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Abstract
Graph Neural Networks (GNNs) extend convolu-
tional neural networks to operate on graphs. De-
spite their impressive performances in various
graph learning tasks, the theoretical understand-
ing of their generalization capability is still lack-
ing. Previous GNN generalization bounds ignore
the underlying graph structures, often leading to
bounds that increase with the number of nodes – a
behavior contrary to the one experienced in prac-
tice. In this paper, we take a manifold perspective
to establish the statistical generalization theory
of GNNs on graphs sampled from a manifold in
the spectral domain. As demonstrated empirically,
we prove that the generalization bounds of GNNs
decrease linearly with the size of the graphs in the
logarithmic scale, and increase linearly with the
spectral continuity constants of the filter functions.
Notably, our theory explains both node-level and
graph-level tasks. Our result has two implications:
i) guaranteeing the generalization of GNNs to un-
seen data over manifolds; ii) providing insights
into the practical design of GNNs, i.e., restrictions
on the discriminability of GNNs are necessary to
obtain a better generalization performance. We
demonstrate our generalization bounds of GNNs
using synthetic and multiple real-world datasets.

1. Introduction
Graph convolutional neural networks (GNNs) (Scarselli
et al., 2008; Defferrard et al., 2016; Bruna et al., 2014)
have emerged as one of the leading tools for processing
graph-structured data. There is abundant evidence of their
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empirical success across various fields, including but not
limited to weather prediction (Lam et al., 2023), protein
structure prediction in biochemistry (Jumper et al., 2021;
Strokach et al., 2020), resource allocation in wireless com-
munications (Wang et al., 2022a), social network analysis in
sociology (Fan et al., 2020), point cloud in 3D model recon-
struction (Shi & Rajkumar, 2020) and learning simulators
(Fortunato et al., 2022).

The effectiveness of GNNs relies on their empirical ability
to predict over unseen data. This capability is evaluated
theoretically with statistical generalization in deep learning
theory (Kawaguchi et al., 2017), which quantifies the dif-
ference between the empirical risk (i.e. training error) and
the statistical risk (i.e. testing error). Despite the abundant
evidence of GNNs’ generalization capabilities in practice,
developing concrete theories to explain their generaliza-
tion is an active area of research. Many recent works have
studied the generalization bounds of GNNs without any
dependence on the underlying model responsible for gen-
erating the graph data (Scarselli et al., 2018; Garg et al.,
2020; Verma & Zhang, 2019). Generalization analysis on
graph classification, when graphs are drawn from random
limit models, is also studied in a series of works (Ruiz et al.,
2023; Maskey et al., 2022; 2024; Levie, 2024). In this work,
we take the manifold perspective to formulate graph data on
continuous topological spaces, i.e., manifolds. We empha-
size that manifolds are realistic models to generate graph
data that enable rigorous theoretical analysis and a deep
understanding of the behaviors of GNNs.

We explore the generalization bound of GNNs through the
lens of manifold theory on both node-level and graph-level
tasks in the spectral domain. The graphs are constructed
based on points randomly sampled from underlying mani-
folds, indicating that the manifold can be viewed as a sta-
tistical model for these discretely sampled points. As deep
learning architectures have been established over manifolds
(Wang et al., 2022b; Chew et al., 2024), the convergence
of GNNs to manifold neural networks (MNNs) and the al-
gebraical equivalence of these two frameworks facilitate
a detailed generalization understanding of GNNs through
spectral analysis. We demonstrate that, with an appropriate
graph construction based on the sampled points from the
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manifold, the generalization gap between empirical and sta-
tistical risks decreases with the number of sampled points
in the graphs (Figure 1c) on both node-level and graph-level
tasks. More importantly, the generalization gap increases
linearly with the continuity constants of frequency response
functions of graph filters composing the GNN (Figure 1d).
We observe that with spectral continuous filters, the GNNs
are generalizable across different nodes or graphs generated
from the same underlying manifold. This provides insight
into the practical graph filter design from a spectral perspec-
tive. Moreover, the theoretical results indicate a trade-off
between the discriminability and generalization capability
of GNNs, suggesting that restrictions on the discriminability
of GNNs are necessary to maintain generalization perfor-
mance.

We introduce a novel unified analysis of the generaliza-
tion of GNNs to unseen nodes and graphs, by relating the
GNNs with MNNs in the spectral domain. We further pro-
pose restrictions on the discriminability of GNNs from the
spectral perspective which results from assumptions on the
continuity of the filter frequency response functions. We
provide extensive experiments both on synthetic and real-
world datasets to verify our generalization conclusions. Our
contribution is four-fold:

1. We prove the generalization bound of GNNs on graphs
generated from an underlying manifold on both node-
level (Theorem 1) and graph-level (Theorem 2) by
relating the algebraically equivalent GNNs and MNN
in the spectral domain.

2. We provide novel generalization gap bounds that de-
crease linearly with the nodes of the graph in the log-
arithmic scale, and increase linearly with the spectral
continuity constants (Assumption 1) of the filter func-
tions.

3. We uncover an important trade-off between the discrim-
inability and the generalization gap of GNNs, which
guides practical GNN designs.

4. We verify the dependence of our generalization gaps on
parameters, especially the continuity parameter, with
a synthetic dataset – chair manifold – and eight real-
world datasets – ArXiv, Citeseer, etc.

2. Related works
2.1. Generalization bounds of GNNs

Node level tasks We first give a brief recap of the gener-
alization bounds of GNNs on node level tasks. In (Scarselli
et al., 2018), the authors give a generalization bound of
GNNs with a Vapnik–Chervonenkis dimension of GNNs.

The authors in (Verma & Zhang, 2019) analyze the gener-
alization of a single-layer GNN based on stability analysis,
which is further extended to a multi-layer GNN in (Zhou
& Wang, 2021). In (Ma et al., 2021), the authors give a
novel PAC-Bayesian analysis on the generalization bound
of GNNs across arbitrary subgroups of training and test-
ing datasets. The authors derive generalization bounds for
GNNs via transductive uniform stability and transductive
Rademacher complexity in (Esser et al., 2021; Cong et al.,
2021; Tang & Liu, 2023). The authors in (Yehudai et al.,
2021) propose a size generalization analysis of GNNs cor-
related to the discrepancy between local distributions of
graphs. Different from these works, we consider a continu-
ous manifold model when generating the graph data, which
is theoretically powerful and realistic when characterizing
real-world data. Furthermore, the generalization bounds
proved in these works either grow with the size of the graph
(Esser et al., 2021; Tang & Liu, 2023; Scarselli et al., 2018),
with the node degree of the graphs (Cong et al., 2021) or the
maximum eigenvalues of the graph (Verma & Zhang, 2019).
Notably, our generalization bound decreases with the size
of the graph given that it depends on the spectral properties
of the filter functions over the manifold.

Graph level tasks There are also related works on the gen-
eralization analysis of GNNs on graph-level tasks. In (Garg
et al., 2020), the authors form the generalization bound via
Rademacher complexity. The authors in (Liao et al., 2020)
build a PAC-Bayes framework to analyze the generaliza-
tion capabilities of graph convolutional networks (Kipf &
Welling, 2016) and message-passing GNNs (Gilmer et al.,
2017), based on which the authors in (Ju et al., 2023) im-
prove the results and prove a lower bound. The bounds
either grow with the number of nodes (Liao et al., 2020) or
the degree of the graphs (Garg et al., 2020) while our bound
decreases with the number of nodes in the graph given that
it better approximates the underlying model – the manifold.
The works in (Maskey et al., 2022; 2024; Levie, 2024) are
most related to ours, which also consider the generalization
of GNNs on a graph limit model, in their case a graphon.
Different from our setting, the authors see the graph limit
as a random continuous model. They study the generaliza-
tion of graph classification problems with message-passing
GNNs with graphs belonging to the same category sampled
from a continuous limit model. The generalization bound
grows with the model complexity and decreases with the
number of nodes in the graph. We show that a GNN trained
on a single graph sampled from each manifold is enough,
and can generalize and classify unseen graphs sampled from
the manifold set.
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Figure 1: Synthetic experimental results are shown on the uniformly sampled chair manifold. We construct a graph with
different numbers of nodes, fix the weights of a GNN, and compute the generalization gap. We construct the graph by
computing the edges for nodes that are ϵ close (cf. equation 3). In Figure 1c, we fix the spectral continuity constant (see
Assumption 1) and vary the number of nodes. As our theory predicts, we see that a smaller spectral continuity constant
translates into a smaller generalization gap – as the blue line is below the green line which is below the orange line. In
Figure 1d we fix the number of nodes in the graph and vary the spectral continuity constant in the GNN. For the same
number of nodes, a larger spectral continuity constant translates into a larger generalization gap.

2.2. Neural networks on manifolds

Geometric deep learning has been proposed in (Bronstein
et al., 2017) with neural network architectures raised in
manifold space. The authors in (Monti et al., 2017) and
(Chakraborty et al., 2020) provide neural network archi-
tectures for manifold-valued data. In (Wang et al., 2024b)
and (Wang et al., 2022b), the authors define convolutional
operation over manifolds and see the manifold convolution
as a generalization of graph convolution, which establishes
the limit of neural networks on large-scale graphs as mani-
fold neural networks (MNNs). The authors in (Wang et al.,
2024a; Chew et al., 2023; Johnson et al., 2025) further es-
tablish the relationship between GNNs and MNNs with
non-asymptotic convergence results for different graph con-
structions. Some studies have used graph samples to infer
properties of the underlying manifold itself. These proper-
ties include the validity of the manifold assumption (Feffer-
man et al., 2016), the manifold dimension (Farahmand et al.,
2007) and the complexity of these inferences (Narayanan &
Niyogi, 2009; Aamari & Knop, 2021). Other research has
focused on prediction and classification using manifolds and
manifold data, proposing various algorithms and methods.
Impressive examples include the Isomap algorithm (Choi
& Choi, 2004; Wu & Chan, 2004; Yang et al., 2016a) and
other manifold learning techniques (Talwalkar et al., 2008).
These techniques aim to infer manifold properties without
analyzing the generalization capabilities of GNNs operated
on the sampled manifold.

3. Preliminaries
3.1. Graph neural networks

Setup An undirected graph G = (V, E ,W) contains a
node set V with N nodes and an edge set E ⊆ V × V . The
weight function W : E → R assigns values to the edges. We

define the graph Laplacian L = diag(A1)−A where A ∈
RN×N is the weighted adjacency matrix. Graph signals are
functions mapping nodes to a feature value. We write it
as a vector x ∈ RN , with each entry [x]i representing the
function value on node i.

