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Abstract

Federated learning (FL) is a promising technology that enables edge devices/clients to
collaboratively and iteratively train a machine learning model under the coordination of a
central server. The most common approach to FL is first-order methods, where clients send
their local gradients to the server in each iteration. However, these methods often suffer
from slow convergence rates. As a remedy, second-order methods, such as quasi-Newton, can
be employed in FL to accelerate its convergence. Unfortunately, similarly to the first-order
FL methods, the application of second-order methods in FL can lead to unfair models,
achieving high average accuracy while performing poorly on certain clients’ local datasets.
To tackle this issue, in this paper we introduce a novel second-order FL framework, dubbed
distributed quasi-Newton federated learning (DQN-Fed). This approach seeks to ensure
fairness while leveraging the fast convergence properties of quasi-Newton methods in the FL
context. Specifically, DQN-Fed helps the server update the global model in such a way that
(i) all local loss functions decrease to promote fairness, and (ii) the rate of change in local
loss functions aligns with that of the quasi-Newton method. We prove the convergence of
DQN-Fed and demonstrate its linear-quadratic convergence rate. Moreover, we validate the
efficacy of DQN-Fed across a range of federated datasets, showing that it surpasses state-of-
the-art fair FL methods in fairness, average accuracy and convergence speed. The Code for
paper is publicly available at https://anonymous.4open.science/r/DQN-Fed-FDD2.

1 Introduction

Traditionally, machine learning (ML) models are trained centrally, with data stored in a central server.
However, in modern applications, devices often resist sharing private data remotely. To address this, federated
learning (FL) was introduced by McMahan et al. (2017), where each device trains locally with a central
server. In FL, devices share only local updates, maintaining data privacy. FedAvg, proposed by McMahan
et al. (2017), is a popular first-order FL method. It combines local stochastic gradient descent (SGD) on
each client with iterative model averaging. The server sends the global model to selected clients (Eichner
et al., 2019; Wang et al., 2021a), which perform local SGD on their training data. Local gradients are sent
back to the server, which calculates their (weighted) average to update the global model iteratively.

Nevertheless, first-order FL methods tend to exhibit slow convergence, particularly in terms of the number
of iterations or communication rounds required (Krouka et al., 2022). More precisely, the convergence rate
of first-order FL algorithms is sublinear, i.e., the required number of communication rounds Tϵ to achieve
ϵ-accurate solution is Tϵ = O( 1

ϵ ). Additionally, their convergence speed is highly influenced by the condition
number, which is dependent on several factors, including: (i) the architecture of the model being trained, (ii)
the choice of loss function, and (iii) the distribution of the training data (Elgabli et al., 2022).
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To overcome this limitation, second-order methods can be applied in FL to significantly boost convergence
speed (Safaryan et al., 2022; Elgabli et al., 2022; Hamidi et al., 2024a). By estimating the local curvature of
the loss landscape, these methods provide more adaptive and efficient update directions, leading to faster
and more reliable convergence (Battiti, 1992). Specifically, in second-order FL methods, the clients compute
the Newton direction for their respective local loss functions and send these directions to the server. The
server then averages the Newton directions from all clients and updates the global model in the direction of
this average (Ghosh et al., 2020; Zhang & Lin, 2015). Moreover, since Newton’s methods require calculating
the inverse of the Hessian matrix at each iteration—a computationally expensive operation—the inverse is
typically approximated using iterative techniques, leading to quasi-Newton methods (Wang et al., 2018).

While Newton-type methods accelerate the convergence of FL algorithms, they do not guarantee that the
averaged Newton direction computed by the server is a descent direction for all clients—a limitation also
present in first-order FL methods (Hu et al., 2022; Pan et al., 2024; Chen et al., 2024). In other words, upon
updating the global model toward this averaged direction, the loss function for some client my not decrease,
potentially leading to poor performance on their private datasets. As a result, the learned model might
exhibit unfairness, with high average accuracy but poor performance for clients whose data distributions
differ from the majority1. Thus, naively applying Newton methods in FL can lead to the training of an unfair
model (see Section 5 for results).

To tackle the issue mentioned above, this paper presents a novel second-order FL framework, dubbed
distributed quasi-Newton federated learning (DQN-Fed). This approach aims to ensure fairness while
leveraging the fast convergence properties of quasi-Newton methods in the FL setting. In particular, DQN-Fed
is designed to assist the server in updating the global model such that (i) all local loss functions decrease
resulting in training a fair model, and (ii) the rate of change in local loss functions aligns with the rate of
change in the quasi-Newton method. To achieve this, based on the received local quasi-Newton directions
and the local gradients, the server identifies an updating direction that satisfies both of the aforementioned
conditions. This will in turn yield a fair FL algorithm, as the global updating direction is descent for all the
clients. Moreover, the convergence of DQN-Fed is fast, as the rate of change in the local loss functions follow
quasi-Newton methods.

In summary, the contributions of the paper are as follows:

• We introduce distributed quasi-Newton federated learning (DQN-Fed), a method designed to assist the
server in updating the global model to achieve both fairness and fast convergence in FL.

• We present a closed-form solution for calculating the global updating direction, distinguishing our approach
from many existing fair FL methods that depend on iterative or generic quadratic programming techniques.

• Leveraging common assumptions in FL literature, we establish the convergence proof for DQN-Fed algorithm
across various FL setups. In addition, we prove the convergence rate of the proposed method, and show that
DQN-Fed exhibits a linear-quadratic convergence rate. Specifically, the convergence is either quadratic, with
Tϵ = O

(
log log 1

ϵ

)
, or linear, with Tϵ = O

(
1

log( λ
Lδ ) log 1

ϵ

)
, where λ, L and δ are constants.

• Through comprehensive experiments conducted on seven different datasets (six vision datasets and one
language dataset), we demonstrate that DQN-Fed attains superior fairness level among clients, and converges
faster compared to the state-of-the-art fair alternatives.

2 Related Works

• Fairness in FL. The literature offers a myriad of perspectives to address the challenge of fairness in FL.
These methods include client selection (Nishio & Yonetani, 2019; Huang et al., 2020a; 2022; Yang et al.,
2021), contribution Evaluation (Zhang et al., 2020; Lyu et al., 2020; Song et al., 2021; Le et al., 2021),
incentive mechanisms (Zhang et al., 2021; Kang et al., 2019; Ye et al., 2020; Zhang et al., 2020), and the
methods based on the loss function. Specifically, our work falls into the latter category. This approach aims

1Learning an unfair model is a common challenge in first-order FL methods as well, and there is a substantial body of
research dedicated to developing fair FL models (Mohri et al., 2019; Du et al., 2021; Li et al., 2020; Hu et al., 2022; Hamidi &
YANG, 2024).
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to achieve uniform test accuracy across clients. In particular, works within this framework focus on reducing
the variance of test accuracy among participating clients. We provide a thorough review on fairness issue in
ML and FL in Appendix J.

• Second-Order FL methods. DistributedNewton (Ghosh et al., 2020) and LocalNewton (Gupta et al.,
2021) perform Newton’s method instead of SGD on local machines to accelerate the convergence of local
models. FedNew (Elgabli et al., 2022) utilized one pass ADMM on local machines to calculating local
directions and approximate Newton method to update the global model. FedNL (Safaryan et al., 2022)
send the compressed local Hessian updates to global server and performed Newton step globally. Based on
eigendecomposition of the local Hessian matrices, SHED (Dal Fabbro et al., 2024) incrementally updated
eigenvector-eigenvalue pairs to the global server and recovered the Hessian to use Newton method. Recently,
Li et al. (2024) proposed federated Newton sketch methods (FedNS) to approximate the centralized Newton’s
method by communicating the sketched square-root Hessian instead of the exact Hessian.

3 Notation and Preliminaries

3.1 Notation

We denote by [K] the set of integers {1, 2, · · · , K}. In addition, we define {fk}k∈[K] = {f1, f2, . . . , fK} for
a scalar/function f . We use bold small letters to represent vectors, and bold capital letters to represent
matrices. Denote by ui the i-th element of vector u. For two vectors u,v ∈ Rd, we say u ≤ v iff ui ≤ vi

for ∀i ∈ [d]. Denote by v · u their inner product, and by proju(v) = v·u
u·uu the projection of v onto the line

spanned by u.

3.2 Preliminaries and Definitions

Since our methodology is based on techniques in multi-objective minimization (MoM), we first review some
concepts from MoM, particularly the multiple gradient descent algorithm (MGDA).

3.2.1 Multi-Objective Minimization for Fairness

Denote by f(θ) = {fk(θ)}k∈[K] the set of local clients’ loss functions; the aim of MoM is to solve

θ∗ = arg min
θ

f(θ), (1)

where the minimization is performed w.r.t. the partial ordering. Finding θ∗ could enforce fairness among
the users since by setting setting θ = θ∗, it is not possible to reduce any of the local objective functions
fk without increasing at least another one. Here, θ∗ is called a Pareto-optimal solution of Equation (1).
Although finding Pareto-optimal solutions can be challenging, there are several methods to identify the
Pareto-stationary solutions instead, which are defined as follows:

Definition 3.1. Pareto-stationary (Mukai, 1980): The vector θ∗ is said to be Pareto-stationary iff there exists
a convex combination of the gradient-vectors {gk(θ∗)}k∈[K] which is equal to zero; that is,

∑K
k=1 λkgk(θ∗) = 0,

where λ ≥ 0, and
∑K

k=1 λk = 1.

Lemma 3.2. (Mukai, 1980) Any Pareto-optimal solution is Pareto-stationary. On the other hand, if all
{fk(θ)}k∈[K]’s are convex, then any Pareto-stationary solution is weakly Pareto optimal 2.

There are many methods in the literature to find Pareto-stationary solutions among which MGDA is a
popular one (Mukai, 1980; Fliege & Svaiter, 2000; Désidéri, 2012).

