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ABSTRACT

Active Prompt Learning (APL) using vision-language models (e.g., CLIP) has
attracted considerable attention for mitigating the dependence on fully labeled
dataset in downstream task adaptation. However, existing methods fail to explicitly
leverage prompt to guide sample selection, resulting in the selected samples being
ineffective in facilitating the prompt template’s downstream task adaptation, while
also overlooking valuable complementary information in the unselected samples.
To fill this gap, we propose a novel Prompt-Guided Self-Training Sampling Policy
(PSP) for APL, which integrates Soft Actor-Critic with a customized real-pseudo
hybrid reward and vectorized critics to incorporate prompts in guiding sample
selection toward those that facilitate the optimization of prompt template, by jointly
considering both selected and unselected samples. Specifically, PSP comprises
two prominent components: Vectorized Soft Actor-Critic Sampling Policy (VSSP)
and Uncertainty Augmented Self-Training (UST) mechanism. VSSP customizes a
real-pseudo hybrid reward based on learned prompts and image features, which
is fed into vectorized critics to estimate Q-value for each sample and compute
gradients that optimize the actor, allowing it to refine its sampling policy in an
End-to-End manner to identify the most informative samples for prompt learning.
Moreover, UST leverages the CLIP from the previous round to generate reliable
pseudo-labeled data based on uncertainty and confidence of average predictions,
thereby deepening the understanding of the overall data. Extensive experiments
conducted on diverse real-world datasets validate the effectiveness of our PSP.

1 INTRODUCTION

Recent research in pre-trained Vision-Language Models (VLMs) has demonstrated impressive
performance across various tasks, largely through prompt learning that fine-tunes a small set of
parameters within a learnable prompt on fully labeled dataset. For instance, Contrastive Language-
Image Pre-training (CLIP) (Radford et al., 2021) is a representative model that consists of image
and text encoders using a contrastive loss function, trained on 0.4 billion text-image pairs, and is
renowned for its robust transferability. Building on CLIP (Radford et al., 2021), Zhou et al. proposed
CoOp (Zhou et al., 2022b), a notable approach that freezes both the image and text encoders, enabling
learnable context vectors to serve as templates. However, the resource consumption required for
annotation remains substantial.

In response, some researchers have turned to active learning, which selects the most informative
samples within a limited annotation budget to maximize performance (Xie et al., 2023). The
core challenge of active learning lies in formulating an effective criterion for sample selection.
Conventional active learning methods are divided into three categories based on the sampling
algorithm: (1) Uncertainty-based sampling (Lewis & Catlett, 1994; Gal et al., 2017; Kirsch et al.,
2019; Holub et al., 2008) selects the most uncertain samples, such as Entropy (Holub et al., 2008).
(2) Diversity-based sampling prioritizes ensuring that the queried samples represent the entire data
distribution, as in Clustering (Hu et al., 2021) and Coreset (Sener & Savarese, 2018). (3) Hybrid
sampling aims to query informative samples by jointly considering uncertainty and diversity, such as
BADGE (Ash et al., 2020), ALFA-Mix (Parvaneh et al., 2022) and GCNAL (Caramalau et al., 2021).
(4) RL-based sampling formulates sample selection as a policy optimization problem, leveraging
Reinforcement Learning (RL) to iteratively refine this policy and select samples that maximize the
cumulative reward, such as DRAL (Liu et al., 2019) and AOL (Woodward & Finn, 2017).
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Figure 1: Illustration of (a) PCB (Bang et al., 2024), (b) Our PSP. PSP introduces the Vectorized
Soft Actor-Critic Sampling Policy (VSSP) to replace the conventional sampling algorithm in PCB
while filtering reliable pseudo-labeled data through UST.

These approaches generally rely on smaller foundational models, such as ResNet (He et al., 2016),
which lack the commonsense knowledge and specialized domain expertise that larger models possess.
Therefore, Bang et al. (Bang et al., 2024) introduced the pre-trained CLIP into active learning and
proposed Active Prompt Learning (APL), along with the Pseudo-Class Balance (PCB) framework.
As shown in Figure 1(a), PCB mechanically applies conventional sampling methods (i.e., Entropy,
Coreset, and BADGE) to select candidates, which are then sent to a Balance Sampler (BS) to
create query set by preferentially selecting candidates whose pseudo-labels correspond to the most
underrepresented classes in labeled data. However, three PCB variants isolate sample selection and
prompt learning in the APL task, lacking an explicit connection between the two, which is conceptu-
ally inappropriate. Additionally, three PCB variants also overlooks complementary information in
unselected samples, limiting further improvements in model performance. Therefore, in the context
of APL, we urgently need a method that bridges these two stages by explicitly leveraging prompt to
guide sample selection and fully exploiting the complementary information in unselected samples.

To address these issues, we propose a novel Prompt-Guided Self-Training Sampling Policy (PSP) for
APL, which combines Soft Actor-Critic (SAC) (Haarnoja et al., 2018) with a tailored real-pseudo
hybrid reward and vectorized critics to integrate prompts in directing sample selection toward those
that advance the optimization of prompt template, by jointly considering both selected and unselected
samples, as shown in Figure 1(b). Specifically, PSP establishes a self-training teacher-student
framework composed of two key components: Vectorized Soft Actor-Critic Sampling Policy (VSSP)
and Uncertainty Augmented Self-Training (UST) mechanism. VSSP first designs an actor to map the
gradient embeddings of samples from unlabeled data pool into action, where each element represents
the probability of selecting a given unlabeled sample. Next, VSSP utilizes Multinomial Sampling
(MS) to construct the query set in round t, acquires real-labeled data through Oracle annotation,
and combines it with pseudo-labeled data from UST for the student CLIP’s prompt learning. After
prompt learning, the learned prompts and image features are integrated into the computation of the
real-pseudo hybrid reward, which is then passed to vectorized critics to estimate the Q-value for each
sample and derive the actor’s gradients, enabling it to refine its sampling policy in an End-to-End
fashion and effectively identify the most informative samples for further enhancement. To harness
the complementary information in unselected samples, UST employs the teacher CLIP model from
round t− 1 to generate reliable pseudo-labels by evaluating the uncertainty and confidence of the
average predictions. Extensive experiments on multiple datasets prove the effectiveness of our PSP.

The main contribution of this work can be summarized as follows: (i) We propose a novel Prompt-
Guided Self-Training Sampling Policy for active prompt learning, combining SAC with a customized
real-pseudo hybrid reward and vectorized critics to guide sample selection towards those that promote
the optimization of prompt template. (ii) We construct the Vectorized Soft Actor-Critic Sampling
Policy, which tailors a real-pseudo hybrid reward based on learned prompts and image features,
feeding it into vectorized critics to compute gradients of the actor, allowing it to refine its sampling
policy and identify the most informative samples for prompt learning. (iii) We develop an Uncertainty
Augmented Self-Training mechanism, which generates reliable pseudo-labeled data based on the
uncertainty and confidence of the average predictions to reveal data structures not reflected in the
real-labeled data.
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2 RELATED WORK

Active Learning identifies criteria for selecting the most informative samples under a limited
labeling budget. Based on the criteria, active learning methods can be categorized into three main
approaches: Uncertainty-based sampling (Gal et al., 2017; Wang et al., 2019), Diversity-based
sampling (Hacohen et al., 2022; Shui et al., 2020), Hybrid sampling (Ash et al., 2020; Parvaneh et al.,
2022; Caramalau et al., 2021), and RL-based sampling (Ash et al., 2020; Kirsch et al., 2019). For
Uncertainty-based sampling, Entropy (Holub et al., 2008) selects the samples with the highest entropy
for annotation on object recognition. For Diversity-based sampling, Coreset (Sener & Savarese, 2018)
provides an approximate upper bound on the loss for feature space coverage-based active learning
algorithms. For Hybrid Sampling, ALFA-Mix (Parvaneh et al., 2022) ultilizes unlabeled data to
support active learning by interpolating between the representations of labeled and unlabeled instances
and identifying features the model fails to recognize through inconsistencies in predicted labels. For
RL-based sampling, AOL (Woodward & Finn, 2017) combines meta-learning and reinforcement
learning for one-shot classification tasks. DRAL (Liu et al., 2019) designs an agent in acquiring
pairwise annotated data. Notably, PAL (Fang et al., 2017) builds a deep Q-network as an adaptive
policy for sample selection. Therefore, we believe that RL-based methods have the potential to
incorporate prompts for guiding sample selection. However, AOL (Woodward & Finn, 2017) and
PAL (Fang et al., 2017) model the decision of whether to annotate a streaming unlabeled sample
as a binary classification problem, while MedSelect (Vrabac et al., 2022) and DARL (Liu et al.,
2019) rely on pairwise data, making them unsuitable for direct application in Active Prompt Learning
(APL). Therefore, we introduce Soft Actor-Critic (SAC) (Haarnoja et al., 2018), a representative
reinforcement learning algorithm known for its robustness to hyperparameters and strong performance
in continuous action spaces. By designing a customized real-pseudo hybrid reward and vectorized
critics, SAC can be seamlessly integrated into APL.