Graph convolutions and frequency response A graph
convolutional filter hG is composed of consecutive
graph shifts by graph Laplacian, defined as hG(L)x =∑K−1

k=0 hkL
kx with {hk}K−1

k=0 as filter parameters. We re-
place L with eigendecomposition L = VΛVH , where V
is the eigenvector matrix and Λ is a diagonal matrix with
eigenvalues {λi,N}Ni=1 as the entries. The spectral represen-
tation of a graph filter is

VHhG(L)x =

K−1∑
k=1

hkΛ
kVHx = ĥ(Λ)VHx. (1)

This leads to a point-wise frequency response of the graph
convolution as ĥ(λ) =

∑K−1
k=0 hkλ

k.

Graph neural networks A graph neural network (GNN)
is a layered architecture, where each layer consists of a
bank of graph convolutional filters followed by a point-wise
nonlinearity σ : R → R. Specifically, the l-th layer of a
GNN that produces Fl output features {xp

l }
Fl
p=1 with Fl−1

input features {xq
l−1}

Fl−1

q=1 is written as

xp
l = σ

Fl−1∑
q=1

hlpq
G (L)xq

l−1

 , (2)

for each layer l = 1, 2 · · · , L. The graph filter hlpq
G (L)

maps the q-th feature of layer l − 1 to the p-th feature of
layer l. We denote the GNN as a mapping ΦG(H,L,x),
where H ∈ H ⊂ RP denotes a set of the graph filter
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coefficients with a finite P dimension at all layers and H
denotes the set of all possible parameter sets.

3.2. Manifold neural networks

Setup We consider a d-dimensional compact, smooth and
differentiable Riemannian submanifold M embedded in a
M-dimensional space RM with finite volume. This induces a
measure µ which has a non-vanishing Lipschitz continuous
density ρ with respect to the Riemannian volume over the
manifold with ρ : M → (0,∞), assumed to be bounded
as 0 < ρmin ≤ ρ(x) ≤ ρmax < ∞ for all x ∈ M. The
manifold data supported on each point x ∈ M is defined
by scalar functions f : M → R (Wang et al., 2024b). We
use L2(M) to denote L2 functions over M with respect to
measure µ. The manifold with probability density function
ρ is equipped with a weighted Laplace operator (Grigor’yan,
2006), generalizing the Laplace-Beltrami operator as

Lρf = − 1

2ρ
div(ρ2∇f), (3)

with div denoting the divergence operator of M and ∇
denoting the gradient operator of M (Bronstein et al., 2017;
Gross & Meinrenken, 2023).

Manifold convolutions and frequency responses The
manifold convolution operation is defined relying on the
Laplace operator Lρ and on the heat diffusion process
over the manifold (Wang et al., 2024b). For a function
f ∈ L2(M) as the initial heat condition over M, the heat
condition diffused by a unit time step can be explicitly writ-
ten as e−Lρf . A manifold convolutional filter (Wang et al.,
2024b) can be defined in a diffuse-and-sum manner as

g(x) = h(Lρ)f(x) =

K−1∑
k=0

hke
−kLρf(x), (4)

with the k-th diffusion scaled with a filter parameter hk ∈ R.
We consider the case in which the Laplace operator is self-
adjoint, positive-semidefinite and the manifold M is com-
pact. In this case, Lρ has real, positive and discrete eigenval-
ues {λi}∞i=1, written as Lρϕi = λiϕi where ϕi is the eigen-
function associated with eigenvalue λi. The eigenvalues are
ordered in increasing order as 0 = λ1 ≤ λ2 ≤ λ3 ≤ . . .,
and the eigenfunctions are orthonormal and form an eigen-
basis of L2(M). When mapping a manifold signal onto the
eigenbasis [f̂ ]i = ⟨f,ϕi⟩M =

∫
M f(x)ϕi(x)dµ(x), the

manifold convolution can be seen in the spectral domain as

[ĝ]i =

K−1∑
k=0

hke
−kλi [f̂ ]i. (5)

Hence, the frequency response of manifold filter is given by
ĥ(λ) =

∑K−1
k=0 hke

−kλ.

Manifold neural networks A manifold neural network
(MNN) is constructed by cascading L layers, each of which
contains a bank of manifold convolutional filters and a point-
wise nonlinearity σ : R → R. The output manifold function
of each layer l = 1, 2 · · · , L can be explicitly denoted as

fp
l (x) = σ

Fl−1∑
q=1

hpq
l (Lρ)f

q
l−1(x)

 , (6)

where fq
l−1, 1 ≤ q ≤ Fl−1 is the q-th input feature from

layer l − 1 and fp
l , 1 ≤ p ≤ Fl is the p-th output feature of

layer l. We denote MNN as a mapping Φ(H,Lρ, f), where
H ∈ H ⊂ RP is a collective set of filter parameters in all
the manifold convolutional filters.

4. Generalization analysis of GNNs based on
manifolds

We consider a manifold M as defined in Section 3.2, with
a weighted Laplace operator Lρ as defined in equation 3.
Since functions f ∈ L2(M) characterize information over
manifold M, we restrict our analysis to a finite-dimensional
subset of L2(M) up to some eigenvalue of Lρ, defined as a
bandlimited signal.

Definition 1. A manifold signal f ∈ L2(M) is bandlimited
if there exists some λ > 0 such that for all eigenpairs
{λi,ϕi}∞i=1 of the weighted Laplacian Lρ when λi > λ, we
have ⟨f,ϕi⟩M = 0.

Suppose we are given a set of N i.i.d. randomly sampled
points XN = {xi}Ni=1 over M, with xi ∈ M sampled ac-
cording to measure µ. We construct a graph G(V, E ,W)
on these N sampled points XN , where each point xi is a
vertex of graph G, i.e. V = XN . Each pair of vertices
(xi, xj) is connected with an edge while the weight attached
to the edge W(xi, xj) is determined by a kernel function Kϵ.
The kernel function is decided by the Euclidean distance
∥xi − xj∥ between these two points. The graph Laplacian
denoted as LN can be calculated based on the weight func-
tion (Merris, 1995). The constructed graph Laplacian with
an appropriate kernel function has been proved to approxi-
mate the Laplace operator Lρ of M (Calder & Trillos, 2022;
Belkin & Niyogi, 2008; Dunson et al., 2021). We present
the following two definitions of Kϵ.

Definition 2 (Gaussian kernel based graph (Belkin &
Niyogi, 2008)). The graph G(XN , E ,W) can be con-
structed in (xi, xj) ∈ E , as a dense graph degree when
the kernel function is defined as

W(xi, xj) = Kϵ,1

(
∥xi − xj∥2

ϵ

)
(7)

=
1

N

1

ϵd/2+1(4π)d/2
e−

∥xi−xj∥
2

4ϵ . (8)
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Figure 2: Frequency response illustration

The weight function of a Gaussian kernel based graph is
defined on unbounded support (i.e. [0,∞)), which connects
xi and xj regardless of the distance between them. This
results in a dense graph with N2 edges. In particular, this
Gaussian kernel based graph has been widely used to define
the weight value function due to the good approximation
properties of the corresponding graph Laplacians to the
manifold Laplace operator (Dunson et al., 2021; Belkin &
Niyogi, 2008; Xie et al., 2013).

Definition 3 (ϵ-graph (Calder & Trillos, 2022)). The graph
G(XN , E ,W) can be constructed as an ϵ-graph with the
kernel function defined as

W(xi, xj) = Kϵ,2

(
∥xi − xj∥2

ϵ

)
(9)

=
1

N

d+ 2

ϵd/2+1αd
1[0,1]

(
∥xi − xj∥2

ϵ

)
, (10)

with (xi, xj) ∈ E , where αd is the volume of a unit ball
of dimension d and 1 is the characteristic function.

The weight function of an ϵ-graph is defined on a bounded
support, i.e., only nodes that are within a certain distance of
one another can be connected by an edge. It has also been
shown to provide a good approximation of the manifold
Laplace operator (Calder & Trillos, 2022).

4.1. Manifold label prediction via node label prediction

Suppose we have an input manifold signal f ∈ L2(M)
and a label (i.e. target) manifold signal g ∈ L2(M) over
M. With an MNN Φ(H,Lρ, ·), we predict the target value
g(x) based on input f(x) at each point x ∈ M. By sam-
pling N points XN over this manifold, we can approximate
this problem in a discrete graph domain. Consider a graph
G(XN , E ,W) constructed with XN as either a Gaussian
kernel based graph (Definition 2) or an ϵ-graph (Definition
3) equipped with the graph Laplacian LN . Suppose we are
given graph signal {x,y} sampled from {f, g} to train a
GNN ΦG(H,LN , ·), explicitly written as

[x]i = f(xi), [y]i = g(xi) for all xi ∈ XN . (11)

We assume that the filters in MNN Φ(H,Lρ, ·) and GNN
ΦG(H,LN , ·) satisfy a continuity assumption as follows,
which is illustrated in Figure 2.

AS 1. The frequency response function of the filter satisfies∣∣∣ĥ(λ)∣∣∣ = O
(
λ−d

)
,
∣∣∣ĥ′(λ)

∣∣∣ ≤ CLλ
−d−1, λ ∈ (0,∞),

(12)
with CL a spectral continuity constant that regularizes the
smoothness of the filter function.

To introduce the first of our two main results, we require
introducing two assumptions.

AS 2. (Normalized Lipschitz nonlinearity) The nonlinearity
σ is normalized Lipschitz continuous, i.e., |σ(a)− σ(b)| ≤
|a− b|, with σ(0) = 0.

AS 3. (Normalized Lipschitz loss function) The loss func-
tion ℓ is normalized Lipschitz continuous, i.e., |ℓ(yi, y) −
ℓ(yj , y)| ≤ |yi − yj |, with ℓ(y, y) = 0.

Assumption 2 is satisfied by most activations used in prac-
tice such as ReLU, modulus and sigmoid.

The generalization gap is evaluated between the empirical
risk over the discrete graph model and the statistical risk
over manifold model, with the manifold model viewed as a
statistical model since the expectation of the sampled point
is with respect to the measure µ over the manifold. The
empirical risk over the sampled graph that we trained to
minimize is therefore defined as

RG(H) =
1

N

N∑
i=1

ℓ ([ΦG(H,LN ,x)]i, [y]i) . (13)

The statistical risk over the manifold is defined as

RM(H) =

∫
M

ℓ (Φ(H,Lρ, f)(x), g(x)) dµ(x). (14)

The generalization gap is defined to be

GA = sup
H∈H

|RM(H)−RG(H)| . (15)

Theorem 1. Suppose the GNN and MNN with filters satis-
fying Assumption 1 have L layers with F features in each
layer and the input signal is bandlimited (Definition 1). Un-
der Assumptions 2 and 3 it holds in probability at least 1−δ
that

GA ≤FLC3

(
logN

N

) 1
d

(16)

+ LFL−1

(
(C1CL + C2)

√
ϵ

N
+

π2
√

log(1/δ)

6N

)
,

when d ≥ 3. If d = 2, the first term would be
FLC3

(logN)3/4

N1/2 , with C1, C2, and C3 depending on the
geometry of M, CL is the spectral continuity constant in
Assumption 1.
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1. When the graph is constructed with a Gaussian kernel

equation 7, then ϵ ∼
(

log(C/δ)
N

) 2
d+4

.

