
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PAPER: PRIVACY-PRESERVING RESNET MODELS US-
ING LOW-DEGREE POLYNOMIAL APPROXIMATIONS
AND STRUCTURAL OPTIMIZATIONS ON LEVELED FHE

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent work has made non-interactive privacy-preserving inference more practi-
cal by running deep Convolution Neural Network (CNN) with Fully Homomor-
phic Encryption (FHE). However, these methods remain limited by their reliance
on bootstrapping, a costly FHE operation applied across multiple layers, severely
slowing inference. They also depend on high-degree polynomial approximations
of non-linear activations, which increase multiplicative depth and reduce accu-
racy by 2–5% compared to plaintext ReLU models. In this work, we focus on
ResNets, a widely adopted benchmark architecture in privacy-preserving infer-
ence, and close the accuracy gap between their FHE-based non-interactive mod-
els and plaintext counterparts, while also achieving faster inference than exist-
ing methods. We use a quadratic polynomial approximation of ReLU, which
achieves the theoretical minimum multiplicative depth for non-linear activations,
along with a penalty-based training strategy. We further introduce structural opti-
mizations such as node fusing, weight redistribution, and tower reuse. These opti-
mizations reduce the required FHE levels in CNNs by nearly a factor of five com-
pared to prior work, allowing us to run ResNet models under leveled FHE without
bootstrapping. To further accelerate inference and recover accuracy typically lost
with polynomial approximations, we introduce parameter clustering along with
a joint strategy of data encoding layout and ensemble techniques. Experiments
with ResNet-18, ResNet-20, and ResNet-32 on CIFAR-10 and CIFAR-100 show
that our approach achieves up to 4× faster private inference than prior work with
comparable accuracy to plaintext ReLU models.

1 INTRODUCTION

Machine Learning as a Service (MLaaS) is increasingly adopted across industries as it provides ac-
cess to powerful models without the need for in-house development or maintenance (Ribeiro et al.,
2015). However, it raises serious privacy concerns since models are often trained on proprietary or
sensitive data (Anwar et al., 2018; Özbayoglu et al., 2020), and inference requires clients to share
private information (e.g., medical or financial records) with external service providers. Privacy-
Preserving Machine Learning (PPML) addresses these risks using cryptographic methods, mainly
secure Multi-Party Computation (MPC) (Zhou et al., 2024) and Fully Homomorphic Encryption
(FHE) (Podschwadt et al., 2022), which protect both client data and provider models. Broadly,
PPML methods fall into interactive and non-interactive categories (Lee et al., 2022). Interactive
PPML, based on MPC, requires the client and the service provider to jointly perform inference (Liu
et al., 2017; Juvekar et al., 2018; Mishra et al., 2020; Lou et al., 2021; Huang et al., 2022; Diaa
et al., 2024). It keeps computational costs relatively low but requires multiple communication
rounds, leading to higher communication and bandwidth requirements that limit applicability. Non-
interactive PPML, typically using FHE, adopts a fire-and-forget paradigm (Gilad-Bachrach et al.,
2016; Brutzkus et al., 2019; Lou & Jiang, 2021; Lee et al., 2022; Sarkar et al., 2023; Ao & Bod-
deti, 2024), where the client encrypts inputs, the provider computes on ciphertexts, and the client
decrypts the output. This reduces communication to a single round at the expense of heavy server-
side computation. Despite the costs, non-interactive PPML is well-suited to third-party services as
it eliminates client involvement during inference, supports low-resource devices, and works in low-
bandwidth settings. Motivated by these advantages, this work focuses on non-interactive PPML.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

A key challenge in non-interactive PPML is implementing activation functions with cryptographic
primitives. Activations are non-polynomial, while FHE supports only polynomial operations like
addition and multiplication. Prior work addresses this by approximating activations with single
polynomials (Diaa et al., 2024) or piecewise polynomials (Liu et al., 2017). These approximations
can be introduced before or after training. In post-training approximation, models are trained with
standard activations (e.g., ReLU) and later replaced with high-precision polynomials. For exam-
ple, MPCNN (Lee et al., 2022) uses minimax polynomials of orders {15, 15, 27}. In pre-training
approximation, ReLU is replaced with a polynomial before training, allowing lower-degree approx-
imations that reduce multiplicative depth and speed up inference. For example, shallow CNNs like
CryptoNets (Gilad-Bachrach et al., 2016) and LoLa (Brutzkus et al., 2019), similar to LeNet-5 (Le-
Cun et al., 1998), achieve over 98% accuracy on MNIST with degree-2 polynomials. However,
Garimella et al. (2021) showed that training larger models (beyond AlexNet (Krizhevsky et al.,
2012) or VGG-11 (Simonyan & Zisserman, 2015)) with such low-degree polynomials causes large
approximation errors that destabilize training. To date, PILLAR (Diaa et al., 2024), which uses a
degree-4 polynomial, is the lowest-degree approximation that generalizes to deep neural networks.

Implementing non-interactive PPML becomes increasingly difficult as model depth increases. While
bootstrapping enables evaluation of arbitrarily deep models by refreshing ciphertexts, it is an expen-
sive operation in FHE and remains the main scalability bottleneck. To avoid this cost, prior work
has relied on Leveled Fully Homomorphic Encryption (LFHE) (see §A for details). LFHE elimi-
nates bootstrapping and allows faster private inference, but its computation is bounded by a fixed
multiplicative depth determined by encryption parameters. As a result, the size and complexity of
neural networks that can be evaluated under LFHE are strictly limited. The deepest CNNs shown to
run with LFHE alone are AlexNet and VGG-11, as demonstrated by Garimella et al. (2021). Larger
models such as ResNet-20 or ResNet-32 have so far required bootstrapping. For example, AutoFHE
executes ResNet-20 inference with at least five bootstrapping layers (Ao & Boddeti, 2024), which
leads to heavy computational costs. In this work, we focus on ResNet (He et al., 2016), as it is widely
adopted in state-of-the-art evaluations and is well-suited for efficient and low-latency deployment.

Contributions: This work advances non-interactive PPML by enabling, for the first time, large
CNNs like ResNet-18, ResNet-20, and ResNet-32 to run entirely under LFHE without bootstrap-
ping, achieving accuracy comparable to plaintext ReLU models, while outperforming prior work in
both accuracy and inference time. Our contributions are threefold:

• To the best of our knowledge, this is the first work to train large CNNs, like ResNet-18, ResNet-
20, and ResNet-32 effectively with degree-2 polynomial activations. We introduce a novel penalty
function that ensures stable training and accuracy on par with ReLU-based models. This achieves
the theoretical minimum multiplicative depth of one for non-linear activations, whereas the lowest
previously known stable alternative, PILLAR, required depth three (see §2).

• We introduce three novel structural optimization techniques that reduce the overall multiplicative
depth of a model while preserving functional equivalence: (i) Node Fusing, which merges consec-
utive operations such as convolution and batch normalization by folding normalization parameters
into convolution weights, eliminating separate multiplications; (ii) Weight Redistribution, which
adjusts parameters so that coefficients of highest-order terms in polynomial activations and batch
normalization, as well as divisors in pooling layers, normalize to one, removing redundant mul-
tiplications by constants; and (iii) Tower Reuse, which allows multiple multiplications within the
same FHE level before rescaling. In the CKKS scheme used in this work (Cheon et al., 2017),
ciphertexts carry a scale factor that grows with multiplications. Rescaling keeps ciphertext values
within range but consumes a level. Since each level requires a modulus and homomorphic oper-
ations apply to all moduli, fewer rescaling steps reduce the number of moduli, leading to faster
homomorphic operations. Moreover, they permit using larger moduli for higher accuracy (see §3).

• We propose an encoding strategy that utilizes unused ciphertext slots in FHE to pack multiple
model instances, enabling simultaneous ensemble inference to improve accuracy at some addi-
tional inference cost. To offset this overhead, we introduce a parameter clustering method for
convolutions that recovers much of the lost speed. To the best of our knowledge, this is the first
work to exploit unallocated ciphertext slots for ensemble inference in FHE (see §4).

We evaluate our method on CIFAR-10 and CIFAR-100 datasets (Krizhevsky & Hinton, 2009), and
show that it achieves up to 4× faster private inference than prior work while achieving accuracy
comparable to plaintext ReLU models (see §5). We will open-source our implementation.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 MODEL TRAINING WITH POLYNOMIAL APPROXIMATION

2.1 PROBLEM SETTING

Dataset. We consider a dataset D = {(xi, yi)}Mi=1 for multi-class classification, where xi ∈ Rn is
the feature vector and yi ∈ {1, . . . ,K} is the class label. D has M samples and K classes.

ReLU Network. Let f : Rn → RK be an L-layer feed-forward network with ReLU activations,
parameterized by weight matrices W (1), . . . ,W (L), where each W (l) ∈ Rnl×nl−1 and nl is the
number of neurons in layer l. The network output is given by f(x) = h(L)(x), where h(0)(x) = x
and h(l)(x) = ReLU(W (l)h(l−1)(x)) for all 1 ≤ l ≤ L. The activation function ReLU(z) is
applied coordinate-wise and defined as ReLU(z) = max(0, z).

Polynomial Network. We define g : Rn → RK with the same architecture as f , but replace ReLU
with a degree-d polynomial pd(z) =

∑d
k=0 akz

k that approximates ReLU over a bounded interval
[−c, c]. The polynomial coefficients {ak}dk=0 are chosen so that the maximum approximation error
satisfies: maxz∈[−c,c] |ReLU(z)−pd(z)| ≤ ε, where ε > 0 is a small constant. The network output
is given by g(x) = h

(L)
pd (x), where h(0)

pd (x) = x and h
(l)
pd (x) = pd(W

(l)h
(l−1)
pd (x)) for all 1 ≤ l ≤ L.

Challenges. Using polynomial networks ensures FHE compatibility but introduces training chal-
lenges such as escaping activations and coefficient truncation (see §B for more details). Escaping
activations occur when intermediate outputs drift outside the interval [−c, c], leading to large approx-
imation errors. Coefficient truncation occurs when polynomial coefficients are stored with limited
fixed-point precision b, which changes the polynomial’s shape and causes deviation from ReLU even
inside the approximation interval. These issues require careful selection of d, [−c, c], and b, together
with regularization during training to keep activations within the valid approximation range.

2.2 TRAINING STRATEGY

Quantization-Aware Polynomial Fitting. To avoid coefficient truncation, we integrate fixed-point
constraints directly into coefficient estimation using quantization-aware polynomial fitting (Diaa
et al., 2024). Given an approximation interval [−c, c] and fixed-point precision with b fractional bits,
we define a quantized input domain for polynomial fitting as: X = {x ∈ [−c, c] | x = k · 2−b, k ∈
Z}. For each input xi ∈ X , we compute scaled ReLU outputs Yi = 2b ·ReLU(xi) so that regression
targets are integers, which reduces risk of precision loss during optimization. We build a matrix B ∈
RM×(d+1) with entries Bi,k = xk

i for 0 ≤ k ≤ d. The coefficients A = [a0, . . . , ad]
⊤ ∈ Zd+1 are

obtained by solving bounded integer least-squares problem: minA∈Zd+1 ∥BA−Y ∥22 subject to ak ∈
[−2b−1, 2b−1 − 1]. The resulting fixed-point polynomial is pd(x) =

∑d
k=0(

ak

2b
)xk.

Activation Regularization. To avoid escaping activations, we introduce a regularization strategy
that constrains the inputs to polynomial activation functions (i.e., the pre-activations) to remain
within the valid approximation interval [−c, c]. The classification loss supervises only the final out-
put and provides no mechanism to limit intermediate pre-activation values. Hence, minimizing it
alone does not prevent pre-activations from drifting outside the interval [−c, c], where the polyno-
mial diverges from ReLU and destabilizes training. We introduce a layer-wise penalty that penalizes
out-of-range pre-activations. For a mini-batch B ⊂ D, the following training loss is minimized:

LB =
1

|B|
∑

(x,y)∈B

ℓCE (g (x) , y)

︸ ︷︷ ︸
classification loss

+ ζ
1

L

L∑
l=1

∥∥∥z(l)p − clip
(
z(l)p ; [−c, c]

)∥∥∥
2︸ ︷︷ ︸

clip-range penalty

(1)

where ℓCE is the cross-entropy loss, z(l)p are pre-activations at layer l, i.e., outputs of affine trans-
formations W (l)h

(l−1)
pd (x) before the polynomial activation. The function clip(z; [−c, c]) is applied

element-wise and defined as: clip(z; [−c, c])i = max(−c,min(zi, c)). The second loss term penal-
izes pre-activations that lie outside the interval [−c, c], with strength controlled by the regularization
parameter ζ > 0. See §C for a proof of the penalty function’s correctness. Training can still be-
come unstable for two reasons: (i) in early epochs pre-activations can grow unbounded before the
model learns to contain them and (ii) using full regularization weight ζ from the start can let the
penalty dominate and destabilize optimization. As additional strategies, we also consider clipping
pre-activations during training and introducing a warm-up schedule for ζ (see §D for more details).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 STRUCTURAL OPTIMIZATIONS

3.1 NODE FUSING

Our first optimization is node fusing, which merges consecutive computational nodes into a single
equivalent function. This reduces both number of operations and multiplicative depth. Formally,
two sequential nodes F (G(x)) are replaced with H(x) such that F (G(x)) = H(x), with H(x)
more efficient to evaluate. Since our method uses batch normalization, recall its polynomial form
B(x) = b1x+b0, b1 = γ

σ , b0 = βb−b1µ, where µ, σ are the input mean and standard deviation, and
γ, βb are learnable parameters. We outline four common fusion cases. See §E.1 for full derivations.

Case 1: P (B(x)) 7→ P (x). When a polynomial activation P (·) follows batch normalization, the
two can be fused into a single quadratic polynomial. If P (x) = c2x

2 + c1x+ c0, then P (B(x)) =
p2x

2 + p1x+ p0, with fused coefficients p2 = b21c2, p1 = b1(2b0c2 + c1), p0 = b20c2 + b0c1 + c0.

Case 2: B(C(x)) 7→ C(x). When batch normalization follows a convolution C(·), the two can
be fused (Markuš, 2018). A convolution is given by C(x) =

∑
i wixi + βc, where wi are the

convolution weights and βc is the bias. The fused form becomes a single convolution B(C(x)) =∑
i ωixi + α, with fused coefficients ωi = b1wi, α = b1βc + b0.