2θ∗ is called a weakly Pareto-optimal solution of Equation (1) if there does not exist any θ such that f(θ) < f(θ∗); meaning
that, it is not possible to improve all of the objective functions in f(θ∗). Obviously, any Pareto optimal solution is also weakly
Pareto-optimal but the converse may not hold.
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MGDA adaptively tunes {λk}k∈[K] by finding the minimal-norm element of the convex hull of the gradient
vectors defined as follows (we drop the dependence of gk to θt for ease of notation hereafter)

G = {g ∈ Rd|g =
K∑

k=1

λkgk; λk ≥ 0;
K∑

k=1

λk = 1}. (2)

Denote the minimal-norm element of G by d(G). Then, either (i) d(G) = 0, and therefore based on Lemma 3.2
d(G) is a Pareto-stationary point; or (ii) d(G) ̸= 0 and the direction of −d(G) is a common descent direction
for all the objective functions {fk(θ)}k∈[K] (Désidéri, 2009), meaning that all the directional derivatives
{gk · d(G)}k∈[K] are positive. Having positive directional derivatives is a necessary condition to ensure that
the common direction is descent for all the objective functions.

3.2.2 Newton-type methods

First-order FL methods face challenges with slow convergence, measured in terms of the number of iterations
or communication rounds. Additionally, their convergence speed is intricately linked to the condition number,
influenced by factors such as the model’s structure, choice of loss function, and distribution of training data. In
contrast, second-order methods exhibit significantly faster performance due to their additional computational
effort in estimating the local curvature of the loss landscape. This, in turn, yields faster and more adaptive
update directions. Despite requiring more computations per communication round, second-order methods
achieve fewer communication rounds. In the context of FL, where communication often poses a bottleneck
rather than computation (Yang & Hamidi, 2024; Mohajer Hamidi & Bereyhi, 2024), the appeal of second-order
methods has grown. Notably, the Newton’s direction is obtained as

dN = −(∇2f(θ))−1∇f(θ). (3)

4 Motivation and Methodology

We discuss our motivation in Section 4.1 based on which we elaborate on the inner-working of DQN-FL in
Section 4.2.

4.1 Motivation

We begin with finding out how much the local loss function fk(·), k ∈ [K], changes when the server updates
the global model as θt+1 = θt − ηtdt at round t. In other words, we want to determine the rate of change
∆fk(θt) ≜ fk(θt+1)−fk(θt) for the local loss functions. To do this, by writing the first-order Taylor expansion
for the local loss function fk(·), we obtain:

fk(θt+1) = fk(θt − ηtdt) ≈ fk(θt)− ηtgt
k · dt (4)

⇔ ∆fk(θt) ≈ −ηtgt
k · dt. (5)

As per Equation (5), fk(·) changes by amount of −ηtgt
k ·dt when the server updates the global model. Hence,

if gt
k · d ≥ 0, the global updating direction is descent for client k, and ∆fk(θt) ≤ 0.

Nevertheless, updating toward a descent direction does not guarantee any meaningful convergence. Indeed,
what can guarantee the convergence of GD-like algorithms is the rate of change in the loss function in each
iteration3. This is in fact what makes the second-order methods to converge faster as the rate of change in
the loss functions is automatically determined by the Hessian matrix.

This motivates us to see how the server can update the global model such that the rate of change in the
local loss functions is the same as that when local clients update their local loss function using second-order
methods.

3If fk(·) is L-smooth, the convergence of gradient descent algorithm is guaranteed for ηt ∈ [0, 2
L

].
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Specifically, let dt
k denote the rate of change in local loss function fk when it updates its local model using

Newton method; then, we have

dt
k = gt

k · dN = gt
k ·
(

(Ht
k)−1gt

k

)
= (gt

k)T (Ht
k)−1gt

k. (6)

Our goal is to assist the server in updating the global model such that, after the update, the rate of change
for client k becomes dt

k. Achieving this is not a straightforward task. In the following section, we derive a
closed-form solution to meet this criterion.

4.2 Methodology

Our method is partially inspired from MGDA algorithm, but incorporates several key modifications. Specifi-
cally, our approach comprises two stages: (i) gradient orthogonalization with a tailored scaling strategy; and
(ii) finding the optimal weights to combine these orthogonal gradients.

4.2.1 Stage 1, Gradient Orthogonalization

The clients send the local gradients {gk}k∈[K] to the server, and then the server first generates a mutually
orthogonal 4 set {g̃k}k∈[K] that spans the same K-dimensional subspace in Rd as that spanned by {gk}k∈[K].
To this aim, the server exploits a modified Gram–Schmidt orthogonalization process over {gk}k∈[K] in the
following manner 5

g̃1 = g1/dt
1, (7)

g̃k =
gk −

∑k−1
i=1 projg̃i

(gk)

dt
k −

∑k−1
i=1

gk·g̃i
g̃i·g̃i

, for k = 2, . . . , K, (8)

where γ > 0 is a scalar. Note that the orthogonalization approach in stage 1 is feasible if we assume that the
K gradient vectors {gk}k∈[K] are linearly independent. Indeed, this assumption is reasonable considering
that (i) the gradient vectors {gk}k∈[K] are K vectors in d-dimensional space, and d >> K for the DNNs6;
and that (ii) the random nature of the gradient vectors due to the non-iid distributions of the local datasets.

4.2.2 Stage 2, finding optimal weights

In this stage, we aim to find the minimum-norm vector in the convex hull of the orthogonal gradients found
in Stage (I). First, denote by G̃ the convex hull of gradient vectors {g̃k}k∈[K]; that is,

G̃ = {g ∈ Rd|g =
K∑

k=1

λkg̃k; λk ≥ 0;
K∑

k=1

λk = 1}.

In the following, we find the minimal-norm element in G̃, and then we show that this element is a descent
direction for all the objective functions.

Denote by λ∗ the weights corresponding to the minimal-norm vector in G̃. To find the weight vector λ∗, we
solve

g∗ = arg min
g∈G
∥g∥2, (9)

which accordingly finds λ∗. For an element g ∈ G, we have

∥g∥2 = ∥
K∑

k=1
λkg̃k∥2 =

K∑
k=1

λ2
k∥g̃k∥2, (10)

4Here, orthogonality is in the sense of standard inner product in Euclidean space.
5The reason for such normalization will be clarified later.
6Also, note that to tackle non-iid distribution of user-specific data, it is a common practice that server selects a different

subset of clients in each round (McMahan et al., 2017).
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where we used the fact that {g̃k}k∈[K] are orthogonal.

To solve Equation (9), we first ignore the inequality λk ≥ 0, for k ∈ [K], and then we observe that it is
automatically satisfied. Thus, we make the following Lagrangian to solve the minimization problem in
Equation (9):

Hence, ∂L
∂λk

= 2λk∥g̃k∥2 − α; and by setting this equation to zero we obtain

λ∗
k = α

2∥g̃k∥2 . (11)

On the other hand, since
∑K

k=1 λk = 1, from Equation (11) we have α = 2∑K

k=1
1

∥g̃k∥2
from which the optimal

λ∗ is obtained as follows

λ∗
k = 1
∥g̃k∥2∑K

k=1
1

∥g̃k∥2

, for k ∈ [K]. (12)

Note that λ∗
k > 0, and therefore the minimum norm vector we found belongs to G. Using the λ∗ found in

(12), we can calculate dt =
∑K

k=1 λ∗
kg̃k as the minimum norm element in the convex hull G̃.

Theorem 4.1. If the server updates the model toward dt =
∑K

k=1 λ∗
kg̃k, the rate of change for client k is

proportional to dt
k, ∀k ∈ [K].

Proof. We shall find the directional derivative of loss function fk, ∀k ∈ [K], over dt:

gk · dt =
(
g̃k

(
dt

k −
k−1∑
i=1

gk · g̃i

g̃i · g̃i

)
+

k−1∑
i=1

projg̃i
(gk)

)
·
( K∑

i=1
λ∗

i g̃i

)
(13)

= λ∗
k∥g̃k∥2

2

(
dt

k −
k−1∑
i=1

gk · g̃i

g̃i · g̃i

)
+

k−1∑
i=1

gk · g̃i

g̃i · g̃i

λ∗
i ∥g̃i∥2

2 (14)

= α

2

(
dt

k −
k−1∑
i=1

gk · g̃i

g̃i · g̃i

)
+ α

2

k−1∑
i=1

gk · g̃i

g̃i · g̃i

(15)

= α

2 dt
k = dt

k∑K
k=1

1
∥g̃k∥2

> 0, (16)

where (i) Equation (13) is obtained by using definition of g̃k in Equation (8), (ii) Equation (14) follows from
the orthogonality of {g̃k}K

k=1 vectors, and (iii) Equation (15) is obtained by using Equation (11).

Hence, to realize a rate of change similar to the Newton step, at iteration t, the server set the global learning
rate as η =

∑K
k=1

1
∥g̃k∥2 , and update the global model as:

θt+1 = θt − ηtdt = θt −
K∑

k=1

1
∥g̃k∥2d

t. (17)

To summarize, updating the global model as in Equation (17) provides two key advantages:
(i) All local loss decreases (as shown by the inequality in Equation (16));
(ii) The rate of change for each local loss function aligns with that of the Newton method.

Similarly to the conventional GD, we note that updating the global model as (17) is a necessary condition
to have f(θt+1) ≤ f(θt). In Theorem 4.2 whose proof is differed to Appendix A, we state the sufficient
condition to satisfy f(θt+1) ≤ f(θt).
Theorem 4.2. Assume that f = {fk}k∈[K] are L-Lipschitz smooth. If the step-size ηt =

∑K
k=1

1
∥g̃k∥2 ∈

[0, 2
L min{dt

k}k∈[K]], then f(θt+1) ≤ f(θt), and equality is achieved iff dt = 0.
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4.3 DQN-Fed Algorithm

Since Newton’s method requires the computation of the inverse Hessian matrix, which is computationally
expensive, we employ quasi-Newton methods that approximate the inverse of the Hessian using gradient
information. The BFGS algorithm (Broyden, 1970) is one such approach. Let Bt

k denote the matrix obtained
using BFGS algorithm, where Bt

k ≈ (Ht
k)−1. Using Bt

k, dt
k in Equation (6) can be approximated by

d̃t
k = (gt

k)T Bt
kg

t
k. (18)

Lastly, similar to many recent FL algorithms (McMahan et al., 2017; Li et al., 2019a), we allow each client to
perform a couple of local epochs E . We summarize DQN-Fed in Algorithm 1.

