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ABSTRACT

Can we determine someone’s geographic location solely from the sounds they
hear? Are acoustic signals enough to localize within a country, state, or even city?
We tackle the challenge of global-scale audio geolocation, formalizing the prob-
lem, and conducting an in-depth analysis with wildlife audio from the iNatSounds
dataset. We hypothesize that bioacoustic signals contain informative geolocation
cues because of well-defined geographic ranges of species. To test this, we bench-
mark image geolocation and soundscape mapping methods on iNatSounds. Build-
ing on these insights, we propose a hybrid approach that combines species range
prediction with retrieval-based geolocation. We further ask whether geolocation
improves with species-diverse recordings and spatiotemporal aggregation across
neighboring samples. Finally, we extend our study to multimodal geolocation with
case studies from movies that combine both audio and visual content. Our results
highlight the potential of incorporating bioacoustic signals into geospatial tasks,
motivating future work on species recognition and audio geolocation.

1 INTRODUCTION

Image geolocation has been extensively studied in the computer vision community, with methods
exploring classification (Weyand et al., 2016; Vo et al., 2017; Seo et al., 2018; Berton et al., 2022;
Pramanick et al., 2022; Clark et al., 2023), contrastive learning (Vivanco Cepeda et al., 2024; Klem-
mer et al., 2023) and multimodal representations (Zhu et al., 2021; Yang et al., 2021; Zhu et al.,
2022). The best models can place 40% of images within 25 km of their actual location, rivaling
top human geoguessers (Haas et al., 2024). In this work, we shift focus to predicting the recording
location of audio, addressing the unique challenges of global audio geolocation.

Image geolocation relies on visual cues such as famous landmarks, landscape types, or architectural
styles to infer location from a random image. By contrast, cues tied to a geographic location are less
salient in audio. Early studies (Pokorny et al., 2019; Kumar et al., 2017) focus on urban sounds like
jackhammers and traffic noise as signals to geolocate. We hypothesize that wildlife sounds offer
another promising signal. Each species has a defined geographic range, and identifying audible
species in a recording can help constrain the possible locations. Intuitively, by intersecting range
maps of detected species, we can significantly narrow down the search area (Fig. 1). If the detected
species have large ranges, then the search area might still involve hundreds or thousands of square
kilometers. However, if any of the detected species has a restricted range, the plausible search space
might be narrowed down to tens of kilometers.

Our experiments reveal that accurate geolocation is possible if we know all species present in a lo-
cation, and performance improves as species diversity increases. However, achieving high recall in
identifying audible species presents several challenges. Short audio recordings may fail to capture
a representative set of vocalizing species, motivating approaches that aggregate information over
broader spatial and temporal windows. Even for species that are recorded, low signal-to-noise ra-
tios and fine-grained confusions can further limit recall. Rare species, in particular, have distinctive
geographic footprints that are valuable for geolocation, yet detecting them is especially difficult.
In this work, we explore these challenges in the context of bioacoustic geolocation, using iNat-
Sounds (Chasmai et al., 2024)—a geographically and ecologically diverse wildlife audio dataset—as
well as a newly curated collection of species-rich dawn chorus recordings from Xeno-Canto.
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Figure 1: Intuition for Audio Geolocation. If a model were to recognize different species’ vocalizations, the
intersection of their geographic range maps could help narrow down the location. Ambient sounds like waves or
airplane noises could provide additional context to refine the estimate. While our models do not explicitly detect
these sound events, we hypothesize that they leverage these types of signals implicitly to perform geolocation.

Our work is closely related to soundscape mapping, which seeks to model the acoustic environ-
ment of a location—for example, distinguishing a busy city intersection from a rural farm. Other
approaches have explored localization through intermediate modalities, such as images paired with
audio (Sastry et al., 2025), but these too do not directly solve the audio geolocation problem. We ar-
gue that audio geolocation presents a unique set of challenges, provide strong baselines that demon-
strate feasibility of the task in bioacoustic domains and establish a foundation for future work.

Audio geolocation has numerous impactful potential applications. Coarse geographic context in-
ferred from audio can enable apps such as Merlin Sound ID to constrain the set of plausible species
in areas without cell coverage or GPS availability. Soundscapes inherently capture key aspects of
a habitat, and shifts in predicted locations of a region over time can be used to monitor ecological
change without expensive species labeling. Beyond ecology, audio geolocation can also be applied
for digital forensics (Sec. 4.5), search and rescue (localizing distress calls), and data privacy (under-
standing and obfuscating prominent location cues). We see our study as laying the groundwork for
future efforts and a first step towards ever more diverse audio geolocation applications.

We summarize our main contributions as follows:

1. To the best of our knowledge, this is the first study on global-scale bioacoustic geolocation.
We formalize the problem, benchmark image-based and soundscape mapping methods on iNat-
Sounds (Chasmai et al., 2024), and propose a novel approach that uses species range predictions
to improve geolocation.

2. We investigate the potential of species information by constructing species oracles based on
range estimation models. To study more realistic settings, we also introduce XCDC, a new
dataset of species-rich dawn chorus recordings curated from Xeno-Canto.

3. We demonstrate the benefits of spatiotemporal aggregation for capturing richer species informa-
tion and overcoming the limitations of short audio recordings.

4. We introduce multimodal geo-forensics through case studies of movie audio and imagery, illus-
trating potential real-world applications of multimodal geolocation.

2 RELATED WORK

Audio Geolocation.  The task of explicit geolocation of audio recordings remains largely under-
explored. Several early studies (Pokorny et al., 2019; Kumar et al., 2017; Choi et al., 2015; Friedland
et al., 2010; 2011) investigate audio and multimodal geolocation, but are limited to distinguishing
sounds within or among specific regions. Motivated by the growing interest in image geolocation,
we revisit and scale up the problem of audio geolocation from a modern perspective, aiming to
address it at a global scale. Insights gained from our explorations in natural domains could also con-
tribute to broader advancements in audio geolocation, as wildlife sounds such as birds and insects
are also prevalent in urban settings.

Image Geolocation.  Initial methods for image geolocation approached the problem through
the lens of retrieval. To geolocate a ground image, they retrieved similar geo-tagged ground im-
ages (Hays & Efros, 2008) or cross-view satellite images (Workman et al., 2015; Liu & Li, 2019;
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Shi et al., 2020; Zhu et al., 2021; Yang et al., 2021; Zhu et al., 2022). Focus gradually shifted to
feed-forward classification models that could directly predict location from an image by splitting
the surface of the earth into several geo-cells and predicting the correct geo-cell (Berton et al., 2022;
Weyand et al., 2016; Vo et al., 2017; Muller-Budack et al., 2018; Clark et al., 2023; Pramanick
etal., 2022; Seo et al., 2018). To overcome grid resolution constraints, some works explore adaptive
grids (Seo et al., 2018) and hierarchical approaches (Clark et al., 2023). Haas et al. (2024) incor-
porate political and administrative boundaries while creating their grids and beat one of the world’s
foremost professional GeoGuessr players (GeoGuessr, 2013).

Following the release of CLIP (Radford et al., 2021), recent methods (Klemmer et al., 2023; Vi-
vanco Cepeda et al., 2024) have revisited the retrieval approach. These methods treat the location
itself as a modality and learn location embeddings aligned with images. GeoCLIP (Vivanco Cepeda
et al., 2024) learns a location encoder that utilizes random Fourier features to capture high fre-
quency details and learn better location features. SatCLIP (Klemmer et al., 2023) encodes location
via spherical harmonics and learns a joint embedding space with paired satellite images. Zhou et al.
(2024) propose to leverage LLMs (Achiam et al., 2023; Touvron et al., 2023) and incorporate do-
main knowledge with Retrieval Augmented Generation (RAG) (Cai et al., 2022). In this work, we
shift the focus from visual to the acoustic modality. Audio presents a unique challenge, as it typically
carries less explicit and globally consistent geographic information than visual data. We extend and
benchmark multiple image geolocation methods across popular paradigms in an effort to establish a
comprehensive benchmark for the novel task of bioacoustic geolocation.