Vision-Language Models have recently demonstrated remarkable advancements in downstream
tasks, leveraging their robust transfer learning capabilities. A prominent example is CLIP (Radford
et al., 2021), which has been extensively adopted across a wide range of downstream applications
(Yu et al., 2023; Zhou et al., 2023; Ning et al., 2023; Liang et al., 2023; Jia et al., 2022). Inspired by
prompt optimization in natural language processing (Jiang et al., 2020; Khattak et al., 2023), CoOp
(Zhou et al., 2022b) is a representative approach that transforms context words into learnable context
vectors via a text encoder. Building on this, CoCoOp (Zhou et al., 2022a) further refines the learnable
prompt by adapting it to individual image instances.

Active Prompt Learning (APL) resolves the dilemma between the need for additional labeled data
to enhance prompt learning and the high cost of data annotation. It annotates valuable samples for
prompt learning within a fixed budget, improving performance on downstream tasks. Furthermore,
Bang et al. (Bang et al., 2024) proposed the Pseudo-Class Balance (PCB) framework for APL, which
employs selection algorithms such as Entropy (Holub et al., 2008), Coreset (Sener & Savarese, 2018),
and BADGE (Ash et al., 2020) to identify candidates. These candidates are then passed by a balance
sampler to select candidates whose pseudo-labels correspond to the most underrepresented classes
in the labeled data. Notably, Entropy is prone to noisy data and outliers, while Coreset prioritizes
diversity but also includes less informative samples, and BADGE relies on fixed rules to balance
diversity and uncertainty, limiting its adaptability across tasks. More importantly, these works treat
sample selection and prompt learning as two decoupled, discrete stages, with a lack of explicit
connection between them, which makes the APL task fragmented. In contrast, our method bridges
these two stages by refining the sample policy through a customized reward derived from the prompt
learning process, thereby explicitly leveraging the prompt to guide sample selection.

3 METHODOLOGY

3.1 OVERVIEW

PSP comprises two crucial components: the Vectorized Soft Actor-Critic Sampling Policy (VSSP)
and the Uncertainty Augmented Self-Training (UST) mechanism, as described in Figure 2. VSSP
employs the Actor network to map the gradient embeddings of nut unlabeled samples into action at =
{a1, a2, . . . , anu

t
}, where each element indicates the probability of unlabeled sample being selected.
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Figure 2: The overall structure of our PSP. The CLIP collaborative learning framework for PSP
consists of two core components: the Vectorized Soft Actor-Critic Sampling Policy (VSSP) and the
Uncertainty Augmented Self-Training (UST) mechanism.

Next, VSSP utilizes Multinomial Sampling (MS) to derive sampling results G = {g1, g2, . . . , gnu
t
},

which are combined with at and then fed into the Indexer to index the query set in round t. MS
additionally outputs the MS indicator log pm to reflect the quality of the sampling scheme. Ultimately,
the Oracle is utilized to annotate the query set, thereby yielding the real-labeled data. Simultaneously,
UST leverages the teacher CLIP F t(F tV and F tT ) to obtain the pseudo-labels for the remaining
unlabeled data. To mitigate the disruptive effects of noise in pseudo-labels, UST introduces the
Balanced Pseudo-Labeled Selective (BPLS) module, which filters out balanced and reliable pseudo-
labeled data by jointly evaluating the uncertainty and confidence of the average predictions across
L augmentations. Real-labeled data is combined with pseudo-labeled data for the student CLIP
Fs(FsV and FsT ) in prompt learning, optimized with cross-entropy loss Lce. In prompt learning, the
text prompt pc for class c is constructed by appending the class token [clsc] at the end of a sequence,
as illustrated below:

pc = [c]1[c]2 . . . [c]M [clsc] (1)

where [c]m indicates the learnable context vector of the prompt pc, with dimensions matching those
of the word embeddings, while M represents the prompt size. We design experiments regarding
learnable prompt analysis in Appendix A.3. Following PCB, we incorporate class-specific descriptions
generated by GPT-3 (Brown et al., 2020) for augmentation to further enhance prompt learning, as
detailed in Appendix A.5. After prompt learning, the real-pseudo hybrid reward rt is computed by the
product of log pm and the sum of a real-labeled reward rs and a pseudo-labeled reward rp. Since the
unlabeled data pool excludes the query set, the next state st+1 is calculated by feeding nut+1 unlabeled
samples into the student CLIP after prompt learning. At the end of each round, experience tuple
⟨st,at, rt, st+1⟩ is stored in the replay buffer, which is subsequently used to update the networks in
VSSP.

3.2 VECTORIZED SOFT ACTOR-CRITIC SAMPLING POLICY

VSSP introduces prompt to guide sampling policy in selecting the most informative samples for
prompt learning, thereby bridging sample selection and prompt learning—two stages that previous
works have treated in isolation. Next, we provide a detailed elaboration of our VSSP.

We define APL by the tuple < S,A, ps, r >, where the state space S and the action space A are
continuous, the state transition probability pt : S×S×A→ [0,+∞] denotes the probability density
of the next state st+1 given the current state st and action at, and the reward r : S×A→ R. We also
adopt a vectorized state value function Vψ(st), a vectorized Q-function Qθ(st,at), and a sampling
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policy πϕ(at|st), with network parameters ψ, θ, and ϕ, inspired by SAC (Haarnoja et al., 2018). The
Q-Critic and V-Critic networks are modeled as fully connected networks, while the sampling policy
is built as a Gaussian distribution, with its mean and covariance predicted by the Actor network.

State. Given the unlabeled data pool Du, VSSP defines the state st ∈ Rnu
t ×Mg as a matrix

representing the gradient embeddings of the nut unlabeled samples. Here, Mg = K ×Dt
V denotes

the dimension of the gradient embeddings, K indicates the total number of classes and Dt
V is the

dimension of the teacher image features f t,iV = F tV (xui ). Gradient embedding incorporates prompt
information to enrich the state representation, offering richer gradient insights during sampling policy
updating compared to a single image feature. The analysis of state modeling is executed in Section
4.3. Formally, the i-th value of st is expressed below:

sit =

{
f t,iV · [1− cos(F t

T (pc),f
t,i
V )], if c = ŷi

−f t,iV · cos(F t
T (pc),f

t,i
V ), if c ̸= ŷi

(2)

Here, cos(F tT (pc),f
t,i
V ) denotes the score that an unlabeled sample xui belongs to class c, for

c = 1, 2 . . . ,K. ŷi represents predicted category of unlabeled sample xui .

Action. We define the action as a vector at ∈ Rnu
t , where each element represents the probability of

the unlabeled sample selected by the actor. The sampling policy generates the action at ∈ Rnu
t based

on the current state st. After obtaining the action vector, VSSP adopts the Multinomial Sampling
(MS) to obtain the query set, which introduces randomness and helps to distribute the selected
samples more evenly. The sampling results G = {g1, g2, . . . , gnu

t
} in MS follows a Multinomial

Distribution, where gi denotes the number of times xui is selected, and satisfying ns =
∑nu

t
i=1 gi.

Therefore, VSSP defines the log probability of the sampling scheme as MS indicator to evaluate the
quality of the sampling scheme.

log(pm(g)) = log(
ns!

g1! · g2! · · · · · gnu
t
!
) +

nu
t∑

i=1

gi log ai (3)

A larger value of log(pm(g)) indicates that the current scheme aligns well with the distribution of
at, and vice versa. The sampling results and action are fed into the Indexer to retrieve the selected
samples, replacing any duplicates with the sample that has the higher probability. Hence, VSSP
obtains the query set {xsi}

ns
i=1, which is then presented to the Oracle, resulting in the labeled set

{xsi , ysi }
ns
i=1. The real-labeled data are indicated asDl = Dl∪{xsi , ysi }

ns
i=1. Meanwhile, the unlabeled

data pool will exclude the labeled set, i.e., Du \ {xsi}
ns
i=1.

Shape-Variable State Transition. The real-labeled data Dl is incorporated with the pseudo-labeled
data Dp = {xpi , ŷ

p
i }
np

i=1 for the student’s prompt learning with a cross-entropy loss. After prompt
learning, the next state st+1 is obtained by feeding the remaining nut+1 unlabeled samples into the
student CLIP, where nut+1 = nut − ns. Consequently, the state transition exhibits a variable shape,
leading to alignment issues in Equation 8 when optimizing the Q-Critic network, distinguishing it
from SAC (Haarnoja et al., 2018).