2. When the graph is constructed as an ϵ-graph as equa-

tion 9, then ϵ ∼
(

log(CN/δ)
N

) 2
d+4

.

Proof. See Appendix D for proof and the definitions of C1,
C2 and C3.

Theorem 1 shows that the generalization gap decreases ap-
proximately linearly with the number of nodes N in the
logarithmic scale, that is, log(GA) = Õ(− logN) with
Õ as the O notation that ignores logarithmic orders, and
that it also increases with the dimension of the underlying
manifold d. Another observation is that the generalization
gap scales with the size of the GNN architecture. Most
importantly, we note the bound increases linearly with the
spectral continuity constant CL (Assumption 1) – a smaller
CL leads to a smaller generalization gap bound, and thus a
better generalization capability. While a smaller CL leads
to a smoother GNN, it discriminates fewer spectral com-
ponents and, therefore, possesses worse discriminability.
Consequently, we may observe a larger training loss with
these smooth filters, as filters with worse discriminability
encompass a smaller hypothesis function class and deterio-
rate the GNNs’ approximation to the target functions during
training. Since the testing loss can be upper bounded by the
sum of training loss and the bound of generalization gap,
on a smoother GNN (a smaller CL), the performance on the
training data will be closer to the performance on unseen
testing data. Therefore, having a GNN with a smaller spec-
tral continuity constant CL can guarantee more generaliz-
able performance over unseen data from the same manifold.
This also indicates that similar testing performance can be
achieved by either a GNN with smaller training loss and
worse generalization or a GNN with larger training loss and
better generalization. In all, this indicates that there exists
an optimal point to take the best advantage of the trade-off
between a smaller generalization gap and better discrim-
inability, resulting in a smaller testing loss decided by the
spectral continuity constant of the GNN.

4.2. Manifold classification via graph classification

Suppose we have a set of manifolds {Mk}Kk=1, each of
which is dk-dimensional, smooth, compact, differentiable
and embedded in RM with measure µk. Each manifold
Mk equipped with a weighted Laplace operator Lρk,k is
labeled with yk ∈ R. We assume to have access to Nk

randomly sampled points according to measure µk over
each manifold Mk and construct K graphs {Gk}Kk=1 with
graph Laplacians LNk,k. The GNN ΦG·(H,LN·,·,x·) is
trained on this set of graphs with xk as the input graph
signal sampled from the manifold signal fk ∈ L2(Mk) and

yk ∈ R as the scalar target label. The final output of the
GNN is set to be the average of the output signal values
on each node while the output of MNN Φ(H,Lρ·,·, f·) is
the statistical average value of the output signal over the
manifold. A loss function ℓ evaluates the difference between
the output of GNN and MNN with the target label. The
empirical risk of the GNN is

RG(H) =

K∑
k=1

ℓ

(
1

Nk

Nk∑
i=1

[Φ(H,LNk,k,xk)]i, yk

)
.

(17)

While the output of MNN is the average value over the
manifold, the statistical risk is defined based on the loss
evaluated between the MNN output and the label as

RM(H) =

K∑
k=1

ℓ

(∫
Mk

Φ(H,Lρk,k, fk)(x)dµk(x), yk

)
.

(18)

The generalization gap is therefore

GA = sup
H∈H

|RM(H)−RG(H)| . (19)

Theorem 2. Suppose the GNN and MNN with filters satis-
fying Assumption 1 have L layers with F features in each
layer and the input signal is bandlimited (Definition 1). Un-
der Assumptions 2 and 3 it holds in probability at least 1−δ
that

GA ≤LFL−1
K∑

k=1

(C1CL + C2)

(√
ϵk
Nk

(20)

+
π2
√

log(1/δ)

6Nk

)
+ FLC3

K∑
k=1

(
logNk

Nk

) 1
dk

,

when d ≥ 3. If d = 2, the last term would be
FLC3

∑K
k=1

(logNk)
3/4

N
1/2
k

,with C1, C2, and C3 depending on

the geometry of M, CL is the spectal continuity constant in
Assumption 1.

1. When the graphs are constructed with a Gaussian ker-

nel equation 7, then ϵk ∼
(

log(C/δ)
Nk

) 2
dk+4

.

2. When the graphs are constructed as ϵ-graphs as equa-

tion 9, then ϵk ∼
(

log(CNk/δ)
Nk

) 2
dk+4

.

Proof. See Appendix F for proof and the definitions of C1,
C2 and C3.
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Figure 3: Merged visualization of all datasets: Arxiv (top row), Planetoid (middle row), and Heterophilic and CoAuthors
datasets (bottom row). Each row provides accuracy and loss generalization gaps across different configurations and datasets.

Theorem 2 shows that a single graph sampled from the un-
derlying manifold with large enough sampled points Nk

from each manifold Mk can provide an effective approx-
imation to classify the manifold itself. The generalization
gap also attests that the trained GNN can generalize to clas-
sify other unseen graphs sampled from the same manifold.
Similar to the generalization result in node-level tasks, the
generalization gap decreases with the number of points sam-

pled over each manifold while increasing with the manifold
dimension. A higher dimensional manifold, i.e. higher com-
plexity, needs more samples to guarantee the generalization.
The generalization gap also shows a trade-off between the
generalization and discriminability as the bound increases
linearly with the spectral continuity constant CL. That is, to
guarantee that a GNN for graph classification can generalize
effectively, we must impose restrictions on the continuity of
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Figure 4: Spectral continuity constant effect on generalization gap and test accuracy.

its filter functions, which in turn limits the filters’ ability to
discriminate between different graph features.

We note that our assumption of a constant number of fea-
tures can be generalized to include a different number of
features in each layer for both node and graph classification.

5. Experiments
In this section, we empirically study the generalization gap
in 8 real-world datasets. The task is to predict the label
of a node given a set of features. The datasets vary in the
number of nodes from 169, 343 to 3, 327, and in the number
of edges from 1, 166, 243 to 9, 104. The feature dimension
also varies from 8, 415 to 300 features, and the number of
classes of the node label from 40 to 3. In all cases, we
vary the number of nodes in the training set by partition-
ing it in {1, 2, 4, 8, 16, 32, 64, 32, 64, 128, 256, 512, 1024}
partitions when possible. For both the training and testing
sets, we computed the loss in cross-entropy loss, and the
accuracy in percentage (%). Our main goal is to show that
the rate presented in Theorem 1 holds in practice. In Figure
3, we plot the generalization gap of the accuracy in the loga-
rithmic scale for a two-layered GNN (Figure 3a), and for a
three-layered GNN (Figure 3b). On the upper side, we can
see that the generalization bound decreases with the number
of nodes and that outside of the strictly overfitting regime
(when the training loss is below 95%), the generalization
gap shows a linear decay, as depicted in the dashed line. The
same behavior can be seen in Figures 3c, and 3d which cor-
respond to the loss for 2 and 3 layered GNNs. As predicted
by our theory, the generalization gap increases with the num-
ber of features and layers in the GNN. The behavior of the
training and testing accuracy as a function of the number of
nodes is intuitive. For the training loss, when the number
of nodes in the training set is small, the GNN can overfit
the training data. As the number of features increases, the
GNN’s capacity to overfit also increases. In Figures 3e to
3k, we present the accuracy generalization gaps for 2 and 3
layers with 32 and 64 features. In the overfitting regime, the
rate of our generalization bound seems to hold – decreases
linearly with the number of nodes in the logarithmic scale.
In the non-overfitting regime, our rate holds for the points

whose training accuracy is below 95%. Also, we validate
that the bound increases both with the number of features
and the number of layers.

To measure the impact of the spectral continuity constant
CL, we add a regularizer to the cross-entropy loss (see Ap-
pendix J.3). We vary the value of the regularizer, noting
that a larger regularizer translates into a smaller CL and
therefore a smoother function. In Figures 4a and 4c we see
the empirical manifestation of the bound that we showed
(cf. Theorem 1) – a GNN with a smaller CL (a larger reg-
ularizer) will attain a smaller generalization gap. We can
see that a larger regularizer (smaller continuity constant CL,
green line, regularizer 0.01) attains a smaller generalization
gap, and as the regularization decreases (CL increases), the
generalization gap increases. The effect of having smaller
spectral continuity constants CL is the lack of discriminabil-
ity of the GNN. As can be seen in Figures 4b and 4d, the
test error decreases when the multiplier is too large (CL

too small). Therefore, a spectral regularize not too large
can be shown to guarantee good test accuracy, but if the
regularizer is too large, the test accuracy will be hurt by
the lack of discriminability of the GNN as shown in Figure
4d. In all, we verify the fact that a GNN with a smoother
spectral response will have a smaller generalization gap as
shown in Theorem 1.

6. Conclusion
We study the statistical generalization of GNNs from a man-
ifold perspective. We consider graphs sampled from man-
ifolds and prove that GNNs could effectively generalize
to unseen data from the manifolds when the number of
sampled points is large enough and the filter functions are
continuous in the spectral domain. We verify our theoreti-
cal results on both synthetic and real-world datasets. The
impact of this paper is to show a better understanding of
GNN generalization capabilities from a spectral perspective
relying on a continuous model. Our work also motivates the
practical design of large-scale GNNs. Specifically, in order
to achieve a better generalization, it is essential to restrict
the discriminability of GNNs by putting assumptions on the
spectral continuity of the filter functions in the GNNs.
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Impact Statement
In this work, we explore the statistical generalization of
GNNs from a manifold perspective by considering graphs
sampled from manifolds. The impact of our work relies
on showing that GNNs can effectively generalize to unseen
data from the manifolds when the number of sampled points
is large enough and the filter functions are continuous in
the spectral domain. Our work also motivates the practical
design of large-scale GNNs given that training on larger
graphs attains a smaller generalization gap. Lastly, we ob-
serve that other than training on larger graphs, it is essential
to restrict the discriminability of GNNs by putting assump-
tions on the spectral continuity of the filter functions in the
GNNs.
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A. Induced manifold signals
The graph signal attached to this constructed graph G can be seen as the discretization of the continuous function over the
manifold. Suppose f ∈ L2(M), the graph signal xN is composed of discrete data values of the function f evaluated at
XN , i.e. [xN ]i = f(xi) for i = 1, 2 · · · , N . With a sampling operator PN : L2(M) → L2(XN ), the discretization can be
written as

xN = PNf. (21)

Let µN be the empirical measure of the random sample as

µN =
1

N

N∑
i=1

δxi
. (22)

Let {Vi}Ni=1 be the decomposition (García Trillos et al., 2020) of M with respect to XN with Vi ⊂ Br(xi), where Br(xi)
denotes the closed metric ball of radius r centered at xi ∈ M with respect to the Euclidean distance in the Euclidean
ambient space. The decomposition can be achieved by the optimal transportation map T : M → XN , which is defined by
the ∞-Optimal Transport distance between µ and µN .

d∞(µ, µN ) := min
T :T#µ=µN

esssupx∈Md(x, T (x)), (23)

where T#µ = µN indicates that µ(T−1(V )) = µN (V ) for every Vi of M. This transportation map T induces the partition
V1, V2, · · ·VN of M, where Vi := T−1({xi}) with µ(Vi) =

1
N for all i = 1, · · ·N . The radius of Vi can be bounded as

r ≤ A(logN/N)1/d when the manifold dimension d ≥ 3 and r ≤ A(logN)3/4/N1/2 when d = 2 with A related to the
geometry of M (García Trillos et al., 2020)[Theorem 2].

