and Bobcat. If we learn one prototype focusing on the feature of the mane
(specific only to Lion) and another prototype focusing on the feature of spotted back (specific only
to Bobcat), then these two prototypes taken together can classify all images from the Felidae family.
However, they do not represent common features shared between Lion and Bobcat and hence are not
useful for discovering evolutionary traits. Such over-specific prototypes should be instead pushed
down to be learned at lower levels of the tree (e.g., the species leaf nodes of Lion and Bobcat).

Second, while existing methods such as ProtoPShare (Rymarczyk et al., 2021), ProtoPool (Rymar-
czyk et al., 2022), and ProtoTree (Nauta et al., 2021) allow prototypes to be shared across classes for
re-usability and sparsity, in the problem of discovering evolutionary traits, we want to learn proto-
types at an internal node n that are not just shared across all its descendant species but are also absent
in the contrasting set of species (i.e., species descending from sibling nodes of n representing alter-
nate paths of diversification). Third, at higher levels of the tree, finding features that are common
across a large number of diverse species is challenging (Harmon et al., 2010; Pennell et al., 2015).
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In such cases, we should be able to abstain from finding common prototypes without hampering
accuracy at the leaf nodes—a feature missing in existing methods.

To address these challenges, we present Hierarchy aligned Commonality through Prototypical
Networks (HComP-Net), a framework to learn hierarchical prototypes over the tree of life for dis-
covering evolutionary traits. Here are the main contributions of our work:

1. HComP-Net learns common traits shared by all descendant species of an internal node and
avoids the learning of over-specific prototypes in contrast to baseline methods using a novel
over-specificity loss.

2. HComP-Net uses a novel discriminative loss to ensure that the prototypes learned at an
internal node are absent in the contrasting set of species with different ancestry.

3. HComP-Net includes a novel masking module to allow for the exclusion of over-specific
prototypes at higher levels of the tree without hampering classification performance.

4. We empirically show that HComP-Net learns prototypes that are accurate, semantically
consistent, and generalizable to unseen species compared to baselines on data from 190
species of birds (CUB-200-2011 dataset) (Wah et al., 2011), 38 species of fishes (Elhamod
et al., 2023), 30 species of butterflies (Lawrence & Campolongo, 2024), 113 species of
spiders and 41 species of turtles (Van Horn et al., 2021). We show the ability of HComP-Net
to generate novel hypotheses about evolutionary traits at different levels of the phylogenetic
tree of organisms.

2 RELATED WORKS

One of the seminal lines of work in the field of prototype-based interpretability methods is the
framework of ProtoPNet (Chen et al., 2019) that learns a set of “prototypical patches” from training
images of every class to enable case-based reasoning. Following this work, several variants have
been developed, such as ProtoPShare (Rymarczyk et al., 2021), ProtoPool (Rymarczyk et al., 2022),
ProtoTree (Nauta et al., 2021), and HPnet (Hase et al., 2019) suiting to different interpretability
requirements. Among all these approaches, our work is closely related to HPnet (Hase et al., 2019),
the hierarchical extension of ProtoPNet that learns a prototype layer for every parent node in the
tree. Despite sharing similar motivation, HPnet is not designed to avoid the learning of over-specific
prototypes or to abstain from learning common prototypes at higher levels of the tree.

Another related line of work is the framework of PIPNet (Nauta et al., 2023), which uses self-
supervised learning to reduce the “semantic gap” (Hoffmann et al., 2021; Kim et al., 2022) between
the latent space of prototypes and the space of images, such that the prototypes in latent space
correspond to the same visual concept in the image space. In HComP-Net, we build upon the
idea of self-supervised learning introduced in PIPNet to learn a semantically consistent hierarchy
of prototypes. Our work is also related to ProtoTree (Nauta et al., 2021), which structures the
prototypes as nodes in a decision tree to offer more granular interpretability. However, ProtoTree
differs from our work in that it learns the tree-based structure of prototypes automatically from data
and cannot handle a known hierarchy. Moreover, the prototypes learned in ProtoTree are purely
discriminative and allow for negative reasoning, which is not aligned with our objective of finding
common traits of descendant species.

Other related works that focus on finding shared features are ProtoPShare (Rymarczyk et al., 2021)
and ProtoPool (Rymarczyk et al., 2022). Both approaches aim to find common features among
classes, but their primary goal is to reduce the prototype count by exploiting similarities among
classes, leading to a sparser network. This is different from our goal of finding a hierarchy of
prototypes to find evolutionary traits common to a group of species absent in other species.

Outside the realm of prototype-based methods, the framework of Phylogeny-guided Neural Net-
works (PhyloNN) (Elhamod et al., 2023) shares a similar motivation as our work to discover evolu-
tionary traits by representing biological images in feature spaces structured by tree-based knowledge
(i.e., phylogeny). However, PhyloNN primarily focuses on the tasks of image generation and trans-
lation rather than interpretability. Additionally, PhyloNN can only work with discretized trees with
fixed number of ancestor levels per leaf node, unlike our work that does not require any discretization
of the tree.
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Figure 3: Schematic illustration of HComP-Net model architecture.

There are also methods for learning hierarchical features in image classification that can clas-
sify difficult-to-distinguish categories within coarse-grained datasets (Yan et al., 2015; Hu et al.,
2016; Taherkhani et al., 2019). These methods use semantic hierarchies that separate broad super-
categories and sub-categories instead of enforcing a multi-level hierarchy among fine-grained im-
ages (for example, images of birds only). Other related works include regularization techniques to
capture commonalities between similar classes Goo et al. (2016), and hierarchical interpretability
frameworks Dai et al. (2023) that extend the concept of concept whitening (Chen et al., 2020) to
incorporate known hierarchies. However, the interpretability offered by these approaches cannot
localize to fine-grained image parts. In contrast, our approach enforces a multi-level predefined
hierarchy on images, and learns prototypes that represent localized attributes common to different
nodes of the hierarchy.

3 PROPOSED METHODOLOGY

3.1 HCOMP-NET MODEL ARCHITECTURE

Given a phylogenetic tree with N internal nodes, the goal of HComP-Net is to jointly learn a set of
prototype vectors Pn for every internal node n ∈ {1, . . . , N}. Our architecture as shown in Figure 3
begins with a CNN that acts as a common feature extractor f(x; θ) for all nodes, where θ represents
the learnable parameters of f . f converts an image x into a latent representation Z ∈ RH×W×C ,
where each “patch” at location (h,w) is, zh,w ∈ RC . Following the feature extractor, for every node
n, we initialize a set of Kn prototype vectors Pn = {pi}Kn

i=1, where pi ∈ RC . Here, the number of
prototypes Kn learned at node n varies in proportion to the number of children of node n, with β
as the proportionality constant, i.e., at each node n we assign β prototypes for every child node. To
simplify notations, we drop the subscript n in Pn and Kn while discussing the operations occurring
in node n.

