
Selective Demonstrations for Cross-domain Text-to-SQL

Shuaichen Chang and Eric Fosler-Lussier
The Ohio State University

{chang.1692, fosler-lussier.1}@osu.edu

Abstract

Large language models (LLMs) with in-context
learning have demonstrated impressive gener-
alization capabilities in the cross-domain text-
to-SQL task, without the use of in-domain an-
notations. However, incorporating in-domain
demonstration examples has been found to
greatly enhance LLMs’ performance. In this
paper, we delve into the key factors within
in-domain examples that contribute to the im-
provement and explore whether we can harness
these benefits without relying on in-domain an-
notations. Based on our findings, we propose
a demonstration selection framework ODIS 1

which utilizes both out-of-domain examples
and synthetically generated in-domain exam-
ples to construct demonstrations. By retriev-
ing demonstrations from hybrid sources, ODIS
leverages the advantages of both, showcasing
its effectiveness compared to baseline methods
that rely on a single data source. Furthermore,
ODIS outperforms state-of-the-art approaches
on two cross-domain text-to-SQL datasets, with
improvements of 1.1 and 11.8 points in execu-
tion accuracy, respectively.

1 Introduction

Large language models (LLMs), such as GPT-3
(Brown et al., 2020), Codex (Chen et al., 2021),
PaLM (Chowdhery et al., 2022), and LLaMA (Tou-
vron et al., 2023), have demonstrated a great ca-
pability of addressing various language tasks with
in-context learning (ICL), which rely on prompts
that contain a task instruction and zero or a few
demonstration examples regarding the task.

Recent studies have evaluated LLMs on the
cross-domain text-to-SQL which translates a nat-
ural language question (NLQ) to a SQL query for
a new database. Previous work has conditioned
LLMs with prompts that solely contain the database

1The code for the paper is available at https://github.
com/shuaichenchang/ODIS-Text-to-SQL.

information without any demonstrations (Rajku-
mar et al., 2022; Liu et al., 2023) or utilize out-of-
domain demonstration examples that are annotated
NLQ-SQL pairs associated with the databases that
are different from the test database (Poesia et al.,
2022; Chen et al., 2023; Pourreza and Rafiei, 2023).

However, Rajkumar et al. (2022) and Chang
and Fosler-Lussier (2023) have found that the per-
formance of LLMs can be significantly improved
with annotated in-domain examples serving as
demonstrations, which are the NLQ-SQL pairs
corresponding to the test database. Despite the
remarkable performance improvements achieved
through in-domain annotated demonstrations, ac-
quiring such data can be costly, as the annotation
process requires SQL professionals. More impor-
tantly, annotating examples for each new database
diminishes the generalizability of text-to-SQL ap-
plications. These observations naturally raise two
questions: (1) Which are the key factors within the
in-domain annotated examples that contribute to
the performance improvement? and (2) Can we
harness these benefits of in-domain demonstrations
without relying on in-domain annotation?

In this paper, we start by investigating the role
of the in-domain demonstration examples and then
developing new techniques to create demonstra-
tions without leveraging in-domain annotations.
We assess three aspects within in-domain annota-
tions: text-to-SQL task knowledge and format, in-
put NLQ distribution, and output SQL distribution.
Our experiments show that SQL distribution plays
a pivotal role in in-domain demonstrations. This
finding motivates us to synthesize in-domain data
by generating sampled SQL queries. To the best of
our knowledge, we are the first to leverage synthetic
examples for text-to-SQL with in-context learning.
Furthermore, we introduce a novel demonstration
selection framework ODIS which utilizes Out-of-
domain Demonstrations and In-domain Synthetic
data. By automatically selecting demonstration

https://github.com/shuaichenchang/ODIS-Text-to-SQL
https://github.com/shuaichenchang/ODIS-Text-to-SQL

CreateTable+SelectCol(concert_singer)

-- Using valid SQLite , answer the following
questions for the tables provided above.

Question: what is the name and nation of the singer
who have a song having ’Hey’ in its name?
select name, country from singer where song_name like
‘Hey’;
Question: How many concerts are there in year 2014 or
2015?
select count(*) from concert where year = 2014 or
year = 2015;
Question: Which year has most number of
concerts?
select

Figure 1: An example prompt of 2-shot in-domain
text-to-SQL for the database concert_singer in the
Spider dataset (Yu et al., 2018). The prompt text of
database schema and content, which is constructed using
CreateTableSelectCol (Chang and Fosler-Lussier,
2023), is shown at the beginning of the prompt. Two
in-domain demonstrations (highlighted in blue) are pre-
sented prior to the test question.

examples from both out-of-domain and synthetic
in-domain data with SQL-guided retrieval methods,
our method consistently outperforms both state-
of-the-art models employing fine-tuning (Scholak
et al., 2021; Li et al., 2023a) and in-context learn-
ing (Chen et al., 2021; Pourreza and Rafiei, 2023)
on two cross-domain text-to-SQL datasets. Our
contributions are in three folds:

• We conduct a thorough analysis to examine the
impact of different aspects in in-domain demon-
strations for text-to-SQL.

• We propose a demonstration selection framework
ODIS that leverages out-of-domain and syntheti-
cally generated in-domain demonstrations.

• By employing SQL-guided retrieval methods for
selecting out-of-domain and synthetic in-domain
demonstrations, ODIS consistently outperforms
baselines as well as state-of-the-art approaches.

2 Analysis of In-domain Demonstrations

In this section, we analyze the roles and contri-
butions of in-domain annotated demonstrations.

2.1 Experiment Setup
We conduct experiments on two widely-used cross-
domain text-to-SQL datasets: Spider (Yu et al.,
2018) and KaggleDBQA (Lee et al., 2021). For
the Spider dataset, we use its development set,
which consists of 20 databases with 1047 exam-
ples 2. As for KaggleDBQA, we employ the com-
plete dataset, which contains 8 databases and 272

2The test set of Spider is not publicly available.

CreateTable+SelectCol(dorm_1)

-- Using valid SQLite , answer the following
questions for the tables provided above.

Question: Find the number of students in each major.
select count(*), major from student group by major;
Question: Find the total capacity of all dorms.
select sum(student_capacity) from dorm;

CreateTable+SelectCol(concert_singer)

-- Using valid SQLite , answer the following
questions for the tables provided above.

Question: Which year has most number of
concerts?
select

Figure 2: An example prompt of 2-shot out-of-domain
text-to-SQL for the test database concert_singer.
An out-of-domain database dorm_1 with 2 associated
demonstrations (highlighted in blue) is presented prior
to the test database and question.

examples. Following Chang and Fosler-Lussier
(2023), we utilize a leave-one-out split for evalu-
ating in-domain demonstrations. Specifically, for
a given test example, we randomly select demon-
strations from the remaining examples associated
with the same database, with the condition that se-
lected demonstration examples that do not share
the same SQL template as the test example, follow-
ing the template-split approach (Finegan-Dollak
et al., 2018). We also require the selected demon-
strations to have different templates following Levy
et al. (2022). We repeat all experiments three times
to obtain average results. Figure 1 illustrates a
prompt example that incorporates two in-domain
demonstrations for the database concert_singer
in Spider. Detailed prompt examples can be in Ap-
pendix A.1. We use Code-davinci-002 version
of Codex (Chen et al., 2021) as our LLM due to its
demonstrated capability on code generation.