Reward. To explicitly utilize prompt for guiding sample selection, we first propose the real-pseudo
hybrid reward, inspired by (Wang et al., 2020), as outlined below.

r(st,at) = log(pm(g)) ∗ (rs + βrp) (4)

rik =
K

max
c=1

cos(Fs
T (pc),Fs

V (x
k
i ))− cos(Fs

T (pyki
),Fs

V (x
k
i )) (5)

where rik denotes the reward for a single sample, reflecting the quality of individual prediction,
k ∈ {s, p} indicates the data type, where (xsi , y

s
i ) denotes the real-labeled sample with label ysi , and

(xpi , y
p
i ) denotes the pseudo-labeled sample with pseudo label ypi = ŷui , where ŷui is the prediction

of the teacher CLIP model, and coefficient β represents the contribution of pseudo-labeled rewards.
Notably, rs indicates the mean of vector rs. Considering that MS indicator log(pm(g)) is negative
while rs and rp are positive, maximizing the real-pseudo hybrid reward results in a reduction of
rs + βrp, which improves the model’s classification ability. log(pm(g)) is closely related to the
construction of the query set for labeling and conveys information for the subsequent training of the
actor and critic, reflecting the quality of the sampling scheme.
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Training. As shown in Algorithm 1, each round stores an experience in the replay buffer. Given the
limited number of experiences, VSSP trains the actor and critics by sampling a single experience per
gradient step once the number of stored experiences exceeds the buffer threshold τb, with the analysis
of τb are provided in Figure 5 from Appendix A.3. In APL, the selection of each sample is made
independently. However, using a scalar state value and Q-value assigns a shared global information
value to all samples, preventing the differentiation of individual sample contributions for sampling
policy updating. To address this, VSSP employs a vectorized V-Critic and Q-Critic to estimate the
state value and Q-value for each sample, enabling finer-grained control over each sample’s role in
optimizing the sampling policy. The V-Critic network updates its parameters by minimizing the
following squared residual error.

JV (ψ) = Est∼B

[
1

2
∥Vψ(st)−UV

t ∥22
]

(6)

where B denotes a replay buffer that stores history experiences, UV
t =

Eat∼πϕ
[Qθ(st,at)− log πϕ(at|st)] indicates the target value for training the V-Critic net-

work. Qθ(st,at) ∈ Rnu
t represents the Q-value predicted by the Q-Critic network for the current

state st ∈ Rnu
t ×Mg and action at, and Vψ(st) ∈ Rnu

t indicates the state value predicted by the
V-Critic network. The unbiased estimates of the gradient of Equation 6 are computed as below:

∇̂ψJV (ψ) = (Vψ(st)−Qθ(st,at) + log πϕ(at|st))⊤ ∇ψVψ(st) (7)

Here, the action at is drawn according to the current policy πϕ(·|st), instead of the replay buffer
B. log πϕ(at|st) is broadcasted to match the shape of Vψ(st). Similarly, the Q-Critic network is
optimized to minimize the modified soft Bellman residual:

JQ(θ) = E(st,at)∼B

[
1

2
∥Q′

θ(st,at)− Q̂′(st,at))∥22
]

(8)

where Q′
θ, Q̂

′ =W (Qθ, Q̂) indicates the aligned target Q-value and Q-value after alignment through
Soft Dynamic Time Warping (Soft-DTW) (Cuturi & Blondel, 2017), as detailed in Appendix A.6.
We adopt Soft-DTW for alignment because it preserves the relative order and structural relationships
between elements, which is crucial given the strong correlation between target Q-value and Q-value.
In addition, the differentiability of Soft-DTW enables gradients to propagate through the alignment
process, ensuring that it does not interfere with the update procedures of either the Actor or the Critic.

The target Q-value Q̂ ∈ Rnu
t is defined below:

Q̂(st,at) = r(st,at) + γEst+1∼p
[
Vψ̄(st+1)

]
(9)

where γ denotes the discount factor, Vψ(st+1) ∈ Rn
u
t+1 represents the state value predicted by the

target V-Critic network with parameters ψ̄. The scalar reward r(st,at) ∈ R is broadcasted to match
the shape of Vψ(st+1).

The state is shape-variable, causing Qθ and Q̂ to have mismatched dimensions, making direct
subtraction infeasible in the soft Bellman residual of SAC. Soft-DTW addresses this issue by
optimizing a smooth, differentiable relaxation of the optimal matching cost, ensuring that Q′

θ is a
differentiable function and preventing information loss result from cropping or padding. Consequently,
the stochastic gradient of Equation 8 is illustrated below:

∇̂θJQ(θ) =
(
Q′
θ(st,at)− Q̂′(st,at)

)⊤
∇θQ

′
θ(st,at) (10)

The parameter update uses a target V-Critic network Vψ , whose update is a weighted average, with a
hyperparameter τ controlling the degree of mixing between the V-Critic network parameters ψ and
the target V-Critic network parameters ψ.

To ensure that VSSP effectively explores while maintaining stable and efficient convergence during
training, we incorporate the reparameterization trick, which introduces stochasticity by reparameter-
izing the policy through the Actor network as follows:

a′
t = fϕ(ϵt; st) = fµϕ (st) + ϵt ⊙ fσϕ (st) (11)
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Algorithm 1 VSSP

1: Initialize parameter vectors ψ, ψ, θ,
ϕ.

2: for round t in range (R) do
3: at ∼ πϕ(at|st)
4: st+1 ∼ ps(st+1|st,at)
5: B ← B ∪ {(st,at, rt, st+1)}
6: for each gradient step do
7: ψ ← ψ − λV ∇̂ψJV (ψ)
8: θ ← θ − λQ∇̂θJQ(θ)
9: ϕ← ϕ− λπ∇̂ϕJπ(ϕ)

10: ψ ← τψ + (1− τ)ψ
11: end for
12: end for

Algorithm 2 UST

Initial: Dp = ∅
1: for each unlabeled sample do
2: {xu,li }Ll=1 ← xui
3: zli = F t(x

u,l
i )

4: ŷui = argmax zavgi = argmax 1
L

∑L
l=1 z

l
i

5: gci = confidence(zavgi )
6: gui = std{confidence(zli)}Ll=1
7: if gci ≥ τc and gui ≤ τu then
8: where τc = 1

B

∑B
i=1 g

c
i , τu =

1
B

∑B
i=1 g

u
i , and B denotes batch size.

9: Dp ← Dp ∪ (xp = xui , y
p = ŷui )

10: end if
11: end for

where ϵt is an input noise vector sampled from a standard normal distribution, fµϕ (st) and fσϕ (st)
indicates the mean and covariance predicted by the Actor network, respectively. The goal of the
Actor network is to learn the policy that maximizes the following objective (Ziebart, 2010):

Jπ(ϕ) = Est∼D,ϵt∼N

[
log πϕ (fϕ(ϵt; st) | st) − 1

nut

nu
t∑

i=1

Qiθ(st, fϕ(ϵt; st))

]
(12)

Here, πϕ is defined as a Gaussian distribution based on the Actor network outputs fµϕ (st) and
fϕσ(st). The gradient of Equation 12 can be approximated as follows:

∇̂ϕJπ(ϕ) = − 1

nut

nu
t∑

i=1

∇a′
t
Qiθ(st,a

′
t)

⊤∇ϕfϕ(ϵt; st)+∇ϕ log πϕ(a
′
t|st)+∇a′

t
log πϕ(a

′
t|st)⊤∇ϕfϕ(ϵt; st)

(13)

3.3 UNCERTAINTY AUGMENTED SELF-TRAINING

The UST mechanism is designed to uncover the latent, task-specific knowledge embedded in un-
labeled data that prior works have overlooked, thereby enriching the model’s understanding of
the overall data distribution. Notably, we compare UST with other semi-supervised (Chakraborty
et al., 2024) and unsupervised (Huang et al., 2022) prompt learning methods to further assess its
effectiveness, as detailed in Table 4 from Appendix A.3. As outlined in Algorithm 2, UST begins by
employing the same data augmentation to sample xui from remaining unlabeled data Du\{xsi}

ns
i=1 to

generate L augmentations of each unlabeled sample {xu,li }Ll=1. After freezing the learnable prompt
from round t− 1 to construct the teacher CLIP model, UST feeds L augmentations of the unlabeled
data into the teacher CLIP model F t to compute logits for each augmented versions of the unlabeled
samples {zli}Ll=1. To achieve stable predictions from the teacher CLIP model, UST calculates the
average of the logits zavgi to obtain the average prediction ŷui , which serves as the pseudo-label for
the unlabeled sample xui .

Considering that noise in pseudo-labels can interfere optimization process, UST designs a Balanced
Pseudo-Label Selective (BPLS) module to filter out samples with more reliable pseudo-labels by
jointly evaluating prediction uncertainty and confidence. In BPLS, gci represents the confidence score
computed from the average logits zavgi across augmentations of unlabeled data, while gui quantifies
uncertainty using the standard deviation of confidence scores from different augmented versions.
BPLS selects samples where gci exceeds the prediction confidence threshold τc and gui is below the
prediction uncertainty threshold τu. Samples meeting these criteria are incorporated into the reliable
pseudo-labeled data Dp. After filtering all samples, UST identifies the missing categories in the
filtered pseudo-labeled and selects high-confidence samples corresponding to those categories, filling
the gaps until the number of samples matches the minimum class count inDp. Finally, pseudo-labeled
data are combined with real-labeled data for the student CLIP’s prompt learning, enabling a more
comprehensive understanding of the intrinsic structure and relationships within the data.