The manifold function induced by the graph signal xN over the sampled graph G is defined by

(INxN )(x) =

N∑
i=1

[x]i1x∈Vi
, for all x ∈ M (24)

where we denote IN : L2(XN ) → L2(M) as the inducing operator.

B. Convergence of GNN to MNN
The convergence of GNN on sampled graphs to MNN provides the support for the generalization analysis. We first introduce
the inner product over the manifold. The inner product of signals f, g ∈ L2(M) is defined as

⟨f, g⟩M =

∫
M

f(x)g(x)dµ(x), (25)

where dµ(x) is the volume element with respect to the measure µ over M. Similarly, the norm of the manifold signal f is

∥f∥2M = ⟨f, f⟩M. (26)

Proposition 1. Let M ⊂ RM be an embedded manifold with weighted Laplace operator Lρ and a bandlimited manifold
signal f . Graph GN is constructed based on a set of N i.i.d. randomly sampled points XN = {x1, x2, · · · , xN} according
to measure µ over M. A graph signal x is the sampled manifold function values at XN . The graph Laplacian LN is
calculated based on equation 7 or equation 9 with ϵ as the graph parameter. Let Φ(H,Lρ, ·) be a MNN on M equation 6
with L layers and F features in each layer. Let ΦG(H,LN , ·) be the GNN with the same architecture applied to the graph
GN . Then, with the filters satisfy Assumption 1 and nonlinearities as normalized Lipschitz continuous, it holds in probability
at least 1− δ that

1

N

N∑
i=1

∥ΦG(H,LN ,x)−PNΦ(H,Lρ, INx)∥2 ≤ LFL−1

(
C1

√
ϵ+ C2

√
log(1/δ)

N

)
(27)

where C1, C2 are constants defined in the following proof.
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Proposition 2. (Wang et al., 2024a)[Proposition 2, Proposition 4] Let M ⊂ RM be equipped with Laplace operator
Lρ, whose eigendecomposition is given by {λi,ϕi}∞i=1. Let LN be the discrete graph Laplacian of graph weights
defined as equation 7 (or equation 9), with spectrum {λi,N ,ϕi,N}Ni=1. Fix K ∈ N+ and assume that ϵ = ϵ(N) ≥
(log(C/δ)/N)

2/(d+4) (or ϵ = ϵ(N) ≥ (log(CN/δ)/N)
2/(d+4)). Then, with probability at least 1− δ, we have

|λi − λi,N | ≤ CM,1λi

√
ϵ, ∥aiϕi,N − ϕi∥ ≤ CM,2

λi

θi

√
ϵ, (28)

with ai ∈ {−1, 1} for all i < K and θ the eigengap of L, i.e., θi = min{λi − λi−1, λi+1 − λi}. The constants CM,1,
CM,2 depend on d and the volume, the injectivity radius and sectional curvature of M.

Proof. Because {x1, x2, · · · , xN} is a set of randomly sampled points from M, based on Theorem 19 in (Von Luxburg
et al., 2008) we can claim that

|⟨PNf,PNϕi⟩ − ⟨f,ϕi⟩M| = O

(√
log(1/δ)

N

)
. (29)

This also indicates that ∣∣∥PNf∥2 − ∥f∥2M
∣∣ = O

(√
log(1/δ)

N

)
, (30)

which indicates ∥PNf∥ = ∥f∥M +O((log(1/δ)/N)1/4). We suppose that the input manifold signal is λM -bandlimited
with M spectral components. We first write out the filter representation as

∥h(LN )PNf −PNh(Lρ)f∥ =

∥∥∥∥∥
N∑
i=1

ĥ(λi,N )⟨PNf,ϕi,N ⟩ϕi,N −
M∑
i=1

ĥ(λi)⟨f,ϕi⟩MPNϕi

∥∥∥∥∥ (31)

≤

∥∥∥∥∥
M∑
i=1

ĥ(λi,N )⟨PNf,ϕi,N ⟩ϕi,N −
M∑
i=1

ĥ(λi)⟨f,ϕi⟩MPNϕi +

N∑
i=M+1

ĥ(λi,N )⟨PNf,ϕi,N ⟩ϕi,N

∥∥∥∥∥ (32)

≤

∥∥∥∥∥
M∑
i=1

ĥ(λi,N )⟨PNf,ϕi,N ⟩ϕi,N −
M∑
i=1

ĥ(λi)⟨f,ϕi⟩MPNϕi

∥∥∥∥∥+
∥∥∥∥∥

N∑
i=M+1

ĥ(λi,N )⟨PNf,ϕi,N ⟩ϕi,N

∥∥∥∥∥ (33)

The first part of equation 33 can be decomposed with the triangle inequality as∥∥∥∥∥
M∑
i=1

ĥ(λi,N )⟨PNf,ϕi,N ⟩ϕi,N −
M∑
i=1

ĥ(λi)⟨f,ϕi⟩MPNϕi

∥∥∥∥∥
≤

∥∥∥∥∥
M∑
i=1

(
ĥ(λi,N )− ĥ(λi)

)
⟨PNf,ϕi,N ⟩ϕi,N

∥∥∥∥∥+
∥∥∥∥∥

M∑
i=1

ĥ(λi) (⟨PNf,ϕi,N ⟩ϕi,N − ⟨f,ϕi⟩MPNϕi)

∥∥∥∥∥ . (34)

In equation 34, the first part relies on the difference of eigenvalues and the second part depends on the eigenvector difference.
The first term in equation 34 is bounded with Cauchy-Schwartz inequality as∥∥∥∥∥

M∑
i=1

(ĥ(λi,n)− ĥ(λi))⟨PNf,ϕi,N ⟩ϕi,N

∥∥∥∥∥ ≤
M∑
i=1

∣∣∣ĥ(λi,N )− ĥ(λi)
∣∣∣ |⟨PNf,ϕi,N ⟩| (35)

≤ ∥PNf∥
M∑
i=1

|ĥ′(λi)||λi,N − λi| (36)

≤ ∥PNf∥
M∑
i=1

CM,1CL

√
ϵλ−d

i (37)

≤ ∥PNf∥CLCM,1

√
ϵ

M∑
i=1

i−2 (38)

≤

(
∥f∥M +

(
log(1/δ)

N

) 1
4

)
CM,1

√
ϵ
π2

6
:= A1(N) (39)
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In equation 37, it depends on the filter assumption in Assumption 1. In equation 38, we implement Weyl’s law (Arendt et al.,
2009) which indicates that eigenvalues of Laplace operator scales with the order λi ∼ i2/d. The last inequality comes from
the fact that

∑∞
i=1 i

−2 = π2

6 . The second term in equation 34 can be bounded with the triangle inequality as∥∥∥∥∥
M∑
i=1

ĥ(λi) (⟨PNf,ϕi,N ⟩ϕi,N − ⟨f,ϕi⟩MPNϕi)

∥∥∥∥∥
≤

∥∥∥∥∥
M∑
i=1

ĥ(λi) (⟨PNf,ϕi,N ⟩ϕi,N − ⟨PNf,ϕi,N ⟩PNϕi)

∥∥∥∥∥
+

∥∥∥∥∥
M∑
i=1

ĥ(λi) (⟨PNf,ϕi,N ⟩PNϕi − ⟨f,ϕi⟩MPNϕi)

∥∥∥∥∥ (40)

The first term in equation 40 can be bounded with inserting the eigenfunction convergence result in Proposition 2 as∥∥∥∥∥
M∑
i=1

ĥ(λi) (⟨PNf,ϕi,N ⟩ϕi,N − ⟨PNf,ϕi,N ⟩MPNϕi)

∥∥∥∥∥
≤

M∑
i=1

∣∣∣ĥ(λi)
∣∣∣ ∥PNf∥∥ϕi,N −PNϕi∥ (41)

≤
M∑
i=1

(λ−d+1
i )

CM,2
√
ϵ

θi

(
∥f∥M +

(
log(1/δ)

N

) 1
4

)
(42)

≤
M∑
i=1

(λ−d+1
i ) max

i=1,··· ,M
θ−1
i CM,2

√
ϵ

(
∥f∥M +

(
log(1/δ)

N

) 1
4

)
(43)

:= A2(M,N). (44)

Considering the filter assumption in Assumption 1, the second term in equation 40 can be written as∥∥∥∥∥
M∑
i=1

ĥ(λi,N )(⟨PNf,ϕi,N ⟩PNϕi − ⟨f,ϕi⟩MPNϕi)

∥∥∥∥∥
≤

M∑
i=1

∣∣∣ĥ(λi,N )
∣∣∣ |⟨PNf,ϕi,N ⟩ − ⟨f,ϕi⟩M| ∥PNϕi∥ (45)

≤
M∑
i=1

(λ−d
i,N ) |⟨PNf,ϕi,N ⟩ − ⟨f,ϕi⟩M|

(
1 +

(
log(1/δ)

N

) 1
4

)
(46)

≤
M∑
i=1

(1 + CM,1

√
ϵ)−d(λ−d

i ) |⟨PNf,ϕi,N ⟩ − ⟨f,ϕi⟩M|

(
1 +

(
log(1/δ)

N

) 1
4

)
(47)

≤ π2

6
|⟨PNf,ϕi,N ⟩ − ⟨f,ϕi⟩M|

(
1 +

(
log(1/δ)

N

) 1
4

)
:= A3(N) (48)

The term |⟨PNf,ϕi,N ⟩ − ⟨f,ϕi⟩M| can be decomposed by inserting a term ⟨PNf,PNϕi⟩ as

|⟨PNf,ϕi,N ⟩ − ⟨f,ϕi⟩M| ≤ |⟨PNf,ϕi,N ⟩ − ⟨PNf,PNϕi⟩+ ⟨PNf,PNϕi⟩ − ⟨f,ϕi⟩M| (49)
≤ |⟨PNf,ϕi,N ⟩ − ⟨PNf,PNϕi⟩|+ |⟨PNf,PNϕi⟩ − ⟨f,ϕi⟩M| (50)
≤ ∥PNf∥∥ϕi,N −PNϕi∥+ |⟨PNf,PNϕi⟩ − ⟨f,ϕi⟩M| (51)

≤

(
∥f∥M +

(
log(1/δ)

N

) 1
4

)
CM,2λi

√
ϵ

θi
+

√
log(1/δ)