2.2 Effectiveness of In-domain Annotations

Figure 3 illustrates the execution accuracy of Codex
on Spider and KaggleDBQA. In the zero-shot sce-
nario, where no demonstration examples of NLQ-
SQL pairs are provided, Codex achieves execution
accuracies of 75.7 and 26.8 for Spider and Kag-
gleDBQA. However, the utilization of in-domain
examples demonstrates a considerable improve-
ment in Codex’s performance. Notably, as the
number of in-domain demonstration examples in-
creases, Codex’s performance continues to enhance.
With 30 in-domain annotated examples, Codex’s
performance is significantly boosted to 84.6 and
71.7 on Spider and KaggleDBQA, respectively.

While the benefit of employing in-domain exam-

0 5 10 15 20 25 30

76

78

80

82

84
Zero-shot
ID Examples
OOD Examples
ID NLQ Distribution
ID SQL Distribution

Demonstration Examples

Ex
ec

ut
io

n
A
cc

ur
ac

y

(a) Spider

0 5 10 15 20 25 30
20

30

40

50

60

70
Zero-shot
ID Examples
OOD Examples
ID NLQ Distribution
ID SQL Distribution

Demonstration Examples

Ex
ec

ut
io

n
A
cc

ur
ac

y

(b) KaggleDBQA

Figure 3: The results of Codex with randomly selected in-domain demonstration examples compared to the zero-
shot setting. The x-axis and y-axis represent the number of demonstration examples and the execution accuracy,
respectively. ID represents the experiments utilizing in-domain demonstrations while OOD represents the use of
out-of-domain demonstrations.

ples in ICL is evident, there still exists a limited
understanding of the key factors within in-domain
demonstrations that contribute to performance en-
hancement. To answer this question, we conduct
experiments to analyze three aspects of in-domain
demonstrations: text-to-SQL task knowledge and
format, the distribution of in-domain NLQs, and
the distribution of in-domain SQL queries. The
first aspect pertains to domain-agnostic knowledge,
while the latter two are specific to the domain.

Text-to-SQL task knowledge and format The
in-domain examples encompass the task format
and knowledge of LLMs, such as the relationship
between an NLQ and its corresponding SQL query
given a database. To investigate the extent to which
the performance gains are due to the task format
and knowledge, we conducted a study utilizing an-
notated out-of-domain data as an alternative source
for providing task format and knowledge. In this
setup, the model can learn the correct task format
and knowledge from the annotated NLQ and SQL
pairs associated with other databases. We randomly
select examples from the training set of Spider,
which contain 140 databases with 7000 examples.

Figure 2 illustrates an example prompt that in-
corporates out-of-domain demonstrations. We in-
sert M databases preceding the test database, each
accompanied by 5 NLQ and SQL pairs. We con-
ducted experiments varying the value of M , rang-
ing from 1 to 6. The results of “OOD Examples”
shown in Figure 3 demonstrate that exposure to out-
of-domain examples with the same task format and
knowledge can indeed enhance the model’s perfor-
mance. However, the performance gains from these
out-of-domain examples are significantly smaller
compared to those obtained from in-domain ex-

amples. Furthermore, we observe that the perfor-
mance gains achieved through in-domain demon-
strations tend to converge or even diminish after
a certain number of examples have been provided.
This finding stands in contrast to the continuous
performance improvement observed with the use of
in-domain demonstrations. We believe that while
Codex is capable of learning the task format and
knowledge from in-domain examples, the task for-
mat and knowledge alone are not sufficient to ac-
count for the observed performance gains.

In addition, we investigate the necessity of task
knowledge in the demonstrations by conducting an
experiment where we shuffle the NLQs and SQL
queries to create mismatched demonstrations. Fig-
ure 7 demonstrates that the performance of Codex
is significantly reduced when using demonstrations
with mismatched NLQs and SQLs compared to the
matched NLQs and SQLs. This finding highlights
the necessity of including correct task knowledge
and format in the demonstrations. Detailed results
of this experiment can be found in Appendix A.2.

In-domain input NLQ distribution Besides
task knowledge, in-domain examples also present
the input NLQ distribution to LLMs. Recent re-
search has indicated that LLMs can benefit from
being aware of the input distribution in classifica-
tion tasks. Consequently, paring actual inputs with
either random output labels (Min et al., 2022) or
perturbed outputs (Wang et al., 2022a) has limited
impact on the performance of LLMs.

To assess the importance of the input distribu-
tion, we substitute the gold SQL queries in the
demonstration examples with the predictions gener-
ated by Codex in the zero-shot setting. This allows
the model to be aware of the distribution of in-

put NLQs without being exposed to the annotated
SQLs or any additional knowledge beyond its own
predictions. The “ID NLQ Distribution” in Figure
3 indicates that, for Spider, providing in-domain
NLQ distribution yields some benefits but it is not
comparable to utilizing complete in-domain data.
Moreover, for the KaggleDBQA dataset, providing
in-domain NLQs with self-predicted SQL queries
does not exhibit any advantage compared to not
using any examples. We attribute this observation
to the lower accuracy of Codex in the zero-shot
setting for KaggleDBQA.

In-domain output SQL distribution In-
domain demonstration examples also serve the pur-
pose of revealing the output SQL distribution to
LLMs. To assess the significance of this aspect,
we employ the same LLM, Codex, to generate
synthetic NLQs from oracle SQL queries. In the
demonstration examples, we replace the annotated
NLQs with these synthetic NLQs while keeping
the SQL queries unchanged. This setup allows the
LLMs to be exposed to the in-domain SQL distri-
bution while remaining unaware of the annotated
in-domain NLQs or other inputs beyond its own
generated NLQs.

The results of “ID SQL Distribution” in Fig-
ure 3 demonstrate that providing annotated SQL
queries with synthetic NLQs can greatly enhance
the model’s performance on both the Spider and
KaggleDBQA datasets. Furthermore, the perfor-
mance gains continue to increase with the inclusion
of more demonstration examples, aligning with the
results obtained using actual in-domain examples.