7
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Datasets & Metrics. We adopt seven commonly used datasets to evaluate our PSP. These datasets
encompass diverse categories and are sufficient to demonstrate that PSP can address various real-
world scenarios, including Stanford Cars (Krause et al., 2013), EuroSAT (Helber et al., 2019),
FGVC-Aircraft (Maji et al., 2013), Caltech101 (Fei-Fei et al., 2004), DTD (Cimpoi et al., 2014),
Flowers101 (Nilsback & Zisserman, 2008) and Oxford Pets (Parkhi et al., 2012). We use the “Final
Acc” metric to represent the accuracy of the last round, while the “Average Acc” metric provides a
comprehensive evaluation of PSP by computing the average accuracy of the final round across all
datasets. All experiments were conducted three times, and the results are reported as average values.

Implementation Details. We adopt PCB (Bang et al., 2024) as the baseline model, following the
setup of eight rounds (i.e., R = 8). In each round, we select the query set whose size corresponds
to the number of classes in the datasets, i.e., nst = K. For VSSP, coefficient β, hyperparameter τ
and γ are set to 0.7, 0.1 and 0.9, respectively. In UST, we apply the same data augmentation to the
remaining unlabeled data five times, i.e. L = 5, which involves random resized crop to 224×224
with scale=(0.08, 1.0), random grayscale conversion with probability 0.2, color jittering, random
horizontal flip, and normalization. All the experiments are conducted using the PyTorch platform and
executed on NVIDIA RTX 3090 GPUs. More implementation details can be found in Appendix A.2.

Table 1: Final accuracy on these commonly used downstream tasks using the ViT-B/32 image
encoder. The performances with the pre-trained zero-shot CLIP model are reported from (Rakesh &
Jain, 2021). The performance with the entire labeled dataset during prompt learning is marked as
“Fully Labeled Data”, serves as the upper bound for comparison.

Method DTD Oxford Pets EuroSAT Flowers102 Caltech101 Stanford Cars Aircraft Average Acc (↑)
CLIP (Zero-Shot) 44.5 87.0 49.4 66.7 87.9 59.4 21.2 59.44
Random 58.77±1.94 78.30±0.74 77.62±1.12 92.92±0.61 89.55±1.00 65.96±0.08 30.69±0.30 70.54
GCNAL (Caramalau et al., 2021) 59.82±1.52 82.09±0.59 82.12±0.33 93.19±0.23 92.44±0.60 65.34±0.32 29.84±0.48 72.12
ALFA-Mix (Parvaneh et al., 2022) 61.28±0.41 83.13±0.13 82.39±0.93 96.76±0.17 95.37±0.11 71.04±0.67 27.83±0.25 74.01

Entropy (Holub et al., 2008) 59.18±1.31 76.81±1.38 75.46±3.39 94.80±0.75 91.67±0.09 66.68±0.91 25.80±0.78 70.06
+ AE 60.80±1.18 78.35±1.30 79.97±2.70 96.06±0.63 92.87±0.20 65.99±0.26 26.69±1.34 71.53
+ AS 59.34±0.81 79.88±1.43 79.88±0.43 95.67±1.19 93.28±0.55 68.54±0.09 26.04±1.27 71.75
+ PCB (Bang et al., 2024) 59.73±1.96 80.44±1.24 80.02±2.88 96.16±0.45 92.41±0.50 67.18±0.28 26.78±0.87 71.93
+ PCB (AE) 60.07±1.69 80.87±0.60 81.72±0.53 96.33±0.06 93.14±0.51 66.42±0.86 27.09±0.13 72.23
+ PCB (AS) 59.50±1.99 80.94±1.05 80.75±1.15 96.94±0.19 93.48±0.26 68.93±0.86 27.58±0.43 72.59
Coreset (Sener & Savarese, 2018) 50.39±0.54 76.70±0.52 68.09±1.54 88.65±0.68 88.78±0.49 61.75±0.60 24.32±0.45 65.53
+ AE 51.89±1.38 78.08±1.07 67.02±2.86 89.06±0.62 88.99±0.82 60.65±0.33 25.88±0.70 66.08
+ AS 52.76±1.21 78.89±0.84 70.63±0.54 89.73±0.93 90.63±0.54 64.15±0.77 26.11±0.86 67.19
+ PCB (Bang et al., 2024) 55.77±1.33 76.84±1.10 77.50±4.64 91.30±0.90 89.96±0.03 63.63±0.27 25.38±0.64 68.63
+ PCB (AE) 57.09±0.63 78.60±1.14 79.28±1.40 91.70±0.29 90.29±0.30 62.08±0.35 26.19±1.40 69.31
+ PCB (AS) 56.38±0.73 79.50±0.91 79.28±1.42 92.33±0.84 91.70±0.48 65.75±0.55 26.22±0.47 70.17
BADGE (Ash et al., 2020) 58.98±1.38 80.03±1.19 79.79±0.94 96.33±0.39 92.54±0.01 68.07±0.61 31.25±0.45 72.43
+ AE 59.97±0.71 81.94±0.55 80.57±1.40 96.24±0.29 92.93±0.02 67.10±0.47 31.04±0.32 72.83
+ AS 61.52±1.25 82.33±0.72 81.66±0.41 96.44±0.16 93.79±0.25 70.56±0.31 31.79±0.74 74.01
+ PCB (Bang et al., 2024) 60.28±1.06 80.22±1.69 81.98±0.81 96.12±0.12 92.21 ± 0.92 68.50±0.26 31.35±0.21 72.95
+ PCB (AE) 61.92±1.06 81.93±0.88 80.70±3.67 96.35±0.27 92.52±0.32 67.70±0.84 31.80±0.08 73.27
+ PCB (AS) 62.33±1.06 83.16±0.18 81.50±1.11 96.71±0.29 93.85±0.37 70.70±0.79 32.27±0.66 74.36
PSP 65.66±0.88 86.57±0.93 85.43±0.08 96.35±0.57 93.87±0.31 73.84±0.29 36.42±0.45 76.87
Fully Labeled Data 74.7 89.3 94.5 97.9 94.4 80.8 43.4 82.14

4.2 OVERALL RESULTS

We evaluate our PSP against three PCB variants that implement different description augmentation:
one that omits augmentation, one that uses the average score, and another that employs the average
embedding, denoted as PCB, PCB (AS), and PCB (AE), respectively. The details and experimental
results of description augmentation are provided in Appendix A.5. Moreover, we compare our PSP
with the pre-trained zero-shot CLIP, ALFA-Mix, GCNAL and the Random approach that randomly
selects a query set in each round. The results on downstream tasks with ViT-B/32 image encoder are
summarized in Table 1. For smaller datasets, PSP achieves improvements of 3.33%, 3.41% and 4.15%
over PCB (AS) on DTD, Oxford Pets and Aircraft, respectively. For larger datasets, PSP demonstrates
gains of 3.14% and 3.93% over PCB (AS) on Stanford Cars and EuroSAT, respectively. Furthermore,
PSP achieves improvements of 2.51% on the “Average Acc” metric across these datasets. These
results provide convincing evidence that our PSP effectively enhances performance.
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Table 2: Final accuracy with the ViT-B/32 CLIP image encoder on DTD. The baseline model is
combined with UST, and VSSP.

Method DTD Oxford Pets EuroSAT Aircraft Average
w/o VSSP 64.36 85.91 84.63 34.14 67.26
w/o UST 63.77 85.55 83.97 32.40 66.42

PSP 65.66 86.57 85.43 36.42 68.52
Full Labeled Data 74.7 89.3 94.5 43.4 75.5

(a) SAC (b) Alignment (c) Multinomial Distribution

Figure 3: Influence of different designs of the Vectorized Soft Actor-Critic Sampling Policy. (a)
Different query strategies (i.e., MS and TopK) in VSSP. TopK means selecting the samples with the
highest probabilities in the action. (b) Various alignment algorithms in VSSP. (c) Different usages of
MS indicator within VSSP.

4.3 ABLATION STUDY

Effectiveness of each component in PSP. We present the influence of each component in PSP in
Table 2, reporting the final accuracy on DTD, Oxford Pets, EuroSAT, and Aircraft. w/o VSSP indicates
the removal of the sampling policy, which is equivalent to PCB combined with UST, while w/o UST
denotes the absence of pseudo-labeled data, corresponding to PCB integrated with VSSP. We can
notice that the average performance across four datasets reduced by 1.26 % and 2.10 % respectively
when sampling policy and pseudo-labeled data are removed. These results suggest that both VSSP
and UST are crucial for effectively guiding the student CLIP’ prompt learning. Consequently, we
conclude that guiding the sampling policy with prompts effectively enhances the optimization of the
prompt template by considering both selected and unselected samples.