Case 3: P (BX(x) + BY (y)) 7→ S(x, y). In residual networks, skip connections often merge
two batch-normalized branches by summing them before applying an activation P (·). Specifically,
P (BX(x) +BY (y)). Here, BX and BY are independent batch normalization layers to input x and
y. This structure can be fused into a single quadratic bivariate polynomial, which we call polyskip:
S(x, y) = dX2x

2 + dY 2y
2 + dXY xy + dXx+ dY y + d0, with coefficients dX2 = c2b

2
X1, dY 2 =

c2b
2
Y 1, dXY = 2c2bX1bY 1, dX = bX1(2c2(bX0 + bY 0) + c1), dY = bY 1(2c2(bX0 + bY 0) + c1),

d0 = c2(bX0 + bY 0)
2 + c1(bX0 + bY 0) + c0.

Case 4: P (BX(x) + y) 7→ S(x, y). Some skip connections use identity shortcuts, where the
input y is added directly to the batch-normalized branch BX(x) before applying the activation.
This structure can be fused into a quadratic bivariate polynomial: S(x, y) = dX2x

2 + dY 2y
2 +

dXY xy + dXx + dY y + d0,with coefficients dX2 = c2b
2
X1, dY 2 = c2, dXY = 2c2bX1, dX =

bX1(2c2bX0 + c1), dY = 2c2bX0 + c1, d0 = c2b
2
X0 + c1bX0 + c0.

Node fusing collapses batch normalization, activations, convolutions, and skip connections into
single fused polynomials, eliminating redundant nodes and reducing multiplicative depth.

3.2 WEIGHT REDISTRIBUTION

Our second optimization is weight redistribution, a technique that redistributes weights across the
network while maintaining functional equivalence. The goal is to reduce the multiplicative depth of
certain functions by one. It specifically targets average pooling, batch normalization, and polynomial
activations. For average pooling, redistribution eliminates the normalization step by setting the
divisor to one. For polynomial functions, the highest-order coefficient is set to one. For example,
the polynomial activation c2x

2+c1x+c0 is transformed into x2+p1x+p0, reducing its multiplicative
depth from two to one, the theoretical minimum for an activation function. These transformations
alone break model equivalence. To maintain it, other nodes in the network must compensate for the
change. We refer to the nodes initiating weight redistribution as donors, and the nodes adjusting their
parameters to preserve equivalence as receivers. We represent the network as a directed graph and
traverse it, identifying all eligible donor nodes. For each donor, redistribution can be applied either
forward or backward, affecting receivers among the donor’s successors or predecessors, respectively.

Update Forward. Donors. We first consider donor updates in the forward direction. Our goal is to
construct a normalized function F̄ (x) such that υF̄ (x) = F (x), where F (x) is the original donor
function and υ is the update term to be propagated to receivers. The average pooling operation is
given by µ(x) = k−1

∑
i xi, where k is the kernel size. In the normalized function we set k = 1,

reducing the operation to µ̄(x) =
∑

i xi. Thus, for the equality to be valid, we have υ = k−1.

Batch normalization and polynomial activation are polynomial functions. For a univariate polyno-
mial P (x) =

∑d
i=0 cix

i of degree d, and a normalized polynomial P̄ (x) = xd +
∑d−1

i=0 c̄ix
i, where

c̄i are the normalized coefficients, we have υ = cd and c̄i = ciυ
−1 for υP̄ (x) = P (x) to hold. The

extension to the bivariate polynomial activation is analogous and deferred to §E.2.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Receivers. After a donor update, receivers must be adjusted to maintain model equivalence. The
original composed function is G(F (·)), where F (·) is the donor and G(·) is the receiver. Updat-
ing the donor to F̄ (·) without compensating the receiver results in G(υ−1F (·)), breaking model
equivalence. To restore it, we modify the receiver so that Ḡ(F̄ (·)) = Ḡ(υ−1F (·)) = G(F (·)).
Receivers fall into two categories: kernel functions and polynomial functions. Kernel functions
share the form K(x) =

∑
i wixi + β. To maintain model equivalence, we must update the kernel

function such that K̄(υ−1x) = K(x). For that, we must set w̄i = wiυ and β̄ = β.

Polynomial functions update as P̄ (υ−1x) = P (x), which implies that c̄i = ciυ
i. For the bivariate

case, in S̄(υ−1x, y) = S(x, y) the index i corresponds to the exponent of x, while in S̄(x, υ−1y) =
S(x, y) it corresponds to the exponent of y.

Update Backward. Donors. Backward updates are essentially the inverse of forward updates. For
average pooling, the update is identical, since µ̄(υx) = υµ̄(x), while for polynomial donors, it must
hold that P̄ (υx) = P (x); hence, υ = c

1/d
d and c̄i = ciυ

−i.

Receivers. Receivers must satisfy Ḡ(x) = υG(x) to preserve model equivalence. Kernel receivers
are updated as K̄(x) = υK(x), which implies that w̄i = wiυ and β̄ = βυ. And polynomial
receivers update according to P̄ (x) = υP (x); therefore, c̄i = ciυ.

3.3 TOWER REUSE

In CKKS, the Residue Number System (RNS) moduli are typically chosen as primes close to the
scaling factor ∆ (see §A for an overview of LFHE). This choice is motivated by the fact that, after
each homomorphic multiplication, the scaling factors of the operands are multiplied, producing a
ciphertext with scale ∆2. To control this growth, the rescale operation reduces the scale back to ∆
by removing one modulus from the modulus chain. However, rescaling introduces approximation
errors: the further the dropped modulus deviates from ∆, the larger the error. These errors may ac-
cumulate and amplify through subsequent homomorphic operations. A larger ∆ is desirable for two
reasons: (i) it provides higher precision for CKKS encoding and (ii) the RNS moduli are relatively
closer to the scaling factor, reducing approximation errors.

The drawback is that a larger ∆ requires larger RNS moduli, which in turn increases the ciphertext
modulus Q =

∏L
i=0 qi, where L is the number of levels and qi are the individual RNS primes. Since

the security level depends on the ratio N/Q (with N the polynomial degree), a larger Q reduces
security. One way to increase security is to increase N , but this slows computations due to larger
polynomials. Thus, for a fixed security level and polynomial degree, there is a maximum allowable
Q. Consequently, for an application-defined multiplicative depth δ, this imposes a bound on the
maximum scaling factor ∆. In practice, when δ is large, as is common in deep learning models,
the resulting ∆ is small. This has two adverse effects, opposite to the benefits of a large ∆: lower
numerical precision and larger approximation errors, as moduli qi are relatively farther from ∆.

Proposed Solution. We introduce a more general method for determining the RNS moduli by
introducing sublevels within each level. Instead of enforcing qi ≈ ∆, we allow qi ≈ ∆ℓ, where ℓ
denotes the number of sublevels. Rescaling is performed only when a ciphertext scale exceeds the
sublevel capacity of the modulus to be dropped. Formally, λ(x) > λ(qi) =⇒ ↓ x, where ↓ denotes
the rescale operation, and λ(x) = ⌊log∆ ∆x⌉ returns the sublevel of a ciphertext, plaintext, or
modulus: with ∆x referring to the scale of x and ∆ being the default scale defined by the encryption
parameters. See §E.3 for an example of this technique.

This method allows smaller ∆ values while maintaining larger qi, mitigating rescaling errors. More-
over, fewer effective levels (moduli) reduce error amplification, and since homomorphic operations
are applied across all moduli, reducing their number improves computational efficiency.

3.4 IMPACT ON RNS LEVELS

The combination of our polynomial activation function with the structural optimizations proposed
in this section reduces the number of RNS levels L required for multiplication compared to PILLAR
(Diaa et al., 2024), which previously achieved the lowest L: from 87 to 18 for ResNet-18, from 97
to 20 for ResNet-20, and from 157 to 32 for ResNet-32. A complete analysis of the contribution of
each technique to the reduction in required levels for ResNet models is provided in §E.4.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4 CODESIGN TECHNIQUES

4.1 DATA LAYOUT

Data layout defines how model inputs and weights are mapped into FHE ciphertext and plaintext
slots during encoding. In this work, we adopt the HW layout (Dathathri et al., 2019), which assigns

0,0 0,1 1,0 1,1

0,0 0,1 1,0 1,1

0,0 0,0 0,0 0,0
0,1 0,1 0,1 0,1

1,0 1,0 1,0 1,0
1,1 1,1 1,1 1,1

0,0 0,0 0,0 0,0
0,1 0,1 0,1 0,1

1,0 1,0 1,0 1,0
1,1 1,1 1,1 1,1

0,0 0,1 0,2 1,0 1,1 1,2 2,0 2,1 2,2

0,0 0,0 0,0 0,0
0,1 0,1 0,1 0,1

1,0 1,0 1,0 1,0
1,1 1,1 1,1 1,1

0,0 0,0 0,0 0,0
0,1 0,1 0,1 0,1

1,0 1,0 1,0 1,0
1,1 1,1 1,1 1,1

0,0 0,1 0,2 1,0 1,1 1,2 2,0 2,1 2,2

Bias/Output

0,0 0,0 0,0 0,0
0,1 0,1 0,1 0,1

1,0 1,0 1,0 1,0
1,1 1,1 1,1 1,1

0,0 0,0 0,0 0,0
0,1 0,1 0,1 0,1

1,0 1,0 1,0 1,0
1,1 1,1 1,1 1,1

Filter

0,0 0,1 0,2 1,0 1,1 1,2 2,0 2,1 2,2

Input

Figure 1: Illustration of
HW layout for convolution
on a 3×3×3 input and two
3× 2× 2 filters, configured
with padding 0 and stride 1.

each input channel to a separate ciphertext and fills its slots with spatial
values indexed by two–dimensional coordinates. Unlike the naive lay-
out (Gilad-Bachrach et al., 2016), where each ciphertext holds only one
value and incurs significant overhead, HW layout is more efficient, pack-
ing h · w values per ciphertext, with h and w denoting input height and
width. Figure 1 shows this for a 3×3×3 input with two 3×2×2 filters
(stride 1, no padding), illustrating slot arrangements and gaps that may
appear after convolution or other kernel operations. These gaps could
be removed by remapping, but that requires additional multiplications
and increases multiplicative depth. Instead, we use an adaptive (lazy)
mapping strategy: some slots are left unused, and subsequent weights,
biases, and coefficients are aligned with the slot arrangement of the pre-
ceding layer’s output. HW layout does not always fully utilize slots, es-
pecially when input channels have far fewer values than available slots.
More compact layouts such as CHW layout (Dathathri et al., 2019) and
its variants (Lee et al., 2022) address this by mapping multiple chan-
nels into one ciphertext, which reduces ciphertext counts and decreases
the number of multiplications and additions, ultimately leading to faster
inference. However, PPML relies on polynomial approximations that re-
duce accuracy compared to plaintext ReLU models. For this reason, we
retain the less efficient HW layout, repurposing unused slots to improve accuracy instead of mini-
mizing inference time. To offset the added latency, we introduce a parameter clustering technique.

4.2 CLUSTERING OF CONVOLUTION PARAMETERS

Convolution layers account for most parameters in deep neural networks, and their weight handling
under FHE is costly since each weight must be repeatedly encoded to match varying ciphertext lay-
outs and levels. As these depend on kernel position and layer structure, the same scalar weight is
often redundantly encoded. Pre-encoding all weight–layout combinations would lead to prohibitive
memory usage, while on-demand encoding reduces memory but adds heavy computational over-
head. To mitigate this, weights are limited to a small fixed set of representative values. Each repre-
sentative is encoded once into a plaintext codebook, and during inference, the appropriate plaintext
is retrieved rather than recomputed. Time and memory then scale with codebook size instead of the
number of weights. Clustering provides a way to build this representative set by grouping similar
weights and replacing each with its closest centroid, bounding the number of unique encodings.

Formally, let a polynomial network contain L convolution layers. The weight tensor of layer l is
W (l) ∈ ROl×Il×Hl×Wl , where Ol is the number of output channels, Il the number of input channels,
and Hl×Wl the kernel size. Flattening all convolution weights gives θ = (θ1, . . . , θP) ∈ RP , where
P is the total number of parameters. To compress the model, each θj is replaced by its nearest
codebook value from C = {c1, . . . , ck} ⊂ R, where k ≪ P is the number of representatives in the
codebook. The codebook entries act as centroids approximating the original weights. The choice
of k determines the efficiency-accuracy tradeoff: smaller k reduces the number of encodings but
increases approximation error, while larger k produces finer approximation at higher computational
and memory cost. Given a distance function d : R × R → R (assumed to be non-negative), each
parameter is quantized as: θ̃j = argminc∈C d(θj , c) for all j = 1, . . . , P, producing a quantized
parameter vector θ̃ ∈ CP . Quantization is applied elementwise, so each convolutional kernel retains
its shape while its values are drawn from the codebook. The choice of clustering strategy determines
how the codebook is constructed and how assignments are made.

Full Clustering. A straightforward strategy is to cluster the entire parameter vector θ ∈ RP using
a single global codebook C. All convolution parameters, regardless of layer or kernel position, are
quantized to the same shared set of representative values. This produces a uniform quantization
scheme with easy implementation and a small codebook size.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Limitation. While full clustering reduces the number of distinct weight values, it does not eliminate
repeated plaintext encodings. Each weight must still match the ciphertext layout and level of its
layer, so the same scalar value appearing in different layers must be re-encoded. Even within a
single convolution, all weights share the same level, but weights from different filter columns map
to different layouts and require separate encodings. Only weights in the same column across layer
filters align in layout and level. We define this group as a slice, which can share plaintext encoding.
Thus, full clustering reduces codebook size but not redundancy from mismatched levels and layouts.

Slice Clustering. To address the redundancy remaining under full clustering, we refine quantization
to the slice level. Since only weights within the same slice can share plaintext encodings, cluster-
ing is applied per slice rather than across all parameters. For a given layer l and spatial position
s ∈ {1, . . . ,Wl}, the slice is S

(l)
s = {W (l)

o,i,h,s|o = 1, . . . , Ol; i = 1, . . . , Il; h = 1, . . . ,Hl},
which can be viewed as a vector in ROlIlHl (see §F.1 for an illustration). Each slice S

(l)
s is clus-

tered independently with its own codebook C(l)
s ⊂ R, and quantization is applied elementwise:

W̃
(l)
o,i,h,s = argmin

c∈C(l)
s

d(W
(l)
o,i,h,s, c). This ensures clustering respects FHE structure while adapt-

ing to the local weight distribution of each slice. The additional storage from slice-specific code-
books is modest compared to the resulting gains in accuracy and efficiency.

