Atom Reasoner: LLM Self-Preference Training via Monte Carlo Tree
Search

Anonymous ACL submission

Abstract

Recent research focuses on utilizing more test-
time computation to enhance the performance
of Large Language Models in solving com-
plex mathematical and logical reasoning tasks.
However, these methods allocate more compu-
tational resources during the inference phase to
explore the solution space by some tree search
method such as Monte Carlo Tree Search, re-
sulting in a significant increase in inference
time. In this paper, We construct atom rea-
soning steps, which are subsequently utilized
to develop MCTS for self-preference learn-
ing to enhance the reasoning capabilities of
LLMs, without employing a larger model for
data distillation. Extensive evaluations on var-
ious mathematic and common sense reason-
ing tasks demonstrate demonstrate remarkable
performance improvements over existing mod-
els. For instance, our approach outperforms
the Qwen2.5-7B-instruct baseline on MATH,
GSMSK and ARC with substantial increases in
accuracy to 50.0% (+14.2%), 92.1% (+10.4%),
and 89.6% (+13.3%), respectively.

1 Introduction

Large language models (LLMs) have demonstrated
impressive capabilities in a wide range of tasks and
fields (OpenAl et al., 2024). Developing Al sys-
tems that can mimic human-like reasoning contin-
ues to be a central objective in the research commu-
nity. A critical aspect of this process involves the
collection of reasoning chains that reflect human-
like thinking (Madaan et al., 2023). There are two
dominant approaches for integrating these data:
The first method generates reasoning chains by con-
structing linear data structures, breaking through
solutions into step-by-step reasoning paths (Light-
man et al., 2023; Luo et al., 2024), while the other
method combines non-linear data structures, such
as tree structures, to search for reasoning trajec-
tories integrating the Monte Carlo Tree Search
(MCTS) method (Qi et al., 2024). Current research

often combines MCTS for preference data collec-
tion to train LLMs to enhance the model’s ability
for complex reasoning (Zhang et al., 2024b).

A typical approach is the chain-of-thought
(CoT), which expands the reasoning space by gen-
erating additional tokens or solutions (Wei et al.,
2022; Wang et al., 2023). Although straightfor-
ward and intuitive, recent studies have noted that
the CoT method can frequently miss optimal rea-
soning pathways and display an automatic response
style due to its emphasis on a single pathway (Besta
et al., 2024). A striking example of the effective-
ness of this iterative approach is AlphaZero (Silver
et al., 2017), which demonstrates superhuman per-
formance in multiple domains by integrating the
advantages of the self-play system, RL techniques,
and MCTS (Kocsis and Szepesvari, 2006; Chung
et al., 2005). The success of AlphaZero highlights
the possibilities that arise from the integration of
these advanced techniques into LLMs.

However, the incorporation of MCTS in the col-
lection of preference data for the enhancement of
current policy is complex and requires thoughtful
deliberation. One primary challenge lies in con-
structing human-like reasoning trajectories (Zhang
et al., 2024b). Conventionally, reasoning trajecto-
ries are structured in a step-by-step strategy, which
may lead to insufficient exploration of the action
space (Qi et al., 2024). Another challenge is the
critic or reward function for each intermediate rea-
soning step. This function is crucial for providing
meaningful feedback on different rollouts gener-
ated by MCTS, thus guiding the policy improve-
ment process (Liu et al., 2024a).

To address the issues above, evidence from LLM
research indicates the superiority of atom reasoning
actions as fundamental components for construct-
ing chain-structured patterns (Wu et al., 2024). In-
spired by the preceding conclusion, our approach
defines five atom reasoning actions and utilizes
MCTS rollouts to collect preference data for Direct

1. Define Atom Reasoning Path

restate Uses to clarify the problem and conditions.