We consider the following sequence of operations at every node n. We first compute the similarity
score between every prototype in P and every patch in Z. This results in a matrix Ẑ ∈ RH×W×K ,
where every element represents a similarity score between image patches and prototype vectors. We
apply a softmax operation across the K channels of Ẑ such that the vector ẑh,w ∈ RK at spatial
location (h,w) in Ẑ represents the probability that the corresponding patch zh,w is similar to the K

prototypes. Furthermore, the ith channel of Ẑ serves as a prototype score map for the prototype
vector pi, indicating the presence of pi in the image. We perform global max-pooling across the
spatial dimensions H × W of Ẑ to obtain a vector g ∈ RK , where the ith element represents
the highest similarity score of the prototype vector pi across the entire image. g is then fed to a
linear classification layer with weights ϕ to produce the final classification scores for every child
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node of node n. We restrict the connections in the classification layer so that every child node nc

is connected to a distinct set of β prototypes, to ensure that every prototype uniquely maps to a
child node. ϕ is restricted to be non-negative to ensure that the classification is done solely through
positive reasoning, similar to the approach used in PIP-Net (Nauta et al., 2023). We borrow the
regularization scheme of PIP-Net to induce sparsity in ϕ by computing the logit of child node nc as
log((gϕ)2 + 1). g and ϕ here are again unique to each node.

3.2 LOSS FUNCTIONS USED TO TRAIN HCOMP-NET

Contrastive Losses for Learning Hierarchical Prototypes: PIP-Net (Nauta et al., 2023) intro-
duced the idea of using self-supervised contrastive learning to learn semantically meaningful proto-
types. We build upon this idea in our work to learn semantically meaningful hierarchical prototypes
at every node in the tree as follows. For every input image x, we pass in two augmentations of the
image, x′ and x′′ to our framework. The prototype score maps for the two augmentations, Ẑ

′
and

Ẑ
′′

, are then considered as positive pairs. Since ẑh,w ∈ RK represents the probabilities of patch zh,w

being similar to the prototypes from P, we align the probabilities from the two augmentations ẑ
′

h,w

and ẑ
′′

h,w to be similar using the following alignment loss:

LA = − 1

HW

∑
(h,w)∈H×W

log(ẑ
′

h,w · ẑ
′′

h,w) (1)

Since
∑K

i=1 ẑh,w,i = 1 due to softmax operation, LA is minimum (i.e., LA = 0) when both ẑ
′

h,w

and ẑ
′′

h,w are identical one-hot encoded vectors. A trivial solution that minimizes LA is when all
patches across all images are similar to the same prototype. To avoid such representation collapse,
we use the following tanh-loss LT of PIP-Net (Nauta et al., 2023), which serves the same purpose
as uniformity losses in Wang & Isola (2020) and Silva & Rivera (2022):

LT = − 1

K

K∑
i=1

log(tanh(

B∑
b=1

gb,i)), (2)

where gb,i is the prototype score for prototype i with respect to image b of mini-batch. LT en-
courages each prototype pi to be activated at least once in a given mini-batch of B images, thereby
helping to avoid the possibility of representation collapse. The use of tanh ensures that only the
presence of a prototype is taken into account and not its frequency.

Over-specificity Loss: To achieve the goal of learning prototypes common to all descendant species
of an internal node, we introduce a novel loss, termed over-specificity loss Lovsp that avoids learning
over-specific prototypes at any node n. Lovsp is formulated as a modification of the tanh-loss such
that prototype pi is encouraged to be activated at least once in every one of the descendant species
d ∈ {1, . . . , Di} of its corresponding child node in the mini-batch of images fed to the model, as
follows:

Lovsp = − 1

K

K∑
i=1

Di∑
d=1

log(tanh(
∑
b∈Bd

gb,i)), (3)

where Bd is the subset of images in the mini-batch that belong to species d.

Discriminative loss: In order to ensure that a learned prototype for a child node nc is not activated
by any of its contrasting set of species (i.e., species that are descendants of child nodes of n other
than nc), we introduce another novel loss function, Ldisc, defined as follows:

Ldisc =
1

K

K∑
i=1

∑
d∈D̃i

max
b∈Bd

(gb,i), (4)

where D̃i is the contrasting set of all descendant species of child nodes of n other than nc. This is
similar to the separation loss used in other prototype-based methods such as ProtoPNet (Chen et al.,
2019), ProtoTree (Nauta et al., 2021), and TesNet (Wang et al., 2021).

Orthogonality loss: We also apply kernel orthogonality as introduced in Wang et al. (2020) to the
prototype vectors at every node n, so that the learned prototypes are orthogonal and capture diverse

5
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features:
Lorth = ∥P̂P̂⊤ − I∥2F (5)

where P̂ is the matrix of normalized prototype vectors of size C ×K, I is an identity matrix, and
∥.∥2F is the Frobenius norm. Each prototype p̂i in P̂ is normalized as, p̂i =

pi

∥pi∥ .

Classification loss: Finally, we apply cross-entropy loss for classification at each internal node as
follows:

LCE = −
B∑
b

yb log(ŷb) (6)

where y is ground truth label and ŷ is the prediction at every node of the tree.

3.3 MASKING MODULE TO IDENTIFY OVER-SPECIFIC PROTOTYPES

We employ an additional masking module at every node n to identify over-specific prototypes with-
out hampering their training. The learned mask for prototype pi simply serves as an indicator of
whether pi is over-specific or not, enabling our approach to abstain from finding common prototypes
if there are none, especially at higher levels of the tree. To obtain the mask values, we first calculate
the over-specificity score for prototype pi as the product of the maximum prototype scores obtained
across all images in the mini-batch belonging to every descendant species d as:

Oi = −
Di∏
d=1

max
(b∈Bd)

(gb,i) (7)

where gb,i is the prototype score for prototype pi with respect to image b of mini-batch and Bd

is the subset of images in the mini-batch that belong to descendant species d. Since gb,i takes a
value between 0 to 1 due to the softmax operation, Oi ranges from -1 to 0, where -1 denotes least
over-specificity and 0 denotes the most over-specificity. The multiplication of the prototype scores
ensures that even when the score is less with respect to only one descendant species, the prototype
will be assigned a high over-specificity score (close to 0).