N
(52)
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Then equation equation 47 can be bounded as∥∥∥∥∥
M∑
i=1

ĥ(λi,N )(⟨PNf,ϕi,N ⟩PNϕi − ⟨f,ϕi⟩MPNϕi)

∥∥∥∥∥
≤

M∑
i=1

(1 + CM,1

√
ϵ)−d(λ−d

i )

((
∥f∥M +

(
log(1/δ)

N

) 1
4

)
CM,2λi

√
ϵ

θi
+

√
log(1/δ)

N

)(
1 +

(
log(1/δ)

N

) 1
4

)
(53)

≤ π2

6
max

i=1,··· ,M

CM,2
√
ϵ

θi

(
∥f∥M +

(
log(1/δ)

N

) 1
4

)
+

π2

6

√
log(1/δ)

N
(54)

The second term in equation 33 can be bounded with the eigenvalue difference bound in Proposition 2 as∥∥∥∥∥
N∑

i=M+1

ĥ(λi,N )⟨PNf,ϕi,N ⟩ϕi,N

∥∥∥∥∥ ≤
N∑

i=M+1

(λ−d
i,N )

(
∥f∥M +

(
log(1/δ)

N

) 1
4

)
(55)

≤
∞∑

i=M+1

(λ−d
i,N )∥f∥M (56)

≤ (1 + CM,1

√
ϵ)−d

∞∑
i=M+1

(λ−d
i )∥f∥M (57)

≤ M−1∥f∥M := A4(M). (58)

We note that the bound is made up by terms A1(N) +A2(M,N) +A3(N) +A4(M), related to the bandwidth of manifold
signal M and the number of sampled points N . This makes the bound scale with the order

∥h(LN )PNf −PNh(Lρ)f∥ ≤ C ′
1

√
ϵ+ C ′

2

√
ϵθ−1

M + C ′
3

√
log(1/δ)

N
+ C ′

4M
−1, (59)

with C ′
1 = CLCM,1

π2

6 ∥f∥M, C ′
2 = CM,2

π2

6 , C ′
3 = π2

6 and C ′
4 = ∥f∥M. As N goes to infinity, for every δ > 0, there

exists some M0, such that for all M > M0 it holds that A4(M) ≤ δ/2. There also exists n0, such that for all N > n0, it
holds that A1(N) + A2(M0, N) + A3(N) ≤ δ/2. We can conclude that the summations converge as N goes to infinity.
We see M large enough to have M−1 ≤ δ′, which makes the eigengap θM also bounded by some constant. We combine the
first two terms as

∥h(LN )PNf −PNh(Lρ)f∥ ≤ (C1CL + C2)
√
ϵ+

π2

6

√
log(1/δ)

N
, (60)

with C1 = CM,1
π2

6 ∥f∥M and C2 = CM,2
π2

6 θ−1
δ′−1 . To bound the output difference of MNNs, we need to write in the form

of features of the final layer

∥ΦG(H,LN ,PNf)−PNΦ(H,Lρ, f))∥ =

∥∥∥∥∥
F∑

q=1

xq
n,L −

F∑
q=1

PNfq
L

∥∥∥∥∥ ≤
F∑

q=1

∥∥∥xq
n,L −PNfq

L

∥∥∥ . (61)

By inserting the definitions, we have∥∥∥xp
n,l −PNfp

l

∥∥∥ =

∥∥∥∥∥σ
(

F∑
q=1

hpq
l (LN )xq

n,l−1

)
−PNσ

(
F∑

q=1

hpq
l (Lρ)f

q
l−1

)∥∥∥∥∥ (62)

with xn,0 = PNf as the input of the first layer. With a normalized point-wise Lipschitz nonlinearity, we have

∥xp
n,l −PNfp

l ∥ ≤

∥∥∥∥∥
F∑

q=1

hpq
l (LN )xq

n,l−1 −PN

F∑
q=1

hpq
l (Lρ)f

q
l−1

∥∥∥∥∥ (63)

≤
F∑

q=1

∥∥∥hpq
l (LN )xq

n,l−1 −PNhpq
l (Lρ)f

q
l−1

∥∥∥ (64)
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The difference can be further decomposed as

∥hpq
l (LN )xq

n,l−1 −PNhpq
l (Lρ)f

q
l−1∥

≤ ∥hpq
l (LN )xq

n,l−1 − hpq
l (LN )PNfq

l−1 + hpq
l (LN )PNfq

l−1 −PNhpq
l (Lρ)f

q
l−1∥ (65)

≤
∥∥∥hpq

l (LN )xq
n,l−1 − hpq

l (LN )PNfq
l−1

∥∥∥+ ∥∥hpq
l (LN )PNfq

l−1 −PNhpq
l (Lρ)f

q
l−1

∥∥ (66)

The second term can be bounded with equation 59 and we denote the bound as ∆N for simplicity. The first term can be
decomposed by Cauchy-Schwartz inequality and non-amplifying of the filter functions as

∥∥∥xp
n,l −PNfp

l

∥∥∥ ≤
F∑

q=1

∆N∥xq
n,l−1∥+

F∑
q=1

∥xq
l−1 −PNfq

l−1∥. (67)

To solve this recursion, we need to compute the bound for ∥xp
l ∥. By normalized Lipschitz continuity of σ and the fact that

σ(0) = 0, we can get

∥xp
l ∥ ≤

∥∥∥∥∥
F∑

q=1

hpq
l (LN )xq

l−1

∥∥∥∥∥ ≤
F∑

q=1

∥hpq
l (LN )∥ ∥xq

l−1∥ ≤
F∑

q=1

∥xq
l−1∥ ≤ F l−1∥x∥. (68)

Insert this conclusion back to solve the recursion, we can get∥∥∥xp
n,l −PNfp

l

∥∥∥ ≤ lF l−1∆N∥x∥. (69)

Replace l with L we can obtain

∥ΦG(H,LN ,PNf)−PNΦ(H,Lρ, f))∥ ≤ LFL−1∆N , (70)

when the input graph signal is normalized. By replacing f = INx, we can conclude the proof.

C. Local Lipschitz continuity of MNNs
We propose that the outputs of MNN defined in equation 6 are locally Lipschitz continuous within a certain area, which is
stated explicitly as follows.

Proposition 3. (Local Lipschitz continuity of MNNs) Assume that the assumptions in Theorem 1 hold. Let MNN be L
layers with F features in each layer, suppose the manifold filters are nonamplifying with |ĥ(λ)| ≤ 1 and the nonlinearities
normalized Lipschitz continuous, then there exists a constant C ′ such that

|Φ(H,Lρ, f)(x)−Φ(H,Lρ, f)(y)| ≤ FLC ′dist(x− y), for all x, y ∈ Br(M), (71)

where Br(M) is a ball with radius r over M with respect to the geodesic distance.

Proof. The output of MNN can be written explicitly as

|Φ(H,Lρ, f)(x)−Φ(H,Lρ, f)(y)| =

∣∣∣∣∣σ
(

F∑
q=1

hq
L(Lρ)f

q
L−1(x)

)
− σ

(
F∑

q=1

hq
L(Lρ)f

q
L−1(y)

)∣∣∣∣∣ (72)

≤

∣∣∣∣∣
F∑

q=1

hq
L(Lρ)f

q
L−1(x)−

F∑
q=1

hq
L(Lρ)f

q
L−1(y)

∣∣∣∣∣ ≤ F max
q=1,··· ,F

∣∣hq
L(Lρ)f

q
L−1(x)− hq

L(Lρ)f
q
L−1(y)

∣∣ . (73)

We have fq
L−1(x) = σ

(∑F
p=1 h

p
L−1f

p
L−2(x)

)
. The process can be repeated recursively by expanding fq

L−1(x) and

fq
L−1(y), and finally, we can have

|Φ(H,Lρ, f)(x)−Φ(H,Lρ, f)(y)| ≤ FL|hL(Lρ) · · ·h1(Lρ)f(x)− hL(Lρ) · · ·h1(Lρ)f(y)|. (74)
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With f as a λ-bandlimited manifold signal, we suppose g = hL(Lρ) · · ·h1(Lρ)f . As ⟨f,ϕi⟩ = 0 for all i > M , g is also
bandlimited and possesses M spectral components. The gradient can be bounded according to (Shi & Xu, 2010) combined
with the non-amplifying property of the filter function as

∥∇g∥∞ ≤ C
∑
λi≤λ

∣∣∣ĥ(λi)
∣∣∣L λ

d+1
2

i ∥f∥M ≤ C
∑
λi≤λ

λ
d+1
2

i ∥f∥M (75)

From Theorem 4.5 in (Evans, 2018), g is locally Lipschitz continuous as

|g(x)− g(y)| ≤ C ′dist(x− y), with x, y ∈ Br(M), (76)

where Br(M) is a closed ball with radius r with C ′ depending on the geometry of M.

Combining the above, we have the continuity of the output of MNN as

|Φ(H,Lρ, f)(x)−Φ(H,Lρ, f)(y)| ≤ FLC ′dist(x− y), with x, y ∈ Br(M), (77)

which concludes the proof.
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D. Proof of Theorem 1
Proof. To analyze the difference between the empirical risk and statistical risk, we introduce an intermediate term which
is the induced version of the sampled MNN output. We define IN as the inducing operator based on the decomposition
{Vi}Ni=1 defined in Section A. This intermediate term is written explicitly as

Φ(H,Lρ, f)(x) = INPNΦ(H,Lρ, f)(x) =

N∑
i=1

Φ(H,Lρ, f)(xi)1x∈Vi
, for all x ∈ M, (78)

where xi ∈ XN are sampled points from the manifold.

Suppose H ∈ argminH∈H RM(H), we have

GA = sup
H∈H

|RG(H)−RM(H)| (79)

The difference between RG(H) and RM(H) can be decomposed as

|RG(H)−RM(H)|

=

∣∣∣∣∣ 1N
N∑
i=1

ℓ([ΦG(H,LN ,x)]i, [y]i)−
∫
M

ℓ (Φ(H,Lρ, f)(x), g(x)) dµ(x)

∣∣∣∣∣ (80)

=

∣∣∣∣∣ 1N
N∑
i=1

ℓ([ΦG(H,LN ,x)]i, [y]i)−
∫
M

ℓ
(
Φ(H,Lρ, f)(x), g(x)

)
dµ(x)

+

∫
M

ℓ
(
Φ(H,Lρ, f)(x), g(x)

)
dµ(x)−

∫
M

ℓ (Φ(H,Lρ, f)(x), g(x)) dµ(x)

∣∣∣∣∣ (81)

≤

∣∣∣∣∣ 1N
N∑
i=1

ℓ([ΦG(H,LN ,x)]i, [y]i)−
∫
M

ℓ
(
Φ(H,Lρ, f)(x), g(x)

)
dµ(x)

∣∣∣∣∣
+

∣∣∣∣∫
M

ℓ
(
Φ(H,Lρ, f)(x), g(x)

)
dµ(x)−

∫
M

ℓ (Φ(H,Lρ, f)(x), g(x)) dµ(x)
∣∣∣∣ (82)

We analyze the two terms in equation 82 separately, with the first term bounded based on the convergence of GNN to MNN
and the second term bounded with the smoothness of manifold functions.