4.3 ENSEMBLE OF POLYNOMIAL NETWORK

Inference with a single polynomial network g(x) often shows high variance across training runs.
Let g(m)(x) ∈ RK be the logits from the m-th independently trained instance. For a fixed input,
these logits can differ significantly, especially near decision boundaries, due to (1) approximation
error from the fixed-point polynomial activation pd(·) and (2) training stochasticity such as ran-
dom weight initialization and mini-batch ordering. As a result, different g(m) may predict different
classes for the same input. To reduce this variance, we use an ensemble of M polynomial net-
works {g(m)}Mm=1. Each has the same architecture and activation pd(·) but is trained independently
with different seeds and mini-batch orders. For input x, the ensemble output is the average of log-
its: g(x) = 1

M

∑M
m=1 g(m)(x) with the predicted class ŷ = argmaxk∈{1,...,K} g(x)k. Averaging

smooths training noise and polynomial approximation errors, producing more stable and accurate
predictions. Each g(m) is trained with the regularized loss LB (Eq. 1), ensuring compatibility with
fixed-point polynomial inference under FHE. Crucially, this ensemble design adds no extra compu-
tation or memory overhead. As noted in §4.1, our HW layout leaves some ciphertext slots unused.
We fill these slots with weights from different models, while all ensemble members share the same
ciphertexts for inputs and activations. This reuse of ciphertext–plaintext structures avoids redundant
ciphertexts and repeated encodings, making ensemble inference practical in the FHE framework.

Limits of Ensemble with Clustering. While ensemble inference reuses unused ciphertext slots, its
combination with parameter clustering creates a challenge. In slice clustering, each slice S

(l)
s with

Ol × Il ×Hl weights is represented by k centroids in codebook C(l)
s , reducing plaintext encodings

to k per slice. In an ensemble, however, each plaintext must encode parameters from all M models.
As centroids are unlikely to align across models, the count of unique encodings per slice grows as
O(kM), canceling the gains of clustering and making the naive combination impractical.

Slice Ensemble Clustering. To address the inefficiency of independent clustering, we extend
slice clustering to ensembles by enforcing shared representatives across models. We cluster
weights jointly at the same kernel position so that all models use a common codebook. For-
mally, the ensemble has M polynomial networks. For convolution layer l, model m has weights
W (l,m) ∈ ROl×Il×Hl×Wl . For kernel position s ∈ {1, . . . ,Wl}, we extract slices: S

(l,m)
s =

{W (l,m)
o,i,h,s|o = 1, . . . , Ol; i = 1, . . . , Il;h = 1, . . . , Hl}. Stacking slices across M models produces

X
(l)
s = [S

(l,1)
s S

(l,2)
s · · ·S(l,M)

s] ∈ RNs×M , where Ns = OlIlHl. Each row is an M -dimensional
vector for the same weight coordinate across models (see §F.2 for an illustration). We cluster rows
in RM : minC(l)

s ⊂RM

∑Ns

j=1 min
c∈C(l)

s
d(X

(l)
s,j , c), with codebook C(l)

s = {c1, . . . , ck}. Each X
(l)
s,j is

replaced by its nearest centroid, producing quantized slices X̃(l)
s,j ∈ C(l)

s . Quantized weights W̃ (l,m)

are reconstructed by reshaping slices. This shared clustering aligns weights across models, mapping
small variations at the same coordinate to a common centroid. It thus requires fewer distinct encod-
ings, reducing codebook size and inference time while retaining the accuracy gains of ensemble.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5 EXPERIMENTAL RESULTS

5.1 EXPERIMENTAL SETUP

We trained ResNet-18, ResNet-20, and ResNet-32 on CIFAR-10 and CIFAR-100 using Py-
Torch 2.4.1. Each experiment was repeated 10 times, and we report mean accuracy and private
inference time with standard deviations. Private inference used a C++20 framework we developed,
built on Microsoft SEAL 4.1 (SEAL) for leveled FHE operations and GMP 6.2.1 for multiprecision
arithmetic. The framework includes a tool that automatically converts trained models for C++ infer-
ence. We use a machine with two AMD EPYC 64-core processors, 2 TB memory across 32 DDR4
DIMMs at 2933 MT/s, on Ubuntu 22.04.5 LTS with kernel 5.15.0-151-generic (x86 64) to run all
experiments, including related work. For model training (see §2), we used hyperparameters c = 2
and ζ = 0.001. An ablation study for both is provided in §G. We set b = 10, aligned with PIL-
LAR (Diaa et al., 2024), as it provides accurate polynomial approximation after quantization-aware
fitting. For all clustering strategies, we used the ℓ2 norm as the distance metric, with k-means as the
clustering algorithm (Lloyd, 1982). Details on FHE encryption parameters are in §H.1. Additional
results, including peak memory, are reported in §H.3.

We compare our approach against non-interactive PPML baselines, MPCNN (Lee et al., 2022) and
AutoFHE (Ao & Boddeti, 2024), in terms of accuracy and inference time. For fairness, we use
their publicly available implementations (git, 2024a; 2022) with specified encryption parameters.
Both baselines implement ResNet-20 on CIFAR-10 and ResNet-32 on CIFAR-10 and CIFAR-100,
all with N = 216. We also trained plaintext models using standard ReLU activations to serve as a
reference for accuracy. In this section, we mainly report results for ResNet-20 and ResNet-32, since
these allow direct comparison with baselines. Results for ResNet-18 are provided in §H.2.

5.2 SUMMARY OF RESULTS

Accuracy of Polynomial Approximation. Training with the polynomial approximation described
in §2 shows that, on average across CIFAR-10 and CIFAR-100, our degree-2 polynomial achieves
accuracy only about 1.3% lower than ReLU, while PILLAR with degree-4 polynomial is about
5.4% lower. A degree-2 adaptation of PILLAR shows an average drop of 6.5%. These results
demonstrate that our method can use low-degree polynomials effectively, while PILLAR does not
reach comparable accuracy even with higher degrees. A detailed comparison is provided in §G.3.

Analysis of Parameter Clustering. Figure 2 (top row) shows accuracy and inference time for
three methods: Standard, Full Clustering, and Slice Clustering. Standard applies techniques in §2
and §3, while Full Clustering and Slice Clustering extend it with parameter clustering as described
in §4.2. Clustering reduces inference time several-fold compared to Standard, while maintaining
similar accuracy. At very low centroid counts (k), accuracy reduces due to insufficient parameter
representation. Beyond a threshold (e.g., k = 64 for Slice Clustering), accuracy matches Standard
while providing 4-7× speedups. For fixed k, Full Clustering is slightly faster since each layer does
not utilize all centroids, whereas Slice Clustering uses all centroids within each slice, introducing ad-
ditional computational overhead from extra plaintext encoding. However, Slice Clustering provides
finer granularity and better parameter representation, leading to higher accuracy. In fact, Slice Clus-
tering with k = 32 achieves higher accuracy and faster inference than Full Clustering with k = 64.
Overall, Slice Clustering is superior, surpassing Full Clustering in both accuracy and latency.

Ensemble Evaluation. We evaluate ensembles with M = {1, 2, 4} models. Figure 2 (middle row)
shows accuracy and inference time for two approaches: Standard-M (ensembles without cluster-
ing) and Slice-M (ensembles with slice clustering as in §4.3). Inference time does not increase with
ensemble size since all models fit in one ciphertext, requiring the same number of homomorphic op-
erations. For Standard-M, accuracy consistently improves as M increases. Slice-M, however, does
not always scale the same way. Since each centroid represents an M -dimensional space, higher M
can require more centroids to capture model parameters. Thus, Slice-4 can underperform Slice-2 at a
fixed k, and Slice-2 needs more centroids to match Standard-2 accuracy. Despite this, Slice-M pro-
vides notable advantages. Slice-2 mostly outperforms Standard-2 and reaches accuracy comparable
to Standard-4. This suggests clustering acts as an implicit regularizer, mitigating overfitting.

Comparison with Related Work. Figure 2 (bottom row) presents Pareto fronts of Slice Clustering
in terms of accuracy and private inference time, compared with AutoFHE and MPCNN. For refer-
ence, we also report Standard-4 and plaintext ReLU accuracy. For ResNet-20, where our models
operate with N = 215, Slice Clustering achieves consistently faster inference than related work (up

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

29 21192.0
92.5
93.0
93.5
94.0
94.5

Ac
cu

ra
cy

 (%
)

ResNet-20
CIFAR-10

29 210 21172.5

73.0

73.5

74.0
ResNet-20
CIFAR-100

211 212 213
92.0
92.5
93.0
93.5
94.0
94.5

ResNet-32
CIFAR-10

211 212 213
72.5

73.0

73.5

74.0
ResNet-32

Cl
us

te
ri
ng

CIFAR-100

29 21192.0

93.0

94.0

95.0

Ac
cu
ra
cy
 (%

)

29 210 211

74.0

76.0

78.0

211 212 213
92.0

93.0

94.0

95.0

211 212 213

74.0

76.0

78.0

En
se
m
bl
e

29 211
Inference Time (s)

92.0

93.0

94.0

95.0

Ac
cu
ra
cy
 (%

)

29 210 211
Inference Time (s)

70.0

72.0

74.0

76.0

78.0

211 212 213
Inference Time (s)

92.0

93.0

94.0

95.0

211 212 213
Inference Time (s)

70.0

72.0

74.0

76.0

78.0

Co
m
pa

ri
so
n

Standard M=1
Standard M=2
Standard M=4

Slice M=1
Slice M=2
Slice M=4

Full Clustering
AutoFHE 5
AutoFHE 8

AutoFHE 11
AutoFHE 16
AutoFHE 19

MPCNN
k=16
k=32

k=64
k=128
k=256

k=512
k=1024
k=2048

k=4096
k=8192

Figure 2: Accuracy vs. private inference time for ResNet-20/32 on CIFAR-10/100. Ensembles are evaluated
with M ∈ {1, 2, 4} (M = 1 is a single model). We compare Standard ensembles (no clustering), Slice ensem-
bles (slice-wise clustering), and Full Clustering. Colored squares represent centroid counts (k = 16, . . . , 8192),
and the same color is used for the same centroid count in both slice and full clustering. Baselines include Aut-
oFHE (numbers = bootstrapping layers) and MPCNN. The green dashed line shows plaintext ReLU accuracy.

to 4×). For ResNet-32, where all approaches use N = 216, our method is comparable in inference
time to AutoFHE on CIFAR-10 and 2× faster on CIFAR-100. Inference time does not change for
our approach for different datasets, whereas AutoFHE slows down because it requires a high number
of bootstrapping operations to maintain accuracy. The main factors affecting our inference time rel-
ative to related work are: The main factors affecting our inference time relative to related work are:
(i) the polynomial activation (§2) and structural optimizations (§3) reduce both multiplicative depth
and number of RNS moduli, allowing execution under LFHE without bootstrapping; (ii) our clus-
tering technique (§4.2) further reduces the number of unique parameters, thereby limiting plaintext
encodings per convolution; (iii) for ResNet-20 (and ResNet-18), we operate at a smaller polynomial
degree, which directly accelerates homomorphic operations; (iv) our choice of data layout (§4.1)
deliberately sacrifices some latency to better exploit ciphertext slots for accuracy, but above opti-
mizations offset this overhead. In terms of accuracy, our approach consistently outperforms related
work thanks to our training strategy (§2). In fact, it closely matches plaintext ReLU models, effec-
tively eliminating the accuracy gap typically observed in polynomial approximations of ResNets.

6 CONCLUSION

This work significantly advances the practicality of PPML under FHE. We demonstrated that by
integrating low-degree polynomial activations with structural and co-design optimizations, it is pos-
sible to execute large-scale models such as ResNet-18, ResNet-20, and ResNet-32 entirely under
leveled FHE without bootstrapping, an achievement previously considered not possible. State-of-
the-art methods typically incur a 2-5% accuracy loss compared to plaintext models. Our method is
the first to close this gap, achieving accuracy on par with ReLU baselines while delivering up to 4×
faster private inference on CIFAR-10 and CIFAR-100. These results mark an important step toward
making PPML deployable in real-world applications, particularly in domains such as healthcare and
finance, where data confidentiality is non-negotiable. Future research will extend these methods to
larger datasets and deeper architectures to further expand the practicality of PPML.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

FHE-MP-CNN. https://github.com/snu-ccl/FHE-MP-CNN, 2022. Commit hash:
a752630.

AutoFHE: Automated Adaption of CNNs for Efficient Evaluation over FHE. https://github.
com/human-analysis/AutoFHE, 2024a. Commit hash: 984b5b1.

Fast and Private Inference of Deep Neural Networks by Co-designing Activation Functions.
https://github.com/LucasFenaux/PILLAR-ESPN, 2024b. Commit hash: b3522ca.

Syed Muhammad Anwar, Muhammad Majid, Adnan Qayyum, Muhammad Awais, Majdi R. Al-
nowami, and Muhammad Khurram Khan. Medical Image Analysis using Convolutional Neu-
ral Networks: A Review. Journal of Medical Systems, 42(11):226, 2018. doi: 10.1007/
S10916-018-1088-1. URL https://doi.org/10.1007/s10916-018-1088-1.

Wei Ao and Vishnu Naresh Boddeti. AutoFHE: Automated Adaption of CNNs for Efficient Evalua-
tion over FHE. In 33rd USENIX Security Symposium, USENIX Security 2024, Philadelphia, PA,
USA, August 14-16, 2024. USENIX Association, 2024. URL https://www.usenix.org/
conference/usenixsecurity24/presentation/ao.

Alon Brutzkus, Ran Gilad-Bachrach, and Oren Elisha. Low Latency Privacy Preserving Infer-
ence. In Proceedings of the 36th International Conference on Machine Learning, ICML 2019,
9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learning
Research, pp. 812–821. PMLR, 2019. URL http://proceedings.mlr.press/v97/
brutzkus19a.html.

Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. Homomorphic Encryption for
Arithmetic of Approximate Numbers. In Advances in Cryptology - ASIACRYPT 2017 - 23rd
International Conference on the Theory and Applications of Cryptology and Information Security,
Hong Kong, China, December 3-7, 2017, Proceedings, Part I, volume 10624 of Lecture Notes in
Computer Science, pp. 409–437. Springer, 2017. doi: 10.1007/978-3-319-70694-8 15. URL
https://doi.org/10.1007/978-3-319-70694-8_15.

Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song. A Full
RNS Variant of Approximate Homomorphic Encryption. In Selected Areas in Cryptography
- SAC 2018 - 25th International Conference, Calgary, AB, Canada, August 15-17, 2018, Re-
vised Selected Papers, volume 11349 of Lecture Notes in Computer Science, pp. 347–368.
Springer, 2018. doi: 10.1007/978-3-030-10970-7 16. URL https://doi.org/10.1007/
978-3-030-10970-7_16.

Roshan Dathathri, Olli Saarikivi, Hao Chen, Kim Laine, Kristin E. Lauter, Saeed Maleki, Madan-
lal Musuvathi, and Todd Mytkowicz. CHET: an optimizing compiler for fully-homomorphic
neural-network inferencing. In Proceedings of the 40th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019,
pp. 142–156. ACM, 2019. doi: 10.1145/3314221.3314628. URL https://doi.org/10.
1145/3314221.3314628.

Abdulrahman Diaa, Lucas Fenaux, Thomas Humphries, Marian Dietz, Faezeh Ebrahimianghaz-
ani, Bailey Kacsmar, Xinda Li, Nils Lukas, Rasoul Akhavan Mahdavi, Simon Oya, Ehsan
Amjadian, and Florian Kerschbaum. Fast and Private Inference of Deep Neural Networks by
Co-designing Activation Functions. In 33rd USENIX Security Symposium, USENIX Security
2024, Philadelphia, PA, USA, August 14-16, 2024. USENIX Association, 2024. URL https:
//www.usenix.org/conference/usenixsecurity24/presentation/diaa.

Karthik Garimella, Nandan Kumar Jha, and Brandon Reagen. Sisyphus: A Cautionary Tale
of Using Low-Degree Polynomial Activations in Privacy-Preserving Deep Learning. CoRR,
abs/2107.12342, 2021. URL https://arxiv.org/abs/2107.12342.

Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin E. Lauter, Michael Naehrig, and John
Wernsing. CryptoNets: Applying Neural Networks to Encrypted Data with High Throughput and
Accuracy. In Proceedings of the 33nd International Conference on Machine Learning, ICML

10

https://github.com/snu-ccl/FHE-MP-CNN
https://github.com/human-analysis/AutoFHE
https://github.com/human-analysis/AutoFHE
https://github.com/LucasFenaux/PILLAR-ESPN
https://doi.org/10.1007/s10916-018-1088-1
https://www.usenix.org/conference/usenixsecurity24/presentation/ao
https://www.usenix.org/conference/usenixsecurity24/presentation/ao
http://proceedings.mlr.press/v97/brutzkus19a.html
http://proceedings.mlr.press/v97/brutzkus19a.html
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-030-10970-7_16
https://doi.org/10.1007/978-3-030-10970-7_16
https://doi.org/10.1145/3314221.3314628
https://doi.org/10.1145/3314221.3314628
https://www.usenix.org/conference/usenixsecurity24/presentation/diaa
https://www.usenix.org/conference/usenixsecurity24/presentation/diaa
https://arxiv.org/abs/2107.12342

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

2016, New York City, NY, USA, June 19-24, 2016, volume 48 of JMLR Workshop and Conference
Proceedings, pp. 201–210. JMLR.org, 2016. URL http://proceedings.mlr.press/
v48/gilad-bachrach16.html.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016, pp. 770–778. IEEE Computer Society, 2016. doi:
10.1109/CVPR.2016.90. URL https://doi.org/10.1109/CVPR.2016.90.

Zhicong Huang, Wen-jie Lu, Cheng Hong, and Jiansheng Ding. Cheetah: Lean and Fast
Secure Two-Party Deep Neural Network Inference. In 31st USENIX Security Symposium,
USENIX Security 2022, Boston, MA, USA, August 10-12, 2022, pp. 809–826. USENIX Asso-
ciation, 2022. URL https://www.usenix.org/conference/usenixsecurity22/
presentation/huang-zhicong.

Siam Umar Hussain, Mojan Javaheripi, Mohammad Samragh, and Farinaz Koushanfar. COINN:
Crypto/ML Codesign for Oblivious Inference via Neural Networks. In CCS ’21: 2021 ACM
SIGSAC Conference on Computer and Communications Security, Virtual Event, Republic of Ko-
rea, November 15 - 19, 2021, pp. 3266–3281. ACM, 2021. doi: 10.1145/3460120.3484797. URL
https://doi.org/10.1145/3460120.3484797.

Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha P. Chandrakasan. GAZELLE: A Low Latency
Framework for Secure Neural Network Inference. In 27th USENIX Security Symposium, USENIX
Security 2018, Baltimore, MD, USA, August 15-17, 2018, pp. 1651–1669. USENIX Associ-
ation, 2018. URL https://www.usenix.org/conference/usenixsecurity18/
presentation/juvekar.

Alex Krizhevsky and Geoffrey Hinton. Learning Multiple Layers of Features from Tiny Images.
Technical report, University of Toronto, 2009. URL https://www.cs.toronto.edu/
˜kriz/learning-features-2009-TR.pdf.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet Classification with
Deep Convolutional Neural Networks. In Advances in Neural Information Processing Sys-
tems 25: 26th Annual Conference on Neural Information Processing Systems 2012. Pro-
ceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United States, pp.
1106–1114, 2012. URL https://proceedings.neurips.cc/paper/2012/hash/
c399862d3b9d6b76c8436e924a68c45b-Abstract.html.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.
726791. URL https://doi.org/10.1109/5.726791.

Eunsang Lee, Joon-Woo Lee, Junghyun Lee, Young-Sik Kim, Yongjune Kim, Jong-Seon No,
and Woosuk Choi. Low-Complexity Deep Convolutional Neural Networks on Fully Homo-
morphic Encryption Using Multiplexed Parallel Convolutions. In International Conference on
Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of
Proceedings of Machine Learning Research, pp. 12403–12422. PMLR, 2022. URL https:
//proceedings.mlr.press/v162/lee22e.html.

Jian Liu, Mika Juuti, Yao Lu, and N. Asokan. Oblivious Neural Network Predictions via Min-
iONN Transformations. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017,
pp. 619–631. ACM, 2017. doi: 10.1145/3133956.3134056. URL https://doi.org/10.
1145/3133956.3134056.

Stuart P. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information Theory, 28
(2):129–136, 1982. doi: 10.1109/TIT.1982.1056489. URL https://doi.org/10.1109/
TIT.1982.1056489.

Qian Lou and Lei Jiang. HEMET: A Homomorphic-Encryption-Friendly Privacy-Preserving Mo-
bile Neural Network Architecture. In Proceedings of the 38th International Conference on Ma-
chine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Ma-
chine Learning Research, pp. 7102–7110. PMLR, 2021. URL http://proceedings.mlr.
press/v139/lou21a.html.

11

http://proceedings.mlr.press/v48/gilad-bachrach16.html
http://proceedings.mlr.press/v48/gilad-bachrach16.html
https://doi.org/10.1109/CVPR.2016.90
https://www.usenix.org/conference/usenixsecurity22/presentation/huang-zhicong
https://www.usenix.org/conference/usenixsecurity22/presentation/huang-zhicong
https://doi.org/10.1145/3460120.3484797
https://www.usenix.org/conference/usenixsecurity18/presentation/juvekar
https://www.usenix.org/conference/usenixsecurity18/presentation/juvekar
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://doi.org/10.1109/5.726791
https://proceedings.mlr.press/v162/lee22e.html
https://proceedings.mlr.press/v162/lee22e.html
https://doi.org/10.1145/3133956.3134056
https://doi.org/10.1145/3133956.3134056
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/TIT.1982.1056489
http://proceedings.mlr.press/v139/lou21a.html
http://proceedings.mlr.press/v139/lou21a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Qian Lou, Yilin Shen, Hongxia Jin, and Lei Jiang. SAFENet: A Secure, Accurate and Fast Neural
Network Inference. In 9th International Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.
net/forum?id=Cz3dbFm5u-.

Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On Ideal Lattices and Learning with Errors
over Rings. Journal of the ACM, 60(6):43:1–43:35, 2013. doi: 10.1145/2535925. URL https:
//doi.org/10.1145/2535925.

Nenad Markuš. Fusing batch normalization and convolution in runtime. https://
nenadmarkus.com/p/fusing-batchnorm-and-conv/, 2018.

Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and Raluca Ada Popa.
Delphi: A Cryptographic Inference Service for Neural Networks. In 29th USENIX Security
Symposium, USENIX Security 2020, August 12-14, 2020, pp. 2505–2522. USENIX Associ-
ation, 2020. URL https://www.usenix.org/conference/usenixsecurity20/
presentation/mishra.

Ahmet Murat Özbayoglu, Mehmet Ugur Gudelek, and Omer Berat Sezer. Deep learning for financial
applications : A survey. Applied Soft Computing, 93:106384, 2020. doi: 10.1016/J.ASOC.2020.
106384. URL https://doi.org/10.1016/j.asoc.2020.106384.

Robert Podschwadt, Daniel Takabi, Peizhao Hu, Mohammad Hossein Rafiei, and Zhipeng Cai. A
Survey of Deep Learning Architectures for Privacy-Preserving Machine Learning With Fully Ho-
momorphic Encryption. IEEE Access, 10:117477–117500, 2022. doi: 10.1109/ACCESS.2022.
3219049. URL https://doi.org/10.1109/ACCESS.2022.3219049.

Mauro Ribeiro, Katarina Grolinger, and Miriam A. M. Capretz. MLaaS: Machine Learning as a
Service. In 14th IEEE International Conference on Machine Learning and Applications, ICMLA
2015, Miami, FL, USA, December 9-11, 2015, pp. 896–902. IEEE, 2015. doi: 10.1109/ICMLA.
2015.152. URL https://doi.org/10.1109/ICMLA.2015.152.

Esha Sarkar, Eduardo Chielle, Gamze Gursoy, Leo Chen, Mark Gerstein, and Michail Maniatakos.
Privacy-preserving cancer type prediction with homomorphic encryption. Scientific reports, 13
(1):1661, 2023. doi: 10.1038/s41598-023-28481-8. URL https://doi.org/10.1038/
s41598-023-28481-8.

SEAL. Microsoft SEAL (release 4.1). https://github.com/Microsoft/SEAL, January
2023. Microsoft Research, Redmond, WA.

Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for Large-Scale Image
Recognition. In 3rd International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http://arxiv.
org/abs/1409.1556.

Ian Zhou, Farzad Tofigh, Massimo Piccardi, Mehran Abolhasan, Daniel Robert Franklin, and Justin
Lipman. Secure Multi-Party Computation for Machine Learning: A Survey. IEEE Access, 12:
53881–53899, 2024. doi: 10.1109/ACCESS.2024.3388992. URL https://doi.org/10.
1109/ACCESS.2024.3388992.

12

https://openreview.net/forum?id=Cz3dbFm5u-
https://openreview.net/forum?id=Cz3dbFm5u-
https://doi.org/10.1145/2535925
https://doi.org/10.1145/2535925
https://nenadmarkus.com/p/fusing-batchnorm-and-conv/
https://nenadmarkus.com/p/fusing-batchnorm-and-conv/
https://www.usenix.org/conference/usenixsecurity20/presentation/mishra
https://www.usenix.org/conference/usenixsecurity20/presentation/mishra
https://doi.org/10.1016/j.asoc.2020.106384
https://doi.org/10.1109/ACCESS.2022.3219049
https://doi.org/10.1109/ICMLA.2015.152
https://doi.org/10.1038/s41598-023-28481-8
https://doi.org/10.1038/s41598-023-28481-8
https://github.com/Microsoft/SEAL
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://doi.org/10.1109/ACCESS.2024.3388992
https://doi.org/10.1109/ACCESS.2024.3388992

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs only to improve the wording and readability of the paper. They were not involved in
generating ideas, analysis, or writing beyond basic language edits.

A LEVELED FULLY HOMOMORPHIC ENCRYPTION

Homomorphic Encryption is a special type of encryption that allows meaningful computations
to be performed directly on encrypted data. In this work, we employ the Cheon-Kim-Kim-Song
(CKKS) (Cheon et al., 2017) encryption scheme, specifically the Residue Number System (RNS)
variant (Cheon et al., 2018), which supports approximate arithmetic over encrypted real or com-
plex numbers. CKKS is an FHE scheme based on the Ring-Learning With Errors (RLWE) prob-
lem (Lyubashevsky et al., 2013). The scheme operates across three domains: message M = C,
plaintext P = RQ = ZQ[x]/(x

N +1), and ciphertext C = RQ×RQ spaces. The encoding function
encode(·) = MN/2 7→ P maps a vector of N/2 complex numbers into a degree-N polynomial
in the plaintext space. The encryption function encrypt(·) = P 7→ C transforms a plaintext into
a ciphertext. In RNS-CKKS, the ciphertext modulus Q is decomposed into L + 1 smaller primes
Q =

∏L
i=0 qi, where L denotes the level. A polynomial in RQ is represented as L+ 1 polynomials

in Rqi∀i ∈ [0,L] ∩ Z, which allows computations using native 64-bit integer arithmetic rather than
costly arbitrary-precision operations.

CKKS supports three homomorphic operations: addition, multiplication, and rotation. Additions
and multiplications act element-wise on the encoded vector, similar to SIMD vector operations. The
rotation operation rotates the vector of N/2 encoded messages by a step s ∈ ZN/2. During encod-
ing, coefficients are scaled by a factor ∆, rounded to the nearest integers, and reduced modulo Q,
making CKKS a fixed-point FHE scheme. Multiplying two encoded messages scales the result by
∆2, requiring a rescale operation to restore the scale to ∆. Rescaling removes one RNS modulus,
reducing the level by 1. It also accumulates approximation errors, since the RNS modulus being dis-
carded and the scaling factor ∆ are not equal. When the level reaches zero, bootstrapping can reset
the ciphertext to a higher level, enabling unbounded computation. However, bootstrapping is com-
putationally expensive and avoided when possible. FHE without bootstrapping is called Levelled
Fully Homomorphic Encryption (LFHE). In LFHE, the encryption parameters (N,Q) are chosen
to provide the desired security and sufficient levels for a predefined arithmetic circuit with known
multiplicative depth. To the best of our knowledge, this work is the first to apply LFHE to deep
CNN models like ResNet-20 and ResNet-32.