As shown in Figure 3, Oi is then fed into the masking module, which includes a learned mask value
Mi for every prototype pi. We generate Mi from a Gumbel-softmax distribution (Jang et al., 2016)
so that the values are skewed to be very close to either 0 or 1, i.e., Mi = Gumbel-Softmax(γi, τ),
where γi are the learnable parameters of the distribution and τ is temperature. We then compute the
masking loss, Lmask, as:

Lmask =

K∑
i=1

(λmaskMi ◦ stopgrad(Oi) + λL1
∥Mi∥1) (8)

where λmask and λL1
are trade-off coefficients, ∥.∥1 is the L1 norm added to induce sparsity in the

masks, and stopgrad represents the stop gradient operation applied over Oi to ensure that the
gradient of Lmask does not flow back to the learning of prototype vectors and impact their training.
Note that the learned masks are not used for pruning the prototypes during training, they are only
used during inference to determine which of the learned prototypes are over-specific and likely to
not represent evolutionary traits. Therefore, even if all the prototypes are identified as over-specific
by the masking module at an internal node, it will not affect the classification performance at that
node.

3.4 TRAINING HCOMP-NET

We first pre-train the prototypes at every internal node in a self-supervised learning manner using
alignment and tanh-losses as LSS = λALA+λTLT . We then fine-tune the model using the follow-
ing combined loss: (λCELCE + LSS + λovspLovsp + λdiscLdisc + λorthLorth + Lmask), where
λ’s are trade-off parameters. Note that the loss is applied over every node in the tree. We show an
ablation of key loss terms used in our framework in Table 6 in Appendix D.

4 EXPERIMENTAL SETUP

Datasets: In our experiments, we primarily focus on the 190 species of birds (Bird) from the CUB-
200-2011 (Wah et al., 2011) dataset for which the phylogenetic relationship (Jetz et al., 2012) is

6
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known. The tree is quite large with a total of 184 internal nodes. We removed the background from
the images to avoid the possibility of learning prototypes corresponding to background information,
such as the bird’s habitat, as we are only interested in the traits corresponding to the body of the
organism. We also apply our method on a fish dataset with 38 species (Fish) (Elhamod et al., 2023)
along with its associated phylogeny (Elhamod et al., 2023), 30 subspecies of Heliconius butterflies
(Butterfly) from the Jiggins Heliconius Collection dataset (Lawrence & Campolongo, 2024) col-
lected from various sources (see Appendix F) . We also consider certain subsets of iNat2021 dataset
(Van Horn et al., 2021) where the set of species are not too diverse (such as elephants and whales
from class Mammalia), but exhibit fine-grained, hard-to-quantify hierarchical variation in visually
observable traits, such that we can find interpretable commonalities between the species. We reiter-
ate that our goal is to discover local prototypes as evolutionary traits, e.g., beak color, stripe pattern,
and fin curvature. Traits differentiating species at higher levels of the tree are often not local, such as
global contours, which are beyond the scope of our study. Therefore, we consider 41 species from
order Testudines (Turtle) and 113 species from order Araneae (Spider) in the iNat2021 dataset.
The phylogeny for Butterfly, Turtle, and Spider were obtained using the rotl package (Redelings
et al., 2019; Michonneau et al., 2016). Further details of dataset statistics, phylogeny statistics,
hyper-parameter settings and training strategy are provided in Appendix F.

Baselines: We compare HComP-Net to ResNet-50 (He et al., 2016), INTR (Interpretable Trans-
former) (Paul et al., 2023) and HPnet (Hase et al., 2019). For HPnet, we used the same hyperparam-
eter settings and training strategy as used by ProtoPNet for the CUB-200-2011 dataset. To ensure
a fair comparison, we set the number of prototypes per child class to 10 for both HComP-Net and
HPnet on the Bird, Butterfly, and Fish datasets. For the Spider and Lizard datasets, due to the higher
diversity of images, we increased the number of prototypes to 20 for both methods. We follow the
same training strategy as provided by ProtoPNet for the CUB-200-2011 dataset.

5 RESULTS

5.1 FINE-GRAINED ACCURACY

Similar to HPnet (Hase et al., 2019), we calculate the fine-grained accuracy for each leaf node by cal-
culating the path probability over every image. During inference, the final probability for leaf class
Y given an image X is calculated as, P (Y |X) = P (Y (1), Y (2), ..., Y (L)|X) =

∏L
l=1 P (Y (l)|X),

where P (Y (l)|X) is the probability of assigning image X to a node at level l, and L is the depth of
the leaf node. Every image is assigned to the leaf class with maximum path probability, which is
used to compute the fine-grained accuracy. The comparison of the fine-grained accuracy calculated
for HComP-Net and the baselines are given in Table 1 (best performance bolded and second best
performance underlined). Note that despite extensive hyper-parameter tuning, HPnet was unable to
perform well on Spider and Turtle datasets (See Appendix F for details). We can see that HComP-
Net performs on par with the baselines and even slightly better on Butterfly and Fish datasets. How-
ever, it is important to note that the primary objective of our work is identifying evolutionary traits
through semantically meaningful prototypes (both quantitatively and qualitatively evaluated in Sec-
tion 5.3 and 5.4 respectively), and not necessarily achieving high classification accuracy (which may
require capturing global features or features prone to dataset bias). Additionally, we observe that the
Spider and Turtle datasets from iNat2021 are relatively more challenging since they contain noisy
elements, including blurry images, obscured foregrounds and camouflaged backgrounds, that cause
models to misclassify these images (examples provided in Figure 7 of Appendix).

Table 1: % Fine-grained Accuracy

Model Hierarchy Bird Butterfly Fish Spider Turtle

ResNet-50 No 74.18 95.76 86.63 74.17 56.23
INTR 69.22 95.53 86.73 78.91 58.64

HPnet Yes 36.18 94.69 77.51 5.85 6.38
HComP-Net 70.01 97.35 90.80 76.19 58.26

Table 2: % Fine-grained Accuracy
(on unseen species)

Species Name HComP-Net HPnet

Fish Crow 53.33 10.55
Rock Wren 53.33 10.22
Indigo Bunting 96.67 49.2
Bohemian Waxwing 70.00 44.9
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(a) HPnet (b) HComP-Net

Figure 4: Comparing the part consistency of HPnet and HComP-Net for their prototype learned at an internal
node in the Bird dataset that corresponds to 3 descendant species (names shown on the rows). For every species,
we are visualizing the top-3 images with highest prototype score for both HPnet and HComP-Net, shown as the
three columns with zoomed in views of their discovered prototypes. We can see that HPnet highlights varying
parts of the bird across the 3 species and across multiple images of the same species, making it difficult to as-
sociate a consistent semantic meaning to its learned prototype. In contrast, HComP-Net consistently highlights
the head region of the bird across all four species and their images.