The first term in equation 82 can be written as∣∣∣∣∣ 1N
N∑
i=1

ℓ([ΦG(H,LN ,x)]i, [y]i)−
∫
M

ℓ
(
Φ(H,Lρ, f)(x), g(x)

)
dµ(x)

∣∣∣∣∣ (83)

=
1

N

∣∣∣∣∣
N∑
i=1

ℓ([ΦG(H,LN ,x)]i, [y]i)−
N∑
i=1

ℓ(Φ(H,Lρ, f)(xi), g(xi))

∣∣∣∣∣ (84)

≤ 1

N

N∑
i=1

|ℓ([ΦG(H,LN ,x)]i, [y]i)− ℓ(Φ(H,Lρ, f)(xi), g(xi))| (85)

≤ 1

N

N∑
i=1

∣∣∣[ΦG(H,LN ,x)]i −Φ(H,Lρ, f)(xi)
∣∣∣ (86)

≤ 1

N
∥ΦG(H,LN ,x)−PNΦ(H,Lρ, INx)∥1 (87)

≤ 1√
N

LFL−1

(
(C1CL + C2)

√
ϵ+

π2

6

√
log(1/δ)

N

)
(88)

From equation 83 to equation 84, we use the definition of induced manifold signal defined in equation 78. We utilize the
Lipschitz continuity assumption on loss function from equation 85 to equation 86. From equation 86 to equation 87, it
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depends on the fact that x is a single-entry vector and that [y]i is the value sampled from target manifold function g evaluated
on xi. Finally the bound depends on the convergence of GNN on the sampled graph to the MNN as stated in Proposition 1.

The second term is decomposed as∣∣∣∣∫
M

ℓ
(
Φ(H,Lρ, f)(x), g(x)

)
dµ(x)−

∫
M

ℓ (Φ(H,Lρ, f)(x), g(x)) dµ(x)
∣∣∣∣ (89)

≤

∣∣∣∣∣
N∑
i=1

∫
Vi

ℓ
(
Φ(H,Lρ, f)(x), g(x)

)
dµ(x)−

N∑
i=1

∫
Vi

ℓ (Φ(H,Lρ, f)(x), g(x)) dµ(x)

∣∣∣∣∣ (90)

≤
N∑
i=1

∫
Vi

∣∣ℓ (Φ(H,Lρ, f)(x), g(x)
)
− ℓ (Φ(H,Lρ, f)(x), g(x))

∣∣ dµ(x) (91)

≤
N∑
i=1

∫
Vi

∣∣Φ(H,Lρ, f)(x)−Φ(H,Lρ, f)(x)
∣∣ dµ(x) (92)

≤
N∑
i=1

∫
Vi

|Φ(H,Lρ, f)(xi)−Φ(H,Lρ, f)(x)| dµ(x) (93)

From equation 89 to equation 90, it relies on the decomposition of the MNN output over {Vi}Ni=1. From equation 91 to
equation 92, we use the Lipschitz continuity of loss function. From equation 92 to equation 93, we use the definition of
Φ(H,Lρ, f). Proposition 3 indicates that the MNN outputs are Lipschitz continuous within a certain range, which leads to

N∑
i=1

∫
Vi

|Φ(H,Lρ, f)(xi)−Φ(H,Lρ, f)(x)| dµ(x)

≤
N∑
i=1

∫
Vi

FLC3

(
logN

N

) 1
d

dµ(x) (94)

= FLC3

(
logN

N

) 1
d

N∑
i=1

∫
Vi

dµ(x) (95)

≤ FLC3

(
logN

N

) 1
d

, (96)

when d ≥ 3. If d = 2, the bound would be

N∑
i=1

∫
Vi

|Φ(H,Lρ, f)(xi)−Φ(H,Lρ, f)(x)| dµ(x) ≤ FLC3
(logN)

3
4

N
1
2

. (97)

Combining equation 88 and equation 96 (or equation 97), we can conclude the proof.
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E. Corollary of Theorem 1
Corollary 1. Suppose the GNN with filters satisfying Assumption 1 have L layers with F features in each layer and the
input signal is bandlimited (Definition 1)). Suppose graphs G1 with N1 nodes and G2 with N2 nodes are sampled from the
same underlying manifold M. Under Assumptions 2 and 3 it holds in probability at least 1− δ that

sup
H∈H

∣∣∣∣∣ 1

N1

N1∑
i=1

ℓ ([ΦG1(H,LN1 ,x1)]i, [y1]i)−
1

N2

N2∑
i=1

ℓ ([ΦG2(H,LN2 ,x2)]i, [y2]i)

∣∣∣∣∣ ≤
LFL−1

(
(C1CL + C2)

√
ϵ(
√
N1 +

√
N2)√

N1N2

+
π2(N1 +N2)

√
log(1/δ)

6N1N2

)
+ FLC3

(
logN1

N1

) 1
d

+ FLC3

(
logN2

N2

) 1
d

,

(98)

with C1, C2, and C3 depending on the geometry of M, CL is the spectral continuity constant in Assumption 1.

Proof. By importing the statistical risk over the manifold RM(H) in equation 14, the bound can be derived with a triangle
inequality as

sup
H∈H

∣∣∣∣∣ 1

N1

N1∑
i=1

ℓ ([ΦG1
(H,LN1

,x1)]i, [y1]i)−
1

N2

N2∑
i=1

ℓ ([ΦG2
(H,LN2

,x2)]i, [y2]i)

∣∣∣∣∣
= sup

H∈H

∣∣∣∣∣ 1

N1

N1∑
i=1

ℓ ([ΦG1(H,LN1 ,x1)]i, [y1]i)−RM(H) +RM(H)− 1

N2

N2∑
i=1

ℓ ([ΦG2(H,LN2 ,x2)]i, [y2]i)

∣∣∣∣∣ (99)

≤ sup
H∈H

∣∣∣∣∣ 1

N1

N1∑
i=1

ℓ ([ΦG1
(H,LN1

,x1)]i, [y1]i)−RM(H)

∣∣∣∣∣+ sup
H∈H

∣∣∣∣∣ 1

N2

N2∑
i=1

ℓ ([ΦG2
(H,LN2

,x2)]i, [y2]i)−RM(H)

∣∣∣∣∣ .
(100)

Inserting the result in Theorem 1 concludes the proof.
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F. Proof of Theorem 2
Proof. We can write the difference as

|RG(H)−RM(H)|

≤
K∑

k=1

∣∣∣∣∣ℓ
(

1

N

N∑
i=1

[ΦG(H,LN,k,xk)]i, yk

)
− ℓ

(∫
Mk

Φ(H,Lρ,k, fk)dµk(x), yk

)∣∣∣∣∣ (101)

Based on the property of absolute value inequality and the Lipschitz continuity assumption of loss function (Assumption 3),
we have ∣∣∣∣∣ℓ

(
1

N

N∑
i=1

[ΦG(H,LN,k,xk)]i, yk

)
− ℓ

(∫
Mk

Φ(H,Lρ,k, fk)dµk(x), yk

)∣∣∣∣∣
≤

∣∣∣∣∣ 1N
N∑
i=1

[ΦG(H,LN,k,xk)]i −
∫
Mk

Φ(H,Lρ,k, fk)dµk(x)

∣∣∣∣∣ (102)

We insert an intermediate term Φ(H,Lρ,k, fk)(xi) as the value evaluated on the sampled point xi, which leads to∣∣∣∣∣ 1N
N∑
i=1

[ΦG(H,LN,k,xk)]i −
∫
Mk

Φ(H,Lρ,k, fk)dµk(x)

∣∣∣∣∣ (103)

≤

∣∣∣∣∣ 1N
N∑
i=1

[ΦG(H,LN,k,xk)]i −
1

N

N∑
i=1

Φ(H,Lρ,k, fk)(xi)

∣∣∣∣∣+∣∣∣∣∣ 1N
N∑
i=1

Φ(H,Lρ,k, fk)(xi)−
∫
Mk

Φ(H,Lρ,k, fk)dµk(x)

∣∣∣∣∣ (104)

The first term in equation 104 can be bounded similarly as equation 87, which is explicitly written as∣∣∣∣∣ 1N
N∑
i=1

[ΦG(H,LN,k,xk)]i −
1

N

N∑
i=1

Φ(H,Lρ,k, fk)(xi)

∣∣∣∣∣ (105)

≤ 1

N
∥ΦG(H,LN ,xk)−PNΦ(H,Lρ, fk)∥1 (106)

≤ 1√
N

∥ΦG(H,LN ,xk)−PNΦ(H,Lρ, fk)∥2 (107)

≤ 1√
N

(
(C1CL + C2)

√
ϵ+

π2

6

√
log(1/δ)

N

)
(108)

The second term is ∣∣∣∣∣ 1N
N∑
i=1

Φ(H,Lρ,k, fk)(xi)−
∫
Mk

Φ(H,Lρ,k, fk)dµk(x)

∣∣∣∣∣ (109)

=

∣∣∣∣∣
N∑
i=1

∫
Vi

Φ(H,Lρ,k, fk)(xi)dµk(x)−
N∑
i=1

∫
Vi

Φ(H,Lρ,k, fk)(x)dµk(x)

∣∣∣∣∣ (110)

≤
N∑
i=1

∫
Vi

|Φ(H,Lρ,k, fk)(xi)−Φ(H,Lρ,k, fk)(x)| dµk(x) (111)

≤ FLC3

(
logN

N

) 1
d

(112)

This depends on the Lipschitz continuity of the output manifold function in Proposition 3.
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G. Further references
Graphon theory Different from the manifold model we are using, some research constructs graphs derived from graphons,
which can be viewed as a random limit graph model. This research has focused on their convergence, stability, as well as
transferability (Ruiz et al., 2020; Maskey et al., 2023; Keriven et al., 2020). In (Parada-Mayorga et al., 2023), a graphon
is used as a pooling tool in GNNs. Despite its utility, the graphon presents several limitations compared to the manifold
model we use. Firstly, the graphon model assumes an infinite degree at every node (Lovász, 2012), which is not the case
in the manifold model. Additionally, graphons offer limited insight into the underlying model; visualizing a graphon is
challenging, except in the stochastic block model case. Manifolds, however, are more interpretable, especially when based
on familiar shapes like spheres and 3D models (see Figures ?? and ??). Finally, the manifold model supports a wider range
of characterizable models, making it a more realistic choice.