Soundscape Mapping and Audio-Location Alignment. In the acoustic space, researchers are
also interested in the complementary problem of soundscape mapping. Instead of identifying geo-
graphically unique signals in audio recordings, the focus is to learn common patterns in sounds from
a particular location. The task is posed as a retrieval of audio conditioned on location. Prior research
focus on understanding the soundscapes of either a few cities (Aiello et al., 2016) or for the entire
earth (Salem et al., 2018). GeoCLAP (Khanal et al., 2023) and PSM (Khanal et al., 2024) use satel-
lite images to represent geographic location and learn a shared embedding space between overhead
images and ground audio. The domain of wildlife sounds also provides a unique set of challenges
not as prominent in urban settings. Taxabind (Sastry et al., 2025) learns a shared feature space for 6
modalities related to species and demonstrate its benefit to ecological problems. However, they too
do not focus on audio geolocation and have implicit audio-location pairing with ground images as
an intermediary. While these methods can be implicitly used for geolocation, the unique challenges
of global audio geolocation remain largely underexplored, a critical gap this work aims to fill.

Related Audio Tasks. In acoustic analysis, prior work also focus on localizing sources within
specific scenes relative to the microphone position (Sun et al., 2017; Liu et al., 2019; Wu et al., 2021;
Chung et al., 2022; Zhang et al., 2018; Dang et al., 2019; Perotin et al., 2019; Chen et al., 2020; 2021;
2023). While the structure of this problem is very similar to our study of audio geolocation, the two
tasks require very different signals: features learned for one may not be predictive of the other. There
has also been some prior work in geolocating speech, either as a proxy task for identifying accents
and dialects (Van Leeuwen & Orr, 2016; Lohfink, 2017; Dehak et al., 2010; Foley et al., 2024), or
to improve speech recognition (ASR) (Xiao et al., 2018; Bell et al., 2015). Our work focuses on the
location of the location of the recording environment instead of the origin of a subject, for which
human speech often provides insufficient or ambiguous geographic information.

3 PROBLEM SETUP AND METHODOLOGY

In this work, we conduct experiments using iNatSounds (Chasmai et al., 2024), a dataset of 230K au-
dio recordings, with an average duration of around 20s. Each recording is annotated with a species,
recording date, and geographic location. The training split includes audio from over 5,500 species
and spans diverse regions across the Americas, Africa, Europe, Asia, and Australia. However, the
distribution is imbalanced, with a bias toward major population centers. See supplementary Fig. A4
for the geographic distribution of iNatSounds and Fig. 2 for some examples from around the world.

Preliminaries. Given an audio recording x, our goal is to predict the coordinates y =
(latitude, longitude) of the location where x was recorded. We evaluate the geolocation error by
computing the Haversine distance (Gade, 2010) between the predicted and true coordinates. Given
a dataset D = {(x;,y:)}, of audio recordings x; € X and ground truth locations y;, we mea-
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Figure 2: Geolocation Predictions. Sample predictions of our method on iNatSounds (Chasmai et al., 2024)
and XCDC. Heatmap shows the unnormalised likelihood of each location. Green crosses denote the final pre-
diction (argmax) and green circles denote true location. Geolocation error reported below each heatmap. URLs
to the original observations (clickable) provided below each spectrogram. Harshness of the region threshold
(200km) can be better appreciated through the bottom left and center exemplars. We present additional visual-
izations in supplemental Fig. A2, A3.

sure the performance of a method using the median geolocation error across D. Following standard
practice in image geolocation (Weyand et al., 2016; Vivanco Cepeda et al., 2024; Haas et al., 2024),
we also report “Percentage at Threshold,” where a prediction is considered correct if the geolocation
error is within a specific threshold. We use thresholds of 25 km, 200 km, 750 km, and 2,500 km,
corresponding to city, regional, country, and continental scales. Refer to Fig. 2 and supplementary
Fig. Al for illustrations of these scales.

We aim to train a geolocation model g : X — £ where L is the space of all possible locations. This
model is decomposed as g = hy o fg, where fp : X — R?, is an audio encoder with parameters 6,
and hy : RY — £ is a decoder with parameters ¢ responsible for geolocating an audio feature. The
location can be encoded in different ways, and the definition of £ changes accordingly. It can be
simply (lat, lon) (for regression), a geographic bin label (for classification), or a learned embedding
(for retrieval). Although the location encoding does not need to be reversible, each prediction in £
should be mappable to a corresponding (lat, lon) for evaluation.

Audio Encoder.  We adopt a vision-inspired approach to acoustic analysis by converting audio
to a spectrogram “image” and extracting features with computer vision backbones. Model architec-
ture and pre-training strategies are described in Sec. 4.1 and spectrogram settings in supplemental
Sec. A.5. We ablate the choice of audio encoders in Sec. 4.3.

Retrieval for Geolocation.  We pose the problem of audio geolocation as retrieval, where hg is
responsible for computing the similarity of fy(x) (query) with a predefined collection of embeddings
(keys). Recent prior work (Vivanco Cepeda et al., 2024) has explored location encoders 1y, : R? —
R<, that learn dense representations for two-dimensional (lat, lon) values. We train hy to project
audio features into the embedding space of a location encoder. Retrieval can then be done at test
time by comparing the predicted embedding g(x) € £ against a gallery of precomputed location
embeddings, and returning the coordinates of the most similar location embedding. We use the
training set itself to construct our gallery, so the predicted coordinates y can be expressed as y =

argmaxy cprrain g(X)T lw (Yj )

Species Oracles. We briefly diverge to introduce a diagnostic tool designed to probe the limits of
bioacoustic geolocation. We hypothesize that presence and absence of species is a strong signal for
geolocation. One immediate challenge for testing this hypothesis is the unrealistic expectation of
capturing sounds from all species in a location. In theory, if a recordist were to continuously capture
audio at a location over an entire year, we might expect to record most species that occur there. With
this complete “checklist” of species, how accurately can we predict recording location?

While year-long recordings are impractical, we can simulate these comprehensive checklists using
precomputed species geographic range maps. For a given location on Earth, we determine which
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species’ ranges contain that location and construct a checklist of species that are present or absent.
Although expert-verified range maps are not available for all species, recent advancements (Cole
etal., 2023; Hamilton et al., 2024) have enabled joint prediction of range maps for tens of thousands
of species. We leverage one such model (SINR (Cole et al., 2023)), to construct range maps for all
species in the iNatSounds dataset. Finally, we learn hy to perform retrieval style geolocation using
these checklists instead of audio features. Note that checklist construction assumes oracle access to
the true location. These experiments do not reflect a realistic bioacoustic geolocation setting, but
instead serve as upper bounds for species-based approaches.

AG-CLIP. Our proposed method, AudioGeo-CLIP, builds on top of GeoCLIP (Vivanco Cepeda
et al., 2024) and includes an auxiliary task of predicting SINR (Cole et al., 2023) checklists from
audio. Concretely, we add a checklist decoder and a BCE loss with the species checklists in addition
to the usual location decoder hg and its contrastive loss. While a particular recording will likely
capture only a small fraction of species whose ranges overlap the recording location, predicting the
species checklist can encourage the encoder to attend not only to foreground vocalizations but also
to background ambient sounds, learning to associate them with species likely to be encountered in
that habitat. See supplemental Fig. A6 for a schematic.

Handling Variable Length.  For each recording, we construct a collection of 3s “clips” using a
sliding window. Each clip is geolocated independently and then the average of all clip-predictions
is used as the final prediction for that recording. We experiment with alternate poolings in Sec. 4.3.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

In the following experiments, the audio encoder fy is a trainable MobileNet-V3 (Howard et al.,
2019) model pretrained for species classification on the iNatSounds dataset. These models expect
spectrograms that have been resized to 224x224x3. For AG-CLIP, hy is composed of two 2-layer
MLPs, each with hidden dimensions of 128, responsible for projecting features to GeoCLIP em-
beddings and SINR checklists, respectively. In Sec. 4.3, we further explore the impact of different
network architectures and pretraining strategies for both audio and location encodings. All models
are trained using SGD with Nesterov acceleration. We use the validation set of iNatSounds to select
the learning rate and other hyperparameters. See Supp. Sec. A.5 for detailed model configurations.