Effectiveness of each parts in VSSP. To study the effectiveness of different designs for VSSP, we
conduct ablation studies on DTD and report the accuracy for each round. VSSP is built upon SAC
with vectorized critics and real-pseudo hybrid reward. First, we remove the vectorized critics from
VSSP, denoted as SAC (MS), and observe a substantial performance drop compared with PSP (MS),
as detailed in Figure 3a. These results indicate that the vectorized critics play an indispensable role in
achieving the performance gains. Moreover, we replace MS with TopK as the query strategy within
VSSP, denoted as PSP (TopK). As shown in Figure 3a, PSP (MS) consistently outperforms PSP
(TopK), validating that MS is more compatible with our PSP.

Second, we analyze the impact of different alignment methods (i.e., Soft-DTW, PAD, and VAE)
on DTD, as shown in Figure 3b. We adopt Soft-DTW as the default alignment algorithm, which
improves the final accuracy by 1.83% and 0.83% compared to PAD and VAE, respectively.

Third, we remove the real-pseudo hybrid reward from VSSP (i.e., removing the MS indicator in
Equation 4, denoted as “w/o”) and observe a 1.83% performance decrease, as shown in Figure 3c.
This finding demonstrates that real-pseudo hybrid reward has a significant impact on performance.
Notably, the results show that using a positive coefficient improves the final accuracy by 1.06%
compared to the negative coefficient. This supports our analysis that since MS indicator is inherently
negative, maximizing the reward leads to a smaller absolute sum of real and pseudo rewards, which
correlates with better classification performance.

Table 3: Ablation study on DTD, evaluating the impact of hyperparameter β.

β Final Accuracy β Final Accuracy
0.0 63.89 0.5 65.42
0.1 64.95 0.7 65.66
0.3 64.24 0.9 64.66

9
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Analysis of the state modeling in VSSP. We are intend to incorporate the classification score
information of unlabeled samples to construct gradient embeddings as state in Equation 2, thereby
enriching the state representation and facilitating better learning of the sampling policy. To verify the
effectiveness of the classification score information, we conduct experiments where only the features
of unlabeled samples are used as the state. The results indicate that using only features as the state in
PSP is suboptimal, as the accuracy decreases from 65.66% to 63.36% when compared with using
gradient embeddings. We can conclude that modeling the state with classification score information
helps refine the sampling policy.

Average accuracy in each round. To more thoroughly analyze the performance of PSP in each
round, we report the average accuracy across seven commonly used datasets, referred to as the
learning curve. As shown in Figure 4, PSP consistently outperforms all three PCB variants after the
initial round, with the performance disparity progressively increasing. It has been validated that PSP
has almost achieved an enhancement in overall performance in each round compared to the three
PCB variants.

Figure 4: Learning curve. Average accuracy across downstream tasks with the ViT-B/32 image
encoder for each round.

Hyperparameter sensitivity. To determine the optimal coefficient β, we compare PSP with different
values of the hyperparameter β in Table 3. The results show that PSP exhibits robustness with
respect to the hyperparameter β. Ultimately, we select β = 0.7 as the default setting for superior
performance. In Algorithm 1, the target value smoothing coefficient τ is used to stabilize the training
of the V-Critic network. We conduct experiments comparing different values of the τ and conclude
that PSP is insensitive to τ , showing minimal performance variation. Additionally, PSP is robust to
the discount factor γ. More ablation study can be found in Appendix A.3.

5 CONCLUSION

In this work, we propose a novel Prompt-Guided Self-Training Sampling Policy (PSP) for APL,
which integrates SAC with a tailored real-pseudo hybrid reward and vectorized critics to leverage
prompt in steering sample selection toward those that drive the optimization of prompt template, by
jointly considering both selected and unselected samples. PSP constructs a self-training framework
composed of VSSP and UST. VSSP utilizes learned prompts and image features to compute a
real-pseudo hybrid reward, which is fed into vectorized critics to estimate the each sample’s Q-value
and compute gradients for actor’s optimization. This process enables the actor guided by the prompt
to refine its sampling policy in an End-to-End manner and identify the most crucial samples for the
student CLIP’s prompt learning, distinguishing it from PCB. UST extracts valuable complementary
information from unselected samples by utilizing the teacher CLIP to generate reliable pseudo-labeled
data based on uncertainty and confidence. Extensive experiments prove that PSP can identify the
most crucial samples for prompt learning to maximize performance within a constrained budget.
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A APPENDIX

A.1 USE OF LARGE LANGUAGE MODELS

We clarify that Large Language Models (LLMs) were only involved in polishing complex and lengthy
sentences in the manuscript, with the sole purpose of improving readability for reviewers. For
example, the sentence “Next, VSSP utilizes Multinomial Sampling (MS) to construct the query set in
round t, acquires real-labeled data through Oracle annotation, and combines it with pseudo-labeled
data from UST for the student CLIP’s prompt learning.” in Section 1 was refined with the assistance
of LLMs. This polishing step helps reviewers better understand how VSSP and UST work together
to support the student CLIP’s prompt learning.

A.2 EXPERIMENTAL DETAILS

Dataset. Stanford Cars (Krause et al., 2013) is a complex dataset known for its fine-grained
categorization. It contains 16,185 images spanning 196 car models. EuroSAT (Helber et al., 2019)
comprises 27,000 Sentinel-2 satellite images grouped into 10 classes of land use and land cover,
making it a valuable resource for remote sensing. FGVC-Aircraft (Maji et al., 2013) consists of
10,200 images representing 102 distinct aircraft model variants. Caltech101 (Fei-Fei et al., 2004)
includes 9,146 images, divided into 101 object categories, plus an additional background category.
DTD (Cimpoi et al., 2014) features 5,640 images across 47 texture categories, offering a diverse
selection of texture patterns sourced from natural environments. Flowers101 (Nilsback & Zisserman,
2008) contains 8,189 images categorized into 102 flower species, exhibiting considerable intra-class
variation and inter-class similarities. Oxford Pets (Parkhi et al., 2012) consists of 7,349 images of
cats and dogs, covering 37 different breeds.

Experimental details. In Algorithm 1, the learning rate λV , λQ and λπ are all set to 3e-4. To ensure
a fair comparison, we adopt ViT-B/32 as the default backbone for the student CLIP, the teacher
CLIP in all experiments. Throughout all rounds, the prompt learning process for the student CLIP
is optimized with the cross-entropy loss using SGD at a learning rate of 0.002, a batch size of 32,
and 200 epochs across all datasets. For the text prompt, we adopt AS to realize the description
augmentation for enhancing performance and set the size of the learnable tokens M to 16.

A.3 ADDITIONAL RESULTS

Further analysis of UST. To further analyze the effectiveness of UST, we conduct experiments on
DTD and EuroSAT to compare the UST module with representative semi-supervised (Chakraborty
et al., 2024) and unsupervised (Huang et al., 2022) prompt learning methods, as shown in Table
4. We include the following methods for comparison: UPL (Huang et al., 2022), which uses CLIP
with a ResNet-50 backbone for both pseudo-labeling and inference; UPL* (Huang et al., 2022), an
enhanced version of UPL that leverages multiple CLIP backbones (ResNet-101, ViT-B/32, ViT-B/16,
and ViT-L/14) for improved pseudo-labeling, while retaining CLIP with ResNet-50 backbone for
inference; and XPL (Chakraborty et al., 2024), a semi-supervised prompt learning method that uses
the same number of labeled samples as UST. Experimental results indicate that UST outperforms
UPL, UPL*, and XPL on both DTD and EuroSAT, demonstrating that filtering reliable pseudo-labeled
data through UST effectively enhances prompt learning on downstream tasks.

Analysis of the accuracy and number of reliable pseudo-labeled data. To further study the quality
of pseudo-labeled data, we report the accuracy and the number of reliable pseudo-labeled data on the
DTD dataset. As shown in Table 5, both metrics steadily increase as the rounds progress, with the
accuracy approaching 94% in the final round. These results strongly demonstrate that UST effectively
filters out reliable pseudo labels, and that the high accuracy of the pseudo-labeled data substantially
mitigates the negative impact of incorrect pseudo labels.

Performance comparison with classical prompt learning methods. We evaluate the proposed
PSP against classical prompt learning methods, including CoOp (Zhou et al., 2022b) and CoCoOp
(Zhou et al., 2022a), using the same number of real-labeled training samples as our approach. As
illustrated in Table 8, PSP significantly outperforms CoOp and CoCoOp in terms of final accuracy
across all datasets except Oxford Pets and Caltech101. Meanwhile, PSP achieves average accuracy
improvements of 7.76% over CoOp and 7.38% over CoCoOp across these datasets. These results
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Table 4: Ablation study with semi-supervised and unsupervised prompt learning methods. We
present the final accuracy on DTD and EuroSAT using ViT-B/32 as the image encoder for performance
comparison with UPL and XPL.