Algorithm 1: DQN-Fed.
Input: Number of global epochs T , global learning rate ηt, number of local epochs E, local datasets
{Dk}k∈K .
for t = 0, 1, . . . , T − 1 do

Server randomly selects a subset of devices St and sends θt to them.
for device k ∈ St in parallel do

Set θ̂
1
k = θt and θ̂

0
k = θt−1

for e = 1, 2, . . . , E do
Perform BFGS algorithm as follows
Set se

k = θ̂
e

k − θ̂
e−1
k , and ye

k = ∇f(θ̂e

k)−∇f(θ̂e−1
k ).

Iteratively update matrix Be+1
k using information from Be

k, se
k, ye

k according to:

Be+1
k = Be

k − Be
kse

k(se
k)TBe

k

(st
k)TBe

kse
k

+ ye
k(ye

k)T

(se
k)Tye

k

. (19)

end
Use BE

k to calculate d̃t
k from Equation (18).

Send local gradient gk = ∇f(θ̂E

k ) and d̃t
k to the server.

end
Server finds {g̃k}k∈[K] form Equations (7) and (8).
Server finds λ∗ from Equation (12).
Server calculates dt :=

∑K
k=1 λ∗

kg̃k.
Server updates the global model as θt+1 ← θt − ηtdt.

end
Output: Global model θt.

4.4 Convergence results

In this section, we analyze the convergence behavior of DQN-Fed by presenting two sets of theorems:

Set 1: Theorems 4.3 to 4.5, which focuses on the fairness of DQN-Fed and establishes various types of
convergence to Pareto-optimal points under different settings. Specifically, we examine the following cases
based on how clients update their local models: (i) using SGD with E = 1, (ii) using GD with E > 1, and (iii)
using GD with E = 1. Among these, the strongest convergence guarantee is provided for the third scenario.

Set 2: Theorem 4.6, which addresses the optimality gap by analyzing the number of communication rounds,
Tϵ, required to achieve an ϵ-accurate solution. This provides a convergence rate for DQN-Fed.
Theorem 4.3 (E = 1 & local SGD). Assume that f = {fk}k∈[K] are l-Lipschitz continuous and L-
Lipschitz smooth, and that the global step-size ηt satisfies the following three conditions: (i) ηt ∈ (0, 1

2L ], (ii)
limT →∞

∑T
t=0 ηt → ∞, and (iii) limT →∞

∑T
t=0 ηtσt < ∞; where σ2

t = E[∥g̃λ∗ − g̃sλ∗
s∥]2 is the variance of

7
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stochastic common descent direction. Then

lim
T →∞

min
t=0,...,T

E[∥dt∥]→ 0. (20)

In Theorem 4.3, the variance σ2
t arises from the stochastic nature of the gradient estimates. Controlling σ2

t is
intimately related to ensuring that the variance of the stochastic common descent direction diminishes, or
at least does not accumulate too quickly. The condition limT →∞

∑T
t=0 ηtσt <∞ essentially states that the

global step sizes ηt must shrink at a rate that sufficiently “smooths out" variance over time.

But how can the condition limT →∞
∑T

t=0 ηtσt <∞ be guaranteed in practice? In the following, we provide
two possible ways to meet this condition:

First, by choosing a non-increasing global step-size schedule {ηt} that decays to zero at a sufficiently fast
rate, the effective “weighted sum”

∑T
t=0 ηtσt < ∞ remains finite. For example, if ηt = O(t−α), for some

α > 0, and if σt does not grow faster than O(tβ) for some β < α, then
∑

t ηtσt will converge.

Second, implementing variance reduction methods (e.g., control variates, variance-reduced stochastic gradient
estimators) within local updates can ensure that σt does not persistently remain large. In federated settings,
this can be achieved by techniques such as periodically synchronizing with a global model (which reduces
drift and variance), incorporating momentum-based methods, or employing mini-batching strategies that
limit stochastic fluctuations.
Theorem 4.4 (E > 1 & local GD). Assume that f = {fk}k∈[K] are l-Lipschitz continuous and L-Lipschitz
smooth. Denote by ηt and η the global and local learning rates, respectively. Also, define ζt = ∥λ∗ − λ∗

E∥,
where λ∗

E is the optimum weights obtained from pseudo-gradients after E local epochs. We have

lim
T →∞

min
t=0,...,T

∥dt∥ → 0, (21)

if the following conditions are satisfied: (i) ηt ∈ (0, 1
2L ], (ii) limT →∞

∑T
t=0 ηt →∞, (iii) limt→∞ ηt → 0, (iv)

limt→∞ η → 0, and (v) limt→∞ ζt → 0.

In Theorem 4.4, ζt = ∥λ∗ − λ∗
E∥ measures the deviation between the true optimum λ∗ and the optimum

obtained from the pseudo-gradients after E local epochs, λ∗
E . The condition limt→∞ ζt → 0 reflects the

requirement that local model updates become increasingly aligned with the true global optimum as training
progresses. Below, we discuss two strategies to ensure this condition is satisfied.

First, as stated, both the global and local learning rates should diminish over time: limt→∞ ηt → 0 and
limt→∞ η → 0. As these rates decrease, the updates become more conservative, allowing the local solutions
λ∗

E to approach the global solution λ∗.

Second, adjusting the frequency of global synchronization over time helps ensure that local models do not drift
too far from the global model. By increasing synchronization frequency or using adaptive synchronization
strategies as training progresses, one can reduce the gap ζt.

Before introducing Theorem 4.5, we first introduce some notations. Denote by ϑ the Pareto-stationary
solution set7 of minimization problem arg minθ f(θ). Then, denote by θ∗ the projection of θt onto the set ϑ;
that is, θ∗ = arg minθ∈ϑ ∥θt − θ∥2.
Theorem 4.5 (E = 1 & local GD). Assume that f = {fk}k∈[K] are l-Lipschitz continuous and σ-convex,
and that the global step-size ηt satisfies the following two conditions: (i) limt→∞

∑t
j=0 ηj → ∞, and (ii)

limt→∞
∑t

j=0 η2
j <∞. Then almost surely θt → θ∗; that is,

P
(

lim
t→∞

(
θt − θ∗) = 0

)
= 1, (22)

where P(E) denotes the probability of event E .
7In general, the Pareto-stationary solution of multi-objective minimization problem forms a set with cardinality of infinity

(Mukai, 1980).
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The proofs for Theorems 4.3 to 4.5 are provided in Appendices B.1 to B.3, respectively. Note that all the
Theorems 4.3 to 4.5 provide some types of convergence to a Pareto-optimal solution of optimization problem
in Equation (1). Specifically, diminishing dt in Theorems 4.3 and 4.4 implies that we are reaching to a
Pareto-optimal point (Désidéri, 2009). On the other hand, Theorem 4.5 explicitly provides this convergence
guarantee in an almost surely fashion.

In addition, the following theorem shows that DQN-Fed has a linear-quadratic convergence rate.
Theorem 4.6 (Convergence rate of DQN-Fed). Assume that E = 1 and clients perform local GD. In addition,
assume that the global loss function is twice continuously differentiable, L-Lipschitz gradient (L-smooth)
and λ-strongly convex. Note that the strong convexity of the global loss function implies that there exists a
unique optimal model parameter, which we denote by θopt. In addition, assume that the matrix B−1

t is a
δ-approximate of true inverse Hessian H−1

t ; that is ∥B−1
t −H−1

t ∥ ≤ δ∥H−1
t ∥. Then,

∥θt − θopt∥ ≤

{(
Lδ
λ

)t ∥∥θ0 − θopt∥∥+ A′
0, t ≤ t0(

Lδ
λ

)t ∥∥θ0 − θopt∥∥+ A′
1, t > t0

(23)

where A′
0 and A′

1 are defined as follows

A′
0 =

(
Lδ
λ

)t − 1
Lδ
λ − 1

[λ

L
(t0 − t + 2γ

1− γ
)
]
, (24a)

A′
1 =

(
Lδ
λ

)t − 1
Lδ
λ − 1

[ 2λγ2t−t0

L(1− γ2t−t0 )
+
]
, (24b)

with t0 = max
{

0,
⌈ 2L

λ2∥d0∥
⌉
− 2
}

, (24c)

and γ = L

2λ2 ∥d0∥ −
t0

4 . (24d)

Proof. The proof is differed to Appendix D.

As per Theorem (4.6), DQN-Fed method has a linear-quadratic convergence rate. In fact, the quadratic
term in (23) is exactly the same as that of Polyak & Tremba (2020); yet, the linear term is the result of
approximating the local Hessian matrices using BFGS method.

In the following corollaries, our objective is to determine the required number of communication rounds Tϵ

such that
∥∥θTϵ

− θopt∥∥ ≤ ϵ.

Corollary 4.7. [Quadratic convergence rate] If
∥∥θ0 − θopt∥∥ <

A′
1

( Lδ
λ )t , then DQN-Fed has a quadratic

convergence rate:

∥θt − θopt∥ ≤ 2A′
1. (25)

Also, if Lδ
λ < 1, we have

Tϵ = O
(

log log 1
ϵ

)
, (26)

which is also called super-linear convergence rate.
Corollary 4.8. [Linear convergence rate] On the other hand, If

∥∥θ0 − θopt∥∥ ≥ A′
1

( Lδ
λ )t and Lδ

λ < 1, then
DQN-Fed method has a linear convergence rate:

∥θt − θopt∥ ≤ 2
(

Lδ

λ

)t

∥θ0 − θopt∥. (27)

and,

Tϵ = O
(

1
log( λ

Lδ )
log 1

ϵ

)
. (28)
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The proof for Corollary 4.7 and 4.8 can be found in Appendix E and F, respectively.
Remark 4.9. It is worth noting that for distributed GD-like methods, the number of communication
rounds needed to achieve a desired precision ϵ, follows a linear convergence rate. Specifically, we have
Tϵ = O

(
L
λ log 1

ϵ

)
. This underscores the superiority of DQN-Fed in terms of convergence rate.