3 Methods

The experimental results presented in Section 2
demonstrate that the SQL distribution encompassed
in in-domain annotated examples plays a crucial
role in improving performance. However, it is im-
portant to note that oracle SQL distributions are
not available in most cross-domain text-to-SQL ap-
plications. To address this limitation, we propose
utilizing synthetic SQL queries and NLQs as in-
domain demonstrations to capture the in-domain
SQL distribution. As the synthetic examples may
not always be correct, relying only on synthetic ex-
amples may potentially contradict the task knowl-
edge of text-to-SQL, which could weaken Codex’s
performance as illustrated in Figure 7. Therefore,
to strike a balance between SQL distribution and
task knowledge, we leverage out-of-domain data

to provide accurate task knowledge in addition to
synthetic data. We propose ODIS: a demonstration
selection framework that leverages both Out-of-
domain Demonstrations and In-domain Synthetic
demonstrations. In Section 3.1 and 3.2, we present
our methods for selecting out-of-domain and in-
domain data, respectively, within the ODIS frame-
work.

3.1 Out-of-domain Demonstration Creation
Recent work has discovered that LLMs are sensi-
tive to the choice of demonstration examples, and
LLMs usually benefit from demonstrations that
are similar to the test example (Liu et al., 2021a;
Wang et al., 2022b; Rubin et al., 2021). Following
that, we further hypothesize that the similarity of
the output SQL queries between test examples and
demonstration examples is more important than
input similarity, as we found that SQL distribu-
tion plays a crucial role in the in-domain scenario.
Therefore, we propose a retrieval strategy SimSQL
to retrieve demonstration examples based on the
similarity of predicted SQL queries.

For a test database d and a question x, our
objective is to retrieve M databases, each with
K NLQ and SQL pairs from a set of annotated
out-of-domain examples e1, ..., eN , where ei =
(dbi, xi, yi, ŷi), representing the database, input
NLQ, annotated SQL query, and predicted SQL
query by an LLM in the zero-shot scenario, re-
spectively. The selected M databases and their
associated examples will be presented before the
test database and question as shown in Figure 2.

Algorithm 1 illustrates our procedure: (1) We
first generate an initial SQL prediction ŷ under
the zero-shot scenario (line 1); (2) we sort out-of-
domain examples based on the similarity between
their predicted SQL query ŷi and ŷ (line 2); (3) we
scan out-of-domain examples from high similarity
to low. Once K examples are found in a database,
the database along with these K examples is se-
lected as a demonstration database and examples
(line 7-9). The algorithm stops when M databases
are selected (line 10-12). We measure the similarity
of SQLs with BM25 (Robertson et al., 2009) on the
SQL keyword and schema tokens in SQL queries.

3.2 In-domain Synthetic Demonstration
Creation

In-domain synthetic demonstration selection con-
sists of two stages: (1) synthetic data generation,
and (2) synthetic data retrieval.

Algorithm 1 SimSQL for out-of-domain retrieval
Input: a zero-shot text-to-SQL model Model,
a test database d and question x, and a set of
OOD examples OOD = {e1, e2, ..., eN} where
ei = (di, xi, yi, ŷi), representing the database, in-
put question, gold SQL query, and predicted SQL
of Model in the zero-shot setting, respectively.
Output: A list of M Demo[di], where Demo[di]
contains K examples associated to di.

1: ŷ ← Model(x)
2: Sort OOD = {ei} in descending order in

terms of Similarity(ŷ, ŷi)
3: for ei in OOD do
4: (di, xi, yi, ŷi)← ei
5: if size of Demo[di] < K then
6: Demo[di]← Demo[di] + (di, xi, yi)
7: if size of Demo[di] = K then
8: Output← Output+Demo[di]
9: end if

10: if size of Output = M then
11: Break
12: end if
13: end if
14: end for

Synthetic data generation To generate synthetic
data, we follow previous work to first sample
synthetic SQL queries {yi} and then translate
SQL queries into natural language questions {xi}
(Zhong et al., 2020b; Wang et al., 2021; Zhao et al.,
2022). We use SHiP (Zhao et al., 2022) to sam-
ple synthetic SQL queries, which extract templates
from out-of-domain databases and sample columns
and values from the test database to fill the tem-
plates. After obtaining synthetic SQL queries, we
use the Codex to generate corresponding synthetic
NLQs, in the same procedure as in our analysis of
in-domain SQL distribution.

To improve the quality of synthetic data, we fol-
low the previous work on code generation (Zhong
et al., 2020b; Batra et al., 2021) to add a verification
process. We use Codex to translate the synthetic
NLQ xi back to SQL ŷi and filter out the examples
that ŷi and yi have different execution results.

Synthetic data retrieval While our objective is
to synthesize SQL queries that align with the or-
acle SQL distribution, it is important to note that
the oracle SQL distribution often relies on domain-
specific prior knowledge that may not be available
in the cross-domain text-to-SQL setting. For exam-

ple, questions commonly asked in a flight booking
system may not be easily inferred from those in a
concert arrangement system. Therefore, instead of
expecting to find SQL queries that closely resemble
the test question, our focus is on retrieving multiple
queries that cover different aspects of the expected
SQL query.

To address this, we formulate the problem as a
maximum coverage problem and adopt a greedy
algorithm inspired by the algorithm proposed by
Levy et al. (2022). Algorithm 2 outlines the pro-
cess of retrieving demonstrations from synthetic
in-domain examples: (1) We begin by creating a set
of tokens Suncover that need to be covered, which
is initialized with the SQL keyword and schema
tokens mentioned in the initial SQL prediction of
test question (line 3). (2) We retrieve the synthetic
SQLs that have the highest similarity to Suncover,
measured with BM25 scores (line 5). The Suncover
will be updated by removing the tokens in the re-
trieved SQL query and the retrieved example will
be added to the demonstration list (line 8 - 9). We
repeat this process until either Suncover becomes
empty (line 17) or we are unable to retrieve a syn-
thetic SQL containing any tokens in Suncover (line
14). (3) If the number of selected examples is less
than the maximum desired, we iterate through steps
(1) and (2) again (line 2).

4 Experiments

4.1 Baseline Methods

Previous Work We compare ODIS with state-of-
the-art approaches that either require finetuning on
the Spider training set or utilize in-context learn-
ing. For the finetuning-based methods, we select
SmBoP (Rubin and Berant, 2021) which utilizes
RoBERTa-large as the pretrained model, as well
as T5+Picard (Scholak et al., 2021), ShiP+Picard
(Zhao et al., 2022), and RESDSQL (Li et al.,
2023a), which employ T5-3B (Raffel et al., 2020)
as the pretrained model.

For the in-context learning methods, we include
the approaches proposed by Rajkumar et al. (2022),
Chang and Fosler-Lussier (2023), Lan et al. (2023)
which utilize either no demonstrations or randomly
selected demonstrations. We also include SYN-
CHROMESH (Poesia et al., 2022) and SKILL-
KNN (An et al., 2023), which employ similarity-
based retrieval methods. Additionally, we se-
lect state-of-the-art approaches LEVER (Ni et al.,
2023), Self-Debug (Chen et al., 2023), and DIN-

Algorithm 2 CovSQL for in-domain retrieval
Input: a zero-shot text-to-SQL model Model, a test
database d and question x, and a set of synthetic
in-domain examples ID = {e1, e2, ..., eN} where
ei = (xi, yi).
Output: A list of K examples from ID.