B CHALLENGES OF USING POLYNOMIAL ACTIVATION

ReLU, defined as ReLU(x) = max(0, x), is one of the most widely used activation functions in
deep learning due to its simplicity and computational efficiency. Its piecewise linear structure in-
troduces the non-linearity necessary for neural networks to capture complex patterns in data. While
ReLU is straightforward to implement in plaintext settings, it poses significant challenges in FHE
environments due to its reliance on conditional branching. FHE can evaluate only polynomial func-
tions as it supports only additions and multiplications, thus, any FHE representation of ReLU must
be a polynomial approximation. Evidently, the higher degree the polynomial, the more precise the
approximation. However, the multiplicative depth of the activation functions grows logarithmically
to the degree of the polynomial used for approximation. Precisely, the multiplicative depth can
be computed as δ = ⌈log2 d + 1⌉, where d denotes the polynomial degree and the +1 refers to the
coefficient multiplication. In the literature, the lowest multiplicative depth for a polynomial approxi-
mation of ReLU is achieved by PILLAR (Diaa et al., 2024), which uses a degree-4 polynomial of the
form

∑4
i=0 cix

i with δ = 3. The theoretical minimum multiplicative depth for an activation func-
tion is one, achieved with a polynomial of the form x2 + c1x+ c0. Polynomials like this have been
effectively used in shallow CNNs like CryptoNets (Gilad-Bachrach et al., 2016) and LoLa (Brutzkus
et al., 2019), but failed to work for deeper models due to the escaping activation problem (Garimella
et al., 2021). In addition, polynomial approximations are inherently limited to bounded intervals of
the input domain. When substituted directly for ReLU during model training, these approximations
often lead to a significant drop in model accuracy (Garimella et al., 2021; Hussain et al., 2021; Diaa
et al., 2024). This section analyzes two primary causes of this degradation: escaping activations,

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

where intermediate layer outputs fall outside the polynomial’s approximation interval and coefficient
truncation, which results from representing polynomial coefficients in fixed-point format to ensure
compatibility with FHE arithmetic.

B.1 ESCAPING ACTIVATION PROBLEM

Let pd(x) =
∑d

k=0 akx
k denote a degree-d polynomial approximation of the ReLU function, where

each coefficient ak ∈ R for all k ∈ {0, . . . , d}. These coefficients are typically obtained by min-
imizing the least-squares error between the polynomial and the ReLU function over a finite set of
real-valued sample points {xi}Ni=1 ⊂ [−c, c], for some parameter c > 0:

min
a0,...,ad

N∑
i=1

(ReLU(xi) − pd(xi))
2

The resulting polynomial pd(x) provides a close approximation to ReLU within the interval [−c, c].
However, outside the interval, the polynomial behavior differs significantly from that of ReLU.
ReLU exhibits piecewise linear growth:

ReLU(x) =

{
0, if x ≤ 0

x, if x > 0
⇒ ReLU(x) = O(x)

In contrast, the growth of pd(x) for d ≥ 2 is polynomial, dominated asymptotically by the highest-
degree term:

pd(x) = adx
d + ad−1x

d−1 + · · · + a1x + a0 = O(xd)

This fundamental mismatch in growth rates gives rise to the problem of escaping activations, first
identified by Garimella et al. (2021). As inputs propagate through the layers of a neural network, the
intermediate values passed into the polynomial activation can escape the intended interval [−c, c],
entering regions where pd(x) no longer approximates ReLU accurately. As a consequence, the
network can produce excessively large activations, which in turn cause exploding weights and rapid
degradation of model performance unless specific modifications are made to the training procedure
to contain them.

B.2 COEFFICIENT TRUNCATION

In privacy-preserving inference based on FHE, all computations are carried out using fixed-point
arithmetic with limited precision. This constraint restricts the range and resolution of values that
can be accurately represented, affecting both the domain of activation function inputs and the magni-
tudes of polynomial approximation coefficients. The polynomial coefficients {ak}dk=0 are typically
derived via floating-point least-squares fitting. To enable fixed-point evaluation under FHE, these
coefficients are quantized using:

ãk =
⌊ak · 2b⌉

2b

where b ∈ N represents the number of fractional bits in the fixed-point format and ⌊·⌉ denotes
rounding to the nearest integer. The least-squares fitting procedure often produces small-magnitude
coefficients, particularly for higher-degree monomials. If any coefficient satisfies |ak| < 2−(b+1),
the quantized value ãk becomes zero. This effectively discards the corresponding monomial xk

from the approximation. This phenomenon, referred to as coefficient truncation (Diaa et al., 2024),
changes the shape of the polynomial and can cause significant deviation from the intended ReLU
behavior, even within the designated approximation interval [−c, c].

C WHY THE PENALTY FUNCTION WORKS?

Lemma 1 (Pre-activation Update Decomposition). Let z(l)p = W (l) h
(l−1)
pd (x) ∈ Rnl denote

the pre-activation vector at layer l for input x. We define two quantities based on this vector: the
clipping residual

d(l) = z(l)p − clip
(
z(l)p ; [−c, c]

)
14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

which measures the amount by which z
(l)
p exceeds the clipping range, and the gradient of the cross-

entropy loss with respect to the pre-activation

g(l) =
∂

∂z
(l)
p

ℓCE (g(x), y)

which captures the sensitivity of the loss to changes in z
(l)
p . After a single gradient-descent update

with learning rate η on the minibatch loss LB, the change in z
(l)
p decomposes as

∆z(l)p = (−η)
∥∥∥h(l−1)

pd
(x)
∥∥∥2
2
g(l)︸ ︷︷ ︸

∆z
(l)
CE

+(−η) ζ
∥∥∥h(l−1)

pd
(x)
∥∥∥2
2

d(l)

∥d(l)∥2︸ ︷︷ ︸
∆z(l)pen

Here, ∆z
(l)
CE is the component induced by the cross-entropy loss, while ∆z

(l)
pen is the component

induced by the clip-range penalty.

Proof. Consider a single training example (x, y), where x is the input and y the corresponding true
label. The total per-sample loss includes two terms:

ℓ(x) = ℓCE (g(x), y) + ζ R
(
z(l)p

)
, R

(
z(l)p

)
=
∥∥∥d(l)∥∥∥

2

The first term is the standard cross-entropy loss computed from the network output g(x). The second
term is a layer-specific penalty that acts only on the pre-activations at layer l, penalizing values that
fall outside the clipping interval. A gradient-descent step with learning rate η updates the weight
matrix by

∆W (l) = −η
∂

∂W (l)
ℓ(x)

= −η

(
∂

∂W (l)
ℓCE (g(x), y) + ζ

∂

∂W (l)
R
(
z(l)p

))
Since z

(l)
p depends linearly on the weights, its Jacobian with respect to W (l) is

∂

∂W (l)
z(l)p =

[
h(l−1)
pd

(x)
]⊤

.

Using the chain rule, the gradient of the cross-entropy term with respect to the weights becomes

∂

∂W (l)
ℓCE (g(x), y) =

∂

∂z
(l)
p

ℓCE (g(x), y)
∂

∂W (l)
z(l)p

= g(l)
[
h(l−1)
pd

(x)
]⊤

The penalty function R
(
z
(l)
p

)
=
∥∥d(l)∥∥

2
is nonzero only when some elements lie outside [−c, c].

Its gradient with respect to z
(l)
p is

∂

∂z
(l)
p

R
(
z(l)p

)
=


d(l)∥∥d(l)∥∥

2

if
∥∥d(l)∥∥

2
> 0,

0 if
∥∥d(l)∥∥

2
= 0.

This expression accounts for the case where the clipping has no effect; that is, when z
(l)
p ∈ [−c, c] el-

ementwise, the clipping residual d(l) becomes zero, and the gradient vanishes accordingly. Applying
the chain rule again, we compute

∂

∂W (l)
R
(
z(l)p

)
=

∂

∂z
(l)
p

R
(
z(l)p

) ∂

∂W (l)
z(l)p

=
d(l)∥∥d(l)∥∥

2

[
h(l−1)
pd

(x)
]⊤

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Putting it all together, we obtain the total gradient-based update for W (l)

∆W (l) = −η

(
g(l) + ζ

d(l)∥∥d(l)∥∥
2

) [
h(l−1)
pd

(x)
]⊤

By definition, the change in pre-activation z
(l)
p after one gradient descent step is given by

∆z(l)p = z(l)p − z(l)p

= W
(l)

h(l−1)
pd

(x) − W (l) h(l−1)
pd

(x)

=
(
W (l) + ∆W (l)

)
h(l−1)
pd

(x) − W (l) h(l−1)
pd

(x)

= ∆W (l) h(l−1)
pd

(x)

where z
(l)
p and W

(l)
are updated pre-activations and weight matrix after one gradient-descent step.

Substituting the previously derived expression for ∆W (l)

∆z(l)p = −η

(
g(l) + ζ

d(l)∥∥d(l)∥∥
2

) [
h(l−1)
pd

(x)
]⊤

h(l−1)
pd

(x)

= −η

(
g(l) + ζ

d(l)∥∥d(l)∥∥
2

) ∥∥∥h(l−1)
pd

(x)
∥∥∥2
2

= (−η)
∥∥∥h(l−1)

pd
(x)
∥∥∥2
2
g(l)︸ ︷︷ ︸

∆z
(l)
CE

+(−η) ζ
∥∥∥h(l−1)

pd
(x)
∥∥∥2
2

d(l)

∥d(l)∥2︸ ︷︷ ︸
∆z(l)pen

we obtain the penalty components ∆z
(l)
CE and ∆z

(l)
pen as mentioned in the lemma. ■

Lemma 2 (Clipping Gradient Pullback). Let ∆z
(l)
pen be the penalty-induced component of the pre-

activation update from Lemma 1, and d(l) be the clipping residual. Then the inner product between
∆z

(l)
pen and d(l) satisfies〈

∆z(l)pen, d
(l)
〉
= − η ζ

∥∥∥h(l−1)
pd

(x)
∥∥∥2
2

∥∥∥d(l)∥∥∥
2

< 0

whenever
∥∥d(l)∥∥

2
̸= 0. Therefore, ∆z

(l)
pen “pulls back” each element of z(l)p lying outside [−c, c]

towards the clipping interval.

Proof. The clipping residual d(l) is defined as the difference between the current pre-activation z
(l)
p

and its clipped version. ∆z
(l)
pen is the component in ∆z

(l)
p induced by the clip-range penalty. Taking

the inner product of ∆z
(l)
pen with the clipping residual d(l) gives〈

∆zpen, d
(l)
〉

=

〈
− η ζ

∥∥∥h(l−1)
pd

(x)
∥∥∥2
2

d(l)∥∥d(l)∥∥
2

, d(l)

〉

= −η ζ
∥∥∥h(l−1)

pd
(x)
∥∥∥2
2

〈
d(l)

∥d(l)∥2
, d(l)

〉
= −η ζ

∥∥∥h(l−1)
pd

(x)
∥∥∥2
2

1∥∥d(l)∥∥
2

⟨d(l), d(l)⟩

= −η ζ
∥∥∥h(l−1)

pd
(x)
∥∥∥2
2

1∥∥d(l)∥∥
2

∥∥∥d(l)∥∥∥2
2

= −η ζ
∥∥∥h(l−1)

pd
(x)
∥∥∥2
2

∥∥∥d(l)∥∥∥
2

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Each factor on the right-hand side: η (learning rate), ζ (regularization parameter),
∥∥∥h(l−1)

pd (x)
∥∥∥2
2

(squared norm of the preceding hidden representation) and
∥∥d(l)∥∥

2
(magnitude of the clipping resid-

ual) is strictly positive whenever any pre-activation lies outside [−c, c]. Hence the entire product is
strictly negative 〈

∆z(l)pen, d
(l)
〉

< 0

A negative inner product implies that ∆z
(l)
pen points in the exact opposite direction of the clipping

residual d(l). Consequently, every out-of-range component of pre-activation z
(l)
p is pulled back

towards the clipping boundary, while pre-activation already within [−c, c] experience no change. ■

D TRAINING STABILITY DURING POLYNOMIAL TRAINING

D.1 PRE-ACTIVATION CLIPPING

During early training stages, network weights remain close to their random initialization, and the
optimization process does not immediately constrain the pre-activation values to lie within the target
approximation interval [−c, c]. As a result, unbounded pre-activations may arise before the model
learns to keep them within range, leading to training instability that can degrade model behavior
beyond recovery. To prevent this, we restrict pre-activations to the interval [−c, c] before evaluating
the polynomial activation, which is achieved through a clipping strategy clip(z; [−c, c]) (Diaa et al.,
2024):

h(l)
pd
(x) = pd

(
clip

(
W (l)h(l−1)

pd
(x); [−c, c]

))
.

Importantly, this clipping operation is applied only during training to stabilize learning. It is per-
formed after computing the clip-range penalty to ensure that gradients from the regularization term,
which encourages the network to keep pre-activations within the approximation interval [−c, c], are
preserved and not masked by the clipping. At inference time, the clipping function is removed:

h(l)
pd
(x) = pd

(
W (l)h(l−1)

pd
(x)
)
.

The model, having learned to constrain pre-activations during training, is expected to remain within
the approximation interval without explicit clipping at inference.

D.2 REGULARIZATION WARM-UP

While activation regularization and pre-activation clipping are both necessary for training stability,
applying the full regularization strength from the outset can lead to numerical instability, particularly
in larger models. In the early epochs, many pre-activation values lie outside the target interval
[−c, c] across several layers. The clip-range penalty adds a contribution from every such layer, so
the penalty term becomes very large. In extreme cases, this can cause the total loss to become
numerically undefined.

To address this issue, the regularization strength ζ is progressively increased over the initial training
epochs, which is implemented through a regularization warm up schedule (Diaa et al., 2024). Let
Twarm denote the total number of warm-up epochs. For each epoch t, we define a time-dependent
regularization weight ζt as:

ζt =

{
αt · ζ if t ≤ Twarm

ζ if t > Twarm
,

where {αt}Twarm
t=1 is a fixed sequence of scaling factors satisfying 0 < α1 < · · · < αTwarm

< 1.
In practice, we empirically find that setting Twarm = 4 provides a stable convergence. We use a
simple predefined sequence of scaling factors: α =

{
1

100 ,
1
50 ,

1
10 ,

1
5

}
, which produces the epoch-

wise regularization strength: ζt ∈
{

ζ
100 ,

ζ
50 ,

ζ
10 ,

ζ
5 , ζ, ζ, . . .