5 Experiments

In this section, we conclude the paper by presenting a series of experiments to demonstrate the performance
of DQN-Fed. We also conduct a comparative analysis to assess its effectiveness against state-of-the-art
alternatives using various performance metrics.

• Datasets: We conduct a comprehensive set of experiments across seven datasets. In this section, we
present results for four datasets: CIFAR-{10, 100} (Krizhevsky et al., 2009), FEMNIST (Caldas et al., 2018),
and Shakespeare (McMahan et al., 2017). Results for Fashion MNIST (Xiao et al., 2017), TinyImageNet
(Le & Yang, 2015), and CINIC-10 (Darlow et al., 2018) are discussed in Appendix G. To demonstrate
DQN-Fed’s effectiveness across different FL scenarios, we examine two FL setups for each dataset in this
section. Furthermore, we evaluate DQN-Fed’s performance on a real-world noisy dataset, Clothing1M (Xiao
et al., 2015), in Appendix I.

• Benchmarks: We compare the performance of DQN-Fed against some fair first-order FL and some
second-order FL methods. The fair FL algorithms include q-FFL (Li et al., 2019a), TERM (Li et al., 2020),
FedMGDA+ (Hu et al., 2022), Ditto (Li et al., 2021), FedLF (Pan et al., 2024), FedHEAL (Chen et al.,
2024), and conventional FedAvg (McMahan et al., 2017); and also second-order FL methods include FedNL
(Safaryan et al., 2022) and FedNew (Elgabli et al., 2022).

It is worth noting that we conduct a grid-search to find the best hyper-parameters for each of the benchmark
methods including DQN-Fed in our experiments. The details of this hyper-parameter tuning are reported in
Appendix H.

• Performance metrics: Denote by ak the prediction accuracy on device k. We use ā = 1
K

∑K
k=1 ak as

the average test accuracy of the underlying FL algorithm, and use σa =
√

1
K

∑K
k=1(ak − ā)2 as the standard

deviation of the accuracy across the clients. Furthermore, we report Worst 10% (5%) and Best 10% (5%)
accuracies as a common metric in fair FL algorithms (Li et al., 2020).

• Notations: We use bold and underlined numbers to denote the best and second best performance,
respectively. We use e and K to represent the number of local epochs and that of clients, respectively.

5.1 CIFAR-10

CIFAR-10 dataset (Krizhevsky et al., 2009) has 50K training and 10K test images of size 32× 32 labeled for
10 classes. The batch size is equal to 64 for both of the following setups.

• Setup 1: Following Wang et al. (2021b), we sort the dataset based on their classes, and then split them
into 200 shards. Each client randomly selects two shards without replacement so that each has the same
local dataset size. We use a feedforward neural network with 2 hidden layers. We fix E = 1 and K = 100.
We carry out 2000 rounds of communication, and sample 10% of the clients in each round. We run SGD on
local datasets with stepsize η = 0.1.

• Setup 2: We distribute the dataset among the clients deploying Dirichlet allocation (Wang et al., 2020)
with β = 0.5. We use ResNet-18 (He et al., 2016) with Group Normalization (Wu & He, 2018). We perform
100 communication rounds in each of which all clients participate. We set E = 1, K = 10 and η = 0.01.

5.1.1 Wall-Clock Time

For the first setting, we also measure and report the wall-clock time (in seconds) for both the benchmark
methods and DQN-Fed. These results, presented in Table 2, were obtained using a single NVIDIA RTX 3090
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Table 1: Test accuracy on CIFAR-10. The reported results are averaged over 5 seeds.
Setup 1 Setup 2

Algorithm ā σa W(5%) B(5%) ā σa W(10%) B(10%)
Naive First-Order FedAvg 46.85 3.54 19.84 69.28 63.55 5.44 53.40 72.24

Fair First-Order

q-FFL 46.30 3.27 23.39 68.02 57.27 5.60 47.29 66.92
FedMGDA 45.34 3.37 24.00 68.51 62.05 4.88 52.69 70.77
FedHEAL 46.40 3.61 19.33 69.30 63.05 4.95 48.69 70.88
TERM 47.11 3.66 28.21 69.51 64.15 5.90 56.21 72.20
Ditto 46.31 3.44 27.14 68.44 63.49 5.70 55.99 71.34

Second-Order
FedNL 47.33 3.92 24.41 69.52 64.72 6.02 56.20 72.33
FedNew 47.51 3.68 25.77 69.74 64.58 6.11 56.96 72.12
DQN-Fed 47.72 3.20 29.34 69.37 64.88 4.90 58.01 72.88

GPU. As shown, the second-order methods (last three columns) exhibit higher computational times. Notably,
among the second-order methods, DQN-Fed demonstrates the fastest runtime.

Table 2: Wall-clock time (in seconds) for benchmark methods and DQN-Fed on CIFAR-10, Setup 1.
Algorithm FedAvg q-FFL FedMGDA TERM Ditto FedNL FedNew DQN-Fed

Wall-clock (s) 1250 1360 1333 1312 1320 2320 2140 1810

5.1.2 Ablation Study on the Percentage of Client Participation

In this subsection, we examine the impact of varying client participation rates on the performance of DQN-Fed
and the benchmark methods. Specifically, we reproduce the results from CIFAR-10 (Setup 2) using 10% and
50% client participation, while the previously reported results in Table 1 correspond to 100% participation.
The results are summarized in Table 3.

The following observations are made:

(i) DQN-Fed continues to outperform the benchmark methods in both fairness and average accuracy across
all participation levels.

(ii) As the percentage of client participation decreases, the performance of all methods shows a slight decline,
highlighting the importance of client participation in federated learning settings.

Table 3: Ablation study on client participation for Setup 2 on CIFAR-10. Test accuracy results are averaged
over 5 seeds.

Participation Algorithm 10% Participation 50% Participation
ā σa B(10%) ā σa B(10%)

Naive First-Order FedAvg 61.41 6.36 68.12 62.74 6.01 70.15

Fair First-Order

q-FFL 56.55 6.24 65.89 58.97 5.95 68.22
FedMGDA 61.05 5.80 69.07 62.57 5.54 70.52
FedHEAL 61.26 6.12 68.52 62.92 5.71 70.72
TERM 63.22 5.93 70.56 63.81 5.66 71.83
Ditto 62.87 6.07 69.92 63.51 5.76 71.24

Second-Order
FedNL 63.25 6.16 70.81 64.15 5.90 71.92
FedNew 63.80 6.07 71.21 64.56 5.80 72.08
DQN-Fed 64.14 5.67 72.21 64.71 5.48 72.55
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5.2 CIFAR-100

CIFAR-100 (Krizhevsky et al., 2009) has the same number of samples as CIFAR-10, but comprises 100 classes
compared to the 10 classes found in CIFAR-10.

The model for both setups is ResNet-18 (He et al., 2016) with Group Normalization (Wu & He, 2018), where
all clients participate in each round. We also set E = 1 and η = 0.01. The batch size is equal to 64. The
results are reported in Table 4 for both of the following setups:

• Setup 1: We set K = 10 and β = 0.5 for Dirichlet allocation, and use 400 communication rounds.

• Setup 2: We set K = 50 and β = 0.05 for Dirichlet allocation, and use 200 communication rounds.

Table 4: Test accuracy on CIFAR-100. The reported results are averaged over 5 different seeds.
Setup 1 Setup 2

Algorithm ā σa W(10%) B(10%) ā σa W(10%) B(10%)
Naive First-Order FedAvg 30.05 4.03 25.20 40.31 20.15 6.40 11.20 33.80

Fair First-Order

q-FFL 28.86 4.44 25.38 39.77 20.20 6.24 11.09 34.02
FedMGDA 29.12 4.17 25.67 39.71 20.15 5.41 11.12 33.92
FedLF 30.28 3.68 25.33 39.45 18.92 4.90 11.29 28.60
TERM 30.34 3.51 27.03 39.35 17.88 5.98 10.09 31.68
Ditto 29.81 3.79 26.90 39.39 17.52 5.65 10.21 31.25

Fair First-Order
FedNL 31.58 4.55 27.14 40.62 22.74 6.02 12.15 34.44
FedNew 30.95 4.39 27.19 40.55 21.16 5.27 11.77 34.27
DQN-Fed 32.58 3.60 27.91 40.99 23.15 4.45 12.81 35.11

5.3 FEMNIST

FEMNIST (Federated Extended MNIST) (Caldas et al., 2018) is a federated image dataset distributed over
3,550 devices which has 62 classes containing 28× 28-pixel images of digits (0-9) and English characters (A-Z,
a-z). For implementation, we use a CNN model with 2 convolutional layers followed by 2 fully-connected
layers. The batch size is 32, and E = 2 for both of the following setups:

• FEMNIST-original: We use the setting in Li et al. (2021), and randomly sample K = 500 devices and
train models using the default data stored in each device.

• FEMNIST-skewed: K = 100. We sample 10 lower case characters (‘a’-‘j’) from Extended MNIST
(EMNIST), and randomly assign 5 classes to each of the 100 devices.

Consistent with Li et al. (2019a), we use two other fairness metrics for this dataset: (i) the angle between the
accuracy distribution and the all-ones vector 1 denoted by Angle (◦), and (ii) the KL divergence between the
normalized accuracy a and uniform distribution u denoted by KL (a∥u). Results for both setups are reported
in Table 5.