Question: How many vertical
asymptotes does the graph of
+2— have?

recollect Lists the basic skills, theorems or concepts.

y=

22 +2—6

planning Develops strategies for problem-solving.

execution Carries out calculations or reasoning steps.

conclude Gives the final answer or solution.

solution LM

3. Direct Preference Learning
Si -

(>4 e
8 > > ici)

2. Construct Atom Reasoning Path via Monte Carlo Tree search (MCTS)

G

solutions with
critique score

ST

MCTS Trees Preference Data DPO Training

\
‘] BFS + pruning

Self-Evaluation

S0 S0
—
MCTS / /
81 82 81 82
83
Selection Expansion with Self-Evaluation
critique S0 50 Qo
score / \ 1@z +7°Qs /
S1 82 s1 DY
> Sfinal @
i/ L Q3
53 Qs 53
Evaluation —> Qs
Simulation Backpropagation

Figure 1: Monte Carlo Tree Search (MCTS) improves model performance through Direct Preference Learning
(DPO). Our framework consists of two stages after the atom reasoning steps have been defined: MCTS constructs
atom reasoning paths as preference data, and then performs DPO to enhance the model.

Preference Optimization (DPO) (Rafailov et al.,
2024). Moreover, we implement self-evaluation,
allowing the model to assess its own outputs,
which creates a more efficient policy improvement
pipeline by functioning as both the policy and the
critic (Kadavath et al., 2022; Xie et al., 2023).

In summary, we present an algorithm based on
MCTS that breaks down the entire reasoning path
into five different atom reasoning steps. MCTS al-
lows us to thoroughly explore the reasoning space,
enabling LLMs to behave in a manner akin to hu-
man reasoning. we utilize the LLMs to evaluate the
intermediate steps toward solving the problem, and
prune the nodes with lower scores. During the train-
ing phrase, we select preferred and dispreferred
paths according to the average scores assigned to
each step during the self-evaluation process, con-
structing preference data for DPO training.

2 Related Work
2.1 Reasoning with LLMs

LLMs reasoning often requires breaking down com-
plex questions into a series of sequential interme-
diate steps prior to generate the final answer, as
illustrated by Chain-of-Thought (CoT) and its vari-
ations (Wei et al., 2022; Kojima et al., 2023). Fol-
lowing this, a variety of prompting techniques have
been introduced to enhance the generated rationales
(Zhou et al., 2023; Hao et al., 2023). Another group
of research converts the linear reasoning structure
into a non-linear format, such as a tree or graph,
integrating thought evaluation with search algo-
rithms like depth-first search (DFS) (Yao et al.,

2024; Long, 2023). To generate more reasonable
intermediate processes, LLMs themselves often
serve as the evaluator to give feedback to interme-
diate states (Hao et al., 2023; Yao et al., 2024).
Different from our Atom Reasoner, these methods
require searching during inference, which signifi-
cantly increases latency.

2.2 LLM Self-Improving

Reinforcement learning (RL) has been increasingly
utilized for large language models (LLMs) by treat-
ing them as RL agents to align their outputs with
human feedback (Christiano et al., 2023; Ouyang
et al., 2022). For instance, reinforced self-training
methods introduce mechanisms to curate new high-
quality examples and iteratively enrich the train-
ing dataset for enhancing model performance (Gul-
cehre et al., 2023; Wang et al., 2024b). However,
these methods generally depend on either an exter-
nal reward model (Yang et al., 2024b; Aksitov et al.,
2023) or labeled datasets (Gulcehre et al., 2023). In
contrast, methods such as self-rewarding leverage
LLMs themselves to assess the generated content,
which aligns more closely with our approach. In
contrast, methods such as self-rewarding leverage
LLMs themselves to assess the generated content
(Chen et al., 2024; Lee et al., 2024), which aligns
more closely with our approach.

2.3 Monte Carlo Tree Search for LLMs

Monte Carlo Tree Search (MCTS) is a decision-
making algorithm commonly employed in games
and intricate decision-making processes (Browne

et al., 2012; Chaslot et al., 2021). Recent research
indicates that MCTS can improve the decoding pro-
cess in LLMs by expanding the action space during
the inference process.(Liu et al., 2024a; Qi et al.,
2024). However, a major challenge associated with
MCTS is the increased latency during inference,
especially when dealing with complex reasoning
tasks (Liu et al., 2023). While certain approaches
have tried to enhance LLMs by utilizing reason-
ing paths discovered via MCTS (Tian et al., 2024;
Feng et al., 2024), these methods still depend on
manually labeled data to train distinct policy and
reward models for investigating and assess poten-
tial reasoning step at the leaves of the tree (Jiang
et al., 2024). In contrast, our approach eliminates
the requirement for human annotations and simpli-
fies the tuning process of LLMs without additional
inference burden.