}
. This warm-up schedule ensures that

the regularization penalty is introduced progressively in the initial training epochs without suffering
from exploding loss values.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

E ADDITIONAL DETAILS ON STRUCTURAL OPTIMIZATIONS

E.1 DETAILED DERIVATIONS OF NODE FUSING

Batch normalization in linear form is given by

B(x) = b1x+ b0, b1 =
γ

σ
, b0 = βb − b1µ.

A quadratic activation P (x) serves as a polynomial substitute for ReLU, where P (x) is given by

P (x) = c2x
2 + c1x+ c0.

Case 1: P (B(x)) 7→ P (x). Start with B(x) = b1x+ b0.

P (B(x)) = c2
(
B(x)

)2
+ c1B(x) + c0

= c2(b1x+ b0)
2 + c1(b1x+ b0) + c0

= c2
(
b21x

2 + 2b1b0x+ b20
)
+ c1b1x+ c1b0 + c0

= (c2b
2
1)x

2 +
(
2c2b1b0 + c1b1

)
x+

(
c2b

2
0 + c1b0 + c0

)
.

Resulting polynomial coefficients

p2 = b21c2, p1 = b1(2b0c2 + c1), p0 = b20c2 + b0c1 + c0.

Case 2: B(C(x)) 7→ C(x). Consider a convolution C(x) =
∑

i wixi + βc. When batch normal-
ization is applied, it can be rewritten as a rescaled convolution with updated weights and bias.

B(C(x)) = b1C(x) + b0

= b1

(∑
i

wixi + βc

)
+ b0

=
∑
i

(b1wi)xi + (b1βc + b0).

The equivalent convolution
∑

i ωixi + α uses the following updated parameters

ωi = b1wi, α = b1βc + b0.

Case 3: P (BX(x)+BY (y)) 7→ S(x, y). Define BX(x) = bX1x+ bX0 and BY (y) = bY 1y+ bY 0.
Each of these represents a linearized batch normalization applied to one input variable. Let z =
BX(x) +BY (y) = bX1x+ bY 1y + (bX0 + bY 0). Applying the activation

P (z) = c2z
2 + c1z + c0

= c2
(
bX1x+ bY 1y + bX0 + bY 0

)2
+ c1

(
bX1x+ bY 1y + bX0 + bY 0

)
+ c0.

Expanding the square term

z2 = b2X1x
2 + b2Y 1y

2 + 2bX1bY 1xy + 2bX1(bX0 + bY 0)x+ 2bY 1(bX0 + bY 0)y + (bX0 + bY 0)
2.

Substituting and grouping terms by monomials

P (z) = c2b
2
X1︸ ︷︷ ︸

dX2

x2 + c2b
2
Y 1︸ ︷︷ ︸

dY 2

y2 + 2c2bX1bY 1︸ ︷︷ ︸
dXY

xy

+
[
bX1

(
2c2(bX0 + bY 0) + c1

)]︸ ︷︷ ︸
dX

x+
[
bY 1

(
2c2(bX0 + bY 0) + c1

)]︸ ︷︷ ︸
dY

y

+
[
c2(bX0 + bY 0)

2 + c1(bX0 + bY 0) + c0
]︸ ︷︷ ︸

d0

.

Hence S(x, y) = dX2x
2 + dY 2y

2 + dXY xy + dXx+ dY y + d0 with the coefficients above.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Case 4: P (BX(x) + y) 7→ S(x, y). This is the identity shortcut case. Set BX(x) = bX1x + bX0

and define the combined input as z = BX(x) + y = bX1x+ y + bX0. Applying the activation

P (z) = c2z
2 + c1z + c0.

Expanding the square term

z2 = b2X1x
2 + y2 + 2bX1xy + 2bX1bX0x+ 2bX0y + b2X0.

Substituting and grouping terms by monomials

P (z) = c2b
2
X1︸ ︷︷ ︸

dX2

x2 + c2︸︷︷︸
dY 2

y2 + 2c2bX1︸ ︷︷ ︸
dXY

xy +
[
bX1(2c2bX0 + c1)

]︸ ︷︷ ︸
dX

x

+
[
2c2bX0 + c1

]︸ ︷︷ ︸
dY

y +
[
c2b

2
X0 + c1bX0 + c0

]︸ ︷︷ ︸
d0

.

Hence S(x, y) = dX2x
2 + dY 2y

2 + dXY xy + dXx+ dY y + d0 with the coefficients above.

E.2 DETAILED DERIVATIONS OF WEIGHT REDISTRIBUTION

E.2.1 UPDATE FORWARD

Donors. Average Pooling. Start with µ(x) = k−1
∑

i xi and its normalized form µ̄(x) =
∑

i xi.
We must find υ such that υµ̄(x) = µ(x) is valid

υµ̄(x) = µ(x)

υ
∑
i

xi = k−1
∑
i

xi

υ = k−1.

Polynomial Functions. Let P (x) =
∑d

i=0 cix
i and P̄ (x) = xd +

∑d−1
i=0 c̄ix

i be a degree-d polyno-
mial and its normalization, respectively. For υP̄ (x) = P (x) to hold we have υ given by

υP̄ (x) = P (x)

υ
(
xd +

d−1∑
i=0

c̄ix
i
)
=

d∑
i=0

cix
i

υxd = cdx
d

υ = cd.

The normalized coefficients must satisfy

υP̄ (x) = P (x)

υ
(
xd +

d−1∑
i=0

c̄ix
i
)
=

d∑
i=0

cix
i

υc̄ix
i = cix

i

c̄i = ciυ
−1 ∀i ∈ {0, . . . , d− 1}.

Bivariate Polynomial. Consider the degree-d bivariate polynomial S(x, y) =
∑d

i=0

∑d−i
j=0 cijx

iyj ,

and let S̄(x, y) = xd +
∑d−1

i=0

∑d−i
j=0 c̄ijx

iyj be its normalization on x (normalizing on y is equiva-
lent). As in the univariate case, we require υS̄(x, y) = S(x, y). Thus, υ is determined by

υS̄(x, y) = S(x, y)

υ
(
xd +

d−1∑
i=0

d−i∑
j=0

c̄ijx
iyj
)
=

d∑
i=0

d−i∑
j=0

cijx
iyj

υxd = cd0x
d

υ = cd0.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

The normalized coefficients are obtained through

υS̄(x, y) = S(x, y)

υ
(
xd +

d−1∑
i=0

d−i∑
j=0

c̄ijx
iyj
)
=

d∑
i=0

d−i∑
j=0

cijx
iyj

υc̄ijx
iyj = cijx

iyj

c̄ij = cijυ
−1 ∀i ∈ {0, . . . , d− 1}, ∀j ∈ {0, . . . , d− i}.

Receivers. Kernel Functions. Let K(x) =
∑

i∈I wixi + β be the original kernel function and
K̄(x) =

∑
i∈I w̄ixi + β̄ its updated version. To ensure model equivalence, it must hold that

K̄(υ−1x) = K(x). Therefore, the updated parameters are given as follows

K̄(υ−1x) = K(x)∑
i∈I

w̄iυ
−1xi + β̄ =

∑
i∈I

wixi + β

w̄iυ
−1xi = wixi

w̄i = wiυ ∀i ∈ I, β̄ = β.

Polynomial Functions. For a degree-d polynomial receiver P (x) =
∑d

i=0 cix
i, the coefficients of

its updated version P̄ (x) =
∑d

i=0 c̄ix
i must be chosen such that P̄ (υ−1x) = P (x) holds

P̄ (υ−1x) = P (x)

d∑
i=0

c̄i(υ
−1x)i =

d∑
i=0

cix
i

c̄iυ
−ixi = cix

i

c̄i = ciυ
i ∀i ∈ {0, . . . , d}.

Bivariate Polynomial. For a degree-d bivariate polynomial S(x, y) =
∑d

i=0

∑d−i
j=0 cijx

iyj and

its updated version S̄(x, y) =
∑d

i=0

∑d−i
j=0 c̄ijx

iyj ,, normalizing with respect to x requires that
S̄(υ−1x, y) = S(x, y). Consequently, the coefficients of S̄(·) are

S̄(υ−1x, y) = S(x, y)

d∑
i=0

d−i∑
j=0

c̄ij(υ
−1x)iyj =

d∑
i=0

d−i∑
j=0

cijx
iyj

c̄ijυ
−ixiyj = cijx

iyj

c̄ij = cijυ
i ∀i ∈ {0, . . . , d},∀j ∈ {0, . . . , d− i}.

E.2.2 UPDATE BACKWARD

Donors. Average Pooling. Start with µ(x) = k−1
∑

i xi and its normalization µ̄(x) =
∑

i xi. We
must determine υ such that µ̄(υx) = µ(x) holds

µ̄(υx) = µ(x)∑
i

υxi = k−1
∑
i

xi

υ
∑
i

xi = k−1
∑
i

xi

υ = k−1.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Polynomial Functions. For a degree-d polynomial donor P (·), the equality P̄ (υx) = P (x) must be
satisfied, where P̄ (·) is the normalized version. The appropriate υ is found from

P̄ (υx) = P (x)

(υx)d +

d−1∑
i=0

c̄i(υx)
i =

d∑
i=0

cix
i

υdxd = cdx
d

υ = c
1/d
d .

and the normalized coefficients are
P̄ (υx) = P (x)

(υx)d +

d−1∑
i=0

c̄i(υx)
i =

d∑
i=0

cix
i

c̄iυ
ixi = cix

i

c̄i = ciυ
−i ∀i ∈ {0, . . . , d− 1}.

Bivariate Polynomial. Assuming normalization along x, we require S̄(υx, y) = S(x, y) for the
degree-d bivariate polynomial S(x, y) and its normalization S̄(x, y). For that, υ is determined from

S̄(υx, y) = S(x, y)

(υx)d +

d−1∑
i=0

d−i∑
j=0

c̄ij(υx)
iyj =

d∑
i=0

d−i∑
j=0

cijx
iyj

υdxd = cd0x
d

υ = c
1/d
d0 .

with the normalized coefficients being

S̄(υx, y) = S(x, y)

(υx)d +

d−1∑
i=0

d−i∑
j=0

c̄ij(υx)
iyj =

d∑
i=0

d−i∑
j=0

cijx
iyj

c̄ijυ
ixiyj = cijx

iyj

c̄ij = cijυ
−i ∀i ∈ {0, . . . , d− 1}, ∀j ∈ {0, . . . , d− i}.

Receivers. Kernel Functions. Let K(x) =
∑

i∈I wixi+β and K̄(x) =
∑

i∈I w̄ixi+ β̄ be a kernel
function and its updated version. To preserve model equivalence, we require K̄(x) = υK(x), thus

K̄(x) = υK(x)∑
i∈I

w̄ixi + β̄ = υ
(∑

i∈I
wixi + β

)
w̄ixi = υwixi

w̄i = wiυ ∀i ∈ I, β̄ = βυ.

Polynomial Functions. For a degree-d polynomial receiver P (x) =
∑d

i=0 cix
i, the updated polyno-

mial P̄ (x) =
∑d

i=0 c̄ix
i must satisfy P̄ (x) = υP (x). This yields

P̄ (x) = υP (x)

d∑
i=0

c̄ix
i = υ

d∑
i=0

cix
i

c̄ix
i = υcix

i

c̄i = ciυ ∀i ∈ {0, . . . , d}.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Bivariate Polynomial. For a degree-d bivariate polynomial S(x, y) =
∑d

i=0

∑d−i
j=0 cijx

iyj and its

updated version S̄(x, y) =
∑d

i=0

∑d−i
j=0 c̄ijx

iyj , we require S̄(x, y) = υS(x, y). Therefore

S̄(x, y) = υS(x, y)

d∑
i=0

d−i∑
j=0

c̄ijx
iyj = υ

d∑
i=0

d−i∑
j=0

cijx
iyj

c̄ijx
iyj = υcijx

iyj

c̄ij = cijυ ∀i ∈ {0, . . . , d},∀j ∈ {0, . . . , d− i}.

E.3 EXAMPLE OF TOWER REUSE

Suppose following an activation function, there is a convolution. Let modulus qi ≈ ∆2, thus λ(qi) =
2. Consider an input x with scaling factor ∆x = ∆, giving λ(x) = 1. Applying a quadratic
activation y = x2 + c1x+ c0 yields λ(y) = 2, with λ(c1) = 1 and λ(c0) = 2. Next, a convolution
z =

∑
i ωiyi + α is performed. Since λ(y) = 2, by setting λ(ω) = 1, we obtain λ(z) = 3.

As λ(z) > λ(qi), a rescale is triggered. The rescale operation drops qi from the modulus chain,
reducing the level Λ(·) by one and resetting the sublevel to one:

Λ(↓ z) = Λ(z)− 1, λ(↓ z) = λ(z)− λ(qi) = 1.

In terms of ∆, a ciphertext z with ∆z = ∆3 rescaled by qi ≈ ∆2 results in output scale ∆↓z ≈ ∆.

E.4 LEVEL ANALYSIS

Table 1: Number of levels required for multiplications in ResNet models. P4: Degree-4 polynomial
activation used in PILLAR (Diaa et al., 2024). P2: Degree-2 polynomial activation (§2). P2F : P2

with node fusing (§3.1). P2R: P2 with weight redistribution (§3.2). P2FR: P2 with node fusing
and weight redistribution. P2FRT : P2FR with tower reuse (§3.3).

Model P4 P2 P2F P2R P2FR P2FRT
ResNet-18 87 70 53 35 35 18
ResNet-20 97 78 59 39 39 20
ResNet-32 157 126 95 63 63 32

Table 1 summarizes the number of levels L required for multiplication across different ResNet vari-
ants under various optimization techniques. To illustrate, we focus on ResNet-18, which comprises
17 convolutional layers, batch normalization layers, and activation functions, along with a single
average pooling and linear layer:

• P4: Prior work achieving the lowest L (Diaa et al., 2024) uses a degree-4 polynomial as activation
function. This results in L = 87, with each convolution, batch normalization, average pooling,
and linear layer contributing L = 1, and the polynomial activation L = 3.

• P2: By replacing the activation function with a degree-2 polynomial, as described in §2, the
required level for activations drops to 2, reducing the model L to 70.