Method DTD EuroSAT
UPL (Huang et al., 2022) 46.10 52.17
UPL* (Huang et al., 2022) 55.08 71.04
XPL (Chakraborty et al., 2024) 62.29 79.30
UST 62.65 81.59

Table 5: Analysis of the accuracy and the number of reliable pseudo-labeled data on the DTD
dataset in each round.

Metric 1 2 3 4 5 6 7 8
Accuracy 45.47 47.99 83.30 90.67 91.35 92.06 93.25 93.93
Number 436 455 494 522 534 532 543 559

demonstrate that PSP effectively facilitates prompt optimization by annotating more valuable samples
and extracting valuable complementary information from the remaining unlabeled data.

Table 6: Analysis of the versatility of PSP for different Vision-Language Models.
Method DTD Oxford Pets EuroSAT Aircraft Average Acc
PCB (SigLIP) 55.73 47.12 69.46 22.98 48.82
PSP (SigLIP) 59.75 62.99 86.18 28.65 59.39

Analysis of the versatility of PSP for different VLMs. To further prove the versatility of PSP for
different VLMs, we replace CLIP with SigLIP (Zhai et al., 2023). As shown in the Table 6, PSP
significantly enhances the prompt learning of SigLIP compared to the baseline PCB. Therefore, we
can draw a conclusion that the proposed method offers a feasible solution for applying standard
VLMs to a wider range of domains under limited labeling budget.

Analysis of the behavior of the learned sampling policy. To evaluate the behavior of our sampling
policy, we compare it with BADGE, Entropy, and Coreset, and report the overlap ratio, computed
as the intersection between the samples selected by both methods divided by the number of samples
selected by our sampling policy. The results in Table 7 show that PSP exhibits relatively high consis-
tency with Coreset in the early rounds (Rounds 2-4), while in later rounds (Rounds 5-8), its overlap
with Entropy increases. This indicates that the sampling policy initially favors diverse samples to
establish broad coverage, and gradually shifts to uncertain samples as the model’ s classification
capability improves.

Notably, since the overlap between PSP and BADGE is not consistently higher than that with the
other heuristics, we can conclude that PSP is not merely imitating a fixed hybrid rule such as BADGE.
Instead, it continuously interacts with the prompt learning process and adaptively adjusts its sampling
policy over rounds.

Analysis of model efficiency. We evaluate the model efficiency of PSP against various PCB variants
under the same backbone (ViT-B/32) by reporting training time in each round in seconds (e.g., 305,
380...) and the total training time in hours, as illustrated in Table 9. Compared to PCB combined
with BADGE, PSP requires less training time while achieving a 3.33% higher final accuracy. The
experimental results demonstrate that PSP strikes a balance between model efficiency and performance
improvement.

Influence of various image encoder types. To explore whether different image encoder types
affect the performance of PSP, we report the results on various image encoder backbones (i.e.,
RN50, RN101, and ViT-B/16) in Table 10. It is demonstrated that PSP almost achieves performance
improvements compared to other methods regardless of the image encoder backbone used. Notably,
PSP achieves the highest performance on various image encoder backbones on the “Average Acc”
metric, strongly proving that PSP comprehensively outperforms three PCB variants across these
commonly used datasets.

Influence of various buffer thresholds. To determine the optimal buffer threshold, we compare
different values in Figure 5. The results indicate that setting the buffer threshold τb to 1 achieves
the highest performance. Given the limited number of experiences, we sample one experience per
gradient step for updates to fully utilize each entry in the buffer.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 7: Analysis of the behavior of the learned sampling policy.
Round PSP vs CoreSet PSP vs Entropy PSP vs BADGE

1 0.0113 0.0113 0.0113
2 0.1107 0.0959 0.0923
3 0.0920 0.0920 0.0958
4 0.1103 0.0608 0.0837
5 0.1094 0.1283 0.1283
6 0.1301 0.0892 0.0706
7 0.0784 0.1007 0.1045
8 0.0833 0.1023 0.1023

Table 8: Ablation study with classical prompt learning methods like CoOp and CoCoOp. We
report the final accuracy across seven datasets for a comprehensive comparison with CoOp and
CoCoOp.

Method DTD Oxford Pets EuroSAT Flowers102 Caltech101 Stanford Cars Aircraft Average Acc
CoOp (Zhou et al., 2022b) 58.65 87.71 68.73 88.27 90.14 65.25 24.99 69.11
CoCoOp (Zhou et al., 2022a) 57.80 89.81 72.81 84.00 94.44 65.63 21.93 69.49
PSP 65.66 86.57 85.43 96.35 93.87 73.84 36.42 76.87

Performance comparison on ImageNet dataset. To evaluate our method on more advanced and
large-scale dataset, we conduct performance comparison on ImageNet (Deng et al., 2009) dataset. As
shown in Figure 6a. PSP achieves comparable accuracy to PCB in the first two rounds but gradually
outperforms it in later rounds, ultimately reaching the highest performance of 68.41% on the final
accuracy on the large-scale ImageNet dataset. These results provide powerful evidence that PSP
effectively reduces the reliance on large-scale labeled datasets in prompt learning.

Influence of description augmentation. To find the optimal description augmentation suitable for
PSP, we analyze the impact of different description augmentations (i.e., AS, AE, and None) on DTD,
and the results are presented in Figure 6b. It is confirmed that PSP utilizing AS as the description
augmentation significantly outperforms the cases that use AE and no augmentation. Hence, we
choose AS as the default description augmentation.

Influence of increasing query size. In Table 1, it is worth mentioning that the pre-trained zero-shot
CLIP model outperforms PSP on Oxford Pets. To further analyze this anomalous phenomenon, we
increase the query size ns from K to 2K in each round and report the results of PSP on Oxford Pets
in Table 11. We observe that the “Final Acc” metric increases as the size of the query set grows
across all backbones, and PSP surpasses the performance of the pre-trained zero-shot CLIP model on
various backbones when the query size reaches ns = 2K.

Learnable prompt analysis. To further analyze which factors of the prompt affect the performance
of PSP, we conduct experiments about several variables according to the learnable prompt, e.g. the
size of learnable tokens (i.e., prompt size) M , whether class-wise different tokens are allowed (CSC
= True or False), and the position of class token (Front, Middle, and End). For prompt size M , the
results are shown in Figure 7a. It is confirmed that PSP with a larger M alternates in outperforming
PSP with a smaller M until the third round, after which it consistently maintains its performance
lead through the final round. PSP with a larger M achieves a 2.13% improvement on the “Final Acc”
metric compared to PSP with a smaller M , demonstrating that PSP is sensitive to the prompt size,
with larger M values yielding significantly better performance.

For class-wise different tokens, we analyze the performance gap between using the shared context
vectors for all classes (i.e., CSC = False) and using different context vectors for each class (i.e.,
CSC = True), and the results shown in Figure 7b. The results show that the initial accuracy when
CSC = True is lower than when CSC = False, but it eventually surpasses that of CSC = False in the
second round, and then maintains its leading performance. It can be concluded that using class-wise
different tokens offers a slight benefit to PSP. Additionally, during the first round, CSC = True is
more susceptible to overfitting compared to CSC = False.
Table 9: Analysis of efficiency on DTD. All models are trained on a single RTX 3090 GPU with a
batch size of 32.

Method 1 2 3 4 5 6 7 8 Training Time (h) Final Acc (%)
Random 305 380 456 475 540 586 645 670 1.13 58.77
PCB(Entropy) 300 382 413 433 502 545 610 635 1.06 59.18
PCB(Coreset) 327 415 486 494 561 611 662 676 1.18 56.38
PCB(BADGE) 301 944 906 919 971 998 980 991 1.95 62.33
PSP 725 817 957 898 869 861 847 895 1.91 65.66
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Figure 5: Buffer threshold analysis on DTD. We report the final accuracy for different buffer
thresholds.

(a) Learning Curve (b) Description Augmentations 
Figure 6: (a) Learning curve on ImageNet dataset. Classification accuracy on the ImageNet
dataset using the ViT-B/32 image encoder at each round. (b) Ablation study of various description
augmentations (i.e., AS, AE, and None) on DTD. We report learning curves to evaluate the
effectiveness of various description augmentations.

(a) Prompt Size (b) CSC (c) Prompt Position

Figure 7: Learnable prompt analysis on DTD dataset. We report accuracy for different prompt
sizes, whether class-specific tokens are used, and varying prompt positions in each round.
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Table 10: Final accuracy of different image encoder architectures, including ResNet-50/101 and
ViT-B/16.