4.2 PERFORMANCE ON INATSOUNDS

We present the performance of geolocation methods on the iNatSounds test set in Table 1.

Naive Baseline.  We start with a naive baseline that samples a random location from the training
distribution for each test recording. This baseline yields a regional accuracy of just 1.1%, suggesting
that the dataset is sufficiently diverse and not dominated by a few geographic hotspots.

Species Oracles.  To contextualize subsequent results, we first present upper-bound performance
using species checklists constructed with oracle access to the true location. We binarize SINR (Cole
et al., 2023) model outputs using a threshold of 0.1 to create binary vectors, or “checklists”, indi-
cating species presence and absence at each location. We then train a linear model to serve as hg,
predicting GeoCLIP embeddings and geolocating via retrieval. Our results indicate that with a full
checklist, almost perfect region level performance is possible, confirming our hypothesis that species
information serves as a strong geolocation signal. However, knowing all species that may be found
at a location is not realistic with reasonably sized audio recordings and noisy or incomplete species
identification. To simulate imperfect recall, we omit a random subset of species from the check-
list. With 50% corruption, regional accuracy remains relatively high at 83.3%. If only 10 randomly
selected species are retained, region performance drops to a still strong 37.6%.

Regress. Regression methods tend to do the worst overall, with region level performances of 2.9%
and 4.2% for Euclidean and Haversine, respectively. Haversine distance more accurately captures
geolocation error, which is the likely cause of its better performance as a loss function.

Classify.  For classification, we use the H3 library (Brodsky, 2018) to divide the world into a
hexagonal grid. hy is implemented as an N-way classifier where N is the number of hexagons in the
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Table 1: Geolocation on iNatSounds. Experiments on iNatSounds test set. The naive random predictor and
species oracles contextualize performance. We train our models to geolocate using regression, classification,
explicit sampling from range maps and retrieval. Geolocation performance is evaluated by median error (km)
and accuracies (%) at different distance thresholds. We report mean + std from 3 runs. {: Off the shelf models.

Experiment J} Median 1 City Region Country  Continent

P Error (km) 25km 200km 750km 2500km
Naive  Rnd Train Loc 7475 + 32 00.1 =0.0 01.1 +0.0 06.6+0.1 228+0.3
Species Full checklist 15400 64.0+04 97.8+0.0 99.9+0.0 100.+0.0
Oracl 50% Corrupted 54 4+00 328400 8334+0.1 988+ 0.0 100.+0.0
racles  Keep random 10 325+02 100+£0.1 376202 766+0.2 983=+0.0
R Euclidean 1884 05 00.1 +0.0 029+0.0 234+0.2 579+0.1
€8S Haversine 1602 13 00.1£0.0 042+02 277403 61.8+0.2
Res-0 (430 x10*km?) 1323 +09 00.0+0.0 01.2+00 226+0.0 687+0.2
Classify  Res-2 (8.6 x10*km?) 1326 12 003 +0.0 163+0.2 365+04 64.1+0.2
Hierarchical (0—1—2) 1117 +06 003 +£0.0 16.6+0.2 400+0.1 68.7+0.2
Species Annotated Species 1263 01 003 +0.0 108=+£0.1 357+0.1 723+0.1
Ran eé Predicted Sp (Top 1) 1664 +03 00.2+00 082+0.1 287+0.0 625+0.1
& Predicted Sp (All) 1113 +02 003+0.0 093-+0.1 37.7+0.1 727 +0.1
GeoCLAP' 6856 £ 00 002 +0.0 01.3£0.0 07.0+00 249+0.0
Retrieve  Taxabind’ 4944 + 00 004 +0.0 022+0.0 11.9+00 353+0.0
AG-CLIP (ours) 1082 £ 11 064 +0.1 172+0.1 41.0+0.3 71.2+0.2

grid. We experiment with two grid resolutions, defined by the area of each cell. More details and
visualization of these grids are presented in Supp. Sec. A.3. Lower resolution (bigger cells) leads
to better continental performance while higher resolution leads to better regional and country level
performance. A hierarchical approach gets the best of both, performing similar to low resolution for
continent (68.7% vs 68.7%) and better than high resolution for country (40.0% vs 36.5%).

Species Ranges.  We next evaluate performance when explicit species information is available.
Each iNatSounds recording includes a species annotation. By sampling the species’ SINR (Cole
etal., 2023) likelihood distribution over a geographic grid, we can geolocate the recording. Note that
SINR is trained on a much larger corpus of species occurrence data, which may offer an advantage
over other methods. Using the annotated species, we see a region accuracy of 10.8% and a continent
accuracy of 72.3%. However, the availability of ground-truth target species annotations at test time
is unrealistic; instead, we can train a classifier to predict the target species from the audio. Using the
SINR distribution of the top-1 predicted target species drops the region and continent performance
to 8.2% and 62.5% respectively. Rather than using a single predicted species for each recording, we
can use the per-species scores given by our species classifier to weigh and combine SINR likelihood
maps for all species. This weighted combination of species likelihood maps is slightly better than
even the annotated target species (country 37.7% vs 35.7%), which may be an artifact of these
classifiers’ ability to capture background species to some extent (Chasmai et al., 2024).

Retrieve. For retrieval, we explore methods that jointly learn audio and location encoders. Geo-
CLAP (Khanal et al., 2023) and Taxabind (Sastry et al., 2025) are soundscape mapping methods
that have their own audio and location encoders, which we use off-the-shelf without any additional
training. GeoCLAP performs poorly, likely due to domain shift, as it was trained on urban sounds
from SoundingEarth (Heidler et al., 2023). On the other hand, Taxabind, which was trained on a
different subset of iNaturalist (iNaturalist), achieves better results with a country level accuracy of
11.9%. However, it still underperforms relative to our models, likely because our models benefit
from explicitly paired audio and location data, whereas Taxabind relies on only the implicit pair-
ing available through images. Our method, AG-CLIP, achieves the best performance overall, with
region and country level performances of 17.2% and 41.0%, respectively.

Performance at Different Distance Thresholds. Fig. 3 (left) shows CDF curves for various
methods, plotting the fraction of test recordings (y-axis) correctly geolocated within a given distance
(x-axis). These curves reveal how models perform across geospatial scales. Geolocation based
on species checklists, even with 50% corruption, is best across scales. Among audio geolocation
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Figure 3: Geolocation Error Trends. Left: Cumulative distribution of geolocation errors for AG-CLIP and
baseline models. Table 1 accuracy metrics correspond to points on these curves. Right: Median of AG-CLIP
geolocation errors binned by H3 (Brodsky, 2018) grid cells, capturing spatial variation in performance.

Model Pre FT Reg. Cont. Experiment City Reg. Cont. Experiment Reg. Cont.
Wav2CLIP VGG X 03.8 30.3 SatCLIP 1.4 147 632 Average 17.2 71.2
CLAP LAION X 05.1 346 SINR 22 17.1 68.6 Max Pool 16.5 68.6
MobV3 ImgNet v 144 64.9 GeoCLIP 64 17.0 68.5 Cluster 15.5 67.9
MobV3 iNat v 172 71.2 ” + checklist 6.4 17.2 71.2 Transformer 16.8 71.5
(a) Audio Encoders (b) Location Encoders (c) Variable Length

Table 2: Ablations. Importance and alternative choices of different components of AG-CLIP. We include
Region (Reg. 200km) and Continent (Cont. 2500km) performance on iNatSounds test set.

methods, retrieval based AG-CLIP does best at finer scales like the city and region. Hierarchical
classification shows a jump in performance around the region level and is close to AG-CLIP for
coarser scales. This may be due to the finest grid cells being similar in size to a region, limiting the
model’s ability to predict at finer resolutions. Explicit species identification with range analysis is
relatively poor for finer scales, but overtakes AG-CLIP around the 1500 km mark.