3 Preliminaries

3.1 Monte Carlo Tree Search

To enhance the reasoning capabilities of LLMs, we
dissect the reasoning process into discrete steps,
each represented by a token sequence of atom rea-
soning steps. We define s; as the state at time ¢,
which represents the prefix of the reasoning chain,
with the addition of a new reasoning step a transi-
tioning the state to s;y1, where s;1 is the concate-
nation of s; and a. Utilizing the model as current
policy g, we sample candidate solution steps from
its probability distribution my(a|z, s;). with x be-
ing the specific task input prompt. MCTS serves
as an approximate policy improvement operator by
leveraging the UCT strategy to search through the
action space, thereby predicting the optimal state at
the next step. The tree-structured search supports a
balance between exploring diverse possibilities and
exploiting promising paths, essential for navigating
the vast search space in LLM reasoning.

The MCTS process begins from a root node sy,
as the query input. The algorithm follows four key
steps: selection, expansion, and backup, which we
will detail further.

Selection Phase. The goal of this phase is to iden-
tify nodes that strike a balance between search qual-
ity and computational efficiency. The selection is
directed by two primary variables: Q(s¢,a), the
value function of taking action a at the state s;, and
N (s;), the visitation frequency of state s;. To nav-
igate the trade-off between exploring new nodes
and exploiting visited ones, the Upper Confidence

Bound applied to Trees (UCT) algorithm (Rosin,
2011) is employed to select the optimal node, with
dynamic pruning used to avoid local optima. At
node s;, the choice of the subsequent node follows
the formula:

a =argmax | Q(s¢,a) +c-
a€A(S)

In N(s¢)
N (s, a)))

Expansion Phase. Expansion occurs at a leaf node
during the selection process to integrate new nodes.
If the selected leaf node is not in a terminal state,
the node will be expanded into %k child node in
depth with i as {s;; | j € [1,k]} by decoding for
one step using the policy model my. Following (Xie
et al., 2023), we define self-evaluation score C/(s;)
as Eq.2, where prompt,,,; denotes the evaluation
prompt.

C(St) = Tg (prompteval | x, St) (2

Backup Phase. Once a terminal state is reached,
we perform a bottom-up update that propagates
from the terminal node up to the root. The visit
count IV, the state value V', and the transition value
@ will be updated as follows:

Q(st,a) < r(sg,a) +vV(spt1) 3)
V(s) < > Q(ss,a) 4)

N(St) < N(St) +1 (5)

3.2 Direct Preference Optimization

As a sufficient quantity of preference data has been
sampled through MCTS, we employ Direct Pref-
erence Optimization (DPO) (Rafailov et al., 2024)
for training to update current policy my. DPO
is a method designed to directly optimize LLMs
to align with preference data collected by human
or Al feedback (Liu et al., 2024b; Zeng et al.,
2024b). The standard RLHF paradigm trains a
reward model (Ouyang et al., 2022) on the pref-
erence data and employs PPO (Schulman et al.,
2017) to optimize the policy g with the feedback
provided by the reward model, where 7y is also
initialized to 7y in practice. DPO avoids fitting a
reward model by optimizing the policy 7y using
preferences directly.

After a pair of outcomes (y1,y2) are sampled
from policy model 7 (y|z) conditioned on input
x, which are labeled to be (y,,¥;) according
to some preference density p as Pr[(yw,)] =

p(y1 > y2 |). Let the ground-truth reward func-
tion be r, then estimate the optimal policy 7y by
fitting the Bradley-Terry model (Bradley and Terry,
1952) on preference data. The DPO objective is
formulated as follows, where o is the logistic func-
tion, the hyperparameter [regulates the penalty
imposed for the deviations from the base reference
model 7pet.