5.4 Text Data

We use The Complete Works of William Shakespeare (McMahan et al., 2017) as the dataset, and train an
RNN whose input is 80-character sequence to predict the next character. We use E = 1, and let all the
devices participate in each round. The results are reported in Table 6 for the following setups:

• Setup 1: Following McMahan et al. (2017), we subsample 31 speaking roles, and assign each role to a
client (K = 31) to complete 500 communication rounds. We use a model with two LSTM layers (Hochreiter
& Schmidhuber, 1997) and one densely-connected layer. The initial η = 0.8 with decay rate of 0.95.
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Table 5: Test accuracy on FEMNIST. The reported results are averaged over 5 different seeds.
FEMNIST-original FEMNIST-skewed

Algorithm ā σa Ang (◦) KL (a∥u) ā σa Ang (◦) KL (a∥u)
Naive First-Order FedAvg 80.42 11.16 10.18 0.017 79.24 22.30 12.29 0.054

Fair First-Order

q-FFL 80.91 10.62 9.71 0.016 84.65 18.56 12.01 0.038
FedMGDA 81.00 10.41 10.04 0.016 85.41 17.36 11.63 0.032
TERM 81.08 10.32 9.15 0.015 84.29 13.88 11.27 0.025
FedLF 82.45 9.85 9.01 0.012 85.21 14.92 11.44 0.027
Ditto 83.77 10.13 9.34 0.014 92.51 14.32 11.45 0.022

Fair First-Order
FedNL 84.21 11.22 10.07 0.015 92.94 16.45 12.56 0.045
FedNew 84.25 10.88 9.78 0.014 92.25 15.21 11.92 0.037
DQN-Fed 85.15 9.58 8.14 0.010 93.80 13.91 11.41 0.011

• Setup 2: Among the 31 speaking roles, the 20 ones with more than 10000 samples are selected, and
assigned to 20 clients. We use an LSTM followed by a fully-connected layer. η = 2, and the number of
communication is 100.

Table 6: Test accuracy on Shakespeare. The reported results are averaged over 5 different seeds.
Setup 1 Setup 2

Algorithm ā σa W(10%) B(10%) ā σa W(10%) B(10%)
Naive First-Order FedAvg 53.21 9.25 51.01 58.41 50.48 1.24 48.20 52.10

Fair First-Order

q-FFL 53.90 7.52 51.52 58.47 50.72 1.07 48.90 52.29
FedMGDA 53.08 8.14 52.84 58.51 50.41 1.09 48.18 51.99
FedLF 54.58 8.44 52.87 59.84 52.45 1.23 50.02 54.17
TERM 54.16 8.21 52.09 59.15 52.17 1.11 49.14 53.62
Ditto 60.74 8.32 53.57 64.92 53.12 1.20 50.94 55.23

Fair First-Order
FedNL 60.25 8.24 53.15 64.15 52.24 1.25 50.77 54.41
FedNew 60.59 7.55 53.18 64.09 52.49 1.19 50.82 54.36
DQN-Fed 61.65 6.55 53.79 64.86 52.89 0.98 51.02 54.48

6 Experimental Analysis

6.1 Analysis of Results

Based on the insights gleaned from Tables 1 and 4 to 6, several noteworthy observations emerge:

(i) Naive second-order FL methods, namely FedNL and FedNew, tend to train unfair models, despite achieving
high average accuracy across clients.

(ii) Compared to the benchmark models, DQN-Fed consistently trains models that demonstrate significantly
higher levels of fairness across clients.

(iii) The average accuracy of the model learned by DQN-Fed is higher compared to both first-order and
second-order FL methods.

6.2 Comparison of Convergence Rate

In this subsection, we empirically compare the convergence speed of DQN-Fed against several fair first-order
methods. To do so, we use the four datasets from setup 1 described in Section 5 and plot the validation
accuracy of different methods as a function of communication rounds. The results are shown in Figure 1. As
observed, DQN-Fed demonstrates a faster convergence rate compared to all benchmark methods.
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Figure 1: The test accuracy curves Vs. communication rounds for DQN-Fed and the benchmark methods.
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Figure 2: The histogram of clients accuracy for models trained via FedAvg, q-FFL and DQN-Fed.

6.3 Histogram of the Clients Accuracy

To gain deeper insight into the variability in client accuracy, we plot the accuracy histograms of 500 clients
drawn from the original FEMNIST dataset. In particular, we compare three methods—(i) FedAvg, (ii) q-FFL,
and (iii) DQN-Fed—each optimized with well-tuned hyperparameters. As shown in Figure 2, the accuracy
distribution under DQN-Fed is notably more concentrated, indicating a fairer spread of performance across
clients.
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Figure 3: The number of improved clients Vs. communication rounds for DQN-Fed and the benchmark
methods.

6.4 Percentage of Improved Clients

We measure the training loss before and after each communication round for all participating clients and
report the percentage of clients whose loss function decreased or remained unchanged, defined as

ρt =
∑

k∈St
I{fk(θt+1) ≤ fk(θt)}

|St|
, (29)

where St is the participating clients in round t, and I(·) is the indicator function. Then, we plot ρt versus
communication rounds for different fair FL methods. The curves for CIFAR-10 and CIFAR-100 datasets are
reported in Figure 3a and Figure 3b, respectively. As seen, both DQN-Fed and FedMGDA+ consistently
outperform other benchmark methods in that fewer clients’ performances get worse after participation. We
further note that after enough number of communication rounds, curves for both DQN-Fed and FedMGDA+
converge to 100%.

7 Conclusion

This paper introduced distributed quasi-Newton federated learning (DQN-Fed), a novel approach designed to
ensure fairness while harnessing the fast convergence properties of quasi-Newton methods in FL setting. DQN-
Fed aids the server in updating the global model by ensuring (i) all local loss functions decrease, promoting
fairness; and (ii) the rate of change in local loss functions matches that of the quasi-Newton method. We
proved the convergence of DQN-Fed and establish its linear-quadratic convergence rate. Furthermore, we
validated DQN-Fed’s effectiveness across various federated datasets, demonstrating its superiority over
state-of-the-art fair FL methods.
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A Proof of Theorem 4.2

Proof. If all the {fk}k∈[K] are L-smooth, then

f(θt+1) ≤ f(θt) + gT (θt+1 − θt) + L

2 ∥θ
t+1 − θt∥2. (30)

Now, for client k ∈ [K], by using the update rule Equation (17) in Equation (30) we obtain

fk(θt+1) ≤ fk(θt)− ηtgk · dt + (ηt)2 L

2 ∥d
t∥2. (31)

To impose fk(θt+1) ≤ fk(θt), we should have

ηtgk · dt ≥ (ηt)2 L

2 ∥d
t∥2 (32)

⇔ gk · dt ≥ ηtL

2

K∑
k=1

∥g̃k∥2

∥g̃k∥4
(∑K

i=1
1

∥g̃i∥2

)2 (33)

⇔ d̃t
k∑K

k=1
1

∥g̃k∥2

≥ ηtL

2
1(∑K

k=1
1

∥g̃k∥2

)2

K∑
k=1

1
∥g̃k∥2 (34)

⇔ ηt ≤ 2
L

d̃t
k. (35)

B Convergence of DQN-Fed

In the following, we provide three theorems to analyse the convergence of DQN-Fed under different scenarios.
Specifically, we consider three cases: (i) Theorem B.1 considers E = 1 and using SGD for local updates,
(ii) Theorem B.2 considers an arbitrary value for e and using GD for local updates, and (iii) Theorem B.4
considers E = 1 and using GD for local updates.

B.1 Case 1: E = 1 & local SGD

Notations: We use subscript (·)s to indicate a stochastic value. Using this notation for the values we
introduced in the paper, our notations used in the proof of Theorem B.1 are summarized in Table 7.

Table 7: Notations used in Theorem B.1 for E = 1 & local SGD.

Notation Description

gk,s Stochastic gradient vector of client k.
gs Matrix of Stochastic gradient vectors [g1,s, . . . , gK,s].
g̃k,s Stochastic gradient vector of client k after orthogonalization process.
g̃s Matrix of orthogonalized Stochastic gradient vectors [g̃1,s, . . . , g̃K,s].

λ∗
k,s Optimum weights obtained from Equation (12) using Stochastic gradients g̃s.

ds Optimum direction obtained using Stochastic g̃s; that is, ds =
∑K

k=1 λ∗
k,sg̃k,s.
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Theorem B.1. Assume that f = {fk}k∈[K] are l-Lipschitz continuous and L-Lipschitz smooth, and that
the step-size ηt satisfies the following three conditions: (i) ηt ∈ (0, 1

2L ], (ii) limT →∞
∑T

t=0 ηt → ∞ and
(iii) limT →∞

∑T
t=0 ηtσt < ∞; where σ2

t = E[∥g̃λ∗ − g̃sλ∗
s∥]2 is the variance of stochastic common descent

direction. Then

lim
T →∞

min
t=0,...,T

E[∥dt∥]→ 0. (36)

Proof. Since orthogonal vectors {g̃k}k∈[K] span the same K-dimensional space as that spanned by gradient
vectors {gk}k∈[K], then

∃{λ′
k}k∈[K] s.t. d =

K∑
k=1

λ∗
kg̃k =

K∑
k=1

λ′
kgk = gλ′. (37)

Similarly, for the stochastic gradients we have

∃{λ′
k,s}k∈[K] s.t. ds =

K∑
k=1

λ∗
k,sg̃k,s =

K∑
k=1

λ′
k,sgk,s = gsλ′

s. (38)

Define ∆t = gλ′ − gsλ′
s = g̃λ∗ − g̃sλ∗

s, where the last equality is due to the definitions in Equations (37)
and (38).