Spatial Variation. Fig. 3 (right) shows how geolocation performance of AG-CLIP varies geospa-
tially. We associate each recording with a resolution 2 hexagon from H3 (Brodsky, 2018) and com-
pute the median error per hexagon. Darker (bluer) regions indicate better geolocation. The model
performs better in regions with more training data, like the US and Europe. Interestingly, certain
areas such as Central America, South Africa, Taiwan, Eastern Australia, and New Zealand show
particularly good performance, possibly hinting at the presence of distinctive soundscapes here.

4.3 ABLATIONS

We ablate the audio encoders, location encoders, and temporal aggregation strategies in Table 2. Off-
the-shelf audio encoders like Wav2CLIP (Wu et al., 2022) and CLAP (Elizalde et al., 2023) perform
worse than pretraining on iNatSounds (Table 2a). Starting with ImageNet pretrained weights instead
of iNatSounds also reduces performance, with 7% and 3% drops at the continent and region levels.

Next, we ablate the location encoder in Table 2b. With SatCLIP (Klemmer et al., 2023), we observe
consistently worse performance than SINR (Cole et al., 2023) or GeoCLIP (Vivanco Cepeda et al.,
2024). SINR is comparable to GeoCLIP at the region and continent levels, but tapers off at the
city level. Better performance of GeoCLIP may be because of its alignment with ground-level
imagery, unlike SatCLIP (satellite images) or SINR (species observations). The auxiliary checklist
loss introduced in AG-CLIP improves performance by 2.7% at the continent level, though the gains
diminish at finer scales.

Finally, we explore alternate pooling methods to handle variable length audio in Table 2c. Our
default is a simple average. We see a drop in performance if max-pooling is used instead. We could
also first cluster the embeddings via K Means (k=5) and then use the centroid of the largest cluster as
the aggregate. While better than max-pooling, this is still worse than averaging. We also try training
a transformer model to pool frozen embeddings (see supplemental Sec. A.6 for more details). The
transformer performs well at the continent level, but we prefer averaging because of its simplicity
and lack of additional training.



Under review as a conference paper at ICLR 2026

Table 3: Species-Rich Audio with XCDC. Left: Models trained on iNatSounds training set and evaluated on
XCDC. We report mean of 3 runs. Right: Geolocation with species ranges for randomly sampled subsets of
ground truth species. We plot mean, std and range (min-max) over 100 runs.

Species Ranges vs Species

Experiment Error City Region Cou. Cont.

Species Ranges (True) 449 005 258 68.8 99.0
Species Ranges (Predicted) 1097 00.1 025 27.6 80.0

Classification (Hierarchical) 1116 00.0  05.3 31.7 69.7
AG-CLIP (ours) 1112 002 043 263 719
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Table 4: Spatiotemporal Aggregation. Left: AG-CLIP geolocation can be improved by grouping recordings
from the same neighborhood, over a year, month or week. Right: Distributions of unique species per collection.

Number of Species per Group

Experiment Error City Region Cou. Cont.
No Grouping 1082 064 17.2 410 712
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4.4 GEOLOCATING SPECIES-RICH AND SPATIOTEMPORALLY AGGREGATED RECORDINGS

Our species oracle experiments (Table 1) demonstrate that geolocation accuracy increases with more
knowledge of the species present at the recording location. However, short recordings often capture
only a few species, limiting this important signal. To evaluate whether increased species diversity
improves geolocation, we explore two strategies: (1) sampling long, species-rich recordings from
the dawn chorus and (2) aggregating short recordings from the same spatiotemporal neighborhood.

Species-Rich Audio. = We construct a dataset of species-rich audio by sampling dawn chorus
recordings from Xeno-Canto, a global archive of natural sound recordings. The dawn chorus is a
period of intense, multi-species vocal activity that occurs near sunrise, particularly during the breed-
ing season (Gil & Llusia, 2020; Weldy et al., 2024). To isolate these species-rich recordings, we
select audio that (1) was recorded during the spring dawn chorus, (2) is at least 3 minutes in dura-
tion, and (3) contains annotations for at least 10 distinct species. This filtering yields 576 recordings
with associated geographic coordinates and species labels. We refer to this as Xeno-Canto Dawn
Chorus (XCDC), a new benchmark for evaluating geolocation from species-rich soundscapes.

Our results are shown in Table 3. We reconfirm the value of species information: geolocation accu-
racy increases as more ground truth species are provided (Table 3, right), with full species knowledge
yielding a region-level accuracy of 25.8% (Table 3, top row). However, model-based approaches that
rely on predicted species ranges, hierarchical classification, or retrieval achieve substantially lower
performance (< 5.3%), roughly equivalent to knowing only a single species. We observe simi-
lar trends for WABAD (Pérez-Granados et al., 2025), an in-the-wild, passive acoustic monitoring
dataset (See supplemental Sec. A.9). This suggests that current models struggle to exploit the multi-
species signals present in these complex soundscapes. One likely explanation is a distribution shift:
most iNatSounds recordings contain fewer species, and our models may not generalize well to audio
with significant species overlap. This finding is reinforced by our spatiotemporal aggregation exper-
iments, where recordings with higher species diversity and low species overlap yield better results.

Spatiotemporal Aggregation. We group iNatSounds test recordings by location and time to sim-
ulate spatiotemporal aggregation. Spatial grouping is performed using H3 hexagons at resolutions
5 and 6, while temporal grouping spans the full year, individual months, or individual weeks. To
geolocate a group, we first apply our model independently to each recording, then average the pre-
dicted location distributions across the group. The aggregated prediction is assigned to all recordings
in the group, allowing direct comparison with recording-level results from Table 1.

Table 4 reports AG-CLIP performance under different spatiotemporal aggregation strategies. When
aggregating recordings within 36 km? neighborhoods and a week, the region performance improves



Under review as a conference paper at ICLR 2026

»

{ inians soncs TR

Figure 4: Multimodal Geo-Forensics with Movie Clips. Geolocation predictions for audio and video frames
from scenes in four movies. Arrows on the map indicate the predicted locations for each modality. Discrepan-
cies between modalities reveal potential artifacts introduced during post-production.

to 19.9%. This modest improvement reflects a limited aggregation: as shown in the right panel of
Table 4, over 80% of groups in the weekly grouping contain only a single species. When aggregation
is extended to a month, performance improves to 21.2%. Aggregating recordings across the full year
within 36 km? and 253 km? neighborhoods improves region-level accuracy from 17.2% (no group-
ing) to 25.9% and 30.4%, respectively. These gains relative to the ungrouped baseline suggest that
the model is able to leverage complementary species information spread across multiple recordings.

4.5 MULTIMODAL GEO-FORENSICS

Live broadcasts of events, such as professional golf tournaments, often enhance their ambiance by
inserting bird vocalizations. However, observers have noted cases where producers mistakenly in-
cluded species not found at the event location (slate.com). Similar mismatches arise in film, where
audio effects may not correspond to the geographic setting depicted on screen (reddit; ornitheol-
ogy.com). These inconsistencies offer a unique opportunity for multimodal geo-forensics.

In Fig. 4, we analyze scenes from four Hollywood films that had been previously flagged by viewers
for mismatches between visual setting and soundscape. In all cases, audio- and image-based geolo-
cation produced divergent predictions, confirming the presence of modality inconsistencies. Jumanji
showed the closest alignment between modalities at 4480 km, while Star Wars exhibited the largest
divergence at 9092 km. These qualitative results highlight the potential of multimodal geo-forensics
as a novel application domain, leveraging cross-modal cues to identify geographic inconsistencies.
We view this as a promising direction for future work at the intersection of vision, sound, and place.
See supplemental Sec. A.10 for more details.