1: ŷ ← Model(x)
2: while size of Output < K do
3: Suncover ← tokens in ŷ
4: while size of Suncover > 0 do
5: e∗ ← argmax

ei∈ID
Sim(Suncover, yi)

6: x∗, y∗ ← e∗

7: if Sim(Suncover, y
∗) > 0 then

8: Suncover ← Suncover− tokens in y∗

9: Output← Output + e∗

10: ID← ID− e∗

11: if size of Output = K then
12: Break
13: end if
14: else
15: Break
16: end if
17: end while
18: end while

SQL (Pourreza and Rafiei, 2023), which incorpo-
rate fixed demonstration examples with intermedi-
ate reasoning steps or self-correction procedures.

Ours To demonstrate the effectiveness of ODIS
framework, we compare it to baselines that utilize
demonstrations solely from out-of-domain data or
synthetic in-domain sources. Furthermore, we eval-
uate the proposed SQL-guided retrieval strategies
SimSQL and CovSQL by comparing them with the
Random retrieval strategy, as well as the SimNLQ
approach, which retrieves examples based on the
similarity of input NLQs. In line with previous
studies (Rubin et al., 2021; Shi et al., 2022), we
measure similarity using the cosine distance of
sentence embeddings encoded through Sentence-
BERT (Reimers and Gurevych, 2019).

4.2 Experiments Setup
We utilize the training set of Spider as the pool for
selecting out-of-domain demonstrations, following
our experiments in Section 2. We generate and filter
synthetic in-domain examples, resulting in 1416 ex-
amples for Spider and 512 examples for KaggleD-
BQA. When the Random retrieval strategy is used,
we conduct three repetitions with different random

seeds and report the average results. We conducted
experiments with both closed-source LLMs, Codex
and ChatGPT, in addition to the open-source LLM,
CodeLLama, for the final prediction 3. Due to
resource constraints, we only employ Codex for
retrieving demonstrations.

Hyper-parameters For out-of-domain demon-
strations, we employ 5 NLQ-SQL pairs for each
demonstration database, in line with our experi-
ments in Section 2. Determining the number of
out-of-domain databases and the number of syn-
thetic in-domain examples is considered a hyper-
parameter selection process. In our final experi-
ments for Spider and KaggleDBQA, we set the
number of out-of-domain databases to 4 and syn-
thetic in-domain examples to 5, based on the re-
sults obtained from experiments conducted on a
randomly-selected subset of 20 databases from the
Spider training set.

5 Results

5.1 Main Results

Table 1 and Table 2 present the execution accuracy
of state-of-the-art methods and our proposed ODIS
on Spider and KaggleDBQA. On Spider, ODIS
with Codex achieves an execution accuracy of
85.2, surpassing both the state-of-the-art finetuning-
based model RESDSQL (Li et al., 2023a) and the
in-context learning method Self-Debugging (Chen
et al., 2023) by 1.1 points. On KaggleDBQA, ODIS
achieves an execution accuracy of 54.8, outper-
forming the state-of-the-art model SKILL-KNN
(An et al., 2023) by 11.8 points. ODIS also demon-
strates superior performance compared to baselines
that solely rely on out-of-domain or synthetic in-
domain demonstrations, regardless of the backbone
LLM used. On the Spider dataset, ODIS outper-
forms these baselines by 3.1 and 3.6 points when
using Codex, by 0.8 and 3.0 points with ChatGPT,
and by 4.4 and 1.7 points with CodeLlama. Like-
wise, on KaggleDBQA, ODIS surpasses the base-
lines by 1.5 and 9.6 points when employing Codex,
by 7.3 and 19.8 points with ChatGPT, and by 4.4

3We utilize OpenAI APIs code-davinci-002 and
gpt-3.5-turbo-16k-0613 for Codex and ChatGPT. We opt
for CodeLlama-34B-instruct in CodeLlama experiments.

4The reported execution accuracy is measured using the
Spider official test-suite evaluation (Zhong et al., 2020a),
which may yield different values compared to those presented
in the original method papers if different evaluation scripts
were utilized.

Method LLM EX

Previous Work with Finetuning
SmBoP (Rubin and Berant, 2021) RB 78.0
T5+Picard (Scholak et al., 2021) T5-3B 79.1
ShiP+Picard (Zhao et al., 2022) T5-3B 81.4
RESDSQL+NatSQL (Li et al., 2023a) T5-3B 84.1

Previous Work with In-context Learning
Rajkumar et al. (2022) Codex 67.0
Chang and Fosler-Lussier (2023) Codex 76.8
LEVER (Ni et al., 2023) Codex 81.9
DIN-SQL (Pourreza and Rafiei, 2023) Codex 75.6
DIN-SQL (Pourreza and Rafiei, 2023) GPT-4 82.8
Self-Debugging (Chen et al., 2023) Codex 84.1

This work

Zero-shot
Codex 75.7

ChatGPT 75.7
CodeLlama 70.7

Out-of-domain Demo Only
Codex 82.1

ChatGPT 80.7
CodeLlama 75.6

Synthetic In-domain Demo Only
Codex 81.5

ChatGPT 78.5
CodeLlama 78.3

ODIS
Codex 85.2

ChatGPT 81.5
CodeLlama 80.0

Table 1: The execution accuracy (EX) on the Spider
development set.4The upper section contains models
that are finetuned on the Spider training set, while the
middle and bottom sections showcase previous meth-
ods and our proposed methods, which use in-context
learning. The column LLM denotes the language model
utilized, either in the fine-tuning or in-context learning.
RB represents RoBERTa-large.

and 7.4 points with CodeLlama. These results high-
light the effectiveness of leveraging both sources
of demonstrations within the ODIS framework.

5.2 Analysis

We evaluate our demonstration retrieval methods
SimSQL and CovSQL, in comparison to baseline
retrieval methods. To specifically analyze and
compare the performance of the retrieval meth-
ods within each demonstration source, we evaluate
the retrieval methods for out-of-domain demonstra-
tions without utilizing in-domain synthetic demon-
strations, and vice versa.

Out-of-domain retrieval Table 3 presents the
comparison among different retrieval methods
when retrieving out-of-domain examples. It is ob-
served that retrieving out-of-domain examples with
similar predicted SQL queries outperforms random
selection and NLQ similarity-based selection on
both datasets. This finding aligns with our earlier

Method LLM EX

Previous Work with Finetuning
SmBoP (Rubin and Berant, 2021) RB 27.2
T5+Picard (Scholak et al., 2021) T5-3B 29.8

Previous Work with In-context Learning
Zero-shot (Lan et al., 2023) Codex 23.9
Few-shot (Lan et al., 2023) Codex 40.4
SKILL-KNN (An et al., 2023) Codex 43.0

This work

Zero-shot
Codex 26.8

ChatGPT 25.7
CodeLlama 18.8

Out-of-domain Demo Only
Codex 53.3

ChatGPT 45.6
CodeLlama 37.9

Synthetic In-domain Demo Only
Codex 45.2

ChatGPT 33.1
CodeLlama 34.9

ODIS
Codex 54.8

ChatGPT 52.9
CodeLlama 42.3

Table 2: The execution accuracy (EX) on the KaggleD-
BQA.

observations that the output SQL distribution plays
a more crucial role than the input NLQ distribution
in improving the model’s performance.