Py =2 |) = o (r(z,51) — (2, 42))

o (res () e (285))

4 Method

In this paper, we introduce an approach for im-
proving LL.Ms reasoning, centered around a direct
preference learning process based on the reasoning
paths derived from MCTS. The proposed method
consists of two stages: first, generating reasoning
steps through MCTS in different action spaces; sec-
ond, using Q-value filtering of preference data for
direct preference learning. To solve a complex
problem, we formulate it as a multi-step reasoning
generation task, which breaks the reasoning path
into atom reasoning steps. In addressing the critical
aspects of this methodology, three key challenges
emerge: efficient decomposing the reasoning path,
effective gathering of preference data and training
with the DPO objective.

4.1 Define Atom Reasoning Steps

Current research frequently classifies reasoning
into two cognitive processes: System 1 and Sys-
tem 2, thinking in fast and slow (Ji et al., 2025).
“System 1 refers to the fast, automatic, and intu-
itive way of thinking, while “System 2” represents
the slower, more deliberate, and analytical mode
of thinking (Hagendorff et al., 2023). In light of
the impressive capabilities of OpenAl’s o1 model
in complex reasoning, there is a growing focus
among researchers on developing effective “System
2” approaches (Qin et al., 2024). Inspired by this,
we introduce five atom reasoning steps to enhance
the complex reasoning abilities LLMs. We repre-
sent the following steps using symbols z; to zs,
corresponding to Restate, Recollect, Planning,
Execution, and Conclusion, respectively. The
complete chain-of-thoughts can be expressed as
z = [#1,...,25]. We define the atom reasoning
steps as follows:

* Restate: Clarify the problem and the associ-
ated conditions, ensuring a clear understand-
ing of what needs to be addressed.

* Recollect: List the basic mathematical skills,
theorems, or concepts that may be needed to
solve the problem.

* Planning: Develop steps or strategies to ef-
fectively address the problem, which will help
identify actionable solutions.

* Execution: Carry out specific calculations or
solution steps rigorously following the plan-
ning results above.

e Conclusion: Give the final answer in the for-
mat of “The answer is: <ANSWER>.”’, and
will be compared with the gold answer.

4.2 Synthesizing Preference Data

As shown in Figure 1, our method of collecting
preference data closely aligns with the MCTS in-
ference process. In particular, the process is divided
into three main components: 1) Thought Genera-
tion, which generate multiple candidate atom rea-
soning steps; 2) Self Evaluation, which evaluate
each reasoning step by LLMs and select the top
k with the highest scores; 3) Rollout and collec-
tion, which collect the preference data for direct
preference learning.

Thought Generation. We define the partial so-
lution state s;_1 = [z, z1,. .., z—1], Where x rep-
resents the initial input containing the few-shot
examples and the question to be answered, and
[21, ..., 2—1] denotes a sequence of previous atom
steps. we sample k candidate solutions for the next
reasoning step as shown in Eq.7. Specifically, it fol-
lows the format of demonstrations, starting with the
prefix like <restate> and end with </restate>,
for instance. When the marker </conclusion> is
generated, the model pauses its reasoning and the
chain-of-thought is complete. As a result, We ob-
tain a set S; containing k new states as shown in
Eq.8.

Zij ~ mo(zi | ®,8i-1), forj=1,...0k (7)

Lzl =1, k) ®)

Self Evaluation. Considering the set of candidate
solution states .S; = {s;; }é?:l, we employ LLMs
as the generative reward model (GRM) to evaluate

each state in each reasoning step, thus eliminating

SZ' = {Sij = [x,le, ..