5 CONCLUSION

Geolocating arbitrary audio is challenging, but recordings containing bioacoustic signals offer
promising geographic cues. Wildlife sounds can be explicitly identified and linked to known species
ranges, or implicitly leveraged by end-to-end models. Our species oracle experiments show that
when at least 10 species are detected, geolocation within 200 km is possible 37% of the time (Ta-
ble 1). However, in species-rich recordings from XCDC, our species classification models achieve
only 2.5% region accuracy (Table 3), highlighting a gap in current multi-species detection capabil-
ities. On shorter, focused recordings, species-range models perform better (9.3%), and end-to-end
models achieve 17.2% region accuracy (Table 1).

Future work could improve species classification in complex soundscapes, develop architectures that
better capture long-range acoustic context, and explore structured fusion across multiple recordings.
Collecting training data with dense species sounds may help address distributional shifts relative to
datasets like XCDC. Better sampling or reweighting strategies could help alleviate the effects of ge-
ographical biases in iNatSounds. Our multimodal geo-forensics case studies highlight opportunities
for combining audio and visual signals, opening new avenues for future exploration. This work lays
the foundation and motivates future research in the challenging problem of bioacoustic geolocation.
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ETHICS STATEMENT

Data Usage and Licensing. The observations in iNatSounds are licensed for research use (Chas-
mai et al., 2024). We do not modify or re-release any data from iNatSounds. For XCDC, we collect
recordings from openly available data in XenoCanto. As per their website, the usage of each record-
ing can be specified by the user who uploaded it. From the recordings in our filtering criteria, we pick
the most restrictive one (CC BY-NC-ND), and release XCDC with this license. For the recordings
that we present as prediction visualizations (Fig 2, A2 and A3), we link the original observations
and credit the users who contributed those recordings.

Human voice or other personally identifiable content can be present in iNatSounds and XCDC. Since
the recordings are openly available and licensed for research use, we do not obfuscate or modify the
data for anonymization.

Privacy Concerns.  An adversary with the ability to infer recording locations of any online con-
tent just from the audio can violate the creator’s privacy. On the other hand, by understanding the
geographic cues embedded in audio, it may be possible to develop methods to suppress or obfuscate
them, thereby mitigating such risks. At its current stage, our work focuses on natural sounds, and
even our best models can get the city correct only 6% of the time. This suggests that the immedi-
ate privacy risks are somewhat limited. That said, we recognize that as audio geolocation models
improve, these risks will grow and become an important consideration for the field.

Geographical Biases.  iNatSounds exhibits geographic bias towards Western countries, partic-
ularly in the Northern Hemisphere. Our models exhibit better geolocation performance in regions
with greater training data coverage (Fig. 3). As the evaluation split of iNatSounds exhibits similar
biases, the reported performance may be overestimated.

LLM Usage. We used ChatGPT to aid and polish paper writing. We primarily used the LLM to
paraphrase individual sentences or short paragraphs to correct grammar and improve overall flow.

REPRODUCIBILITY STATEMENT

Upon acceptance, we will release all code and detailed instructions for benchmarking geolocation
models as well as for training our method and baselines. iNatSounds (Chasmai et al., 2024) is
already publicly available and we will release XCDC with appropriate licensing and links to original
Xeno-Canto observations.
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A APPENDIX

We start with a visualizatoin of the distance thresholds used by our evaluation metrics in Sec. A.1.
We follow this with additional prediction visualizations in Sec. A.2. Next, we visualize the different
ways to represent location for classification (Sec. A.3) and retrieval (Sec. A.4). We next describe
additional implementation details left out in the main paper (see Sec. A.5). In particular, we elaborate
on the methodology with a block diagram, describe the spectrogram creation process, and report
tuned hyperparameters and other configurations. We also share additional details for GeoCLAP and
TaxaBind as well as the transformer pooling ablation (Sec. A.6) in Table 2 (main paper). Next,
in Sec. A.7, we report additional ablation on Location Galleries. Additional results and standard
deviations for XCDC are reported and discussed in Sec.A.8. We also experiment with an in-the-wild
passive acoustic monitoring dataset in Sec. A.9. Next, we report additional details for geoforensics
experiments (Sec. A.10) and present additional experiments on multimodal geolocation (Sec. A.11),
species affinities (Sec. A.12) and multimodal retrieval (Sec. A.13). We conclude with a discussion
on compute resources in Sec. A.14.
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Figure A1: Scales of Geolocation. We plot all points within different thresholds used for calculating
our geolocation metrics. These are not circles because we use haversine distance. We show these
scales centered at a few different locations since the size changes at different points on earth.

A.1 SCALES OF GEOLOCATION

For better understanding of the distance thresholds used in evaluation and an appreciation of the
difficulty of this task, please see their visualization in Fig Al. A prediction is considered correct
at a given level if it falls within the corresponding area centered on the ground-truth location. Note
the great difference in scale between finer levels like the city (barely bigger than a dot) and coarser
levels like the country and continent. While 200km for the region level may sound large, the small
green areas in Fig A1 show how small it is compared to the size of the world. Even the continent
threshold is actually harsher than it sounds, and covers only about the size of Australia.

A.2 MORE PREDICTION VISUALIZATIONS

See additional prediction visualizations of AG-CLIP on iNatSounds and XCDC in Fig A2 and
Fig A3 respectively. These are a mix of success and failure cases of the model.

A.3 CLASSIFICATION GRIDS.

We visualize the different resolution hexagonal grids we use for classification in Fig A4. We train
the model to predict a hexagon from the list of all possible hexagons at a particular resolution. At
test time, we use the center of the predicted hexagon as the geolocation prediction. As we go to finer
resolutions, the ability of a classifier to pinpoint to finer scales increases. At the same time, the total
number of hexagons also increases, which reduces classification performance.

We also show the distribution of iNatSounds training set on the same plots. The distribution is highly
imbalanced, with North America and Europe having significantly higher number of recordings than
other areas.
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Figure A2: Model Predictions on iNatSounds (Chasmai et al., 2024). Heatmap shows the unnor-
malised likelihood of each location. Green crosses denote the final prediction (argmax) and green
circles denote true location. Original observations linked below. Best viewed zoomed in.

A.4 RETRIEVAL LOCATION GALLERIES.

Location retrieval approaches like ours require a gallery of candidate locations to retrieve from at
test time. An advantage of this approach over image retrieval approaches is that candidate locations
can be sampled readily (just 2 coordinates) and do not require a database at test time. However,
construction of these location galleries can affect final performance. A gallery that is too sparse can
lead to higher geolocation errors and a gallery that is too dense can require too much compute. See
Fig A5 for visualization of different galleries.

A.5 ADDITIONAL IMPLEMENTATION DETAILS

Spectrogram Creation. We take a vision approach where 1D waveforms are converted to 2D
spectrograms, which can be treated as images. Following previous work (Chasmai et al., 2024),
we generate spectrograms using the Short-Time Fourier transform (STFT), with a window size of
512 and a stride length of 128. Linear spaced frequencies are converted to the mel-scale (Pedersen,
1965), mapping frequencies in the range [SOHz, 11.025kHz] to 128 logarithmically spaced mel bins,
better aligning with human perception of pitch change. Each audio recording is split into a set of
windows of 3 seconds each, strided by 1.5 seconds. Each window is treated as an independent
image, repeated thrice and resized to get a 224 x 224 x 3 RGB input.

Regression for Geolocation.  An intuitive approach is to directly regress latitude and longitude
from fp(x). hy can be a linear layer with 2 outputs and all weights can be trained using either
Euclidean distance or the differentiable Haversine distance as the loss. While the former offers
simplicity, the latter is more accurate as we are computing distances on a sphere instead of a plane.
The (lat, lon) coordinates are normalised to [—1, 1] before being used as labels for regression. A
third approach is to convert the spherical coordinates (lat, lon) to Cartesian coordinates (z, y, z) and
then use Euclidean distance (Perotin et al., 2019).