We can find an upper bound for f(θt+1) as follows

f(θt+1) = f(θt − ηtdt) (39)

= f(θt − ηt
K∑

k=1
λ∗

k,sg̃k,s) (40)

= f(θt − ηtgsλ′
s) (41)

≤ f(θt)− ηtgTgT
s λ′

s + L(ηt)2

2 ∥gT
s λ′

s∥2 (42)

≤ f(θt)− ηtgTgT λ′ + L(ηt)2∥gT λ′∥2 + ηtgT ∆t + L(ηt)2∥∆t∥2 (43)
≤ f(θt)− ηt(1− Lηt)∥gT λ′∥2 + lηt∥∆t∥+ L(ηt)2∥∆t∥2, (44)

where (40) uses stochastic gradients in the updating rule of DQN-Fed, (41) is obtained from the definition
in (38), (42) holds following the quadratic bound for smooth functions f = {fk}k∈[K], and lastly (44) holds
considering the Lipschits continuity of f = {fk}k∈[K].

Assuming ηt ∈ (0, 1
2L ] and taking expectation from both sides, we obtain:

min
t=0,...,T

E[∥dt∥] ≤
f(θ0)−E[f(θt+1)] +

∑T
t=0 ηt(lσt + Lηtσ2

t )
1
2
∑T

t=0 ηt
. (45)

Using the assumptions (i) limT →∞
∑T

j=0 ηt → ∞, and (ii) limT →∞
∑T

t=0 ηtσt < ∞, the theorem will be
concluded. Note that vanishing dt implies reaching to a Pareto-stationary point of original MoM problem.
Yet, the convergence rate is different in different scenarios as we see in the following theorems.

B.1.1 Discussing the assumptions

• The assumptions over the local loss functions: The two assumptions l-Lipschitz continuous and
L-Lipschitz smooth over the local loss functions are two standard assumptions in FL papers providing some
sorts of convergence guarantee (Li et al., 2019b).

• The assumptions over the step-size: The three assumptions we enforced over the step-size could be
easily satisfied as explained in the sequel. For instance, one can pick ηt = κ1

1
t for some constant κ1 such that
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ηt ∈ (0, 1
2L ] is satisfied. Then even if σt has a extremely loose upper-bound, let’s say σt < κ2

tϵ for a small
ϵ ∈ R+ and a constant number κ2, then all the three assumptions over the step-size in the theorem will be
satisfied. Note that the convergence rate of DQN-Fed depends on how fast σt diminishes which depends on
how heterogeneous the users are.

B.2 Case 2: E > 1 & local GD

The notations used in this subsection are elaborated in Table 8.

Table 8: Notations used in the Theorem B.2 for E > 1 and local GD.

Notation Description

θ(k,E)t Updated weight for client k after E local epochs at the t-th round of FL.

gk,E gk,E = θt − θ(k,E)t ; that is, the update vector of client k after E local epochs.
gE Matrix of update vectors [g1,E , . . . , gK,e].
g̃k,E Update vector of client k after orthogonalization process.
g̃E Matrix of orthogonalized update vectors [g̃1,E , . . . , g̃K,e].

λ∗
k,E Optimum weights obtained from Equation (12) using g̃E .

de Optimum direction obtained using g̃E ; that is, dE =
∑K

k=1 λ∗
k,E g̃k,E .

Theorem B.2. Assume that f = {fk}k∈[K] are l-Lipschitz continuous and L-Lipschitz smooth. Denote
by ηt and η the global and local learning rate, respectively. Also, define ζt = ∥λ∗ − λ∗

E∥, where λ∗
E is the

optimum weights obtained from pseudo-gradients after E local epochs. Then,

lim
T →∞

min
t=0,...,T

∥dt∥ → 0, (46)

if the following conditions are satisfied: (i) ηt ∈ (0, 1
2L ], (ii) limT →∞

∑T
t=0 ηt →∞ and (iii) limt→∞ ηt → 0,

(iv) limt→∞ η → 0, and (v) limt→∞ ζt → 0.

Proof. As discussed in the proof of Theorem B.1, we can write

∃{λ′
k}k∈[K] s.t. d =

K∑
k=1

λ∗
kg̃k =

K∑
k=1

λ′
kgk = gλ′, (47)

∃{λ′
k,E}k∈[K] s.t. dE =

K∑
k=1

λ∗
k,E g̃k,E =

K∑
k=1

λ′
k,Egk,E = gEλ′

E . (48)

To prove Theorem B.2, we first introduce a lemma whose proof is provided in Appendix C.

Lemma B.3. Using the notations used in Theorem B.2, and assumming that f = {fk}k∈[K] are L-Lipschitz
smooth, we have ∥gk,E − gk∥ ≤ ηel.

Using Lemma B.3, we have

∥d− dE∥ = ∥g̃λ∗ − g̃Eλ∗
E∥ ≤ ∥g̃λ∗ − g̃λ∗

E∥+ ∥g̃λ∗
E − g̃Eλ∗

E∥ (49)
≤ ∥g̃∥∥λ∗ − λ∗

E∥+ ∥gλ′
E − gEλ′

E∥ (50)
≤ ∥g̃∥∥λ∗ − λ∗

E∥+ ηel (51)
≤ ζtl

√
K + ηel, (52)
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where Equation (49) follows triangular inequality, Equation (50) is obtained from Equations (47) and (48),
and Equation (51) uses Lemma B.3.

As seen, if limt→∞ η → 0, and limt→∞ ζt → 0, then ∥d − dE∥ → 0. Now, by writing the quadratic upper
bound we obtain:

f(θt+1) ≤ f(θt)− ηtgTgT
Eλ′

e + L(ηt)2

2 ∥gT
Eλ′

e∥2 (53)

≤ f(θt)− ηtgTgT λ′ + L(ηt)2∥gT λ′∥2 + ηtgT (d− dE) + L(ηt)2∥d− dE∥2 (54)
≤ f(θt)− ηt(1− Lηt)∥gT λ′∥2 + lηt∥d− dE∥+ L(ηt)2∥d− dE∥2. (55)

Noting that ηt ∈ (0, 1
2L ], and utilizing telescoping yields

min
t=0,...,T

∥dt∥ ≤
f(θ0)− f(θt+1) +

∑T
t=0 ηt(l∥d− dE∥+ Lηt∥d− dE∥2)

1
2
∑T

t=0 ηt
. (56)

Using ∥d− dE∥ → 0, the Theorem B.2 is concluded.

B.3 Case 3: E = 1 & local GD

Denote by ϑ the Pareto-stationary solution set of minimization problem arg minθ f(θ). Then, define
θ∗ = arg minθ∈ϑ ∥θt − θ∥2.

Theorem B.4. Assume that f = {fk}k∈[K] are l-Lipschitz continuous and σ-convex, and that the step-size
ηt satisfies the following two conditions: (i) limt→∞

∑t
j=0 ηj → ∞ and (ii) limt→∞

∑t
j=0 η2

j < ∞. Then
almost surely θt → θ∗; that is,

P
(

lim
t→∞

(
θt − θ∗) = 0

)
= 1, (57)

where P(E) denotes the probability of event E.

Proof. The proof is inspired from Mercier et al. (2018). Without loss of generality, we assume that all users
participate in all rounds.

Based on the definition of θ∗ we can say

∥θt+1 − θ∗
t+1∥2 ≤ ∥θt+1 − θ∗

t ∥2 = ∥θt − ηtdt − θ∗
t ∥2 (58)

= ∥θt − θ∗
t ∥2 − 2ηt(θt − θ∗

t ) · dt + (ηt)2∥dt∥2. (59)

To bound the third term in Equation (59), we note that from Equation (34), we have:

(ηt)2∥dt∥2 = (ηt)2∑K
k=1

1
∥g̃k∥2

≤ (ηt)2l2

K
. (60)

To bound the second term, first note that since orthogonal vectors {g̃k}k∈[K] span the same K-dimensional
space as that spanned by gradient vectors {gk}k∈[K], then

∃{λ′
k}k∈[K] s.t. d =

K∑
k=1

λ∗
kg̃k =

K∑
k=1

λ′
kgk. (61)
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Using Equation (61) and the σ-convexity of {fk}k∈[K] we obtain

(θt − θ∗
t ) · dt = (θt − θ∗

t ) ·
K∑

k=1
λ∗

kg̃k (62)

= (θt − θ∗
t ) ·

K∑
k=1

λ′
kgk (63)

≥
K∑

k=1
λ′

k

(
fk(θt)− fk(θ∗

t )
)

+ σ
∥θt − θ∗

t ∥2

2 (64)

≥ λ′
αM

2 ∥θt − θ∗
t ∥2 + σ

∥θt − θ∗
t ∥2

2 (65)

= λ′
αM + σ

2 ∥θt − θ∗
t ∥2. (66)

Now, we return back to Equation (59) and find the conditional expectation w.r.t. θt as follows

E[∥θt+1 − θ∗
t+1∥2 | θt] ≤ (1− ηtE[λ′

αM + σ|θt])∥θt − θ∗
t ∥2 + (ηt)2l2

K
. (67)

Assume that E[λ′
αM + σ|θt] ≥ c, taking another expectation we obtain:

E[∥θt+1 − θ∗
t+1∥2] ≤ (1− ηtc)E[∥θt − θ∗

t ∥2] + (ηt)2l2

K
, (68)

which is a recursive expression. By solving Equation (68) we obtain

E[∥θt+1 − θ∗
t+1∥2] ≤

t∏
j=0

(1− ηjc)E[∥θ0 − θ∗
0∥2]︸ ︷︷ ︸

First term

+
t∑

m=1

∏t
j=1(1− ηjc)η2

ml2

K
∏m

j=1(1− ηjc)︸ ︷︷ ︸
Second term

. (69)

It is observed that if the limit of both First term and Second term in Equation (69) go to zero, then
E[∥θt+1 − θ∗

t+1∥2]→ 0. For the First term, from the arithmetic-geometric mean inequality we have

lim
t→∞

t∏
j=0

(1− ηjc) ≤ lim
t→∞

(∑t
j=0(1− ηjc)

t

)t

= lim
t→∞

(
1− c

∑t
j=0 ηj

t

)t

(70)

= lim
t→∞

e
−c
∑t

j=0
ηj . (71)

From Equation (71) it is seen that if limt→∞
∑t

j=0 ηj →∞, then the First term is also converges to zero as
t→∞.