We also explore the use of oracle SQL queries
in our experiments. Retrieving examples with the
oracle SQL query of the test question results in an
additional improvement of 0.8 and 2.9 points in ex-
ecution accuracy on the Spider and KaggleDBQA
datasets, respectively. We believe that the larger
improvement observed on KaggleDBQA can be
attributed to the lower performance of Codex on
this dataset in the zero-shot setting. This suggests
that employing a better initial model may lead to
further enhancements in the performance of the
ODIS framework.

Method Spider Kaggle

Random 78.7 38.0

SimNLQ 81.2 42.6

SimSQL 82.1 53.3

SimSQL (Oracle) 82.9 56.2

Table 3: The execution accuracy of Codex on Spider
and KaggleDBQA with different out-of-domain demon-
stration retrieval methods.

Synthetic in-domain retrieval Table 4 provides
a comparison of the in-domain retrieval methods.
On the Spider dataset, retrieving synthetic SQL
queries that cover different parts of the initial

Method Spider Kaggle

Random 77.0 38.2

SimNLQ 79.2 41.5

SimSQL 79.7 45.2

CovSQL 81.5 45.2

CovSQL (Oracle) 81.8 48.9

CovSQL (In-domain Annotation) 82.4 52.9

Table 4: The execution accuracy of Codex on Spider
and KaggleDBQA with different synthetic in-domain
demonstration retrieval methods.

SQL predictions outperforms the retrieval methods
based on the similarity of either NLQs or initial
SQL predictions. On the KaggleDBQA dataset,
both the CoverSQL and SimSQL methods achieve
the same results, outperforming the random selec-
tion and NLQ-similarity-based methods. Regard-
ing the experiments with oracle SQL queries, again,
we observe a larger improvement on the KaggleD-
BQA dataset compared to Spider which may be
attributed to the lower performance of Codex on
KaggleDBQA.

Impact of synthetic data To assess the impact of
synthetic data quality in ODIS framework, we com-
pare two SQL synthesizing methods SHiP (Zhao
et al., 2022) and GAZP (Zhong et al., 2020b). Both
methods extract the templates of SQL queries from
the Spider training set and fill the template with the
database schema and content with a new database,
however, SHiP leverages a schema-weighted sam-
pling to make the synthetic SQL queries more re-
alistic by controlling the relationship of sampled
columns. When replacing our synthetic data gen-
erated through SHiP to GAZP, we find the perfor-
mance with Codex has dropped from 81.5 to 79.5
on Spider and from 45.2 to 33.8 on KaggleDBQA.
This indicates that the quality of synthetic data is
crucial in the ODIZ framework.

Additionally, we evaluate the performance of
retrieving from synthetic in-domain examples com-
pared to retrieving from actual annotated in-domain
examples in Spider and KaggleDBQA with the
CovSQL retrieval method. The performance gap in
Table 4 between them indicates that refining the
data synthesizing method could potentially yield
even greater enhancements within the ODIS frame-
work. It is worth noting that this experiment is
designed to illustrate the limitations of synthetic
examples compared to annotated examples. Re-

Method LLM EX

Previous Work with Finetuning
SmBoP (Rubin and Berant, 2021) RB 58.1
T5+Picard (Scholak et al., 2021) T5-3B 65.0

This work
Zero-shot Codex 65.3
Out-of-domain Demo Only Codex 70.9
Synthetic In-domain Demo Only Codex 70.9
ODIS Codex 73.4

Table 5: The execution accuracy (EX) of Codex on the
Dr. Spider NLQ post-perturbation sets.

trieving annotated in-domain examples typically
necessitates a large amount of in-domain annota-
tions, which are usually not available.

Robustness Evaluation In order to assess the
robustness of our proposed ODIS framework, we
conduct a study to compare ODIS with the baseline
supervised-learning and in-context-learning meth-
ods on Dr. Spider (Chang et al., 2023), an evalua-
tion benchmark for text-to-SQL robustness. We opt
for the NLQ post-perturbation sets in Dr. Spider, as
these have been identified as the most challenging
for LLMs with in-context learning (Chang et al.,
2023). The results, presented in Table 5, reveal
that ODIS with Codex achieves an execution ac-
curacy of 73.4 on NLQ perturbations, surpasses
the supervised learning methods and the Codex
with either out-of-domain or synthetic in-domain
demonstrations.

6 Related Work

Text-to-SQL with in-context learning Previous
studies have explored text-to-SQL with in-context
learning from various perspectives. Rajkumar et al.
(2022) and Chang and Fosler-Lussier (2023) inves-
tigated effective approaches to represent databases
in prompts. Other studies have explored the incor-
poration of intermediate reasoning steps to enhance
the performance of LLMs (Chen et al., 2023; Pour-
reza and Rafiei, 2023; Tai et al., 2023).

For demonstration retrieval, prior work has ex-
plored different strategies for retrieving out-of-
domain examples based on similarity (Poesia et al.,
2022; Rubin et al., 2021) and diversity (Levy
et al., 2022; Su et al., 2022). Concurrent with our
work, Nan et al. (2023) suggested retrieving out-
of-domain demonstrations based on the initial SQL
predictions, which aligns with our retrieval method.

Additionally, execution results have been used
in the SQL generation process to verify the gen-

erated SQL queries (Chen et al., 2023; Ni et al.,
2023; Nan et al., 2023; Guo et al., 2023). These
approaches often require multiple LLM calls and
SQL executions to accomplish majority voting or
self-correction. It is worth noting that the database
execution time is a crucial consideration in realistic
applications, as highlighted by Li et al. (2023b). In
contrast, ODIS with our proposed retrieval strategy
only requires two LLM calls (one for initial SQL
prediction and one for final generation) and elimi-
nates the need for any database execution, making
it a more efficient solution for text-to-SQL tasks.

Data synthesis for Text-to-SQL Due to the high
cost of acquiring annotated text-to-SQL data, pre-
vious research has explored the use of synthetic
data as an alternative approach to enhance the
performance of cross-domain text-to-SQL models.
These works primarily focused on data augmen-
tation, such as generating additional examples for
the training databases (Guo et al., 2018; Yu et al.,
2021; Wang et al., 2021; Wu et al., 2021; Yang
et al., 2021; Liu et al., 2021b; Zhao et al., 2022).
Zhong et al. (2020b) first synthesized data for test
databases and adapted pretrained text-to-SQL mod-
els on the synthetic data associated with the test
database before inference. In a similar vein, ODIS
leverages synthetic data for the test database but
uses it with in-context learning rather than directly
fine-tuning models on it.