Classification for Geolocation. = We can formulate geolocation as classification over a set of
location bins. If the world is divided into bins, then i, can be trained using cross-entropy to predict
the bin that contains the recording location.
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Figure A3: Model Predictions on XCDC. Heatmap shows the unnormalised likelihood of each
location. Green crosses denote the final prediction (argmax) and green circles denote true location.
Original observations linked below. Best viewed zoomed in.

Figure A4: Classification grids and iNatSounds Distribution. Visualization of H3 (Brodsky,
2018) grid cells at different resolutions (0, 1 and 2 from left to right with average cell areas 436,
61 and 9 x10%*km? respectively). In the hexagon itself, we show the actual distribution of the
iNatSounds training set (higher opacity — more data). We use log scale for better visualization.

At test time, hg predicts a probability distribution over the bins and we use the center of the most
likely bin as the predicted location. The bin resolution (large bin area vs small bin area) imposes
constraints on the maximum achievable performance since even correctly classified (i.e., correctly
binned) samples may be far from the bin center. This is likely the cause of the very poor regional
performance with lowest resolution models in Table 1 (main paper). For higher resolution cells,
the size of each cell is smaller, and thus, the error introduced by choosing the grid center is lower.
However, higher resolution grids have more cells, or classes, which makes the classification itself
somewhat harder.

We also experiment with a hierarchical approach to better handle this tradeoff. A low resolution
model first predicts a large cell. Then a higher resolution model is used to predict a smaller cell
within this large cell. This can be repeated for multiple levels of hierarchy. We start with resolution
0, followed by resolution 1 and finally 2. Note that this is done only at test time, so once the models
at different resolution are trained, they can just be used directly for hierarchical classification.

Model Architecture and Hyperparameters. We show a block diagram of the AG-CLIP model
architecture in Fig. A6. The pipeline has some differences at training and test times. While training,
we sample windows uniformly at random from audio recordings, while at test time, we densely sam-
ple strided windows from the entire audio recording and aggregate to get recording level predictions.
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Figure AS: Location Galleries. Visualization of different galleries for evaluating geolocation.

IV 7 N
Location 1

| 4 LY
Encoder

BCE
Loss [AG-CLIP] [AG-CLIP] [AG-CLIPJ
[ Temporal Aggregation ] -
_

Distribution
Model

GeoCLIP

Location
Encoder

A) Trainin, B) Evaluation [ A
‘ -
EH:]E GeoCLIP Sound Recording ’ Galles -
é? (lat, lon) ————————— — - -

Checklist
Prediction

Window

Location
Embedding

Contrastive

0ss 1

AG-CLIP

Cosine Similarities

‘ [ Audio Encoder [ ) Projection [ Location Decoder [ Checklist Decoder [ Embedding Vector [: AG-CLIP ‘

Figure A6: Method Overview. At training time (left), we sample a window uniformly at random
from each audio recording. Features extracted by the audio encoder fy are fed to a checklist decoder
which is used in a BCE loss with checklists given by SINR (Cole et al., 2023) as labels. Audio
features fy are also fed to a location decoder, whose outputs are matched with corresponding Geo-
CLIP (Vivanco Cepeda et al., 2024) location embeddings to get a constrastive loss. The full model is
trained with the BCE loss and Contrastive loss. At test time (right), we densely sample all windows
from a recording, predict final location features via the full AG-CLIP model and then aggregate these
features across windows to get a recording-level prediction. Finally, we compute the similarity of
this feature with GeoCLIP embeddings of a gallery of candidate locations to pick the most similar,
which is the geolocation prediction.

In all experiments, we use the relatively light-weight MobileNet V3 (Howard et al., 2019) as our
audio backbone to get a 1280 dimensional features from windows resized to 224 x 224. We choose
model dimension hyperparameters to get good performance while keeping model size comparable.
Our checklist prediction head learns to predict the entire species checklist given by SINR. The
projection layer takes the 1280 dimensional embeddings and projects it to the checklist dimension.
The checklist and location decoders are both 2 layer MLPs with hidden dimensions of 128. After
these modifications, the increase in model parameters is modest, from 4.4M for GeoCLIP to 4.7M
for AG-CLIP.

We initialize the audio backbones with pretrained weights for iNatSounds (Chasmai et al., 2024)
species identification. We take a weighted sum of the BCE and contrastive losses, with a weight of
0.01 on the BCE loss, which reflects its magnitude relative to the contrastive loss. We train for 50
epochs with early stopping using the Nesterov accelerated SGD optimizer with a batch size of 128,
weight decay of 10~°, and learning rate linearly ramped from 10~2 to 102 over the first 5 epochs
and then cosine decayed back to 10~3 over the remaining 45 epochs. These hyperparameters were
chosen with the validation set released by iNatSounds. We report test set performance.
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Table Al: Location Galleries. Effects of the location gallery used for AG-CLIP. The same AG-
CLIP model (pre-trained on iNatSounds) is given different galleries at test time to get these results.

City Region Country Continent

Gallery #Locs 5 200km  750km  2500km
Uniform 65K 01.3 15.0 38.6 69.2
Uniform 260K 029 158 389 69.5
Land 20K 016 154 386 69.6
Train 137K 066 174 410 70.3
Train Neighbors 43K 03.1 16.1 39.3 69.9
Validation 45K 067 17.6 411 70.6
XCDC 576 007 074 287 65.7

Baselines: GeoCLAP and TaxaBind. For GeoCLAP, we get aerial imagery from the location
with Google Maps API (similar to SoundingEarth (Heidler et al., 2023)), and use its image embed-
ding as the location embedding in our retrieval setup. Instead of encoding the (lat, lon) coordinates
directly with a model, we first get the corresponding aerial image, and embed this image with their
image encoder. SoundingEarth, the dataset used by GeoCLAP also contains Google Maps images,
and we match the zoom levels and image sizes with that dataset. We use their audio and image
encoders off the shelf.

TaxaBind includes encoders for 6 different modalities, all embedding in the same shared space. We
use their audio and location encoders directly, in a setup very similar to ours. Note that TaxaBind
does not actually use geotagged audio. It uses geotagged images and audio-image paired data, which
are used to train location-image and audio-image encoders, respectively. Since all modalities share
the same space, this training strategy allows us to do audio—location retrieval, which we use for
geolocation.

A.6 TRANSFORMER TO HANDLE VARIABLE LENGTH

Models that can reason over time can potentially capture more interesting patterns. For longer
recordings like those of XCDC, temporal analysis can allow a model to properly combine geographic
cues from different species. Our default average pooling does this too, by way of a simple voting of
different windows. We also explore if we can do better with a transformer.

We still remain in the late-fusion regime: geolocation features are predicted for each window inde-
pendently and the transformer aggregates these predictions at the end. We do this with the training
set so that the transformer takes in a sequence of predicted location features /N x L and then predicts
a single L-dimensional feature, where L is the embedding dimension of the location encoder, which
in our case is 512 for GeoCLIP. For easier batch construction, we keep the sequence length N fixed
at 32, padding or cropping appropriately. Note that this corresponds to around 50s of audio. We use
6 transformer layers, each with 8 heads and a hidden dimension of 128. Only the transformer layers
are trained and the CNN backbone is kept frozen. We use Adam with learning rate of 10~3, weight
decay of 1073, and train for 50 epochs.

A.7 ABLATION ON LOCATION GALLERIES

We present ablations on the location gallery in Table Al. We first experiment with galleries con-
structed by uniformly sampling points on the 2D world map (latitude, longitude). We sample lo-
cations in intervals of either 1°, leading to 65K locations, or 0.5°, leading to 260K locations. We
obtain similar performances for both, with region level at 13.4% and 14.8%, respectively. This in-
dicates that adding additional locations on a uniform grid may not improve performance much, but
will lead to much higher compute. Next, we again sample uniformly (1° interval), but restrict loca-
tions to only land mass. Since the earth is only about 29% land, we are left with 20K locations, but
performance does not change much, and actually improves slightly for some levels (city, region, and
continent). This hints at the potential of smaller, but more targeted galleries.
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Table A2: Geolocation on XCDC. Models trained on iNatSounds training set and evaluated on XCDC.

