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Focal loss improves repeatability of deep learning models
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Abstract

Deep learning models for clinical diagnosis, prognosis and treatment need to be trustworthy
and robust for clinical deployment, given that model predictions often directly inform a
subsequent course of action, where individual patient lives are at stake. Central to model
robustness is repeatability, or the ability of a model to generate near-identical predictions
under identical conditions. In this work, we optimize focal loss as a cost function to
improve repeatability of model predictions on two clinically significant classification tasks:
knee osteoarthritis grading and breast density classification, with and without the presence
of Monte Carlo (MC) Dropout. We discover that in all experimental instances, focal loss
improves repeatability of the resulting models, an effect compounded in the presence of
MC Dropout.

Keywords: repeatability, focal loss, breast density, knee osteoarthritis, Monte Carlo
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1. Introduction

The majority of work incorporating deep learning (DL) for clinical classification tasks focus
on model accuracy and classification performance. However, in order to implement reliable
and robust models on patient populations, particularly for diagnostic, prognostic and treat-
ment classification tasks, model repeatability is of paramount importance. Repeatability
refers to the ability of a model to generate near-identical predictions for the same patient
under identical conditions, ensuring that the model produces precise, reliable outputs in
the clinical setting. Given that small changes in an image can produce significantly dif-
ferent DL model predictions, it is essential that models designed for clinical deployment
be specifically optimized for improved repeatability. Similar to clinical-decision making
flow-diagrams where a single differential response can lead to an entirely different pathway
of interventions for a patient, an incorrect, unreliable or unrepeatable model prediction
would lead to a particular cascade of undesirable downstream clinical actions, that might
significantly jeopardize the health and safety of a patient, and put their lives at risk.
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2. Methods and Results

In this work, we utilize focal loss, with and without the presence of Monte Carlo (MC)
Dropout in order to improve model repeatability. We conduct our experiments on two
datasets: the publicly available longitudinal Multicenter Osteoarthritis Study (MOST)
dataset for knee osteoarthritis grading, and the Digital Mammographic Imaging Screening
Trial (DMIST) dataset, a multi-institutional screening dataset for breast density classifica-
tion; both represent clinically significant and impactful classification tasks.

In deep learning optimization, cross-entropy (CE) loss is frequently utilized as the pri-
mary cost function across various classification tasks. The α balanced version of CE loss
for a binary classification problem can be written as (Zhang and Sabuncu, 2018),

CE(pt) = −αt log(pt) (1)

pt =

{
p : class = 1

1− p : otherwise

One notable property of CE loss is that even examples that are easily classified incur a
loss with non-trivial magnitude, which, when summed over large numbers of easy examples,
can overwhelm the rare class. For a binary problem, αt is defined analogously as pt with
α ∈ [0, 1] for class 1 and 1− α otherwise, where α can be set as the inverse class frequency
or as a tunable hyperparameter. While α balances the importance of positive/negative
examples, it does not differentiate between easy/hard examples.

Focal Loss adds a modulating factor (1−pt)
γ to standard CE loss, with tunable focusing

parameter γ ≥ 0, thereby focusing training on hard, misclassified examples. The α balanced
version of focal loss for a binary classification problem can be written as, with pt defined as
in Equation 1 above (Lin et al., 2017),

FOC(pt) = −αt(1− pt)
γ log(pt) (2)

In this work, we begin with two baseline models optimized for classification performance
in each dataset, utilizing CE loss for (A) (i) the MOST dataset, and (B) (i) the DMIST
dataset, with or without MC dropout and all other parameters identical for each corre-
sponding dataset. We subsequently train models with focal loss, using parameters γ = 2
and α = 0.25 following hyperparameter tuning, with and without MC dropout. We compare
each focal loss experimental result with the corresponding MC or non-MC versions of the
baseline, as highlighted in Table 1 and Figure 1. The repeatability metrics are calculated
utilizing multiple images from the same patient and visit: each point on each Bland-Altman
plot (Figure 1) refers to a single patient, with the y-axis representing the maximum differ-
ence in the continuous classification score across repeat images for each patient, and the
x-axis plotting the mean of the corresponding scores across all repeat images per patient.
We find that, in all instances, focal loss improves repeatability from the respective baseline,
reflected in statistically significant decreases in the 95% limits of agreement (LoA) on the
Bland-Altman plots, while not affecting classification performance, reflected in no statisti-
cally significant difference in the corresponding accuracy. This is a critical and impactful
result, given the ultimate hope of obtaining identity predictions under identical conditions
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for the same patient, thereby facilitating reliability and trust on clinical DL models. This
improves model deployability in the clinic, particularly in critical situations where model
predictions directly inform the course of treatment, and where individual patient lives are
at stake.

Table 1: Model performance overview (mean ± 95% CI). Values in bold indicate the better
model between baseline and focal loss where a statistically significant difference (p−value > 0.05) was
observed, for each of the MC and non-MC cases. The two first columns for each dataset measure the
model repeatability where smaller values indicate better repeatability, while the two second columns
represent model classification performance. LoA: Limits of agreement; Acc.: Accuracy.

(A) MOST - Knee Osteoarthritis (B) DMIST - Breast Density

Model 95% LoA ↓ Acc. 95% LoA ↓ Acc.

(i) Baseline 0.170± 0.006 0.684± 0.010 0.335± 0.002 0.688± 0.005
(ii) Focal Loss 0.147± 0.006 0.668± 0.010 0.320± 0.003 0.690± 0.005

(iii) Baseline, with MC dropout 0.073± 0.003 0.716± 0.009 0.298± 0.005 0.708± 0.005
(iv) Focal Loss, with MC dropout 0.062± 0.003 0.725± 0.008 0.258± 0.004 0.717± 0.006

Figure 1: Bland-Altman plots on images from the same patient and visit for two clinically significant
classification tasks: (a) knee osteoarthritis grading and (b) breast density classification. Each plot is
labelled with the corresponding row/column label from Table 1. The legends indicate the different
classes for each task.
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