Self-Evaluation

Thought Generation
pg

MCTS Rollout

Evaluate whether the thought e
helpful to the question N
LLM Evaluate
6 2
BFS + Pruning "4 ' x

Compared with Label Select Highest Reward

ull

The answer is 4

The answer is 4

x

Figure 2: The framework of our method. The left part depicts the self-evaluation process at each reasoning step,
while the right part shows the combination of preference data. The green box represents the preference reasoning

path, whereas the red box indicates the dispreference one.

the requirement to train an external reward model
or human annotations. A direct implementation
of GRM involves the construction of assessment
prompts and then using prior rules to assign scores
to specific assessment tokens (e.g., Yes or Not) as
the final reward score. (Mahan et al., 2024).
Inspired by this, We form the general assessment
prompt for the evaluation as follows: Evaluate
whether the thought contributes to a
partial or direct answer to the original
question (likely/impossible). And then we
assign a score, with 1ikely = 10 and impossible
= 1 to the assessment tokens. To reduce the ran-
domness effect of the model, we perform multiple
samplings and take the average of evaluation re-
sults.
Rollout and Collection. We use BFS with pruning
as the search algorithm to select the reasoning steps.
Once we obtain the reward for each candidate node,
we select the top k£ nodes with the highest scores
based on each solution’s reward as child nodes for
subsequent simulation or expansion phases. When
the reasoning chain reaches the stop criteria, which
includes the </conclusion>, the search algorithm
returns the model answer, which will be compared
with the ground truth y. And then caculate the
Q(s¢, a) for backpropogation of MCTS as Eq.9.
After complete a single iteration of the MCTS
rollout, we split the reasoning paths into two sets
according to the ground truth label (i.e., correct
solution set and incorrect solution set). We then
rank the solution paths in each set by their aver-
age reward scores in descending order, ultimately
selecting the top-k solutions from both sets, respec-
tively. Considering high-scoring correct solutions
tend to be of higher quality, while high-scoring
incorrect solutions indicate challenging examples
that the original reward model struggles to identify

accurately. These two types of data constitute the
preference dataset D and able to improving both
the quality and difficulty of the training dataset.

1, ifEXTRACT(si41) =y
0, else

Q(st,a) = { 9)

4.3 Training with DPO Loss

Given the preference dataset D collected by MCTS,
we finetune the policy model my via DPO. For the
final step of MCTS rollout, we get the preference
data according to the ground truth. Considering
prefered data y,, and dispreferred data y;, to opti-
mize the policy model 7g on the pair of preference
data (y., 1), we can directly substitute it by Eq.6:

L(ﬂ'a;ﬂ'ref> = —IOgU (ﬂ 10g (7T0(3/w|33))

71'ref(yw ’ 37)

LIS Iy

Tret (Y1 | @)
S Experiments

5.1 Setups

Datasets. In order to comprehensively evaluate the
model’s performance on different tasks, We assess
the effectiveness of our method on arithmetic, math-
ematic and commonsense reasoning tasks. Our
evaluation benchmarks encompass: 1) mathematic
reasoning: GSM8K (Cobbe et al., 2021), which
consists of grade school math word problems, and
MATH (Hendrycks et al., 2021) featuring challeng-
ing competition math problems. 3) commonsense
reasoning: ARC (only selected the challenge splits)
(Clark et al., 2018) and SciQ (Welbl et al., 2017),
containing science questions from student assess-
ments. The diversity of these datasets enables a

Table 1: Evaluation of the reasoning capabilities of our method in comparison to ICL methods across four distinct
reasoning benchmarks. The best results in each box are highlighted in bold. Our method consistently demonstrates

superior performance across various models and datasets.

MODEL SETTING MATHEMATIC COMMONSENSE AVERAGE
MATH GSMSK ARC SCIQ
Zero-shot CoT 323 76.5 75.7 82.9 66.9
Few-shot CoT 37.2 78.1 77.0 848 69.2
Llama-3.1-8B-Instruct " ' @y 39.8 81.0 81.1 90.4 73.1
ours 42.9 84.3 84.5 90.6 75.6
Zero-shot CoT 6.8 68.4 73.0 81.1 57.3
Llama3.8B-Insirueg | Few-shot CoT 17.6 73.8 75.6 847 62.9
CoT+SC@4 26.1 76.3 77.4 89.2 67.3
ours 35.4 82.7 82.2 91.1 72.9
Zero-shot CoT 35.8 81.7 76.3 78.4 68.1
. Few-shot CoT 39.6 87.2 78.1 83.1 72.0
Qwen2.5-7B-instruct -~ 'n Sc@4 441 90.6 80.5 89.6 76.2
ours 50.0 92.1 89.6 94.0 81.4
Zero-shot CoT 34.9 74.3 73.8 76.2 64.8
Owen2-7Boinsruet | Few-shot CoT 38.0 80.4 76.4 82.3 69.3
CoT+SC@4 412 83.6 78.9 87.6 72.8
ours 44.5 86.1 85.0 90.8 76.6
Zero-shot CoT 342 78.0 83.5 86.4 705
Few-shot CoT 37.6 81.4 87.1 91.9 745
ChatGLM4-9B CoT+SC@4 36.1 84.7 88.6 9.1 75.4
ours 39.4 85.9 94.3 93.5 78.3