Method DTD Oxford Pets EuroSAT Flowers102 Caltech101 Stanford Cars Aircraft Average Acc (↑)

RN50

CLIP (Zero-Shot) 44.7 85.4 41.1 65.9 82.1 55.8 19.3 55.9
Random 56.62±0.97 74.65±0.50 79.10±2.31 92.06±0.54 84.11±0.75 61.34±0.57 29.15±0.32 68.18
GCNAL (Caramalau et al., 2021) 55.26±0.51 78.24±1.19 80.92±0.54 92.92±0.60 88.00±0.44 64.31±0.76 28.23±0.59 69.70
ALFA-Mix (Parvaneh et al., 2022) 59.02±0.62 82.04±0.61 82.37±0.17 95.22±0.34 91.62±0.36 67.36±0.09 30.45±0.27 72.58
Entropy (Holub et al., 2008) 57.62±2.13 72.74±0.97 75.73±4.28 95.19±0.09 88.21±0.42 61.32±0.80 25.13±0.96 67.99
+ PCB (Bang et al., 2024) 56.44±0.39 75.49±0.45 81.69±1.63 95.30±0.59 88.78±0.43 62.02±0.17 25.75±0.35 69.35
+ PCB (AE) 59.02±0.59 76.59±0.12 81.77±1.51 95.75±0.23 89.41±0.53 61.05±0.99 26.44±0.81 70.00
+ PCB (AS) 59.34±1.09 78.59±1.41 83.26±0.35 96.17±0.27 90.49±0.02 63.52±0.31 26.46±0.99 71.12
Coreset (Sener & Savarese, 2018) 48.74±1.00 69.87±2.36 70.02±4.16 85.02±1.51 83.34±1.33 57.93±0.56 25.38±0.62 62.90
+ PCB (Bang et al., 2024) 51.63±0.30 71.15±1.64 77.74±2.13 88.79±0.98 85.54±0.84 58.67±0.37 25.33±0.63 65.64
+ PCB (AE) 51.69±1.25 73.70±0.27 77.74±3.33 89.27±1.69 86.69±0.57 57.63±0.55 25.17±0.37 65.98
+ PCB (AS) 53.15±1.37 75.53±1.64 79.79±1.06 89.50±1.39 87.15±1.44 60.61±0.54 25.88±0.10 67.37
BADGE (Ash et al., 2020) 58.35±1.20 75.06±0.50 80.94±0.55 95.56±0.54 89.67±0.30 63.96±0.53 28.12±1.03 70.24
+ PCB (Bang et al., 2024) 57.41±0.17 76.51±1.83 80.06±0.97 95.66±0.28 89.06±0.21 63.18±0.77 29.23±0.35 70.16
+ PCB (AE) 59.20±1.25 76.77±0.65 81.96±0.60 95.72±0.31 89.57±0.19 62.62±0.26 28.85±1.59 70.67
+ PCB (AS) 59.14±1.08 80.09±0.85 81.60±2.89 96.18±0.07 90.76±0.34 66.20±0.69 29.61±0.78 71.94
PSP 62.71±0.93 85.45±0.91 87.74±0.24 95.37±0.74 90.70±0.45 67.53±0.41 32.37±0.63 74.55
Fully Labeled Data 71.6 88.0 93.6 97.6 92.8 78.8 42.6 80.71

RN101

CLIP (Zero-Shot) 43.9 86.2 33.1 65.7 85.1 62.3 19.5 56.54
Random 58.29±1.24 79.08±1.39 77.21±4.13 92.87±0.43 87.55±0.75 70.02±0.36 32.76±0.29 71.11
GCNAL (Caramalau et al., 2021) 57.00±0.54 82.04±0.49 81.68±0.69 91.66±0.13 90.55±0.23 68.99±0.24 31.18±0.37 71.87
ALFA-Mix (Parvaneh et al., 2022) 61.33±0.33 85.04±0.48 82.91±0.49 96.82±0.34 92.82±0.25 75.20±0.06 31.54±0.45 75.09
Entropy (Holub et al., 2008) 57.17±1.54 78.63±0.99 74.88±1.26 96.26±0.11 91.02±0.48 70.09±0.16 27.49±0.69 70.79
+ PCB (Bang et al., 2024) 58.81±1.39 80.14±1.27 79.91±2.06 96.26±0.25 91.62±0.30 70.87±0.45 28.11±0.37 72.25
+ PCB (AE) 59.81±1.34 82.65±0.99 81.23±1.26 96.47±0.39 92.16±0.90 70.14±0.56 27.96±1.63 72.92
+ PCB (AS) 60.70±1.09 83.64±1.02 82.43±1.35 96.49±0.17 92.87±0.20 73.62±0.67 28.68±0.83 74.06
Coreset (Sener & Savarese, 2018) 52.23±1.76 74.02±1.81 66.62±0.54 87.90±0.92 87.23±1.18 65.83±0.43 26.37±0.42 65.74
+ PCB (Bang et al., 2024) 54.75±2.93 76.43±1.61 75.39±1.94 91.08±0.37 89.36±0.28 66.97±0.75 27.28±0.33 68.75
+ PCB (AE) 56.38±1.55 77.11±1.86 76.99±0.65 91.61±1.30 89.90±0.06 65.38±0.62 27.72±0.39 69.30
+ PCB (AS) 57.31±2.07 81.14±0.24 78.49±1.99 91.80±0.28 90.11±0.30 69.11±0.73 28.31±0.78 70.90
BADGE (Ash et al., 2020) 59.93±1.25 80.77±1.31 78.23±2.22 96.26±0.07 91.35±0.32 71.43±0.97 32.56±0.64 72.93
+ PCB (Bang et al., 2024) 60.20±1.89 80.94±0.42 79.55±1.37 95.79±0.38 91.75±0.44 71.35±0.39 32.62±1.48 73.17
+ PCB (AE) 62.59±0.84 83.02±0.89 81.50±0.69 96.49±0.26 92.51±0.32 71.42±0.77 32.76±0.76 74.33
+ PCB (AS) 62.17±1.04 83.48±2.13 81.14±1.57 96.47±0.18 92.87±0.18 74.04±0.39 32.84±0.85 75.43
PSP 63.95±0.74 87.43±0.61 87.19±0.19 96.10±0.51 92.41±0.42 75.28±0.44 37.98±0.37 77.19
Fully Labeled Data 74.2 91.1 92.9 97.8 94.7 83.7 46.0 82.91

ViT-B/16

CLIP (Zero-Shot) 46.0 88.9 54.1 70.4 88.9 65.6 27.1 63.0
Random 62.63±1.81 84.36±1.34 81.14±1.83 94.98±0.06 90.95±0.85 73.62±0.30 38.88±0.25 75.22
GCNAL (Caramalau et al., 2021) 62.58±0.65 90.23±1.68 82.98±0.57 95.37±0.59 93.70±0.05 73.25±0.21 38.03±0.31 76.59
ALFA-Mix (Parvaneh et al., 2022) 66.38±0.26 89.81±0.43 84.38±0.26 98.15±0.18 95.24±0.32 79.12±0.19 39.55±0.89 78.95
Entropy (Holub et al., 2008) 62.49±0.39 82.56±0.49 77.93±0.90 97.63±0.42 93.04±0.41 74.35±0.59 33.27±0.72 74.47
+ PCB (Bang et al., 2024) 64.93±1.02 84.89±0.59 83.48±1.37 97.75±0.08 94.23±0.23 75.68±0.26 36.03±0.43 76.71
+ PCB (AE) 64.36±0.47 87.08±0.90 83.55±1.95 98.06±0.35 94.56±0.34 75.15±0.55 36.60±1.58 76.91
+ PCB (AS) 63.81±1.24 88.03±0.60 85.92±0.85 98.48±0.14 94.89±0.28 77.58±0.43 35.84±1.71 77.79
Coreset (Sener & Savarese, 2018) 56.07±0.90 82.17±1.82 72.17±2.72 92.12±1.45 90.66±0.45 70.12±0.83 33.28±0.45 70.94
+ PCB (Bang et al., 2024) 59.07±0.63 83.09±1.19 80.25±3.12 94.79±0.31 90.60±0.80 71.27±0.19 34.06±0.66 73.30
+ PCB (AE) 60.54±0.86 84.52±0.23 84.04±2.92 94.94±0.55 92.15±0.09 70.10±1.03 33.36±0.03 74.24
+ PCB (AS) 61.98±1.04 86.77±0.69 83.85±2.45 95.44±0.82 92.97±0.29 72.96±0.63 35.24±0.49 75.60
BADGE (Ash et al., 2020) 62.84±2.17 85.54±1.30 82.22±1.94 97.97±0.41 93.77±0.51 76.55±0.78 39.64±0.14 76.93
+ PCB (Bang et al., 2024) 64.89±1.45 86.22±0.71 81.53±3.11 98.32±0.21 93.75±0.28 76.36±0.27 40.20±0.30 77.32
+ PCB (AE) 65.25±1.28 87.23±0.35 84.04±2.92 98.21±0.29 94.51±0.44 75.84±0.21 39.93±0.21 77.86
+ PCB (AS) 64.95±1.47 88.10±1.49 83.85±2.45 98.19±0.17 95.12±0.26 78.19±0.48 40.56±0.51 78.42
PSP 67.32±0.83 89.67±0.78 89.22±0.16 96.95±0.44 95.10±0.39 82.06±0.37 43.50±0.55 80.54
Fully Labeled Data 77.7 92.7 95.1 99.0 95.3 85.3 53.6 85.53

Table 11: Ablation study on Oxford Pets, which evaluates the impact of increasing query size ns.
Method ns RN50 RN101 ViT-B/32 ViT-B/16
CLIP (Zero-Shot) 0 85.4 86.2 87.0 88.9
Random 37 74.65 79.08 78.30 84.36

PSP 37 85.45 87.43 86.57 89.67
PSP 74 86.40 89.34 88.72 91.44

Full Labeled Data - 88.0 91.1 89.3 92.7

Ultimately, we conduct experiments to investigate the impact of the class token’s position (i.e., Front
(Frt), Middle (Mid), and End) on active prompt learning for PSP, and the results reported in Figure 7c.
The results reveal that the learning curves of PSP alternate in leading performance across different
class token positions. PSP with the End position of class token slightly surpasses the others on the
“Final Acc” metric. Therefore, we choose to place the class token after the context vectors for all
experiments. It is demonstrated that the position of the class token has minimal impact on PSP in
active prompt learning.