5.2 GENERALIZING TO UNSEEN SPECIES IN THE PHYLOGENY

We analyze the performance of HComP-Net in generalizing to unseen species that the model has
not seen during training. The biological motivation for this experiment is to evaluate if HComP-Net
can situate newly discovered species at its appropriate position in the phylogeny by identifying its
common ancestors shared with the known species. An added advantage of our work is that along
with identifying the ancestor of an unseen species, we can also identify the common traits shared by
the novel species with known species in the phylogeny.

Since unseen species cannot be classified to the finest levels (i.e., up to the leaf node corresponding
to the unseen species), we analyze the ability of HComP-Net to classify unseen species accurately up
to one level above the leaf level in the hierarchy. With this consideration, the final probability of an
unseen species for a given image is calculated as, P (Y |Xunseen) = P (Y (1), Y (2), ..., Y (L−1)|X) =∏L−1

l=1 P (Y (l)|X). Note that we leave out the class probability at the Lth level, since we do not take
into account the class probability of the leaf level. Since such path probability can only be calculated
for hierarchical methods, we compare our approach to HPnet which also learns hierarchical proto-
types. We leave four species from the Bird training set and calculate their accuracy during inference
in Table 2. We can see that HComP-Net is able to generalize better than HPnet for all four species.

5.3 ANALYZING THE SEMANTIC QUALITY OF PROTOTYPES

Table 3: Part purity of prototypes on Bird dataset.

Model Lovsp Masking Part purity % masked

HPnet - - 0.14 ± 0.09 -
HComP-Net - - 0.68 ± 0.22 -
HComP-Net - ✓ 0.75 ± 0.17 21.42%
HComP-Net ✓ - 0.72 ± 0.19 -
HComP-Net ✓ ✓ 0.77 ± 0.16 16.53%

Following the method introduced in PIPNet
(Nauta et al., 2023), we assess the semantic
quality of our learned prototypes by evaluat-
ing their part purity. A prototype with high
part purity (close to 1) is one that consis-
tently highlights the same image region in
the score maps (corresponding to consistent
local features such as the eye or wing of a
bird) across images belonging to the same
class.

The part purity is calculated using the part locations of 15 parts that are provided in the CUB dataset.
For each prototype, we take the top-10 images from each leaf descendant. We consider the 32× 32
image patch that is centered around the max activation location of the prototype from the top-10
images. With these top-10 image patches, we calculate how frequently each part is present inside
the image patch. For example, a part that is found inside the image patch 8 out of 10 times is given a
score of 0.8. In PIP-Net, the highest value among the values calculated for each part is given as the
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Figure 5: Visualizing the hierarchy of prototypes discovered by HComP-Net for Birds and Fishes. *Note that
the textual descriptions of the hypothesized traits shown for every prototype are based on human interpretation.
Visualizations for Butterfly, Turtle, and Spider datasets are provided in the Appendix J.

part purity of the prototype. In our approach, since we are dealing with a hierarchy and taking the
top-10 from each leaf descendant, a particular part, let’s say the eye, might have a score of 0.5 for
one leaf descendant and 0.7 for a different leaf descendant. Since we want the prototype to represent
the same part for all the leaf descendants, we take the lowest score (the weakest link) among all the
leaf descendants as the score of the part. By following this method, for a given prototype we can
arrive at a value for each part and finally take the maximum among the values as the purity of the
prototype. We take the mean of the part purity across all the prototypes and report the results in
Table 3 for different ablations of HComP-Net and also HPnet, which is the only baseline method
that can learn hierarchical prototypes.

We can see that HComP-Net, even without the use of over-specificity loss, performs much better than
HPnet due to the contrastive learning approach we have adopted from PIPNet (Nauta et al., 2023).
The addition of over-specificity loss improves the part purity because over-specific prototypes tend
to have poor part purity for some of the leaf descendants, which will affect their overall part purity
score. Further, for both ablations with and without over-specificity loss, we apply the masking
module and remove masked (over-specific) prototypes during the calculation of part purity. We see
that the part purity goes higher by applying the masking module, demonstrating its effectiveness in
identifying over-specific prototypes. We further compute the purity of masked-out prototypes and
notice that the masked-out prototypes have drastically lower part purity (0.29 ± 0.17) compared
to non-masked prototypes (0.77 ± 0.16). We also provide a visual comparison of a masked (over-
specific) prototype and an unmasked (non-over-specific) prototype in Appendix H. An alternative
approach to learning the masking module is to identify over-specific prototypes using a fixed global
threshold over Oi. We show in Table 9 of Appendix G that given the right choice of such a threshold,
we can identify over-specific prototypes. However, selecting the ideal threshold can be non-trivial.
On the other hand, our masking module learns the appropriate threshold dynamically as part of the
training process.

Figure 4 visualizes the part consistency of prototypes discovered by HComP-Net in comparison to
HPnet for the bird dataset. We can see that HComP-Net is finding a consistent region in the image
(corresponding to the head region) across all three descendant species and all images of a species, in
contrast to HPnet. Since HPnet is implemented with a 7× 7 latent space in comparison to HComP-
Net which uses a 26 × 26 latent space, we explore HPnet with a higher resolution feature map of
28×28 and report the qualitative and quantitative results in Figure 9 in Appendix I. We note that the
performance of HPnet does not improve with higher resolution feature maps. Furthermore, thanks
to the alignment loss, in HComP-Net every patch ẑh,w is encoded as nearly a one-hot encoding
with respect to the K prototypes which causes the prototype score maps to be highly localized.
The concise and focused nature of the prototype score maps makes the interpretation much more
effective compared to baselines.

5.4 ANALYZING EVOLUTIONARY TRAITS DISCOVERED BY HCOMP-NET

We now qualitatively analyze some of the hypothesized evolutionary traits discovered in the hierar-
chy of prototypes learned by HComP-Net. Figure 5 shows the hierarchy of prototypes discovered
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Figure 6: We trace the prototypes learned for Western Grebe at three different levels in the phylogenetic tree
(corresponding to different periods of time in evolution). Text in blue is the interpretation of common traits of
descendants found by HComP-Net at every ancestor node of Western Grebe.

over a small subtree of the phylogeny from Bird (four species) and Fish (three species) dataset. In
the visualization of bird prototypes, we can see that the two Pelican species share a consistent re-
gion in the learned Prototype labeled 2, which corresponds to the head region of the birds. We can
hypothesize this prototype is capturing the white-colored crown common to the two species. On the
other hand, Prototype 1 finds the shared trait of similar beak morphology (e.g., sharpness of beaks)
across the two Cormorant species. We can see that HComP-Net avoids the learning of over-specific
prototypes at internal nodes, which are pushed down to individual leaf nodes, as shown in visual-
izations of Prototype 3, 4, 5, and 6. Similarly, in the visualization of the fish prototypes, we can see
that Prototype 1 is highlighting a specific fin (dorsal fin) of the Carassius auratus and Notropis hud-
sonius species, possibly representing their pigmentation and structure, which is noticeably different
compared to the contrasting species of Alosa chrysochloris. Note that while HComP-Net identifies
the common regions corresponding to each prototype (shown as heatmaps), the textual descriptions
of the traits provided in Figure 5 are based on human interpretation.