J Median 1 City Region Country  Continent

Experiment Error (km)  25km 200km  750km  2500km
Naive  Rnd Train Loc 9915 +99 00.0+ 0.0 00.1 £0.2 005404 03.6+0.5
Species  True Species 449 + 06 00.5+0.2 258+ 1.4 688+ 1.4 99.0-+0.1
Ranges Predicted Sp (All) 1097 £ 18 00.1 £0.1 025+0.3 276+1.1 80.0£0.3
Classify Hierarchical 1116 =60 000 +=0.0 053 +0.1 317+ 1.9 69.7+0.6
Retrieve AG-CLIP (ours) 1112 £ 93 002+0.2 043+0.7 263+35 71.9+0.2
AG-CLIP (XCDC gallery) 912 + 72 059+0.2 11.6+0.7 366+ 3.1 73.8+0.3

Table A3: Geolocation on WABAD. Models trained on iNatSounds training set and evaluated on
WABAD (Pérez-Granados et al., 2025).

J Median 17 City Region Country Continent

Experiment Error (km) 25km  200km  750km 2500km
Reoress  Euclidean 3540  0.00 0.80 07.51 37.77
g Haversine 3853 0.00 0.86 08.53 37.66
Res-0 (430 x10%*km?) 4126  0.00 0.00 09.48 40.38
Classify  Res-2 (8.6 x10*km?) 5404  0.00 1.44 08.93 34.50
Hierarchical (0—1—2) 4746 0.00 1.30 12.39 36.42
Species Annotated Species 736 0.60 17.32 50.33 79.59
Ranees Predicted Species (Top 1) 9678 0.00 0.37 01.63 07.23
g Predicted Species (All) 3317 035 2.53 15.69 44.00
GeoCLAP 7139 0.10 0.58 02.91 15.20
Retrieve Taxabind 7429 0.10 0.44 04.46 15.81
AG-CLIP (ours) 3439 0.20 3.23 14.90 45.03

Next, we use the train and validation sets to construct the gallery. Keeping the locations from
each geo-tagged audio in the train set, we are essentially following the distribution of the dataset
itself. Regions where recordings are dense in the training set have more locations in the gallery and
conversely, sparse regions in the train set are allocated fewer gallery locations. If the test location
distribution is similar to the train, this would be a good gallery, well balanced between granularity
and compute cost. We could use the validation set instead to construct the gallery, although the
train set is a more natural choice. Compared to the land gallery, we see small improvements at the
continent and country level, but much bigger improvements at the region (16.4% vs 13.8%) and
city (6.5% vs 1.3%) levels. The train neighbors gallery consists of uniformly sampled points like
the uniform gallery, but only from H3 (Brodsky, 2018) hexagons that contain at least one training
recording. This allows denser sampling with a better control over the total number of locations. Even
with 0.5° intervals, the number of locations drops to 43K, at the cost of slightly worse performance.

A.8 AUDIO GEOLOCATION ON XCDC

We report repeated runs with mean and standard deviations for XCDC experiments in Table A2.
Standard deviations are relatively low. We also include an experiment with AG-CLIP where we use
the XCDC-gallery instead of iNatSounds. We see a good boost in performance, particularly at finer
scales. However, these improved results are still worse that iNatSounds, supporting our hypothesis
about the difficulty of our models to identify species rich data in XCDC.

A.9 IN-THE-WILD AUDIO GEOLOCATION WITH WABAD
Our models are trained with iNatSounds, characterized by short, focal recordings. In contrast, pas-

sive acoustic monitoring (Sugai et al., 2019) (PAM) projects often collect longer recordings that
capture not only target species vocalizations but also background ambient sounds. This domain shift
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Figure A7: Additional experiments and visualizations

from the training distribution presents an opportunity to test our models on challenging and realistic
in-the-wild settings.

WABAD (Pérez-Granados et al., 2025) is one such PAM dataset with dense annotations (timestamps
and frequency ranges) covering 91K animal vocalization from more than 1.1K species around the
world. We present the performance of our models on this dataset in Table A3. Similar to XCDC,
we see significant drops compared to the performance on iNatSounds, further highlighting the chal-
lenges of this domain shift. However, the relative performance of different methods is generally
consistent (lower performance of classification being an exception). AG-CLIP demonstrates bet-
ter robustness than the soundscape mapping baselines Taxabind and GeoCLAP, particularly at the
country and continental levels.

A.10 ADDITIONAL DETAILS FOR MULTIMODAL GEOFORENSICS

We use Youtube clips for each movie shot we investigate. Searching for the moment where we
suspect a discrepancy (based on viewer comments), we extract 10s audio clips and take a screenshot.
The audio is geolocated by AG-CLIP. For the image, we use CLIP image encoder, followed by a
(frozen) projection, as done by GeoCLIP. We visualize geolocation predictions of each modality of
each example by arrows. These arrows show only the approximate location, but we compute the
discrepancy errors exactly.

GeoCLIP keeps their image encoder frozen and trains a location encoder. This allows them to swap
in CLIP’s text encoder instead of image, facilitating geolocation of text. Text descriptions of visual
or acoustic scenes can serve as another modality for geoforensics.

A.11 MULTIMODAL GEOLOCATION

In AG-CLIP, we keep the location encoder frozen from GeoCLIP, who in turn had kept their image
encoder frozen from CLIP. Thus, we have a set of encoders that embed audio, location, images and
text to the same space, allowing us to do multimodal geolocation (see Fig A7a). Interestingly, CLIP
can recognize flag images as well, and can geolocate them to the correct countries. The Las Vegas
sphere (top left) finished construction after these models were trained, but they are interestingly still
able to geolocate it accurately, perhaps because of some background details.

Text helps expand the scope of queries in this problem. We can ask the model to geolocate the text
“rainforest”, and it predicts a location close to the Amazons, the biggest rainforest in the world.
Giving country names as text queries also seems to work well. As fun experiments, we also ask the
model to geolocate fictional places like “Hogwarts” and “Narnia.” For Narnia, the model predicts
a location near Russia, which may be due to the snowy and mountainous landscapes seen in the
first part of the movie. Image geolocation on a video frame from the movie also points to a similar
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Figure A8: Multimodal Retrieval. We visualize some examples for Audio — Text and Audio —
Image retrieval. We use the same average soundscape embeddings of species shown in Fig. A.12 and
retrieve some text or image queries. We show similarity matrices for 1) Country names as text, 2)
Country flags as images and 3) Same species as images. Retrieval for country texts and flag images
are relatively consistent. For species image retrieval, we see some confusion for the Rufous-collared
sparrow, but all species are correctly matched. At the bottom, we show the SINR range maps of
these species for context of the countries these species are typically found in.

location. Similarly for Hogwarts, the predicted locations of text and image geolocation models are
interestingly close. While we cannot say whether the predicted geolocations for these are correct or
not, it can be a fun way to probe what these models are learning.

A.12 SOUNDSCAPE AFFINITIES OF SPECIES.

How does the soundscape associated with a species relate to its geographic range? We explore
this question using AG-CLIP and visualize the results in Fig. A7b. For each species, we compute
the average audio embedding using test recordings from iNatSounds associated with that species.
We then calculate the cosine similarity between this average embedding and a gallery of location
embeddings uniformly sampled across the globe (restricted to land locations). The similarities are
clamped to the range [0, 1] and used as the alpha channel in the heatmap visualizations.