Transferability of GNNs The transferability of GNNs has been extensively studied by examining the differences in GNN
outputs across graphs of varying sizes as they converge to a limit model. This analysis, however, often lacks statistical
generalization. Several studies have explored GNN transferability with graphon models, proving bounds on the differences
in GNN outputs (Ruiz et al., 2023; 2020; Maskey et al., 2023). Other research has demonstrated how increasing graph
size during GNN training can improve generalization to large-scale graphs (Cervino et al., 2023). The transferability of
GNNs has also been investigated in the context of graphs generated from general topological spaces (Levie et al., 2021)
and manifolds (Wang et al., 2024a). Furthermore, a novel graphop operator has been proposed as a limit model for both
dense and sparse graphs, with proven transferability results (Le & Jegelka, 2024). Further research has focused on transfer
learning for GNNs by measuring distances between graphs without assuming a limit model (Lee et al., 2017; Zhu et al.,
2021). Finally, a transferable graph transformer has been proposed and empirically validated (He et al., 2023).

H. Filter Assumption
In the main results, we assume that the filters in GNN and MNN satisfy Assumption 1. This may lead to limited
discriminability in high-frequency spectrum. While this is a reasonable assumption, high-frequency signals on graphs or
manifolds can fluctuate significantly between adjacent entries, leading to instability and learning challenges. We expect a
degree of local homogeneity, which translates to low-frequency signals. This assumption is supported by empirical evidence
in various domains, including opinion dynamics, econometrics, and graph signal processing (Degroot, 1974; Billio et al.,
2012; Ramakrishna et al., 2020). Moreover, several other effective learning techniques, such as Principal Component
Analysis (PCA) and Isomap, implicitly employ low-pass filtering. Therefore, we believe that the filter assumption is not
restrictive and is well-supported by both practical applications and theoretical considerations.

I. Manifold Assumption
In this paper, we considered the case in which graphs are sampled from manifolds. This is an assumption that has been
widely used in practice. From dynamical systems (Talmon et al., 2015) to images (Peyré, 2009; Osher et al., 2017), assuming
an underlying low dimensional manifold is a common practice. Real-world graphs, like the ones considered in the node
prediction experiments, can be assumed to be sampled from d-dimensional manifolds. To support this argument, in Figure
5, we plot the 100 largest eigenvalues of the Laplacian matrix associated with each graph. By doing this, we show a fast
decay in the values of the eigenvalues progress. This decay shows that the information is mostly supported on a subset of the
eigenvalues thus reinforcing the idea that it comes from a low dimensional manifold.

J. Experiment details and further experiments
We consider the following datasets: OGBN-Arxiv (Wang et al., 2020; Mikolov et al., 2013), Cora (Yang et al., 2016b),
CiteSeer (Yang et al., 2016b), PubMed (Yang et al., 2016b), Coauthors CS (Shchur et al., 2018), Coauthors Physics (Shchur
et al., 2018), Amazon-rating (Platonov et al., 2023), and Roman-Empire (Platonov et al., 2023), details of the datasets can be
found in Table 1.

All experiments were done using a NVIDIA GeForce RTX 3090, and each set of experiments took at most 10 hours to
complete. In total, we run 10 datasets, which amounts for around 100 hours of GPU use. All datasets used in this paper are
public, and free to use. They can be downloaded using the pytorch package (https://pytorch-geometric.
readthedocs.io/en/latest/modules/datasets.html), the ogb package (https://ogb.stanford.
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Figure 5: Top 100 eigenvalues of the graph for each dataset considered in the node classification problem.

edu/docs/nodeprop/) and the Princeton ModelNet project (https://modelnet.cs.princeton.edu/). In
total, the datasets occupy around 5 gb. However, they do not need to be all stored at the same time, as the experiments that
we run can be done in series.

J.1. ModelNet10 and ModelNet40 graph classification tasks

ModelNet10 dataset (Wu et al., 2015) includes 3,991 meshed CAD models from 10 categories for training and 908 models
for testing as Figure 6 shows. ModelNet40 dataset includes 38,400 training and 9,600 testing models as Figure 7 shows. In
each model, N points are uniformly randomly selected to construct graphs to approximate the underlying model, such as
chairs, tables.

Figure 6: Point cloud models in ModelNet10 with N = 300 sampled points in each model, corresponding to bathtub, chair,
desk, table, toiler, and bed.

Figure 7: Point cloud models from ModelNet40 with N = 300 sampled points in each model, corresponding to airplane,
person, car, guitar, plant, and bottle.

The weight function of the constructed graph is determined as equation 7 with ϵ = 0.1. We calculate the Laplacian matrix
for each graph as the input graph shift operator. In this experiment, we implement GNNs with different numbers of layers
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(a) Differences of the outputs of 3-layer GNNs.
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(b) Differences of the outputs of 4-layer GNNs.

Figure 8: Graph outputs differences of GNNs with different architectures on ModelNet40 dataset.

and hidden units with K = 5 filters in each layer. All the GNN architectures are trained by minimizing the cross-entropy
loss. We implement an ADAM optimizer with the learning rate set as 0.005 along with the forgetting factors 0.9 and 0.999.
We carry out the training for 40 epochs with the size of batches set as 10. We run 5 random dataset partitions and show the
average performances and the standard deviation across these partitions.

J.2. Node classification training details and datasets

In this section, we present the results for node classification. In this paragraph we present the common details for all datasets,
we will next delve into each specific detail inside the dataset subsection that follows.

Name Nodes Edges Features
Number

of Classes Reference

Arxiv 169, 343 1, 166, 243 128 40 (Wang et al., 2020; Mikolov et al., 2013)
Cora 2, 708 10, 556 1, 433 7 (Yang et al., 2016b)

CiteSeer 3, 327 9, 104 3, 703 6 (Yang et al., 2016b)
PubMed 19, 717 88, 648 500 3 (Yang et al., 2016b)

Coauthor Physics 18, 333 163, 788 6, 805 15 (Shchur et al., 2018)
Coauthor CS 34, 493 495, 924 8, 415 5 (Shchur et al., 2018)

Amazon-ratings 24, 492 93, 050 300 5 (Platonov et al., 2023)
Roman-empire 22, 662 32, 927 300 18 (Platonov et al., 2023)

Table 1: Details of the datasets considered in the experiments.

In all datasets, we used the graph convolutional layer GCN, and trained for 1000 epochs. For the optimizer, we used AdamW,
with using a learning rate of 0.01, and 0 weight decay. We trained using the graph convolutional layer, with a varying
number of layers and hidden units. For dropout, we used 0.5. We trained using the cross-entropy loss. In all cases, we
trained 2 and 3 layered GNNs.

To compute the linear approximation in the plots, we used the mean squared error estimator of the form

y = s ∗ log(n) + p. (113)

Where s is the slope, p is the point, and n is the vector with the nodes in the training set for each experiment. Note that we
repeated each experiment for 10 independent runs. In all experiments, we compute the value of s and p that minimize the
mean square error over the mean of the experiment runs, and we compute the Pearson correlation index over those values.

Our experiment shows that our bound shows the same rate dependency as the experiments. That is to say, in the logarithmic
scale, the generalization gap of GNNs is linear with respect to the logarithm of the number of nodes. In most cases, the
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Pearson correlation index is above 0.9 in absolute value, which indicates a strong linear relationship. We noticed that the
linear relationship changes the slope in the overfitting regime, and in the non-overfitting regime. That is to say, when the
GNN is overfitting the training set, the generalization gap decreases at a much slower rate than it does with the GNN does
not have the capacity to do so. Therefore, in the case in which the GNN overfits the training set for all nodes when computed
s using all the samples in the experiment. On the other hand, when the number of nodes is large enough that the GNN
cannot overfit the training set, then we computed the s and p with the nodes in the non overfitting regime.

J.3. Spectral Continuity Constant Regularizer

We add a regularization term to the loss to better control the value of the spectral continuity constant (defined in Assumption
1) while training. To do so, given a convolutional filter h ∈ RK , its associated spectral continuity constant is

R(h) =

K−1∑
k=0

k|hk|λk−1
max, (114)

Where λmax is the largest eigenvalue of the graph G.

J.3.1. ARXIV DATASET

For this datasets, we trained 2, 3, 4 layered GNN. We also used a learning rate scheduler ReduceLROnPlateau with
mode min, factor 0.5, patience 100 and a minimum learning rate of 0.001.
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Figure 9: Generalization gap for the OGBN-Arxiv dataset on the accuracy as a function of the number of nodes in the
training set.

J.3.2. CORA DATASET

For the Cora dataset, we used the standard one, which can be obtained running
torch_geometric.datasets.Planetoid(root="./data",name=’Cora’).
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Figure 10: Generalization gap for the OGBN-arxiv dataset on the loss (cross-entropy) as a function of the number of nodes
in the training set.
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Figure 11: Values of slope (a) and point (b) corresponding to the linear fit (a ∗ log(N) + b) of Figures 10 and 9.
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Type Lay. Feat. Slope Point
Pearson

Correlation
Coefficient

Accuracy 2 64 −6.301e− 01 3.621e+ 00 −9.980e− 01
Accuracy 2 128 −6.034e− 01 3.663e+ 00 −9.985e− 01
Accuracy 2 256 −5.347e− 01 3.493e+ 00 −9.952e− 01
Accuracy 2 512 −5.328e− 01 3.605e+ 00 −9.975e− 01
Accuracy 3 64 −6.271e− 01 3.600e+ 00 −9.987e− 01
Accuracy 3 128 −5.730e− 01 3.567e+ 00 −9.970e− 01
Accuracy 3 256 −4.986e− 01 3.393e+ 00 −9.910e− 01
Accuracy 3 512 −4.529e− 01 3.315e+ 00 −9.934e− 01
Accuracy 4 64 −5.343e− 01 3.236e+ 00 −9.971e− 01
Accuracy 4 128 −5.096e− 01 3.299e+ 00 −9.987e− 01
Accuracy 4 256 −4.827e− 01 3.337e+ 00 −9.920e− 01
Accuracy 4 512 −4.264e− 01 3.229e+ 00 −9.927e− 01

Loss 2 64 −6.853e− 01 2.265e+ 00 −9.975e− 01
Loss 2 128 −6.562e− 01 2.311e+ 00 −9.988e− 01
Loss 2 256 −5.907e− 01 2.174e+ 00 −9.968e− 01
Loss 2 512 −5.848e− 01 2.280e+ 00 −9.989e− 01
Loss 3 64 −6.739e− 01 2.228e+ 00 −9.980e− 01
Loss 3 128 −6.229e− 01 2.224e+ 00 −9.976e− 01
Loss 3 256 −5.581e− 01 2.111e+ 00 −9.942e− 01
Loss 3 512 −5.141e− 01 2.057e+ 00 −9.955e− 01
Loss 4 64 −6.039e− 01 1.964e+ 00 −9.980e− 01
Loss 4 128 −5.701e− 01 2.014e+ 00 −9.991e− 01
Loss 4 256 −5.379e− 01 2.051e+ 00 −9.951e− 01
Loss 4 512 −4.810e− 01 1.957e+ 00 −9.937e− 01

Table 2: Details of the linear approximation of the Arxiv Dataset. Note that in this case, we used only the values of the
generalization gap whose training error is below 95%.