Figure 6 shows another visualization of the sequence of prototypes learned by HComP-Net for the
Western Grebe species at different levels of the phylogeny. We can see that at level 0, we are
capturing features closer to the neck region, indicating the likely difference between the length of
necks between Grebe species and other species (Cuckoo, Albatross, and Fulmar) that diversify at
an earlier time in the process of evolution. At level 1, the prototype is focusing on the eye region,
potentially indicating a difference in the color of red and black patterns around the eyes. At level
2, we are differentiating Western Grebe from Horned Grebe based on the feature of bills. We also
validate our prototypes by comparing them with the multi-head cross-attention maps learned by
INTR (Paul et al., 2023). We can see that some of the prototypes discovered by HComP-Net can
be mapped to equivalent attention heads of INTR. However, while INTR is designed to produce
a flat structure of attention maps, we are able to place these maps on the tree of life. This shows
the power of HComP-Net in generating novel hypotheses about how trait changes may have evolved
and accumulated across different branches of the phylogeny. Additional visualizations of discovered
evolutionary traits from all five datasets are provided in the Appendix (Figures 10 to 29).

6 CONCLUSION

We introduce a novel approach for learning hierarchy-aligned prototypes while avoiding the learning
of over-specific features at internal nodes of the phylogenetic tree, enabling the discovery of novel
evolutionary traits. Our empirical analysis on birds, fishes, and butterflies demonstrates the efficacy
of HComP-Net over baseline methods. Furthermore, HComP-Net demonstrates a unique ability
to generate novel hypotheses about evolutionary traits, showcasing its potential in advancing our
understanding of evolution. We discuss the limitations of our work in Appendix M. While we focus
on the biological problem of discovering evolutionary traits, our work can be applied in general to
domains involving a hierarchy of classes, which can be explored in future research.
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REPRODUCIBILITY

We have ensured the reproducibility of our work by providing a detailed set of resources. The
source code used for training and evaluation, along with instructions for reproducing the experi-
ments, is available via an anonymous GitHub link (https://anonymous.4open.science/r/HComP-Net-
ICLR-14F6/), which is mentioned in Appendix L. Comprehensive implementation details, including
hyperparameters and compute resources, are described in Appendix F. Additionally, we have cited
all dataset sources and outlined the data processing steps in Appendix F to facilitate accurate repli-
cation of our experiments.
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A ADDITIONAL BIOLOGICAL BACKGROUND

One of the first steps in any study of evolutionary morphology is character construction - the process
of deciding which measurements will be taken of organismal variation that are replicable and mean-
ingful for the underlying biology, and how these traits should be represented numerically (Mezey
& Houle, 2005). For phylogenetic studies, researchers typically attempt to identify synapomorphies
– versions of the traits that are shared by two or more species, are inherited from their most recent
common ancestor, and may have evolved along the phylogeny branch. The difficulty with the tradi-
tional character construction process is that humans often measure traits in a way that is inconsis-
tent and difficult to reproduce, and can neglect shared features that may represent synapomorphies,
but defy easy quantification. To address the problem of human inconsistency, PhyloNN (Elhamod
et al., 2023) and Phylo-Diffusion (Khurana et al., 2024) took a knowledge-guided machine learning
(KGML) (Karpatne et al., 2024) approach to character construction, by giving their neural networks
knowledge about the biological process they were interested in studying (in their case, phylogenetic
history), and specifically optimizing their models to find embedded features (analogous to biolog-
ical traits) that are predictive of that process. To address the problem of visual irreproducibility,
RAMirez et al. (2007) suggested photographing the local structures where the empirical traits vary
and linking the images to written descriptions of the traits. In this paper, we take influence from
both approaches. We extend the hierarchical prototype approach from Hase et al. (2019) to better
reflect phylogeny, similar in theory to the way PhyloNN (Elhamod et al., 2023) and Phylo-Diffusion
(Khurana et al., 2024) learned embeddings that reflect phylogeny. Using prototypes, however, we
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enforce local visual interpretability similar to how researchers may use “type-specimens” to define
prototypical definitions of particular character states.

Specifically, our method is about finding synapomorphies–shared derived features unique to a par-
ticular group of species that share a common ancestor in the phylogeny (referred to as clade). While
such features may bear similarities to convergent phenotypes in other clades, our goal is not to iden-
tify features that exhibit convergence. It is typical for phylogenetic studies to specifically avoid
features that exhibit high levels of convergence, as they can lend support for erroneous phylogenetic
relationships. Identifying convergence requires additional information such as shared habitat, niche,
diet, or behavior, which is not incorporated in our work.

B ABLATION OF OVER-SPECIFICITY LOSS TRADE-OFF HYPERPARAMETER

We have provided an ablation for the over-specificity loss trade-off hyperparameter (λovsp) in Table
4. We can observe that increasing the weight of over-specificity loss reduces the model’s classifi-
cation performance, as the model struggles to find any commonality, especially at internal nodes
where the number of leaf descendant species is large and quite diverse. It is natural that species that
are diverse and distantly related may share fewer characteristics with each other, in comparison to
a set of species that diverged more recently from a common ancestor (Harmon et al., 2010; Pennell
et al., 2015). Therefore, forcing the model to learn common traits with a strong Lovsp constraint can
cause the model to perform badly in terms of accuracy.

Table 4: Ablation of over-specificity loss trade-off hyperparameter (λovsp). Done on Bird dataset.

λovsp Part purity Part purity with mask applied % masked % Accuracy

w/o Lovsp 0.68 ± 0.22 0.75 ± 0.17 21.42% 58.32
0.05 0.72 ± 0.19 0.77 ± 0.16 16.53% 70.01
0.1 0.71 ± 0.18 0.74 ± 0.16 11.31% 70.97
0.5 0.71 ± 0.19 0.72 ± 0.18 4.2% 68.23
1.0 0.70 ± 0.19 0.70 ± 0.2 2.13% 62.68
2.0 0.69 ± 0.19 0.69 ± 0.19 0.55% 53.16

C ABLATION OF NUMBER OF PROTOTYPES

In Table 5, we vary the number of prototypes per child β for a node to see the impact on the model’s
performance. We note that while the accuracy increases marginally with increasing the number of
prototypes per child (β) from 10 to 15, it does not affect the performance of the model significantly.
Therefore, we continue to work with β = 10 for all of our experiments.