comprehensive assessment of our method’s gener-
alizability. Performance evaluation is conducted
using the corresponding validation sets of each
dataset.

Models. Our method represents a versatile ap-
proach that can be applied to different LLMs.
In our experiments, we evaluate its effectiveness
using state-of-the-art (SOTA) opensource mod-
els: Llama3-8B-Instruct (Grattafiori et al., 2024),
Llama-3.1-8B-Instruct (Meta, 2024), Qwen2-7B-
Instruct (Yang et al., 2024a), Qwen2.5-7B-Instruct
(Qwen, 2024), GLM-4-9B-Chat (Zeng et al.,
2024a).

Baselines. We evaluate our method to three strong
categories of baseline: 1) In-context Learning
method, including zero-shot CoT (Kojima et al.,
2023), few-shot CoT (Wei et al., 2023) and CoT
+ SC (Wang et al., 2023). 2) Tree-based method,
including ToT (Yao et al., 2023), RAP (Hao et al.,
2023), LiteSearch(Wang et al., 2024a), ReST-
MCTS* (Zhang et al., 2024a) 3) Synthesis meth-
ods, Self-Taught Reasoner (STaR) (Zelikman et al.,
2022).

Implementation Details. The MCTS rollouts and

supervised preference learning experiments are
conducted with a maximum of 8 x 100GB GPUs
(NVIDIA H20). For hyperparameter of MCTS roll-
outs, we set the discount factor v = 1.0, rollout
numbers n = 16, temperature set to 0.6, top p set
to 0.95, top k set to 40, and max tokens set to 1024.
To improve inference speed, we use VLLM ! as the
inference framework. For DPO learning, we use
Low-Rank Adaptation (LoRA) (Hu et al., 2021)
as our training method. We choose the learning
rates 5e-6 with a cosine learning rate scheduler.
The maximum sequence length of models is 1024.
And we train the model with a batch size of 64.
We follow the DPO paper to set the KL constraint
parameter 3 as 0.1.

5.2 Main Results

We first present the overall performance compari-
son of the four methods on both mathematic reason-
ing and commonsense reasoning tasks. As shown
in Table 1, In-context Learning methods serves
to boost the performance of the original LLMs
to some extent, given that these tasks require im-

1https: //github.com/vllm-project/v1llm.

https://github.com/vllm-project/vllm

—e— LLaMA-3-8B-Instruct

LLaMA-3.1-8B-Instruct

MATH ARC

8

as1 85.2

Solved Rate (%)
®
&
2
o
Solved Rate (%)
&

o
2
w
&

36 35

&

o
©
&

44.5 87.3

o ® ®
& & <

Solved Rate (%)

3
2

373 375

w
®
&

82

Rollouts

Rollouts

Rollouts

Figure 3: Results on test-time compute scaling.

proved step-by-step reasoning skills. Among these
methods, CoT + SC deliver more superior perfor-
mance as it effectively expand the solution space
for challenging reasoning tasks. Furthermore our
method exhibits the most substantial performance
improvements on relatively small language models.
For example, Qwen2.5-7B-instruct improved from
68.1 to 81.4, Llama-3.1-8B-Instruct from 66.9 to
75.6. These results underscore our approach’s po-
tential to efficiently guide LLMs in generating and
selecting optimal solutions.