• P2F : Applying node fusing (§3.1) to P2 removes all batch normalizations, lowering L to 53.
• P2R: Alternatively, applying weight redistribution (§3.2) to P2 yields L = 35. This is achieved

because the highest-order coefficients in batch normalization and polynomial activations are nor-
malized to one, simplifying them to x + b0 (L = 0) and x2 + c1x + c0 (L = 1), respectively.
Moreover, the divisor in average pooling is also normalized to one, giving it L = 0. These sim-
plifications collectively result in L = 35.

• P2FR: Combining node fusing and weight redistribution retains L = 35. However, it requires
fewer homomorphic operations overall, since node fusing eliminates batch normalizations entirely.

• P2FRT : Finally, applying tower reuse (§3.3) to P2FR allows a non-linear polynomial activation
followed by a linear kernel function to share the same level. This halves the total levels to L = 18,
following LP2FRT = ⌈LP2FR

2 ⌉ for ResNet models.

In summary, our techniques reduce levels by nearly a factor of five compared to prior work.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

F ILLUSTRATION OF SLICE-WISE CLUSTERING

F.1 SINGLE MODEL SLICE CLUSTERING

Figure 3 illustrates how convolution filters are divided into slices along the width axis Wl, with each
colored slice S

(l)
s clustered independently using its own codebook. Each 3D block in the figure

corresponds to a convolution filter associated with one output channel. The three axes correspond
to kernel height Hl (vertical), kernel width Wl (horizontal), and input channels Il (depth). The
collection of such filters forms the output channels Ol. Slices are taken as vertical strips along the
width axis Wl, and the figure highlights them with distinct colors. The blue strip corresponds to slice
S
(l)
1 , the yellow strip to slice S(l)

2 , and the pink strip to slice S(l)
3 . Each slice S(l)

s groups together all
weights W (l)

o,i,h,s across output channels Ol, input channels Il, and kernel height Hl at a fixed width

position s, and is clustered independently with its own codebook C(l)
s . This illustration emphasizes

that clustering is performed slice by slice, rather than across the entire filter volume.

Figure 3: Illustration of single model slice-wise clustering.

F.2 ENSEMBLE SLICE CLUSTERING

Figure 4 illustrates how slice-wise clustering is extended from a single model to an ensemble of
polynomial networks. Each 3D block corresponds to the convolution filters of one model instance,
spanning kernel height Hl (vertical), kernel width Wl (horizontal), and input channels Il (depth).
The collection of such filters across output channels Ol forms the layer weights W (l,m) for model
m. For a fixed layer l, slices are again taken as vertical strips along the width axis Wl, with colors
indicating different slices S

(l,m)
s within each model. Unlike the single-model case, however, we

now align slices from multiple models at the same width position s and stack them together. This
produces a slice matrix X

(l)
s ∈ RNs×M , where each row corresponds to one weight coordinate

across all M models, and Ns = OlIlHl. Clustering is performed jointly in RM , producing a shared
codebook C(l)

s for slice s. The illustration emphasizes that ensemble clustering is not applied to each
model independently. Instead, slices are stacked across models at the same spatial position, and
clustering is performed jointly.

G ABLATION STUDY

G.1 ABLATION ON CLIPPING RANGE (VALUE OF c)

We conduct an ablation study to evaluate the effect of the clipping interval [−c, c] on model per-
formance. The choice of c determines how much of the activation distribution is preserved versus
truncated: if c is too small, informative activations are excessively clipped, which can harm rep-
resentational capacity, while if c is too large, the clipping mechanism provides little stabilization
benefit, allowing unstable activations to propagate. Figure 5 shows the results for CIFAR-10 with
ResNet-18. Figure 5a presents the distribution of pre-activation inputs to ReLU across the entire
network, where the values are concentrated within the interval [−2, 2] and only a small fraction lies
outside this range, supporting the choice of restricting pre-activations to [−2, 2]. Figure 5b reports
the accuracy obtained under different clipping intervals. While several ranges were tested, [−2, 2]
consistently achieved the highest mean accuracy across runs. Smaller intervals degraded perfor-
mance by removing too many activations, whereas larger intervals reduced stability and resulted in
lower accuracy. The same trend holds across other dataset–architecture combinations. Based on
these observations, we adopt [−2, 2] as the clipping range in all our experiments.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

St
ac

ke
d

Sl
ic

es
 fo

r C
lu

st
er

in
g

Figure 4: Illustration of ensemble slice-wise clustering.

4 2 0 2 4
Input Value

0

2

4

6

Fr
eq

ue
nc

y

1e8

(a)

1 2 3 4 5 6 7 8 9 10
Clip Range

91

92

93
Ac

cu
ra

cy
 (%

)

Mean Accuracy
Standard Deviation

(b)
Figure 5: Results of the clipping range ablation study on CIFAR-10 with ResNet-18. (a) Distribution
of pre-activation inputs to ReLU across the entire network, showing concentration within [−2, 2].
(b) Test accuracy under different clipping intervals, where [−2, 2] produces the best performance.

10 9 10 7 10 5 10 3 10 1

Penalty ()

20

40

60

80

Ac
cu

ra
cy

 (%
)

Mean Accuracy
Standard Deviation

Figure 6: Results of the penalty strength ablation study on CIFAR-10 with ResNet-18, showing test
accuracy across different values of ζ. The best performance is achieved at ζ = 10−3; smaller values
fail to regularize effectively, while larger values start to decrease accuracy.

G.2 ABLATION ON PENALTY STRENGTH (VALUE OF ζ)

We conduct an ablation study to evaluate the effect of the penalty strength ζ on model performance.
The parameter ζ controls the magnitude of the regularization term that penalizes pre-activations out-
side the target interval [−c, c]. Figure 6 shows the results for CIFAR-10 with ResNet-18. The highest
accuracy is obtained for ζ = 10−3. Values smaller than 10−3 do not provide sufficient regularization
and result in poor accuracy, while values greater than 10−3 start decreasing performance, indicating
that excessive penalization constrains the model too strongly. The same trend holds across other
dataset–architecture combinations. Based on these results, we set ζ = 10−3 in all our experiments.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

G.3 COMPARISON WITH PILLAR
We evaluate PILLAR using its open-source implementation (git, 2024b). PILLAR is designed for
interactive PPML, which is a different use case from our non-interactive setting, and its repository
does not provide code for private inference. For these reasons, we compare only in terms of accu-
racy and do not evaluate inference time. Table 2 reports accuracies (mean ± standard deviation)
for ResNet-18, ResNet-20, and ResNet-32 on CIFAR-10 and CIFAR-100 using ReLU, PAPER (our
method), and two versions of PILLAR. The original PILLAR is defined with a degree-4 polynomial.
For a fair comparison, we additionally adapted this implementation to use a degree-2 polynomial, al-
lowing a direct comparison to PAPER. On average, the adapted degree-2 version shows an accuracy
drop of 6.5% with very high variance, particularly on CIFAR-100. The original degree-4 version is
more stable but still falls short of ReLU by about 5.4% on average. In contrast, PAPER with degree-
2 consistently stays much closer to ReLU, with only about a 1.3% drop on average. Importantly,
PAPER remains stable across both datasets and all ResNet variants, avoiding the large fluctuations
seen in PILLAR. These results demonstrate that while PAPER can exploit low-degree polynomials
effectively, PILLAR either collapses when reduced to degree 2 or, in its intended degree-4 form,
does not reach comparable accuracy.

Table 2: Classification accuracies (mean ± standard deviation) on CIFAR-10 and CIFAR-100 for
ResNet-18, ResNet-20, and ResNet-32 using ReLU, PAPER (degree-2), and two versions of PIL-
LAR. The original PILLAR method is degree-4 (Diaa et al., 2024), while the degree-2 variant is our
adaptation of its open-source implementation for comparison.

Model Dataset ReLU PAPER PILLAR (d = 2) PILLAR (d = 4)

ResNet-18 CIFAR-10 94.57 ± 0.23 93.73 ± 0.27 91.78 ± 0.13 93.26 ± 0.15
CIFAR-100 76.22 ± 0.44 74.96 ± 0.51 71.92 ± 0.28 74.81 ± 0.22

ResNet-20 CIFAR-10 94.84 ± 0.25 94.06 ± 0.26 90.43 ± 0.40 90.98 ± 0.29
CIFAR-100 74.96 ± 0.36 73.89 ± 0.37 62.30 ± 3.96 62.55 ± 7.51

ResNet-32 CIFAR-10 95.23 ± 0.30 93.86 ± 0.24 90.40 ± 1.73 92.24 ± 0.27
CIFAR-100 76.58 ± 0.40 73.93 ± 0.53 66.38 ± 1.78 66.10 ± 1.12

H ADDITIONAL EXPERIMENTAL RESULTS

H.1 ADDITIONAL DETAILS OF FHE PARAMETERS

For each model, we detail the encryption parameters used in our experiments. Our framework
automatically determines the RNS moduli according to the specified sizes |qi|. We chose the smallest
values of ∆ and |qi| that preserve accuracy during private inference and adjust N for ≈128-bit
security. The moduli are ordered as q0, . . . , qL, P , where q0 holds the output, q1, . . . , qL are for
rescaling, and P is for modulus expansion in relinearization. FHE terminology is provided in §A.

ResNet-18: N = 215, ∆ = 222, log2 Q = 18 · 44 + 23 + 54 = 869. Moduli: {0x100000020001,
0x100000050001, 0x100000090001, 0x1000000b0001, 0xfffffcf0001, 0x100000180001,
0x1000001a0001, 0xfffffc60001, 0x1000002c0001, 0xfffffb70001, 0x1000002d0001,
0x1000003c0001, 0xfffffb50001, 0x1000003e0001, 0xfffffaf0001, 0x100000480001, 0xffff-
fac0001, 0x100000570001, 0x820001, 0x3fffffffd60001}.

ResNet-20: N = 215, ∆ = 221, log2 Q = 20 · 42 + 22 + 44 = 906. Moduli: {0x400000b0001,
0x3ffffe80001, 0x400002f0001, 0x3ffffd20001, 0x40000330001, 0x3ffffca0001, 0x40000390001,
0x3ffffc30001, 0x400003b0001, 0x3ffffbe0001, 0x400004d0001, 0x3ffff850001, 0x40000560001,
0x400005c0001, 0x3ffff7b0001, 0x400006c0001, 0x3ffff550001, 0x40000770001, 0x3ffff4f0001,
0x400007a0001, 0x390001, 0x100000020001}.

ResNet-32: N = 216, ∆ = 226, log2 Q = 32 · 52 + 27 + 54 = 1745. Moduli:
{0x10000000060001, 0xffffffff00001, 0x10000000180001, 0xfffffffe40001, 0x10000000200001,
0xfffffffe20001, 0x100000003e0001, 0xfffffffbe0001, 0x10000000500001, 0xfffffffa60001,
0x100000006e0001, 0xfffffff820001, 0x100000007e0001, 0xfffffff480001, 0x10000000960001,
0xfffffff280001, 0x10000000c80001, 0x10000000d80001, 0xffffffed60001, 0x10000000ec0001,
0xffffffec40001, 0x10000000fc0001, 0xffffffeb00001, 0x100000010e0001, 0xffffffe9e0001,
0x10000001380001, 0xffffffe9a0001, 0x100000016a0001, 0xffffffe940001, 0x10000001bc0001,
0xffffffe6a0001, 0x10000001be0001, 0x8020001, 0x3fffffffd60001}.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

210 21292.0

92.5

93.0

93.5

94.0

Ac
cu

ra
cy

 (%
)

Clustering

210 21292.0

93.0

94.0

95.0 Ensemble

210 21292.0

93.0

94.0

95.0

CI
FA

R-
10

Comparison

210 212

Inference Time (s)

73.5

74.0

74.5

75.0

75.5

Ac
cu

ra
cy

 (%
)

210 212

Inference Time (s)

74.0

75.0

76.0

77.0

78.0

210 212

Inference Time (s)

74.0

75.0

76.0

77.0

78.0

CI
FA

R-
10

0

Standard M=1
Standard M=2
Standard M=4

Slice M=1
Slice M=2
Slice M=4

Full Clustering
k=16
k=32

k=64
k=128
k=256

k=512
k=1024
k=2048

k=4096
k=8192

Figure 7: Accuracy vs. private inference time for ResNet-18 on CIFAR-10/100. Ensembles are
evaluated with M ∈ {1, 2, 4} (M = 1 is a single model). We compare Standard ensembles (no
clustering), Slice ensembles (slice-wise clustering), and Full Clustering. Colored squares represent
centroid counts (k = 16, . . . , 8192), and the same color is used for the same centroid count in both
slice and full clustering. The green dashed line shows plaintext ReLU accuracy.

H.2 RESULTS ON RESNET18

Figure 7 shows the trade-offs between accuracy and inference time for ResNet-18 on CIFAR-10 and
CIFAR-100. Results show similar traits to ResNet-20, leading to similar conclusions. In the cluster-
ing plots (left column), both Full and Slice Clustering reduce inference time compared to Standard.
At small centroid counts (k ≤ 32), accuracy drops noticeably due to a lack of representative cen-
troids. Slice Clustering consistently achieves higher accuracy than Full Clustering, benefiting from
its finer-grained parameter representation. When the centroid count is sufficiently large (k ≥ 64),
Slice Clustering reaches the accuracy of Standard while still reducing latency substantially.

The middle column plots compare Standard and Slice Clustering ensembles with M ∈ {1, 2, 4}.
Standard gains accuracy as M increases, while Slice Clustering shows more variable behavior be-
cause each centroid encodes an M -dimensional parameter space; e.g. Slice-4 underperforms relative
to Slice-2 for small k. Slice Clustering provides a regularization benefit and, with larger centroid
counts, Slice-2 achieves higher accuracy than Standard-2 and nearly matches Standard-4.

The right column presents the Pareto front of Slice Clustering and compares it to Standard-4. Slice
Clustering shifts the curve toward lower latency while staying close to Standard in accuracy. On
both datasets, Slice Clustering fully recovers plaintext ReLU accuracy and sometimes even surpasses
it, demonstrating that accuracy can be preserved while reducing inference time.

H.3 EXPERIMENTAL RESULTS

Tables 3, 4, and 5 report the accuracy, inference time, and peak memory usage of ResNet-18,
ResNet-20, and ResNet-32, respectively, on the CIFAR-10 and CIFAR-100 datasets using the Stan-
dard, Full Clustering, and Slice Clustering methods. For Full Clustering and Slice Clustering, we
varied the number of centroids as k = 2i ∀i ∈ {1, . . . , 10}. For Standard and Slice Clustering,
we additionally evaluated ensemble models with M ∈ 1, 2, 4. In the case of Slice Clustering with
M ≥ 2, we extended the centroid range to k = 2i ∀i ∈ {1, . . . , 12} in ResNet-18 and ResNet-20.
We did not extend this configuration to ResNet-32 due to system memory limitations (§5.1).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 3: Accuracy, inference time, and peak memory for CIFAR-10 and CIFAR-100 on ResNet-18.