7 Conclusion and Future Work

In this work, we delve into the analysis of crucial
aspects of in-domain demonstrations and identify
the SQL distribution as the key factor. Inspired
by our findings, we propose a novel demonstration
selection framework, ODIS, which harnesses the
power of both out-of-domain demonstrations and
synthetic in-domain examples using SQL-guided
retrieval. The remarkable performance across dif-
ferent backbone large language models demon-
strates the effectiveness of our proposed frame-
work, compared to both baseline and state-of-the-
art methods.

While ODIS serves as a general framework that
can be employed with various demonstration re-
trieval methods, our experiments in this study uti-
lize separate retrieval methods for out-of-domain
and in-domain demonstrations. We regard it as
future work to explore a unified retrieval strategy
that breaks the boundary between out-of-domain
and synthetic in-domain data, enabling automatic

selection among them. Additionally, our retrieval
approach relies on the predictions of Codex in the
zero-shot scenario. It is worth exploring utiliz-
ing higher-performance initial text-to-SQL mod-
els to further enhance the performance, as demon-
strated in Section 5.2 through the use of oracle SQL
queries. We believe the effectiveness of the ODIS
framework will encourage further advancements in
data synthesis methods and demonstration retrieval
techniques.

Considering the proven effectiveness of utiliz-
ing hybrid data sources, comprising out-of-domain
examples and synthetic in-domain examples as in-
context demonstrations, we believe that ODIS can
be extended to few-shot, parameter-efficient fine-
tuning by leveraging these hybrid data sources (Hu
et al., 2021; Dettmers et al., 2023). We leave the
exploration of parameter-efficient fine-tuning with
synthetic in-domain examples for future research.

Limitations

We hope the effectiveness of ODIS will draw at-
tention to the potential benefits of incorporating
hybrid demonstrations – synthetic and annotated
data in the text-to-SQL task in in-context learning.
As the first study exploring this approach, we exam-
ined the retrieval methods separately for these two
types of demonstrations. However, as mentioned
in Section 7, exploring more advanced retrieval
methods to blur the boundary of out-of-domain
and synthetic in-domain examples is a direction for
future work.

We conducted our experiments with both closed-
source Codex 5 and ChatGPT 6 and open-source
CodeLlama as the large language models. Recent
research has shown that GPT-4 consistently outper-
forms Codex in the text-to-SQL generation when
employing various prompt strategies (Pourreza and
Rafiei, 2023). Considering our budget constraints,
we leave the ODIS framework with other large lan-
guage models as a topic for future investigation.

While our proposed method involves two calls to
LLMs and no SQL execution during the generation
process, it does require an offline process for syn-
thetic example generation. We acknowledge that
this process adds an additional step to the pipeline.
However, we believe that it can be seamlessly inte-
grated with the database deployment process. By

5Codex is currently free for research, with API at
https://openai.com/api/. For commercial use, Codex is avail-
able at https://azure.microsoft.com/.

6ChatGPT API is available at https://openai.com/api/.

incorporating the synthetic example generation step
during the database deployment phase, users query-
ing the database will not experience any noticeable
delays or disruptions.

Ethics Statement

We acknowledge the importance of the ACL Ethics
Policy and agree with it. The objective of text-
to-SQL systems is to provide non-expert database
users with the ability to query databases using natu-
ral language. Our research in this paper focuses on
improving the generalization capabilities of text-
to-SQL models. While the benefit of in-domain
annotated demonstrations is evident, the significant
cost associated with such annotation should not
be ignored in real-world applications. Therefore,
we propose a method that combines both out-of-
domain examples and synthetic in-domain data to
enhance models’ generalization and reduce reliance
on costly in-domain annotations. We believe that
this approach can improve the performance and us-
ability of text-to-SQL systems, making them more
accessible and practical for a wider range of appli-
cations.

Moreover, it is important to consider the cost
of LLMs and SQL execution in realistic scenarios.
Our proposed method employs two calls to LLMs
without requiring any SQL execution during the
SQL decoding process. This design choice aims to
optimize the cost and user experience compared to
other approaches that involve multiple LLM calls
and SQL executions.

Acknowledgments

We would like to thank Michael White, Micha El-
sner, the OSU SLaTe lab, as well as the anonymous
reviewers for their valuable feedback on this work.
Shuaichen Chang is supported in part by the Ama-
zon Post Internship Fellowship.

References
Shengnan An, Bo Zhou, Zeqi Lin, Qiang Fu, Bei Chen,

Nanning Zheng, Weizhu Chen, and Jian-Guang Lou.
2023. Skill-based few-shot selection for in-context
learning. arXiv preprint arXiv:2305.14210.

Soumya Batra, Shashank Jain, Peyman Heidari, Ankit
Arun, Catharine Youngs, Xintong Li, Pinar Donmez,
Shawn Mei, Shiunzu Kuo, Vikas Bhardwaj, et al.
2021. building adaptive acceptability classifiers for
neural nlg. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 682–697.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Shuaichen Chang and Eric Fosler-Lussier. 2023. How
to prompt llms for text-to-sql: A study in zero-shot,
single-domain, and cross-domain settings. arXiv
preprint arXiv:2305.11853.

Shuaichen Chang, Jun Wang, Mingwen Dong, Lin Pan,
Henghui Zhu, Alexander Hanbo Li, Wuwei Lan,
Sheng Zhang, Jiarong Jiang, Joseph Lilien, et al.
2023. Dr. spider: A diagnostic evaluation bench-
mark towards text-to-sql robustness. arXiv preprint
arXiv:2301.08881.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and
Denny Zhou. 2023. Teaching large language models
to self-debug. arXiv preprint arXiv:2304.05128.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314.

Catherine Finegan-Dollak, Jonathan K Kummerfeld,
Li Zhang, Karthik Ramanathan, Sesh Sadasivam,
Rui Zhang, and Dragomir Radev. 2018. Improving
text-to-sql evaluation methodology. arXiv preprint
arXiv:1806.09029.

Chunxi Guo, Zhiliang Tian, Jintao Tang, Pancheng
Wang, Zhihua Wen, Kang Yang, and Ting Wang.
2023. A case-based reasoning framework for adap-
tive prompting in cross-domain text-to-sql. arXiv
preprint arXiv:2304.13301.

Daya Guo, Yibo Sun, Duyu Tang, Nan Duan, Jian
Yin, Hong Chi, James Cao, Peng Chen, and Ming
Zhou. 2018. Question generation from sql queries
improves neural semantic parsing. arXiv preprint
arXiv:1808.06304.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Wuwei Lan, Zhiguo Wang, Anuj Chauhan, Henghui
Zhu, Alexander Li, Jiang Guo, Sheng Zhang, Chung-
Wei Hang, Joseph Lilien, Yiqun Hu, et al. 2023.
Unite: A unified benchmark for text-to-sql evaluation.
arXiv preprint arXiv:2305.16265.