On the other hand, consider the Second term in Equation (69). Obviously, if limt→∞
∑t

j=0 η2
j <∞, then the

Second term converges to zero as t→∞.

Hence, if (i) limt→∞
∑t

j=0 ηj →∞ and (ii) limt→∞
∑t

j=0 η2
j <∞, then E[∥θt+1−θ∗

t+1∥2]→ 0. Consequently,
based on standard supermartingale (Mercier et al., 2018), we have

P
(

lim
t→∞

(
θt − θ∗) = 0

)
= 1. (72)

C Proof of Lemma B.3

Proof.

gk,E = θt − θ(k,E)t = (θt − θ(k,1)t) + (θ(k,1)t − θ(k,2)t) + · · ·+ (θ(k,e−1)t − θ(k,E)t) (73)
= gk(θt) + ηgk,1 + · · ·+ ηgk,e−1. (74)
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Hence,

∥gk,E − gk∥ = ∥η
e∑

j=1
gk,j∥ ≤ η

e∑
j=1
∥gk,j∥ ≤ ηel. (75)

D Proof of Theorem Theorem 4.6

Throughout the proofs in this section, we frequently use the triangular inequality for two vectors v and u:
∥v± u∥ ≤ ∥v∥+ ∥u∥.

Our goal is to prove the theorem by deriving a recursive relation for the distance between the optimal
global model θopt and the global model at the t-th round θt, specifically ∥θt − θopt∥. First, noting that
θt+1 = θt + ηtB−1

t g̃t, we have

∥θt+1 − θopt∥ =
∥∥θt − ηtB−1

t g̃t − θopt∥∥
≤
∥∥θt − ηtH−1

t gt − θopt∥∥︸ ︷︷ ︸
M1

+ ηt

∥∥H−1
t gt −B−1

t g̃t

∥∥︸ ︷︷ ︸
M2

. (76)

To bound M1, we use the results in Polyak & Tremba (2020). In particular, define t0 = max
{

0,
⌈ 2L

λ2∥d0∥
⌉
−2
}

,
γ = L

2λ2 ∥d0∥ − t0
4 ; then,

M1 ≤


λ
L (t0 − t + 2γ

1−γ ), t ≤ t0
2λγ2t−t0

L(1−γ2t−t0 )
, t > t0

(77)

Next, we bound M2 in the sequel.

M2 ≤
∥∥H−1

t gt −B−1
t gt

∥∥+
∥∥B−1

t gt −B−1
t g̃t

∥∥ (78)
≤
∥∥H−1

t −B−1
t

∥∥∥∥gt

∥∥+
∥∥B−1

t

∥∥∥∥gt − g̃t

∥∥, (79)

where in (78) we used triangular inequality. Note that using the assumption 2, we have
∥∥H−1

t −B−1
t

∥∥ ≤
δ
∥∥H−1

t

∥∥, and by λ-strong convexity of the loss function, we have
∥∥H−1

t

∥∥ ≤ 1
λ . Hence,

∥∥H−1
t −B−1

t

∥∥ ≤ δ

λ
. (80)

In addition, the L-smoothness of the global loss function yields∥∥gt

∥∥ ≤ L
∥∥θt − θopt∥∥. (81)

Hence, from (80) and (81), the first term in (79) could be bounded. Now, to bound the second term in (79),
note that ∥∥B−1

t

∥∥ ≤ ∥∥B−1
t −H−1

t

∥∥+
∥∥H−1

t

∥∥ (82)

≤ δ

λ
+ 1

λ
= δ + 1

λ
. (83)

Using (80), (81) and (82) in the inequality (78) we obtain

M2 ≤
Lδ

λ

∥∥θt − θopt∥∥+ δ + 1
λ

∥∥gt − g̃t

∥∥. (84)
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Next, we have (note that ηt ≤ 1)

∥θt+1 − θopt∥ ≤

{
Lδ
λ

∥∥θt − θopt∥∥+ A0, t ≤ t0
Lδ
λ

∥∥θt − θopt∥∥+ A1, t > t0
(85a)

where A0 = λ

L
(t0 − t + 2γ

1− γ
), (85b)

and A1 = 2λγ2t−t0

L(1− γ2t−t0 )
. (85c)

Applying (85) recursively yields

∥θt − θopt∥ ≤

{(
Lδ
λ

)t ∥∥θ0 − θopt∥∥+ A′
0, t ≤ t0(

Lδ
λ

)t ∥∥θ0 − θopt∥∥+ A′
1, t > t0

(86a)

where A′
0 =

(
Lδ
λ

)t − 1
Lδ
λ − 1

A0, (86b)

and A′
1 =

(
Lδ
λ

)t − 1
Lδ
λ − 1

A1. (86c)

E Proof of Corollary 4.7

As per Theorem (4.6), if
∥∥θ0 − θopt∥∥ <

A′
1

( Lδ
λ )t , then

∥θt − θopt∥ ≤
(

Lδ

λ

)t
A′

1(
Lδ
λ

)t + A′
1 = 2A′

1. (87)

Hence, to find Tϵ, we shall have

2A′
1 ≤ ϵ (88)

⇔ 2
(

Lδ
λ

)t − 1
Lδ
λ − 1

[ 2λγ2t−t0

L(1− γ2t−t0 )︸ ︷︷ ︸
diminishing term

]
≤ ϵ. (89)

Since
(

Lδ
λ

)
< 1, as t becomes larger,

(
Lδ
λ

)t ≈ 0, and therefore 2( Lδ
λ )t−1
Lδ
λ −1 ≈ 2

1− Lδ
λ

. In addition, since γ ∈ [0, 1
2 ],

for the large values of t, 2λγ2t−t0

L(1−γ2t−t0 )
≈ 2λγ2t−t0

L . Thus, by inverting the inequality (89), and then taking log
from both sides we have

log(1
ϵ

) ≤ − log( 4λ

L− L2δ
λ

)− 2t−t0 log(γ). (90)

Note that log(γ) < 0, and therefore the second term on the RHS of (90) is positive. Also, since − log( 4λ

L− L2δ
λ

)≪
−2t−t0 log(γ), then

Tϵ ≤ O
(

log log 1
ϵ

)
. (91)
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F Proof of Corollary 4.8

Based on Theorem (4.6), if
∥∥θ0 − θopt∥∥ ≥ A′

1

( Lδ
λ )t , then

∥θt − θopt∥ ≤
(

Lδ

λ

)t ∥∥θ0 − θopt∥∥+
(

Lδ

λ

)t ∥∥θ0 − θopt∥∥ (92)

≤ 2
(

Lδ

λ

)t ∥∥θ0 − θopt∥∥. (93)

Thus, to find Tϵ, we shall have

2
(

Lδ

λ

)Tϵ ∥∥θ0 − θopt∥∥ ≤ ϵ (94)

⇔ Tϵ log( λ

Lδ
) ≥ log

(
2
∥∥θ0 − θopt∥∥

ϵ

)
. (95)

Hence

Tϵ = O
(

1
log( λ

Lδ )
log 1

ϵ

)
. (96)

G Additional datasets

In this section, we assess the performance of DQN-Fed against several benchmarks using additional datasets,
namely Fashion MNIST, CINIC-10, and TinyImageNet. The corresponding results for each dataset are
detailed in Appendices G.1 to G.3.

G.1 Fashion MNIST

Fashion MNIST (Xiao et al., 2017) is an extension of MNIST dataset (LeCun et al., 1998) with images resized
to 32× 32 pixels.

We use a fully-connected neural network with 2 hidden layers, and use the same setting as that used in
Li et al. (2019a) for our experiments. We set E = 1 and use full batchsize, and use η = 0.1. Then, we
conduct 300 rounds of communications. For the benchmarks, we use the same as those we used for CIFAR-10
experiments. The results are reported in Table 9.

By observing the three different classes reported in Table 9, we observe that the fairness level attained in
DQN-Fed is not limited to a dominate class.

Table 9: Test accuracy on Fashion MNIST. The reported results are averaged over 5 different seeds.

Algorithm ā σa shirt pullover T-shirt

FedAvg 80.42 3.39 64.26 87.00 89.90
q-FFL 78.53 2.27 71.29 81.46 82.86
FedMGDA+ 79.29 2.53 72.46 79.74 85.66
FedHEAL 80.22 3.41 63.71 86.87 89.94
DQN-Fed 81.27 2.31 72.57 88.21 90.99

G.2 CINIC-10

CINIC-10 (Darlow et al., 2018) has 4.5 times as many images as those in CIFAR-10 dataset (270,000 sample
images in total). In fact, it is obtained from ImageNet and CIFAR-10 datasets. As a result, this dataset fits FL
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scenarios since the constituent elements of CINIC-10 are not drawn from the same distribution. Furthermore,
we add more non-iidness to the dataset by distributing the data among the clients using Dirichlet allocation
with β = 0.5.

For the model, we use ResNet-18 with group normalization, and set η = 0.01. There are 200 communication
rounds in which all the clients participate with E = 1. Also, K = 50. Results are reported in Table 10.

Table 10: Test accuracy on CINIC-10. The reported results are averaged over 5 different seeds.

Algorithm ā σa Worst 10% Best 10%

q-FFL 86.57 14.91 57.70 100.00
Ditto 86.31 15.14 56.91 100.00
FedLF 86.49 15.12 57.62 100.00
TERM 86.40 15.10 57.30 100.00
DQN-Fed 87.34 14.85 57.88 99.99

G.3 TinyImageNet

Tiny-ImageNet (Le & Yang, 2015) is a subset of ImageNet with 100k samples of 200 classes. We distribute
the dataset among K = 20 clients using Dirichlet allocation with β = 0.05

We use ResNet-18 with group normalization, and set η = 0.02. There are 400 communication rounds in which
all the clients participate with E = 1. The results are reported in Table 11.

Table 11: Test accuracy on TinyImageNet. The reported results are averaged over 5 different seeds.