Fig. A7b shows results for four species: Northern Cardinal, Rufous-collared Sparrow, Common
Nightingale, and Australian Magpie, alongside coarse approximations of their range maps. The
soundscape embedding of the Northern Cardinal aligns well with its range, but interestingly, it does
not capture the western portion of its range as strongly, possibly reflecting the distinct soundscapes
of eastern forests versus western deserts. For the Rufous-collared Sparrow, the soundscape feature
extends far beyond its range in South America, likely due to its occupancy of semiopen habitats
(i.e., villages, towns, and farmland), making it acoustically similar to many locations worldwide.
The Common Nightingale’s soundscape affinity stretches into Russia, suggesting a similarity in
soundscapes between northern Europe and parts of Russia. Finally, the Australian Magpie’s embed-
ding aligns with its range in Australia and New Zealand but also shows unexpected affinities with
deserts in Africa and rainforests in Southeast Asia, two habitats present in Australia.

These results highlight that the soundscape features learned by AG-CLIP capture both expected and
surprising affinities of species soundscapes, providing insights into the relationship between species
vocalizations and the broader acoustic environment.

A.13 RETRIEVING IMAGES AND TEXT FROM AUDIO

Since we embed audio in a shared text-image-location feature space, we can use our geolocation
models to perform Audio — Text and Audio — Image retrieval by simply replacing location em-
beddings with the corresponding modality. We present a few such experiments in Fig AS.

We use the same average soundscape embeddings of species shown in Fig. A.12. We compute sim-
ilarities of these embeddings with certain text or image embeddings for retrieval. First we attempt
Audio — Text by comparing each species feature with text features of country names. Notably, we
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observe some confusion between Switzerland and Russia for the Common Nightingale. These simi-
larities closely reflect the SINR (Cole et al., 2023) species range maps for corresponding species seen
at the bottom of the figure. Next, we attempt Audio — Image by using images of flags of the same
set of countries. We observe predictions very similar to the Text retrieval experiment, which under-
scores how well these modalities are paired. Finally, we repeat the Audio — Image experiment by
using species images instead of flags. While there is some confusion for the Rufous-collared Spar-
row, the other three species are surprisingly confident and the model retrieves all species correctly.
Some multimodal retrieval tasks are often constrained by the availability of paired data from each
modality. These experiments show a promising and flexible alternative of using “weakly” paired
data where some but not all modalities are paired with each other.

A.14 COMPUTE RESOURCES

We used a single A100 GPU with 80 GB GPU memory for all experiments. On a node with 1 GPU
and 8 CPUs, one experiment of AG-CLIP takes 2.5 hours on iNatSounds (training + testing) and
about 20 minutes for XCDC (testing only). Other approaches of species oracles, naive baselines
and species ranges are much faster. Classification and regression take about the same training time
as AG-CLIP, and are faster at inference time since retrieval methods need location galleries to get
prediction.
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A.15 REBUTTAL TABLES AND FIGURES
For ease of reference, we include additional figures and tables requested by the reviewers here. We

will move parts of these to other sections of the appendix or the main paper for the final version.
Suggestions about the organisation and placement of these results are welcome!

A.15.1 REVIEWER YZ8H.

Please see Table A4 for the amount of data and geolocation results per taxonomic class.

Table A4: Taxonomic breakdown of iNatSounds. Left: Number of species and recordings for
different taxonomic classes. Right: Geolocation performance for each taxonomic class.

Class Train Class Median City Region Country Continent
Species Recordings Error (km) 25km 200km 750km  2500km
Aves 3,846 111,029 Aves 1165 59 1568  38.79 69.81
Insecta 745 10,080 Insecta 679 129 2699 5458 79.55
Amphibia 650 13,183 Amphibia 615 7.7 26,61 57.56 83.75
Mammalia 296 2,566 Mammalia 1442 3.6 11.84  33.27 61.32
Reptilia 32 154 Reptilia 2261 0.0 0.00 12.50 50.00

A.15.2 REVIEWER ZXD9.
Please see Table A5 and Table A6 for additional experiments with other audio encoder architectures.

Please see Table A7 and Fig A9 for the experiments with data resampling to mitigate the effects of
species and geographic imbalance in the training data.

Table AS: Audio Backbones. Experiments with other backbone architectures for the audio encoder.

Audio Backbone Median Geolocation City Region Country Continent

MobileNet-V3 1082 6.40 17.2 41.0 71.2
ResNet50 935 6.97 18.86 44.277 74.37
ViT-B16 1069 7.10  17.79 41.19 71.24

Table A6: Baselines with ResNet50. Results for AG-CLIP and other methods for ResNet50.

ResNet50 experiment  Median Geolocation City Region Country Continent

mse 1650 0.05 2.67 23.75 63.05
classification (res=2) 1114 036 18.10 40.22 69.22
Retrieval (SatCLIP) 982 1.83  16.28 43.30 70.99
Retrieval (AG-CLIP) 935 6.97 18.86 4427 74.37

Data Resampling to Reduce Imbalance

No Resampling Location resample (w o< 1/n) Location resample (w o< 1/n)
Median Geolocation Error AG-CLIP Median Geolocation Error AG-CLIP Median Geolocation Error AG-CLIP
¥ 5 G . -‘7'. »,\.é,; —7" ;,"_c“_i
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Figure A9: Location weighted sampling. Geographic distribution of performance for different data
resampling strategies.
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Table A7: Data Resampling. For each recording of a given species at a particular location, we
compute the number of training recordings either (i) of that species or (ii) in the same h3 hexagon.
With this count n, we assign the recording a a weight inversely proportional to n (w %) or its

square root (w ﬁ). Performing a weighted random sampling with these weights allows us to
balance the species and geographic distributions, respectively.

Method Median Error City Region Country Continent
no resampling 1082 6.4 17.2 41.0 71.2

w X %

species 1651 4.3 12.0 31.2 59.2
location 1601 1.7 6.5 26.3 61.9

w X \/Lﬁ

species 1190 5.7 15.6 38.9 67.8
location 1204 4.6 13.6 374 69.2
location x species 1440 32 10.6 31.7 64.7

A.15.3 REVIEWER QsQB

Please see Table A8 for experiments incorporating time into audio geolocation as an auxiliary train-
ing objective. Please see Table A9 and Fig A10 for experiments exploring the utility of geolocation
features for species identification. Please see Fig A11 for a comparison of the geolocation error with
the uncertainty of predicting SINR checklists. Please see Fig A12 for additional visualization of
audio embeddings.

Table A8: Incorporating time into audio geolocation. Experiments with month-of-recording pre-
diction as an auxiliary training objective. We experiment with a few different weights on the month
prediction loss.

Method Median Error City Region Country Continent
AG-CLIP 1082 06.4 17.2 41.0 71.2
AG-CLIP + month 0.8 1074 06.2 16.8 41.2 71.0
AG-CLIP + month 0.1 1113 06.2 16.6 40.3 70.5
AG-CLIP + month 1.0 1082 05.8 16.4 41.0 71.0
AG-CLIP + month 2.0 1122 05.1 15.0 40.1 70.5
AG-CLIP + month 5.0 1282 04.3 12.8 36.4 67.2

Table A9: Utility of features for species identification. We explore the use of audio geolocation as
a pretraining strategy for species idenficiation.

Experiment Topl Top5

Train from scratch 48.4 70.2
Pretrain with Geolocation  50.7 71.6
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Figure A10: Utility of features for species identification. We visualize t-SNE projections of
learned embeddings of species-ID and audio geolocation models for a few species pairs. The first
row includes species pairs that tend to sound similar but are found geographically distant regions,
while the second row includes species pairs that sound different but are found in the same regions.
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Figure A11: Geolocation error and SINR uncertainty. To capture the uncertainty of SINR check-
lists, we compute the entropy of the predicted class-wise probabilities, normalized by the number
of predicted positives. We then drop the most uncertain recordings from our evaluation and plot the
median geolocation errors as a function of the fraction of data dropped.
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Figure A12: Audio Embedding Visualizations. For each h3 hexagon, we aggregate the embeddings
from all test audio within that hexagon and visualize the 3D t-SNE projection of this aggregate
embedding as RGB values. The colors are not comparable across different plots, but within a plot,
similar colors can be interpreted as similar embeddings.
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