Chia-Hsuan Lee, Oleksandr Polozov, and Matthew
Richardson. 2021. Kaggledbqa: Realistic eval-
uation of text-to-sql parsers. arXiv preprint
arXiv:2106.11455.

Itay Levy, Ben Bogin, and Jonathan Berant. 2022.
Diverse demonstrations improve in-context
compositional generalization. arXiv preprint
arXiv:2212.06800.

Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen.
2023a. Resdsql: Decoupling schema linking and
skeleton parsing for text-to-sql. arXiv preprint
arXiv:2302.05965.

Jinyang Li, Binyuan Hui, Ge Qu, Binhua Li, Jiaxi
Yang, Bowen Li, Bailin Wang, Bowen Qin, Rongyu
Cao, Ruiying Geng, et al. 2023b. Can llm already
serve as a database interface? a big bench for large-
scale database grounded text-to-sqls. arXiv preprint
arXiv:2305.03111.

Aiwei Liu, Xuming Hu, Lijie Wen, and Philip S
Yu. 2023. A comprehensive evaluation of chat-
gpt’s zero-shot text-to-sql capability. arXiv preprint
arXiv:2303.13547.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2021a. What
makes good in-context examples for gpt-3? arXiv
preprint arXiv:2101.06804.

Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi
Lin, Weizhu Chen, and Jian-Guang Lou. 2021b.
Tapex: Table pre-training via learning a neural sql
executor. arXiv preprint arXiv:2107.07653.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022. Rethinking the role of demonstra-
tions: What makes in-context learning work? arXiv
preprint arXiv:2202.12837.

Linyong Nan, Yilun Zhao, Weijin Zou, Narutatsu
Ri, Jaesung Tae, Ellen Zhang, Arman Cohan, and
Dragomir Radev. 2023. Enhancing few-shot text-
to-sql capabilities of large language models: A
study on prompt design strategies. arXiv preprint
arXiv:2305.12586.

Ansong Ni, Srini Iyer, Dragomir Radev, Ves Stoy-
anov, Wen-tau Yih, Sida I Wang, and Xi Victoria
Lin. 2023. Lever: Learning to verify language-
to-code generation with execution. arXiv preprint
arXiv:2302.08468.

Gabriel Poesia, Oleksandr Polozov, Vu Le, Ashish Ti-
wari, Gustavo Soares, Christopher Meek, and Sumit
Gulwani. 2022. Synchromesh: Reliable code gen-
eration from pre-trained language models. arXiv
preprint arXiv:2201.11227.

Mohammadreza Pourreza and Davood Rafiei. 2023.
Din-sql: Decomposed in-context learning of
text-to-sql with self-correction. arXiv preprint
arXiv:2304.11015.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(140):1–67.

Nitarshan Rajkumar, Raymond Li, and Dzmitry Bah-
danau. 2022. Evaluating the text-to-sql capabil-
ities of large language models. arXiv preprint
arXiv:2204.00498.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084.

Stephen Robertson, Hugo Zaragoza, et al. 2009. The
probabilistic relevance framework: Bm25 and be-
yond. Foundations and Trends® in Information Re-
trieval, 3(4):333–389.

Ohad Rubin and Jonathan Berant. 2021. Smbop: Semi-
autoregressive bottom-up semantic parsing. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
311–324.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant.
2021. Learning to retrieve prompts for in-context
learning. arXiv preprint arXiv:2112.08633.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. Picard: Parsing incrementally for
constrained auto-regressive decoding from language
models. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 9895–9901.

Peng Shi, Rui Zhang, He Bai, and Jimmy Lin. 2022.
Xricl: Cross-lingual retrieval-augmented in-context
learning for cross-lingual text-to-sql semantic pars-
ing. arXiv preprint arXiv:2210.13693.

Hongjin Su, Jungo Kasai, Chen Henry Wu, Weijia Shi,
Tianlu Wang, Jiayi Xin, Rui Zhang, Mari Ostendorf,
Luke Zettlemoyer, Noah A Smith, et al. 2022. Selec-
tive annotation makes language models better few-
shot learners. arXiv preprint arXiv:2209.01975.

Chang-You Tai, Ziru Chen, Tianshu Zhang, Xiang Deng,
and Huan Sun. 2023. Exploring chain-of-thought
style prompting for text-to-sql. arXiv preprint
arXiv:2305.14215.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Bailin Wang, Wenpeng Yin, Xi Victoria Lin, and Caim-
ing Xiong. 2021. Learning to synthesize data for
semantic parsing. arXiv preprint arXiv:2104.05827.

Boshi Wang, Sewon Min, Xiang Deng, Jiaming Shen,
You Wu, Luke Zettlemoyer, and Huan Sun. 2022a.
Towards understanding chain-of-thought prompting:
An empirical study of what matters. arXiv preprint
arXiv:2212.10001.

Shuohang Wang, Yichong Xu, Yuwei Fang, Yang Liu,
Siqi Sun, Ruochen Xu, Chenguang Zhu, and Michael
Zeng. 2022b. Training data is more valuable than you
think: A simple and effective method by retrieving
from training data. arXiv preprint arXiv:2203.08773.

Kun Wu, Lijie Wang, Zhenghua Li, Ao Zhang, Xinyan
Xiao, Hua Wu, Min Zhang, and Haifeng Wang.
2021. Data augmentation with hierarchical sql-to-
question generation for cross-domain text-to-sql pars-
ing. arXiv preprint arXiv:2103.02227.

Wei Yang, Peng Xu, and Yanshuai Cao. 2021. Hier-
archical neural data synthesis for semantic parsing.
arXiv preprint arXiv:2112.02212.

Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, Bailin
Wang, Yi Chern Tan, Xinyi Yang, Dragomir R Radev,
Richard Socher, and Caiming Xiong. 2021. Grappa:
Grammar-augmented pre-training for table semantic
parsing. In ICLR.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
arXiv preprint arXiv:1809.08887.

Yiyun Zhao, Jiarong Jiang, Yiqun Hu, Wuwei Lan,
Henry Zhu, Anuj Chauhan, Alexander Li, Lin Pan,
Jun Wang, Chung-Wei Hang, et al. 2022. Impor-
tance of synthesizing high-quality data for text-to-sql
parsing. arXiv preprint arXiv:2212.08785.

Ruiqi Zhong, Tao Yu, and Dan Klein. 2020a. Semantic
evaluation for text-to-sql with distilled test suites.
arXiv preprint arXiv:2010.02840.

Victor Zhong, Mike Lewis, Sida I Wang, and Luke
Zettlemoyer. 2020b. Grounded adaptation for zero-
shot executable semantic parsing. arXiv preprint
arXiv:2009.07396.