Standard Standard

M Accuracy (%) Inf. Time (s) Memory M Accuracy (%) Inf. Time (s) Memory
µ σ µ σ (GB) µ σ µ σ (GB)

1 93.73 0.27 3925 51 292 1 74.96 0.51 3935 79 338
2 94.34 0.16 3930 54 314 2 76.48 0.28 3874 40 355
4 94.69 0.12 3840 44 347 4 77.43 0.24 3929 54 390

Full Clustering (M = 1) Full Clustering (M = 1)

k Accuracy (%) Inf. Time (s) Memory k Accuracy (%) Inf. Time (s) Memory
µ σ µ σ (GB) µ σ µ σ (GB)

2 10.16 0.72 404 16 197 2 1.00 0.07 414 25 240
4 10.14 0.89 406 18 200 4 1.02 0.12 413 17 242
8 9.91 1.48 420 31 202 8 1.08 0.17 426 23 244

16 15.89 7.51 427 27 204 16 2.01 1.10 430 25 244
32 70.18 14.19 439 28 204 32 32.33 13.66 441 23 246
64 91.42 1.25 481 31 204 64 68.01 4.00 484 34 246

128 93.24 0.29 530 34 205 128 72.62 1.04 554 41 247
256 93.53 0.26 619 36 209 256 73.98 0.68 646 44 250
512 93.65 0.25 719 40 221 512 74.50 0.70 773 53 263
1024 93.69 0.28 856 34 245 1024 74.65 0.69 926 58 286

Slice Clustering (M = 1) Slice Clustering (M = 1)

k Accuracy (%) Inf. Time (s) Memory k Accuracy (%) Inf. Time (s) Memory
µ σ µ σ (GB) µ σ µ σ (GB)

2 9.79 0.76 418 32 198 2 1.07 0.17 426 16 239
4 12.66 3.02 409 23 200 4 2.76 1.17 413 13 242
8 81.28 6.04 412 23 203 8 42.21 13.71 420 24 244

16 92.25 0.68 420 19 204 16 69.28 2.37 443 25 246
32 93.36 0.33 456 28 204 32 72.85 0.92 466 27 245
64 93.62 0.27 504 30 204 64 74.31 0.77 520 31 246

128 93.70 0.26 586 30 205 128 74.61 0.73 602 36 248
256 93.70 0.28 696 34 214 256 74.68 0.71 724 39 256
512 93.73 0.27 855 58 232 512 74.69 0.73 874 49 274
1024 93.72 0.27 1016 57 266 1024 74.71 0.74 1066 66 308

Slice Clustering (M = 2) Slice Clustering (M = 2)

k Accuracy (%) Inf. Time (s) Memory k Accuracy (%) Inf. Time (s) Memory
µ σ µ σ (GB) µ σ µ σ (GB)

64 92.59 0.45 520 43 222 64 68.93 1.94 524 10 263
128 93.85 0.15 597 38 222 128 74.47 0.59 622 23 263
256 94.35 0.10 695 22 230 256 75.79 0.43 734 51 273
512 94.50 0.09 854 28 250 512 76.35 0.18 871 37 292
1024 94.60 0.08 1045 61 284 1024 76.67 0.12 1049 23 326
2048 94.73 0.07 1164 36 394 2048 76.82 0.14 1202 72 435
4096 94.78 0.04 1268 42 643 4096 76.90 0.08 1308 18 681
8192 94.77 0.05 1482 59 1148 8192 76.97 0.07 1440 13 1174

Slice Clustering (M = 4) Slice Clustering (M = 4)

k Accuracy (%) Inf. Time (s) Memory k Accuracy (%) Inf. Time (s) Memory
µ σ µ σ (GB) µ σ µ σ (GB)

64 18.38 4.80 526 27 256 64 1.73 0.41 538 26 297
128 35.79 8.02 621 45 258 128 5.31 0.94 615 27 299
256 66.88 5.19 728 51 265 256 29.69 2.16 750 47 308
512 84.28 2.38 866 28 285 512 57.88 2.20 885 16 326
1024 91.47 0.46 1035 69 319 1024 68.98 1.13 1057 46 360
2048 93.10 0.21 1211 57 428 2048 73.96 0.38 1195 64 469
4096 94.11 0.14 1298 17 679 4096 75.93 0.22 1263 24 716
8192 94.55 0.11 1509 22 1183 8192 76.66 0.12 1355 17 1208

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 4: Accuracy, inference time, and peak memory for CIFAR-10 and CIFAR-100 on ResNet-20.

Standard Standard

M Accuracy (%) Inf. Time (s) Memory M Accuracy (%) Inf. Time (s) Memory
µ σ µ σ (GB) µ σ µ σ (GB)

1 94.06 0.26 1886 30 279 1 73.89 0.37 1902 26 305
2 94.71 0.11 1884 41 300 2 76.59 0.25 1874 27 320
4 95.04 0.10 1886 32 330 4 77.97 0.13 1904 30 351

Full Clustering (M = 1) Full Clustering (M = 1)

k Accuracy (%) Inf. Time (s) Memory k Accuracy (%) Inf. Time (s) Memory
µ σ µ σ (GB) µ σ µ σ (GB)

2 10.08 0.26 242 10 175 2 1.03 0.07 246 6 208
4 10.08 0.32 246 6 190 4 1.08 0.23 246 9 211
8 10.17 0.89 250 12 192 8 1.17 0.24 252 7 212

16 14.44 6.34 260 13 192 16 2.05 1.58 258 8 213
32 78.18 8.99 264 7 193 32 32.59 14.07 272 16 214
64 92.46 0.95 288 10 193 64 68.18 3.24 290 11 214

128 93.77 0.37 334 12 194 128 71.56 1.19 334 15 214
256 94.00 0.26 407 22 198 256 73.39 0.49 392 9 218
512 94.02 0.26 475 18 212 512 73.75 0.35 473 20 232
1024 94.05 0.26 553 25 248 1024 73.85 0.35 563 28 264

Slice Clustering (M = 1) Slice Clustering (M = 1)

k Accuracy (%) Inf. Time (s) Memory k Accuracy (%) Inf. Time (s) Memory
µ σ µ σ (GB) µ σ µ σ (GB)

2 10.05 0.41 249 18 186 2 1.12 0.22 254 10 207
4 14.59 4.33 244 7 190 4 2.11 0.62 255 13 210
8 85.17 2.66 247 7 192 8 49.94 5.99 264 21 212

16 93.20 0.45 262 6 193 16 69.60 1.71 262 7 214
32 93.87 0.32 276 9 194 32 72.98 0.45 292 12 214
64 94.01 0.28 314 9 194 64 73.68 0.38 323 13 214

128 94.01 0.28 366 14 194 128 73.85 0.38 377 18 215
256 94.04 0.27 442 10 205 256 73.89 0.34 452 17 226
512 94.05 0.26 536 26 226 512 73.89 0.36 538 10 247
1024 94.05 0.26 612 19 288 1024 73.88 0.36 626 21 309

Slice Clustering (M = 2) Slice Clustering (M = 2)

k Accuracy (%) Inf. Time (s) Memory k Accuracy (%) Inf. Time (s) Memory
µ σ µ σ (GB) µ σ µ σ (GB)

64 92.52 0.56 312 9 209 64 68.98 0.97 321 14 230
128 94.34 0.10 370 8 211 128 74.31 0.44 380 16 230
256 94.81 0.08 443 20 219 256 76.08 0.25 464 7 241
512 94.93 0.08 531 31 242 512 76.65 0.19 541 22 263
1024 95.08 0.07 611 14 304 1024 76.99 0.11 614 22 324
2048 95.11 0.06 679 7 458 2048 77.16 0.13 690 23 476
4096 95.08 0.04 814 60 768 4096 77.12 0.12 746 17 781
8192 95.08 0.03 885 37 1389 8192 77.23 0.09 897 26 1390

Slice Clustering (M = 4) Slice Clustering (M = 4)

k Accuracy (%) Inf. Time (s) Memory k Accuracy (%) Inf. Time (s) Memory
µ σ µ σ (GB) µ σ µ σ (GB)

64 12.79 2.88 332 14 240 64 1.72 0.48 341 13 261
128 25.95 4.81 389 7 242 128 3.86 0.96 407 10 262
256 57.23 3.93 455 21 251 256 19.97 2.42 463 19 271
512 83.18 1.59 534 10 274 512 52.26 2.81 546 8 294
1024 91.45 0.46 603 18 335 1024 68.37 0.63 631 14 356
2048 93.89 0.26 648 9 489 2048 73.73 0.53 673 11 508
4096 94.65 0.16 722 12 799 4096 76.44 0.31 765 9 813
8192 94.90 0.10 815 17 1421 8192 77.62 0.17 855 16 1421

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 5: Accuracy, inference time, and peak memory for CIFAR-10 and CIFAR-100 on ResNet-32.

Standard Standard

M Accuracy (%) Inf. Time (s) Memory M Accuracy (%) Inf. Time (s) Memory
µ σ µ σ (GB) µ σ µ σ (GB)

1 93.86 0.24 9405 109 1332 1 73.93 0.53 8865 132 1401
2 94.69 0.18 8854 80 1394 2 76.79 0.34 8784 60 1429
4 94.99 0.13 8813 63 1441 4 78.34 0.23 8776 9 1438

Full Clustering (M = 1) Full Clustering (M = 1)

k Accuracy (%) Inf. Time (s) Memory k Accuracy (%) Inf. Time (s) Memory
µ σ µ σ (GB) µ σ µ σ (GB)

2 10.12 0.22 1578 63 842 2 0.98 0.07 1544 5 889
4 10.13 0.21 1538 3 867 4 0.98 0.07 1577 20 908
8 10.12 0.22 1588 79 879 8 0.97 0.07 1540 24 914

16 10.35 1.35 1570 8 893 16 1.03 0.21 1547 27 929
32 37.13 16.87 1578 3 898 32 3.91 2.63 1565 13 942
64 86.61 3.69 1703 80 901 64 52.92 7.49 1686 44 945

128 92.82 0.47 2131 27 902 128 70.26 1.24 1819 5 947
256 93.70 0.32 2164 151 916 256 73.18 0.38 2013 33 954
512 93.84 0.27 2495 164 987 512 73.75 0.37 2381 70 1020
1024 93.86 0.26 2898 174 1155 1024 73.89 0.33 2822 53 1159

Slice Clustering (M = 1) Slice Clustering (M = 1)

k Accuracy (%) Inf. Time (s) Memory k Accuracy (%) Inf. Time (s) Memory
µ σ µ σ (GB) µ σ µ σ (GB)

2 10.12 1.07 1605 57 857 2 0.99 0.08 1559 11 894
4 10.00 0.99 1573 24 879 4 1.00 0.09 1526 27 920
8 34.61 12.19 1601 65 893 8 9.67 5.64 1586 11 936

16 89.08 2.44 1559 6 901 16 60.50 4.61 1576 8 942
32 93.12 0.49 1761 90 902 32 71.75 0.80 1679 19 946
64 93.75 0.29 1833 54 905 64 73.49 0.36 1803 9 947

128 93.84 0.26 2077 111 905 128 73.83 0.33 2027 30 946
256 93.86 0.27 2488 185 950 256 73.91 0.33 2379 83 993
512 93.85 0.25 2849 128 1060 512 73.93 0.33 2815 60 1104
1024 93.86 0.24 3317 192 1373 1024 73.94 0.53 3313 57 1417

Slice Clustering (M = 2) Slice Clustering (M = 2)

k Accuracy (%) Inf. Time (s) Memory k Accuracy (%) Inf. Time (s) Memory
µ σ µ σ (GB) µ σ µ σ (GB)

64 85.12 4.61 1831 69 927 64 52.29 6.60 1791 17 968
128 92.75 0.58 2069 79 933 128 70.20 1.26 2014 44 972
256 94.06 0.21 2388 156 977 256 74.51 0.42 2340 52 1019
512 94.59 0.12 2788 167 1087 512 76.30 0.25 2809 38 1128
1024 94.76 0.12 3093 11 1399 1024 76.77 0.24 3106 1 1437

Slice Clustering (M = 4) Slice Clustering (M = 4)

k Accuracy (%) Inf. Time (s) Memory k Accuracy (%) Inf. Time (s) Memory
µ σ µ σ (GB) µ σ µ σ (GB)

64 9.27 0.65 1845 89 979 64 0.92 0.00 1817 22 1019
128 14.20 2.55 2096 100 983 128 0.92 0.01 2152 163 1007
256 30.01 9.08 2409 149 1030 256 1.79 0.74 2614 126 1030
512 69.18 5.72 2842 193 1136 512 16.68 6.66 2829 291 1206
1024 88.24 1.02 3379 64 1450 1024 47.96 5.14 3408 48 1452

29

	Introduction
	Model Training with Polynomial Approximation
	Problem Setting
	Training Strategy

	Structural Optimizations
	Node Fusing
	Weight Redistribution
	Tower Reuse
	Impact on RNS Levels

	Codesign Techniques
	Data Layout
	Clustering of Convolution Parameters
	Ensemble of Polynomial Network

	Experimental Results
	Experimental Setup
	Summary of Results

	Conclusion
	Leveled Fully Homomorphic Encryption
	Challenges of Using Polynomial Activation
	Escaping Activation Problem
	Coefficient Truncation

	Why the Penalty Function Works?
	Training Stability during Polynomial Training
	Pre-Activation Clipping
	Regularization Warm-up

	Additional Details on Structural Optimizations
	Detailed Derivations of Node Fusing
	Detailed Derivations of Weight Redistribution
	Update Forward
	Update Backward

	Example of Tower Reuse
	Level Analysis

	Illustration of Slice-wise Clustering
	Single Model Slice Clustering
	Ensemble Slice Clustering

	Ablation Study
	Ablation on Clipping Range (Value of c)
	Ablation on Penalty Strength (Value of)
	Comparison with PILLAR

	Additional Experimental Results
	Additional Details of FHE Parameters
	Results on ResNet18
	Experimental Results