Table 5: Ablation of the number of prototypes per child for a node (β). Done on Bird dataset.

Number of Prototypes (β) % Accuracy

10 70.01
15 70.92
20 69.99

D ABLATION OF INDIVIDUAL LOSSES

In Table 6, we perform an ablation of the various loss terms used in our methodology. As it can be
observed, the removal of Lovsp and Ldisc degrades performance in terms of both semantic consis-
tency (part purity) and accuracy. On the other hand, the removal of self-supervised contrastive loss
LSS improves accuracy but at the cost of drastically decreasing the semantic consistency.
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Table 6: Ablation of individual losses. Done on Bird dataset.

Model Part purity Part purity with mask applied % masked % Accuracy

HComP-Net 0.72 ± 0.19 0.77 ± 0.16 16.53% 70.01
HComP-Net w/o Lovsp 0.68 ± 0.22 0.75 ± 0.17 21.42% 58.32
HComP-Net w/o Ldisc 0.69 ± 0.19 0.72 ± 0.17 10.95% 65.99
HComP-Net w/o LSS 0.53 ± 0.18 0.57 ± 0.15 8.36% 81.62

E CONSISTENCY OF CLASSIFICATION PERFORMANCE OVER MULTIPLE
RUNS

We trained the model using five distinct random weight initializations. The results showed that the
model’s fine-grained accuracy averaged 70.63% with a standard deviation of 0.18% on the Bird
dataset.

F IMPLEMENTATION DETAILS

We have included all the source code and dataset along with the comprehensive instructions to
reproduce the results, in the supplementary material (.zip file).

Model hyper-parameters: We build HComP-Net on top of a ConvNeXt-tiny (Liu et al., 2022)
architecture as the backbone feature extractor. We have modified the stride of the max pooling layers
of later stages of the backbone from 2 to 1, similar to PIP-Net, such that the backbone produces
feature maps of increased height and width, in order to get more fine-grained prototype score maps.
We implement and experiment with our method on ConvNeXt-tiny backbones with 26× 26 feature
maps. The length of prototype vectors C is 768. The weights ϕ at every node n of HComP-Net are
constrained to be non-negative by the use of the ReLU activation function (Agarap, 2018). Further,
the prototype activation nodes are connected with non-negative weights only to their respective
child classes in W while their weights to other classes are made zero and non-trainable. For hyper-
parameter tuning HPnet for Spider and Turtle datasets we tried various prototype vector lengths
such as 128, 512, 1024. We also increased the learning rate by a factor of 10. We also reduced push
operation from once every 5 epochs to only done at the end of training. We found prototype length
of 128 with original learning and push operation done at the end of training to perform the best.

Training details: All models were trained with images resized and appropriately padded to 224 ×
224 pixel resolution and augmented using TrivialAugment (Müller & Hutter, 2021) for contrastive
learning. The prototypes are pretrained with self-supervised learning similar to PIP-Net for 10
epochs, following which the model is trained with the entire set of loss functions for 60 epochs. We
use a batch size of 256 for the Bird dataset and 64 for the Butterfly and Fish dataset. The masking
module is trained in parallel, and its training is continued for 15 additional epochs after the training
of the rest of the model is completed. The trade-off hyper-parameters for the loss functions are set
to be λCE = 2;λA = 5;λT = 2;λovsp = 0.05;λdisc = 0.1;λorth = 0.1;λmask = 2.0;λL1 = 0.5.
λCE , λT and λA were borrowed from PIP-Net (Nauta et al., 2023). Ablations to arrive at suitable
λovsp is provided in Table 4. λdisc and λorth were chosen empirically and found to work well on
all three datasets. Experiment on unseen species was done by leaving out certain classes from the
datasets, so that they are not considered during training.

Dataset and Phylogeny Details: Dataset statistics and phylogeny statistics are provided in Table
8 and Table 7 respectively. Bird dataset is created by choosing 190 species from CUB-200-2011
1 (Wah et al., 2011) dataset, which were part of the phylogeny. Background from all images was
filtered using the associated segmentation metadata (Farrell, 2024). For Fish 2 dataset, we followed
the exact same preprocessing steps as outlined in PhyloNN (Elhamod et al., 2023). We obtain the
Spider and Turtle dataset from iNaturalist by filtering for the Araneae order and the Testudines
order respectively. We manually observe that images from iNaturalist are noisy and contain unde-
sired background artifacts which may deter our models from learning attributes on the organism

1License: CC BY
2License: CC BY-NC
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body. To account for this, we use GroundingDINO Liu et al. (2023) to detect and crop into ‘com-
plete turtle’ and ‘complete spider’ with a threshold confidence of 50%. We filter images in which
GroundingDINO cannot detect the organisms with sufficient confidence. For Butterfly dataset we
considered each subspecies as an individual class and considered only the subspecies of genus He-
liconius from the Heliconius Collection (Cambridge Butterfly)3 (Lawrence & Campolongo, 2024).
There is substantial variation among subspecies of Heliconius species. Furthermore, we balanced
the dataset by filtering out the subspecies that did not have 20 or more images. We also sampled a
subset of 100 images from each subspecies that had more than 100 images.

Compute Resources: The models for the Bird dataset were trained on two NVIDIA A100 GPUs
with 80GB of RAM each. Butterfly and Fish models were trained on a single A100 GPU. As a
rough estimate, the execution time for the training model on the Bird dataset is around 2.5 hours.
For Butterfly and Fish datasets, the training is completed in under 1 hour. We used a single A100
GPU during the inference stage for all other analyses.

Table 7: High-level statistics of the phylogenies used for different datasets.

Phylogeny # Internal nodes Max-depth Min-depth

Bird 184 25 3
Butterfly 13 5 2
Fish 20 11 2
Spider 53 17 2
Turtle 38 12 1

Table 8: Dataset statistics (# train and validation images).

Dataset # Classes Train set Validation set

Bird 190 5695 5512
Butterfly 30 1418 358
Fish 38 4140 1294
Spider 113 26784 991
Turtle 41 9951 345

ResNet-50

INTR

HComP-Net

Spider Turtle

Resnet

INTR

HComP-Net

Figure 7: Sample of images misclassified by ResNet-50, INTR and HComP-Net models on Spider and Turtle
dataset. We observe that the dataset is quite noisy with diverse backgrounds along with obscured and blurred
images making it a challenging task to identify and interpret commonalities.