A Appendix

A.1 Prompt Construction
For the Spider dataset (Yu et al., 2018), we utilize
the CreateTableSelectCol (Chang and Fosler-
Lussier, 2023) prompt construction to create the
prompt text for databases. In the KaggleDBQA
dataset (Lee et al., 2021), each database is accom-
panied by a database document that provides de-
scriptions of the columns in the database. We incor-
porate the database document as comments within
the CreateTableSelectCol prompt. Figure 4 and
5 provide examples of the database prompt text for
Spider and KaggleDBQA, respectively.

A.2 Necessity of Text-to-SQL Task
Knowledge

Figure 6 shows a prompt example with mis-
matched NLQs and SQL queries as demonstra-
tions. In this example, the first NLQ corresponds to
the second SQL and the second NLQ corresponds
to the first NLQ. Figure 7 shows that the perfor-
mance of Codex is significantly reduced when us-
ing demonstrations with mismatched NLQs and
SQLs compared to the matched NLQs and SQLs.
This finding highlights that it is important to main-
tain the correct task knowledge in the demonstra-
tions, which inspires us to leverage out-of-domain
demonstrations along with synthetic in-domain ex-
amples.

CreateTable+SelectCol(concert_singer)

create table stadium (
stadium_id int ,
location text ,
name text ,
capacity int ,
highest int ,
lowest int ,
average int ,
primary key (stadium_id)
);
/*
Columns in stadium and 3 distinct examples in each column:
stadium_id: 1, 2, 3;
location: "Raith Rovers", "Ayr United", "East Fife";
name: "Stark 's Park", "Somerset Park", "Bayview Stadium ";
capacity: 10104, 11998, 2000;
highest: 4812, 2363, 1980;
lowest: 1294, 1057, 533;
average: 2106, 1477, 864;
*/

create table singer (
singer_id int ,
name text ,
country text ,
song_name text ,
song_release_year text ,
age int ,
is_male bool ,
primary key (singer_id)
);
/*
Columns in singer and 3 distinct examples in each column:
singer_id: 1, 2, 3;
name: "Joe Sharp", "Timbaland", "Justin Brown";
country: "Netherlands", "United States", "France ";
song_name: "You", "Dangerous", "Hey Oh";
song_release_year: 1992, 2008, 2013;
age: 52, 32, 29;
is_male: "F", "T";
*/

create table concert (
concert_id int ,
concert_name text ,
theme text ,
stadium_id text ,
year text ,
primary key (concert_id),
foreign key (stadium_id) references stadium(stadium_id)
);
/*
Columns in concert and 3 distinct examples in each column:
concert_id: 1, 2, 3;
concert_name: "Auditions", "Super bootcamp", "Home Visits ";
theme: "Free choice", "Free choice 2", "Bleeding Love";
stadium_id: 1, 2, 10;
year: 2014, 2015;
*/

create table singer_in_concert (
concert_id int ,
singer_id text ,
primary key (concert_id ,singer_id),
foreign key (concert_id) references concert(concert_id),
foreign key (singer_id) references singer(singer_id)
);
/*
Columns in singer_in_concert and 3 distinct examples in each column:
concert_id: 1, 2, 3;
singer_id: 2, 3, 5;
*/

Figure 4: An database prompt example of for the concert_singer database in Spider.

CreateTable+SelectCol(StudentMathScore)

create table finrev_fed_17 (
state_code integer , -- the state code of the finrev_fed_17
idcensus integer , -- the idcensus of the finrev_fed_17
school_district text , -- the school district of the finrev_fed_17
nces_id text , -- the nces id of the finrev_fed_17
yr_data integer , -- the year data of the finrev_fed_17
t_fed_rev integer , -- total federal revenue through the state to each school district.
c14 integer , -- federal revenue through the state - title 1 (no child left behind act).
c25 integer -- federal revenue through the state - child nutrition a
);
/*
Columns in finrev_fed_17 and 3 distinct examples in each column:
state_code: 33, 5, 14;
idcensus: 33203100130100 , 5501905900000 , 14501615800000;
school_district: "NEW YORK CITY SCHOOL DISTRICT", "LOS ANGELES UNIF SCH DIST", "CITY OF
CHICAGO SCHOOL DISTRICT 299";
nces_id: 3620580 , 622710 , 1709930;
yr_data: 17;
t_fed_rev: 2061297 , 1146298 , 783943;
c14: 956851 , 376182 , 290912;
c25: 439209 , 390711 , 200517;
*/

create table ndecoreexcel_math_grade8 (
year integer , -- the year of the ndecoreexcel_math_grade8
state text , -- the state of the ndecoreexcel_math_grade8
all_students text , -- the all students of the ndecoreexcel_math_grade8
average_scale_score integer -- the average scale score of the ndecoreexcel_math_grade8
);
/*
Columns in ndecoreexcel_math_grade8 and 3 distinct examples in each column:
year: 2017;
state: "National", "Alabama", "Alaska ";
all_students: "All students ";
average_scale_score: 283, 268, 277;
*/

create table finrev_fed_key_17 (
state_code integer , -- the state code of the finrev_fed_key_17
state text , -- the state of the finrev_fed_key_17
#_records text -- the number of records of the finrev_fed_key_17
);
/*
Columns in finrev_fed_key_17 and 3 distinct examples in each column:
state_code: 1, 2, 3;
state: "Alabama", "Alaska", "Arizona ";
#_records: 137, 54, 235;
*/

Figure 5: An database prompt example of for the StudentMathScore database in KaggleDBQA.

CreateTable+SelectCol(concert_singer)

-- Using valid SQLite , answer the following
questions for the tables provided above.

Question: what is the name and nation of the singer
who have a song having ’Hey’ in its name?
select count(*) from concert where year = 2014 or
year = 2015;
Question: How many concerts are there in year 2014 or
2015?
select name, country from singer where song_name like
‘Hey’;
Question: Which year has most number of
concerts?
select

Figure 6: An example prompt of 2-shot in-domain text-
to-SQL using mismatched demonstration examples.

0 5 10 15 20 25 30

45

50

55

60

65

70

75

80

85 Zero-shot
ID Examples
ID Examples Mismatch

Demonstration Examples

Ex
ec

ut
io

n
A
cc

ur
ac

y

(a) Spider

0 5 10 15 20 25 30

30

40

50

60

70
Zero-shot
ID Examples
ID Examples Mismatch

Demonstration Examples

Ex
ec

ut
io

n
A
cc

ur
ac

y

(b) KaggleDBQA

Figure 7: The results of Codex with real in-domain
demonstration examples compared to mismatched ex-
amples. ID Examples represents annotated in-domain
demonstrations while ID Examples Mismatch repre-
sents the NLQ and SQL pairs are mismatched. The
x-axis and y-axis represent the number of demonstra-
tion examples and the execution accuracy, respectively.