A.4 PRELIMINARY

Active Learning identifies criteria for selecting the most informative samples under a limited labeling
budget. Active learning methods are primarily applied in three distinct scenarios: membership query
synthesis (Mahapatra et al., 2018; Mayer & Timofte, 2020), stream-based (Narr et al., 2016; Fang
et al., 2017; Woodward & Finn, 2017), and recently most mainstream pool-based (Vijayanarasimhan
& Grauman, 2011; Gosselin & Cord, 2008; Yang et al., 2015; Kapoor et al., 2010; Bang et al.,
2024) setting. In this work, we follow the pool-based setting and define an unlabeled data pool from
which a subset of samples is actively selected for annotation. Based on the criteria, active learning
methods can be categorized into three main approaches: Uncertainty-based sampling (Gal et al.,
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2017; Wang et al., 2019), Diversity-based sampling (Hacohen et al., 2022; Shui et al., 2020), Hybrid
sampling (Ash et al., 2020; Parvaneh et al., 2022; Caramalau et al., 2021), and RL-based sampling
(Ash et al., 2020; Kirsch et al., 2019). Uncertainty-based sampling, a straightforward and effective
strategy, focuses on selecting samples that the model struggles to learn, employing techniques such as
Monte-Carlo Dropout (Gal et al., 2017; Kirsch et al., 2019), Entropy (Holub et al., 2008), and Least
Confident (Lewis & Catlett, 1994). Holub et al. proposed Entropy (Holub et al., 2008) for object
recognition, which selects the samples with the highest entropy for annotation. Diversity-based
sampling focuses on selecting samples that represent the full data distribution to ensure diversity in
the labeled data, including clustering (Hu et al., 2021) and Coreset (Sener & Savarese, 2018). Sener
et al. introduced the elegant and mathematically rigorous Coreset (Sener & Savarese, 2018), which
provides an approximate upper bound on the loss for feature space coverage-based active learning
algorithms. Hybrid sampling (Ash et al., 2020; Parvaneh et al., 2022) takes into account both
diversity and uncertainty, aiming to mitigate the issue of redundancy in Uncertainty-based sampling
and the limitations of Diversity-based sampling, where basic feature coverage strategies may fall short
in assessing the model’s confidence in its predictions. ALFA-Mix (Parvaneh et al., 2022) ultilizes
unlabeled data to support active learning by interpolating between the representations of labeled and
unlabeled instances and identifying features the model fails to recognize through inconsistencies in
predicted labels. However, Hybrid sampling relies on fixed rules to balance diversity and uncertainty,
limiting its adaptability across tasks. RL-based sampling formulates a sample selection policy,
where Reinforcement Learning (RL) is applied to learn a policy that maximizes cumulative reward
by selecting samples. Woodward et al. developed AOL (Woodward & Finn, 2017) that combines
meta-learning and reinforcement learning for one-shot classification tasks. Liu et al. introduced
DRAL (Liu et al., 2019) to guide an agent in acquiring pairwise annotated data. Notably, PAL (Fang
et al., 2017) builds a deep Q-network as an adaptive policy for sample selection. Therefore, we
believe that RL-based methods have the potential to incorporate prompts for guiding sample selection.
However, AOL (Woodward & Finn, 2017) and PAL (Fang et al., 2017) model the decision of whether
to annotate a streaming unlabeled sample as a binary classification problem, while MedSelect (Vrabac
et al., 2022) and DARL (Liu et al., 2019) rely on pairwise data, making them unsuitable for direct
application in Active Prompt Learning (APL). Therefore, we introduce Soft Actor-Critic (SAC)
(Haarnoja et al., 2018), a representative reinforcement learning algorithm known for its robustness to
hyperparameters and strong performance in continuous action spaces. By designing a customized
real-pseudo hybrid reward and vectorized critics, SAC can be seamlessly integrated into APL.

A.5 DESCRIPTION AUGMENTATION

Here, the new text prompt is converted below:

pi,k = [c]1[c]2 . . . [c]M [clsi][which][is][dki ] (14)

where dki denotes the k-th description for class i, ∆k = {dki }
ϵi
k=1 represents ϵi descriptions for class

i. Given the new text prompt, two possible prediction probabilities after description augmentation are
expressed below:

(1) Average Similarity (AS):

p(y = i | x) = 1

ϵi

ϵi∑
j=1

p(y = i | x, dji ) (15)

p(y = i | x, dji ) =
exp(cos(fsV ,f

s
T,i,j)/ω)∑K

i=1

∑ϵi
j=1 exp(cos(f

s
V ,f

s
T,i,j)/ω)

(16)

where fsT,i,j = FsT (psi,j) denotes text feature corresponding to description dji . K represents the
number of classes in a downstream task, and ω indicates a temperature scaling parameter.

(2) Average Embedding (AE):

p(y = i | x) =
exp(cos(fsV ,f

s
T,i)/ω)∑K

i=1 exp(cos(f
s
V ,f

s
T,i)/ω)

(17)

fsT,i =
1

ϵi

ϵi∑
j=1

fsT,i,j (18)
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The main difference between the two probability scores is that AS computes the cosine similarity for
each text feature before averaging, whereas AE averages the text features first and then computes the
similarity.

A.6 SOFT DYNAMIC TIME WARPING

Given two vector sequences of unequal lengths: Qθ = [Q
(1)
θ , Q

(2)
θ , . . . , Q

(nu
t )

θ ] and Q̂ =

[Q̂(1), Q̂(2), . . . , Q̂(nu
t+1)] Compute pairwise distance matrix D ∈ Rn

u
t ×n

u
t+1 :

Di,j = ∥Q(i)
θ − Q̂(j)∥2 (19)

Accumulated cost matrix R. The accumulated cost matrix is initialized with R0,0, followed by
dynamic programming computation incorporating the soft minimum as described below.

Ri,j = Di,j +min
γ

{
Ri−1,j , Ri,j−1, Ri−1,j−1

}
min
γ

(a, b, c) = −γ log
(
e−a/γ + e−b/γ + e−c/γ

) (20)

Path extraction. The alignment path is derived by identifying the minimum cumulative cost path
within the accumulated cost matrix.

π =
{
(i1, j1), (i2, j2), . . . , (iT , jT )

}
(21)

where the integer i1 ∈ [1, nut ] indicates that the first element in the aligned Q-value Qθ corresponds
to an element in Qθ, and the same is true for ji. T is the length of the alignment. Q′

θ and Q̂′ are
obtained by expanding and repeating elements according to π.

A.7 LIMITATION AND FUTURE WORK

However, PSP has limitations, particularly in its reliance on a replay buffer for updating the sampling
policy. If the data is highly sensitive, the security of the replay buffer becomes a critical issue, as
any potential leakage could have serious consequences. On the other hand, our PSP has the potential
for application in more complex downstream tasks. PSP can help save resources in tasks with high
annotation costs, such as Human-Object Interaction detection and semantic segmentation, through
further improvements. Therefore, this will be a focus of my future work.

A.8 BROADER IMPACTS

Positive societal impacts. PSP adaptively learns a sampling policy in an End-to-End manner to select
the most informative samples under a limited annotation budget, thereby reducing the reliance on
large-scale labeled datasets for downstream tasks. PSP achieves comparable performance to prompt
learning with a fully labeled dataset, without relying on domain-specific knowledge for sample
selection. This highlights its strong potential for extension to other computer vision tasks, such as
object detection and semantic segmentation, where it can substantially reduce the annotation burden
in these traditionally resource-intensive tasks.

Negative societal impacts. Despite its benefits, the proposed PSP further alleviates the reliance on
manual labeling by more efficiently identifying informative samples. However, this advancement
may bring about unforeseen socioeconomic effects. Specifically, as reliance on human annotators
decreases, especially for repetitive or low-complexity labeling tasks, there is a potential risk of reduced
employment opportunities in the data annotation industry. This shift could disproportionately affect
low-skilled workers whose livelihoods depend on such roles, potentially leading to job displacement
and increased economic vulnerability in regions where annotation work is a key source of income.
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