3Note that this dataset is a compilation of images from 25 Zenodo records by the Butterfly Genetics Group
at Cambridge University, licensed under Creative Commons Attribution 4.0 International (Montejo-Kovacevich
et al., 2020b; Salazar et al., 2020; Montejo-Kovacevich et al., 2019b; Jiggins et al., 2019; Montejo-Kovacevich
et al., 2019c;g; Warren & Jiggins, 2019b;c; Montejo-Kovacevich et al., 2019h; Jiggins & Warren, 2019a;b;
Meier et al., 2020; Montejo-Kovacevich et al., 2019a;d; Salazar et al., 2018; Montejo-Kovacevich et al., 2019e;
Salazar et al., 2019b; Pinheiro de Castro et al., 2022; Montejo-Kovacevich et al., 2019f;i; 2020a; 2021; Warren
& Jiggins, 2019a; Salazar et al., 2019a; Mattila et al., 2019).
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Table 9: Part purity with post-hoc thresholding approach. Done on Bird dataset.

Threshold Part purity with mask applied % masked

0.2 0.74 ± 0.28 12.28%
0.3 0.75 ± 0.27 13.47%
0.4 0.76 ± 0.26 14.97%
0.5 0.77 ± 0.15 16.66%
0.6 0.77 ± 0.26 17.43%

G POST-HOC THRESHOLDING TO IDENTIFY OVER-SPECIFIC PROTOTYPES

An alternative approach to learning the masking module is to calculate the over-specificity score for
each prototype on the test set after training the model. We calculate the over-specificity scores for
the prototypes of a trained model as follows,

Oi = −
Di∏
d=1

1

topk

topk∑
i=1

(gi) (9)

For a given prototype, we choose the topk images with the highest prototype scores from each
leaf descendant. After taking mean of the topk prototype score, we multiply the values from each
descendant to arrive at the over-specificity score for the particular prototype. Subsequently, we
choose a threshold to determine which prototypes are over-specific. We provide the results of post-
hoc thresholding approach that can also be used to identify over-specific prototypes in Table 9.
While we can note that this approach can also be effective, validating the threshold particularly in
scenarios where there is no part annotations available (such as part location annotation of CUB-200-
2011) can be an arduous task. In such cases, directly identifying over-specific prototypes as part of
the training through the masking module can be the more feasible option.

H VISUAL COMPARISON OF A OVER-SPECIFIC AND A NON-OVER-SPECIFIC
PROTOTYPE

We do a visual comparison of a prototype that has been identified as over-specific by the masking
module and a prototype that is not identified as over-specific in Figure 8. As it can be observed in
Figure 8(a), the Red-Legged Kittiwake has legs that are shorter in comparison to other species of its
clade - Heerman Gull and Western Gull. Therefore, the prototype is identified as over-specific, as
long legs are not common to all three species. On the other hand, in Figure 8(b), the prototype has
been identified as non-over-specific because all three species share white-colored crowns. Prototype
from Figure 8(a) has very low activation for Red Legged Kittiwake and also has poor part purity
since it does not highlight the same part of the bird in the images of Red-legged Kittiwake.

(a) Masked prototype (Over-specific) (b) Unmasked prototype (Non-over-specific)

Figure 8: Comparison of over-specific (a) vs non-over-specific (b) prototype identified by masking
module at the same internal node. Each row corresponds to top-3 closest image to the prototype
from each species.
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I PERFORMANCE OF HPNET WITH HIGH RESOLUTION FEATURE MAPS

We analyze the performance of HPnet with high-resolution feature maps in Table 10. We modified
the backbone by removing the max pooling layers at the final stages of the model to produce a 28×28
feature map instead of the original 7× 7 feature map. It can be observed that the accuracy and part
purity do not improve with high-resolution feature maps. We also make a qualitative comparison
between an HPnet and HComP-Net prototype with a higher resolution feature map in Figure 9,
showing that part purity does not improve with high-resolution feature maps for HPnet.

Table 10: Performance of HPnet with higher resolution feature map (Feature map dimensions in
parenthesis)

Model % Accuracy Part purity

HComP-Net (26× 26) 70.01 0.77 ± 0.16
HPnet (7× 7) 36.18 0.14 ± 0.09
HPnet (28× 28) 20.68 0.14 ± 0.11

(a) HPnet prototype with 28× 28 feature map (b) HComP-Net prototype with 26× 26 feature map

Figure 9: Comparison of HPnet (28×28 feature map) (a) and HComP-Net (26×26 feature map) (b)
prototype score maps. Although HPnet with a 28×28 feature map highlights a localized region in the
image, the prototype highlights varying regions in each image. HComP-Net prototype visualization
is more localized and is also consistent in the part it highlights.

J ADDITIONAL VISUALIZATIONS OF THE HIERARCHICAL PROTOTYPES
DISCOVERED BY HCOMP-NET

We provide more visualizations of the hierarchical prototypes discovered by HComP-Net for But-
terfly (Figures 10 and 11), Fish (Figure 12) and Spider and Turtle (Figure 13) datasets in this sec-
tion. For ease of visualization, in each figure we visualize the prototypes learned over a small sub-
tree from the phylogeny. The prototypes at the lowest level capture traits that are species-specific,
whereas the prototypes at internal nodes capture the commonality between its descendant species.
For Fish dataset, we have provided textual descriptions purely based on human interpretation for the
traits that are captured by prototypes at different levels. For Butterfly, Spider and Turtle datasets,
since the prototypes are capturing different patterns, assigning textual descriptions for them is not
straightforward. Therefore, we refrain from providing any text description for the highlighted re-
gions of the learned prototypes and leave it to the reader’s interpretation.