Type Lay. Feat. Slope Point
Pearson

Correlation
Coefficient

Accuracy 2 16 −2.839e− 01 2.022e+ 00 −9.803e− 01
Accuracy 2 32 −2.917e− 01 2.014e+ 00 −9.690e− 01
Accuracy 2 64 −3.006e− 01 2.021e+ 00 −9.686e− 01
Accuracy 3 16 −2.656e− 01 1.996e+ 00 −9.891e− 01
Accuracy 3 32 −2.637e− 01 2.008e+ 00 −9.679e− 01
Accuracy 3 64 −2.581e− 01 1.981e+ 00 −9.870e− 01

Loss 2 16 −3.631e− 01 9.406e− 01 −9.250e− 01
Loss 2 32 −4.228e− 01 9.638e− 01 −9.657e− 01
Loss 2 64 −4.991e− 01 1.067e+ 00 −9.776e− 01
Loss 3 16 −4.131e− 01 1.276e+ 00 −9.753e− 01
Loss 3 32 −4.605e− 01 1.385e+ 00 −9.730e− 01
Loss 3 64 −4.589e− 01 1.455e+ 00 −9.756e− 01

Table 3: Details of the linear approximation of the Cora Dataset. Note that in this case we used all the values given that the
training accuracy is 100% for all nodes.
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(a) Generalization Gap.
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Figure 12: Generalization gap, testing, and training losses with respect to the number of nodes in the Cora dataset. The top
row is in accuracy, and the bottom row is the cross-entropy loss.

J.3.3. CITESEER DATASET

For the CiteSeer dataset, we used the standard one, which can be obtained running
torch_geometric.datasets.Planetoid(root="./data",name=’CiteSeer’).
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Figure 13: Generalization gap, testing, and training losses with respect to the number of nodes in the CiteSeer dataset. The
top row is in accuracy, and the bottom row is the cross-entropy loss.
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Type Lay. Feat. Slope Point
Pearson

Correlation
Coefficient

Accuracy 2 16 −1.699e− 01 1.972e+ 00 −9.518e− 01
Accuracy 2 32 −1.856e− 01 1.978e+ 00 −9.714e− 01
Accuracy 2 64 −1.749e− 01 1.966e+ 00 −9.534e− 01
Accuracy 3 16 −1.585e− 01 1.956e+ 00 −9.721e− 01
Accuracy 3 32 −1.659e− 01 1.963e+ 00 −9.721e− 01
Accuracy 3 64 −1.658e− 01 1.967e+ 00 −9.702e− 01

Loss 2 16 −1.049e− 01 7.757e− 01 −5.924e− 01
Loss 2 32 −1.762e− 01 7.646e− 01 −7.981e− 01
Loss 2 64 −2.186e− 01 8.384e− 01 −9.120e− 01
Loss 3 16 −1.802e− 01 1.169e+ 00 −8.345e− 01
Loss 3 32 −1.629e− 01 1.200e+ 00 −8.767e− 01
Loss 3 64 −5.917e− 02 1.283e+ 00 −2.562e− 01

Table 4: Details of the linear approximation of the CiteSeer Dataset. Note that in this case we used all the values given that
the training accuracy is 100% for all nodes.

J.3.4. PUBMED DATASET

For the PubMed dataset, we used the standard one, which can be obtained running
torch_geometric.datasets.Planetoid(root="./data",name=’PubMed’).
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Figure 14: Generalization gap, testing, and training losses with respect to the number of nodes in the PubMed dataset. The
top row is in accuracy, and the bottom row is the cross-entropy loss.

J.3.5. COAUTHORS CS DATASET

For the CS dataset, we used the standard one, which can be obtained running
torch_geometric.datasets.Coauthor(root="./data", name=’CS’). In this case, given that
there are no training and testing sets, we randomly partitioned the datasets and used 90% of the samples for training and the
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Type Lay. Feat. Slope Point
Pearson

Correlation
Coefficient

Accuracy 2 16 −2.523e− 01 1.834e+ 00 −9.942e− 01
Accuracy 2 32 −2.433e− 01 1.812e+ 00 −9.583e− 01
Accuracy 2 64 −2.764e− 01 1.869e+ 00 −9.761e− 01
Accuracy 3 16 −2.748e− 01 1.844e+ 00 −9.910e− 01
Accuracy 3 32 −2.661e− 01 1.861e+ 00 −9.712e− 01
Accuracy 3 64 −2.558e− 01 1.827e+ 00 −9.890e− 01

Loss 2 16 −4.166e− 01 7.695e− 01 −9.718e− 01
Loss 2 32 −4.733e− 01 7.852e− 01 −9.137e− 01
Loss 2 64 −4.368e− 01 7.547e− 01 −9.718e− 01
Loss 3 16 −4.424e− 01 1.067e+ 00 −9.549e− 01
Loss 3 32 −5.518e− 01 1.223e+ 00 −9.655e− 01
Loss 3 64 −5.246e− 01 1.169e+ 00 −9.632e− 01

Table 5: Details of the linear approximation of the PubMed Dataset. Note that in this case we used all the values given that
the training accuracy is 100% for all nodes.
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Figure 15: Generalization gap, testing, and training losses with respect to the number of nodes in the CS dataset. The top
row is in accuracy, and the bottom row is the cross-entropy loss.

J.3.6. COAUTHORS PHYSICS DATASET

For the Physics dataset, we used the standard one, which can be obtained running
torch_geometric.datasets.Coauthor(root="./data", name=’Physics’). In this case, given
that there are no training and testing sets, we randomly partitioned the datasets and used 90% of the samples for training and
the remaining 10% for testing.
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(b) Linear fit for loss generalization gap

Figure 16: Generalization gaps as a function of the number of nodes in the training set in the CS dataset.

Type Lay. Feat. Slope Point
Pearson

Correlation
Coefficient

Accuracy 2 32 −2.138e− 01 1.659e+ 00 −9.007e− 01
Accuracy 2 64 −2.250e− 01 1.685e+ 00 −8.969e− 01
Accuracy 3 32 −1.979e− 01 1.695e+ 00 −9.009e− 01
Accuracy 3 64 −1.862e− 01 1.646e+ 00 −8.980e− 01

Loss 2 32 −2.523e− 01 6.273e− 01 −8.244e− 01
Loss 2 64 −2.933e− 01 7.762e− 01 −7.925e− 01
Loss 3 32 −3.558e− 01 1.207e+ 00 −8.924e− 01
Loss 3 64 −3.560e− 01 1.256e+ 00 −8.568e− 01

Table 6: Details of the linear approximation of the CS Dataset. Note that in this case we used all the values given that the
training accuracy is 100% for all nodes.

Type Lay. Feat. Slope Point
Pearson

Correlation
Coefficient

Accuracy 2 32 −1.524e− 01 1.235e+ 00 −9.064e− 01
Accuracy 2 64 −1.478e− 01 1.218e+ 00 −9.145e− 01
Accuracy 3 32 −1.227e− 01 1.190e+ 00 −9.328e− 01
Accuracy 3 64 −1.268e− 01 1.200e+ 00 −8.826e− 01

Loss 2 32 −1.111e− 01 −5.257e− 02 −7.591e− 01
Loss 2 64 −9.684e− 02 −7.335e− 02 −7.696e− 01
Loss 3 32 −1.410e− 01 2.875e− 01 −8.280e− 01
Loss 3 64 −1.068e− 01 2.388e− 01 −7.679e− 01

Table 7: Details of the linear approximation of the Physics Dataset. Note that in this case we used all the values given that
the training accuracy is 100% for all nodes.

J.3.7. HETEROPHILOUS AMAZON RATINGS DATASET

For the Amazon dataset, we used the standard one, which can be obtained running
torch_geometric.datasets.HeterophilousGraphDataset(root="./data", name=’Amazon’).
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Figure 17: Generalization gap, testing, and training losses with respect to the number of nodes in the Physics dataset. The
top row is in accuracy, and the bottom row is the cross-entropy loss.
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(a) Linear fit for accuracy generalization gap
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(b) Linear fit for loss generalization gap

Figure 18: Generalization Gaps as a function of the number of nodes in the training set in the Physics dataset.

In this case, we used the 10 different splits that the dataset has assigned.

J.3.8. HETEROPHILOUS ROMAN EMPIRE DATASET

For the Roman dataset, we used the standard one, which can be obtained running
torch_geometric.datasets.HeterophilousGraphDataset(root="./data", name=’Roman’). In
this case, we used the 10 different splits that the dataset has assigned.
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Figure 19: Generalization gap, testing, and training losses with respect to the number of nodes in the Amazon dataset. The
top row is in accuracy, and the bottom row is the cross-entropy loss.
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(a) Linear fit for accuracy generalization gap
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(b) Linear fit for loss generalization gap

Figure 20: Generalization Gaps as a function of the number of nodes in the training set in the Amazon dataset.
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Type Lay. Feat. Slope Point
Pearson

Correlation
Coefficient

Accuracy 2 32 −7.693e− 01 4.236e+ 00 −9.914e− 01
Accuracy 2 64 −7.788e− 01 4.404e+ 00 −9.972e− 01
Accuracy 3 32 −7.268e− 01 4.101e+ 00 −9.868e− 01
Accuracy 3 64 −7.354e− 01 4.257e+ 00 −9.921e− 01

Loss 2 32 −1.086e+ 00 3.971e+ 00 −9.968e− 01
Loss 2 64 −1.096e+ 00 4.189e+ 00 −9.985e− 01
Loss 3 32 −1.134e+ 00 4.339e+ 00 −9.965e− 01
Loss 3 64 −1.154e+ 00 4.629e+ 00 −9.991e− 01

Table 8: Details of the linear approximation of the Amazon Dataset. Note that in this case we used only the values of the
generalization gap whose training error is below 95%.
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Type Lay. Feat. Slope Point
Pearson

Correlation
Coefficient

Accuracy 2 32 −8.408e− 01 4.644e+ 00 −9.963e− 01
Accuracy 2 64 −7.435e− 01 4.477e+ 00 −1.000e+ 00
Accuracy 3 32 −9.476e− 01 5.049e+ 00 −9.956e− 01
Accuracy 3 64 −9.145e− 01 5.182e+ 00 −1.000e+ 00

Loss 2 32 −1.006e+ 00 3.829e+ 00 −9.992e− 01
Loss 2 64 −9.656e− 01 3.915e+ 00 −1.000e+ 00
Loss 3 32 −1.244e+ 00 4.764e+ 00 −9.994e− 01
Loss 3 64 −1.225e+ 00 5.011e+ 00 −1.000e+ 00

Table 9: Details of the linear approximation of the Roman Dataset. Note that in this case we used only the values of the
generalization gap whose training error is below 95%
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(a) Linear fit for accuracy generalization gap
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(b) Linear fit for loss generalization gap

Figure 22: Generalization Gaps as a function of the number of nodes in the training set in the Roman dataset.
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