Algorithm ā σa Worst 10% Best 10%

q-FFL 18.90 3.20 13.12 23.72
FedLF 16.55 2.38 12.40 20.25
TERM 16.41 2.77 11.52 21.02
FedMGDA+ 14.00 2.71 9.88 19.21
DQN-Fed 19.05 2.35 13.24 23.58

H Experiments details, tuning hyper-parameters

For all benchmark methods, we conducted a grid-search to identify the optimal hyper-parameters for the
underlying algorithms. The parameters tested for each method are outlined below:

• q-FFL: q ∈ {0, 0.001, 0.01, 0.1, 1, 2, 5, 10}.

• TERM: t ∈ {0.1, 0.5, 1, 2, 5}.

• FedLF: ηt ∈ {0.01, 0.05, 0.1, 0.5, 1}.

• Ditto: λ ∈ {0.01, 0.05, 0.1, 0.5, 1, 2, 5}.

• FedMGDA+: ϵ ∈ {0.01, 0.05, 0.1, 0.5, 1}.

• FedHEAL: (α, β) = {(0.5, 0.5)}, (γs, γc) = {(0.5, 0.9)}.

I Integration with a Label Noise Correction method

I.1 Understanding Label Noise in FL

Label noise in FL refers to inaccuracies or errors in the ground truth labels of training data, which can arise
due to various factors. These errors may occur during data collection, annotation, or transmission, leading
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to incorrect or noisy labels. In wireless FL settings, label noise can also result from transmission errors
over unreliable communication channels, where data packets may be corrupted or lost, causing mislabeling
(Hamidi et al., 2022). Addressing label noise is critical, as it can significantly degrade the performance and
reliability of FL models, necessitating the development of robust techniques to mitigate its impact.

Addressing label noise in FL presents unique challenges due to its reliance on decentralized data sources,
where participants may have limited control over label quality in remote environments. Mitigating label noise
in FL requires the development of robust models and FL algorithms capable of adapting to inaccuracies in
the labels. This adaptation is essential for maintaining model performance and reliability in real-world FL
scenarios where label noise is prevalent.

I.2 Robustness of Fair FL Algorithms to Label Noise

The core objective of fair FL algorithms, such as DQN-Fed, is to uphold fairness among clients while preserving
average accuracy across them. However, it’s important to note that these algorithms are not inherently robust
against label noise, which refers to instances where data points are mislabeled.

However, by integrating DQN-Fed with label-noise resistant methods from existing literature, we can develop
a FL approach that not only ensures fairness among clients but also exhibits robustness against label noise.
Specifically, among the label-noise resistant FL algorithms available in the literature, we choose FedCorr (Xu
et al., 2022) to be integrated with DQN-Fed. This integration offers a promising avenue for enhancing the
performance and resilience of FL models in real-world scenarios affected by label noise.

FedCorr introduces a dimensionality-based filter to identify noisy clients, achieved through the measurement
of local intrinsic dimensionality (LID) within local model prediction subspaces. They illustrate the feasibility
of distinguishing between clean and noisy datasets by monitoring the behavior of LID scores throughout the
training process. For further insights into FedCorr, we defer interested readers to the original paper for a
comprehensive discussion.

Following a methodology similar to FedCorr, we utilize a real-world noisy dataset known as Clothing1M. This
dataset comprises 1 million clothing images across 14 classes and is characterized by noisy labels, as it is
sourced from various online shopping websites, incorporating numerous mislabeled samples.

For our experiments with Clothing1M, we adopt the identical settings as utilized by FedCorr, which are
available in their GitHub repository (https://github.com/Xu-Jingyi/FedCorr). Specifically, we employ local
SGD with a momentum of 0.5, utilizing a batch size of 16 and conducting five local epochs. Additionally, we
set the hyper-parameter T1 = 2 in accordance with their algorithm.

The results are summarized in Table 12. It is evident that the average accuracy achieved by DQN-Fed is
approximately 2.2% lower compared to that obtained with FedCorr, indicating DQN-Fed’s susceptibility to
label noise. However, DQN-Fed demonstrates a notable improvement in ensuring fair client accuracy, aligning
with expectations.

Conversely, when DQN-Fed is combined with FedCorr, there is a noticeable enhancement in average accuracy
while still preserving satisfactory fairness among clients. This integration showcases the potential of leveraging
both methodologies to achieve improved performance and fairness in FL scenarios affected by label noise.

Table 12: Test accuracy on Clothing1M dataset. The reported results are averaged over 5 different seeds.

Algorithm ā σa W(10%) B(10%)

FedAvg 70.49 13.25 43.09 91.05
FedCorr 72.55 13.27 43.12 91.15
DQN-Fed 70.35 5.17 49.91 90.77
FedCorr + DQN-Fed 72.36 8.07 46.77 91.15
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J More on Fairness in FL and ML

J.1 Sources of unfairness in federated learning

Unfairness in FL can arise from various sources and is a concern that needs to be addressed in FL systems.
Here are some of the key reasons for unfairness in FL:

1. Non-Representative Data Distribution: Unfairness can occur when the distribution of data across
participating devices or clients is non-representative of the overall population. Some devices may have more
or less relevant data, leading to biased model updates.

2. Data Bias: If the data collected or used by different clients is inherently biased due to the data collection
process, it can lead to unfairness. For example, if certain demographic groups are underrepresented in the
training data of some clients, the federated model may not perform well for those groups.

3. Heterogeneous Data Sources: Federated learning often involves data from a diverse set of sources,
including different device types, locations, or user demographics. Variability in data sources can introduce
unfairness as the models may not generalize equally well across all sources.

4. Varying Data Quality: Data quality can vary among clients, leading to unfairness. Some clients may
have noisy or less reliable data, while others may have high-quality data, affecting the model’s performance.

5. Data Sampling: The way data is sampled and used for local updates can introduce unfairness. If some
clients have imbalanced or non-representative data sampling strategies, it can lead to biased model updates
(Hamidi et al., 2024b).

6. Aggregation Bias: The learned model may exhibit a bias towards devices with larger amounts of data
or, if devices are weighted equally, it may favor more commonly occurring devices.

J.2 Fairness in conventional ML Vs. FL

The concept of fairness is often used to address social biases or performance disparities among different
individuals or groups in the machine learning (ML) literature (Barocas et al., 2017). However, in the context
of FL, the notion of fairness differs slightly from traditional ML. In FL, fairness primarily pertains to the
consistency of performance across various clients. In fact, the difference in the notion of fairness between
traditional ML and FL arises from the distinct contexts and challenges of these two settings:

1. Centralized vs. decentralized data distribution:

• In traditional ML, data is typically centralized, and fairness is often defined in terms of mitigating
biases or disparities within a single, homogeneous dataset. Fairness is evaluated based on how the
model treats different individuals or groups within that dataset.

• In FL, data is distributed across multiple decentralized clients or devices. Each client may have its
own unique data distribution, and fairness considerations extend to addressing disparities across
these clients, ensuring that the federated model provides uniform and equitable performance for all
clients.

2. Client autonomy and data heterogeneity:

• In FL, clients are autonomous and may have different data sources, labeling processes, and data
collection practices. Fairness in this context involves adapting to the heterogeneity and diversity
among clients while still achieving equitable outcomes.

• Traditional ML operates under a centralized, unified data schema and is not inherently designed to
handle data heterogeneity across sources.
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We should note that in certain cases where devices can be naturally clustered into groups with specific
attributes, the definition of fairness in FL can be seen as a relaxed version of that in ML, i.e., we optimize for
similar but not necessarily identical performance across devices (Li et al., 2019a).

Nevertheless, despite the differences mentioned above, to maintain consistency with the terminology used in
the FL literature and the papers we have cited in the main body of this work, we will continue to use the
term “fairness” to denote the uniformity of performance across different devices.

J.3 Fair Algorithms in FL

A seminal method in this domain is agnostic federated learning (AFL) (Mohri et al., 2019). AFL optimizes
the global model for the worst-case realization of the weighted combination of user distributions. Their
approach involves solving a saddle-point optimization problem, and they employ a fast stochastic optimization
algorithm for this purpose. However, AFL exhibits strong performance only for a limited number of clients. In
addition, Du et al. (2021) adopted the framework of FedLF and introduced the AgnosticFair algorithm. They
linearly parameterized model weights using kernel functions and demonstrated that FedLF can be considered
as a specific instance of AgnosticFair. To address the challenges in FedLF, the q-fair Federated Learning
(q-FFL) method was introduced by Li et al. (2019a). q-FFL aims to achieve a more uniform test accuracy
across users, drawing inspiration from fair resource allocation methods employed in wireless communication
networks (Huaizhou et al., 2013). Following this, Li et al. (2020) introduced TERM, a tilted empirical risk
minimization algorithm designed to address outliers and class imbalance in statistical estimation procedures.
In numerous FL applications, TERM has shown superior performance compared to q-FFL. Adopting a
similar concept, Huang et al. (2020b) introduced a method that adjusts device weights based on training
accuracy and frequency to promote fairness. Additionally, FCFC (Cui et al., 2021) minimizes the loss of the
worst-performing client, effectively presenting a variant of FedLF. Subsequently, Li et al. (2021) introduced
Ditto, a multitask personalized FL algorithm. By optimizing a global objective function, Ditto enables local
devices to perform additional steps of SGD, within certain constraints, to minimize their individual losses.
Ditto proves effective in enhancing testing accuracy among local devices and promoting fairness. Ideas from
information theory such as conditional mutual information could also be used to promote fairness in FL
(Yang et al., 2023; 2024; Ye et al., 2024).

Our approach shares similarities with FedMGDA+ (Hu et al., 2022), which treats the FL task as a multi-
objective optimization problem. The objective here is to simultaneously minimize the loss function of
each FL client. To ensure that the performance of any client is not compromised, FedMGDA+ leverages
Pareto-stationary solutions to identify a common descent direction for all selected clients. In a similar
approach, Hamidi & YANG (2024); Mohajer Hamidi & Damen (2024); Hamidi et al. (2025) use ideas from
multi-objective optimization to ensure fairness in FL models.
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