K ADDITIONAL TOP-K VISUALIZATIONS OF HCOMP-NET PROTOTYPES

We provide additional top-K visualizations of the prototypes from Butterfly (Figures 14 to 17) and
Fish (Figures 18 to 20) datasets, where every row corresponds to a descendant species and the
columns corresponds to the top-K images from the species with the largest prototype activation
scores. A requirement of a semantically meaningful prototype is that it should consistently highlight
the same part of the organisms in various images, provided that the part is visible. We can see in
the figures that the prototypes learned by HComP-Net consistently highlight the same part across all
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Heliconius sara sara

Heliconius eleuchia primularis

Heliconius eleuchia eleuchia

Heliconius erato amalfreda

Heliconius erato lativitta

Heliconius erato notabilis

Heliconius telesiphe sotericus

Traits common 
to species

Traits common 
to species

Traits specific 
to species

Figure 10: Visualizing the hierarchy of prototypes discovered by HComP-Net over three levels in
the phylogeny of seven species from Butterfly dataset. For each prototype, we visualize one image
from each of its leaf descendants. Therefore, for prototypes at the species level ( rightmost column),
we show only one image, whereas for prototypes at internal nodes, we show multiple images (equal
to the number of leaf descendants). For each image, we show the zoomed-in view of the original
image as well as the heatmap overlaid image in the region of the learned prototype. The prototypes
appear to capture different butterfly wing patterns.

top-K images of a species, and across all descendant species. We additionally show that HComP-
Net can find common traits at internal nodes with a varying number of descendant species, including
4 species (Figure 14), 5 species (Figures 15 and 16), and 10 species (Figure 17) of butterflies, and
5 species (Figure 18), 8 species (Figure 19) and 18 species (Figure 20) for fish. We also provide
several top-k visualizations of prototypes learned for bird species in Figures 21 to 29. This shows
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Figure 11: Visualizing the hierarchy of prototypes discovered by HComP-Net over three levels in
the phylogeny of seven species from Butterfly dataset.

the ability of HComP-Net to discover common prototypes at internal nodes of the phylogenetic tree
that consistently highlight the same regions in the descendant species images even when the number
of descendants is large.

L REPRODUCIBILITY

We have ensured the reproducibility of our work by providing a detailed set of resources. The source
code used for training and evaluation, along with instructions for reproducing the experiments, is
available via an anonymous GitHub link (https://anonymous.4open.science/r/HComP-Net-ICLR-
14F6/). Comprehensive implementation details, including hyperparameters and compute resources,
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Figure 12: Visualizing the hierarchy of prototypes discovered by HComP-Net for a sub-tree with
three species from Fish dataset. *Note that the textual descriptions of the hypothesized traits shown
for every prototype are based on human interpretation.
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Figure 13: Visualizing the hierarchy of prototypes discovered by HComP-Net for a sub-tree with
three species from Turtle and Spider datasets.

are described in Appendix F. Additionally, we have cited all dataset sources and outlined the data
processing steps in Appendix F to facilitate accurate replication of our experiments.

M LIMITATIONS OF OUR WORK

A fundamental challenge of every prototype-based interpretability method (including ours) is the
difficulty in associating a semantic interpretation with the underlying visual concept of a prototype.
While some prototypes can be interpreted easily based on visual inspection of prototype activation
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Figure 14: Top-K visualization of a prototype finding commonality between four species of butterfly
sharing a common ancestor. Each row represents the top 3 images from the respective species. For
each image, we show the zoomed-in view of the original image as well as the heatmap overlaid
image.

maps, other prototypes are harder to interpret and require additional domain expertise of biologists.
Also, while we have considered large phylogenies as that of the 190 species from the CUB dataset,
it may still not be representative of all bird species. This limited scope may cause our method
to identify apparent homologous evolutionary traits that could differ with the inclusion of more
species into the phylogeny. Therefore, our method can be seen as a system that generates potential
hypotheses about evolutionary traits discovered in the form of hierarchical prototypes.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Figure 15: Top-K visualization of a prototype finding commonality between nine species of butterfly
sharing a common ancestor. Each row represents the top 3 images from the respective species. For
each image, we show the zoomed-in view of the original image as well as the heatmap overlaid
image.
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Figure 16: Top-K visualization of a prototype finding commonality between twelve species of but-
terfly sharing a common ancestor. Each row represents the top 3 images from the respective species.
For each image, we show the zoomed-in view of the original image as well as the heatmap overlaid
image.
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Figure 17: Top-K visualization of a prototype finding commonality between four species of butterfly
sharing a common ancestor. Each row represents the top 3 images from the respective species. For
each image, we show the zoomed-in view of the original image as well as the heatmap overlaid
image.

Figure 18: Top-K visualization of a prototype finding commonality between five species of fish
sharing a common ancestor. Each row represents the top 3 images from the respective species. For
each image, we show the zoomed-in view of the original image as well as the heatmap overlaid
image.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Figure 19: Top-K visualization of a prototype finding commonality between eight species of fish
sharing a common ancestor. Each row represents the top 3 images from the respective species. For
each image, we show the zoomed-in view of the original image as well as the heatmap overlaid
image.
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Figure 20: Top-K visualization of a prototype finding commonality between eighteen species of fish
sharing a common ancestor. Each row represents the top 3 images from the respective species. For
each image, we show the zoomed-in view of the original image as well as the heatmap overlaid
image.
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Figure 21: Top-K visualization of a prototype finding commonality between seven species of birds
sharing a common ancestor. Each row represents the top 3 images from the respective species. For
each image, we show the zoomed-in view of the original image as well as the heatmap overlaid
image.
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Figure 22: Top-K visualization of a prototype finding commonality between eight species of birds
sharing a common ancestor. Each row represents the top 3 images from the respective species. For
each image, we show the zoomed-in view of the original image as well as the heatmap overlaid
image.
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Figure 23: Top-K visualization of a prototype finding commonality between nine species of birds
sharing a common ancestor. Each row represents the top 3 images from the respective species. For
each image, we show the zoomed-in view of the original image as well as the heatmap overlaid
image.
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Figure 24: Top-K visualization of a prototype finding commonality between thirteen species of birds
sharing a common ancestor. Each row represents the top 3 images from the respective species. For
each image, we show the zoomed-in view of the original image as well as the heatmap overlaid
image.
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Figure 25: Top-K visualization of a prototype finding commonality between five species of birds
sharing a common ancestor. Each row represents the top 3 images from the respective species. For
each image, we show the zoomed-in view of the original image as well as the heatmap overlaid
image.

Figure 26: Top-K visualization of a prototype finding commonality between five species of birds
sharing a common ancestor. Each row represents the top 3 images from the respective species. For
each image, we show the zoomed-in view of the original image as well as the heatmap overlaid
image.
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Figure 27: Top-K visualization of a prototype finding commonality between sixteen species of birds
sharing a common ancestor. Each row represents the top 3 images from the respective species. For
each image, we show the zoomed-in view of the original image as well as the heatmap overlaid
image.
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Figure 28: Top-K visualization of a prototype finding commonality between four species of birds
sharing a common ancestor. Each row represents the top 3 images from the respective species. For
each image, we show the zoomed-in view of the original image as well as the heatmap overlaid
image.

Figure 29: Top-K visualization of a prototype finding commonality between three species of birds
sharing a common ancestor. Each row represents the top 3 images from the respective species. For
each image, we show the zoomed-in view of the original image as well as the heatmap overlaid
image.
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