Table 2: Evaluating the reasoning capabilities of our
method against top-performing tree-based methods and
synthesis methods.

MODEL SETTING GSMSK MATH
ToT 68.7 15.4
RAP 79.6 20.1
L * -
Llama3-8B ReST-MCTS 34.6
LiteSearch 81.9 31.5
STaR 79.8 34.1
ours 82.7 354
ToT 76.1 28.4
Llama3.1-8B RAP 82.9 34.6
STaR 83.2 38.7
ours 84.3 42.9

Furthermore, we compare our approach with
other tree-based reasoning methods and synthesis
methods on GSM8K and MATH. As shown in Ta-
ble 2, our method reveals superior performance and
impressive generalizability across diverse models
and datasets. Remarkably, as the complexity of
benchmarks increases, existing methods such as
ToT and RAP experience considerable challenges.
However, methods like STaR and LiteSearch show

performance comparable to ours on Llama3-8B-
Instruct, performance persist also on model like
Llama3.1-8B-Instruct. Consequently, our method
demonstrates a clear performance improvement
compared to other baselines.

5.3 Further Analysis

Test-Time Compute Scaling. To investigate the
potential and emerging trends of scaling with roll-
outs during inference time, we present the pass
rates of problem-solving by increasing rollouts
across three benchmarks of varying difficulty lev-
els. As shown in Figure 3, the increment in the
number of rollouts overall improves model perfor-
mance across different benchmarks, and degree of
these improvements varies based on the complex-
ity of the benchmark and the reasoning abilities
of the base model. The results above highlight
that our framework’s performance improves with
an increased number of rollouts during inference.
However, there are ceiling limitations reveals in the
mathematical task, which suggest that the abilities
of the base model in reasoning are essential to the
overall performance.

Ablation Study. We ablate the impact of atom
reasoning steps on our MCTS-based approach. Fig-
ure 4 shows performance comparisons across math-
ematic and commonsense reasoning tasks under
different settings. Our method, which focuses on
constructing reasoning paths through atom actions,
consistently outperforms both the base model and
the CoT counterpart. For example, we achieve
89.6% on ARC and 94.0% on SciQ, surpassing
84.6% and 89.9% of the CoT counterpart, and
76.3% and 78.4% of the base model. This result
indicates that atom actions significantly enhance
the reasoning capabilities of the model.

Base Model
100
92.1%
87.8%

81.7%
80

60

50.0%
44.5%

40 35.8%

Accuracy (%)

20

MATH GSM8K

MCTS+CoT MCTS+AR

94.0%
89.6% 89.9%

84.6%

o
76.3% 78.4%

ARC SCIQ

Figure 4: Abltation study on MCTS+CoT v.s. MCTS+AR. We also compare the accuracy of the reasoning paths
collected via MCTS by chain-of-thought and atom reasoning steps on Qwen2.5-7B-instruct.

Complexity Level Analysis. As shown in Table 3,
we showcase the results of Few-shot CoT, Few-shot
CoT+SC, and our method on the MATH dataset, as-
sessed across various levels of difficulty. Compared
to the first two methods, our approach improved
performance at all levels. Notably, at the more
difficult levels 4-5, our method exhibits an aver-
age improvement of 6.8% compared to Few-shot
CoT, while Few-shot CoT+SC shows only a 1.5%
improvement. This indicates that atom reasoning
steps, as a form of slow thinking, have the potential
to tackle more challenging problems and enhance
reasoning performance.

METHOD 1 2 3 4 5 AVERAGE
CoT 54.1 46.7 443 36.1 284 39.6
CoT+SC 58.7 50.1 483 384 29.0 44.1
ours 63.1 584 553 43.6 345 50.0

Table 3: Performance variations across different dif-
ficulty levels on MATH with Qwen2.5-7B-Instruct as
base model.

6 Conclusion

In this paper, we propose MCTS-enhanced self-
preference learning framework, utilizing MCTS
to generate high quality reasoning paths for DPO
training. MCTS balances quality exploitation and
diversity exploration to produce high-quality train-
ing data, efficiently pushing the ceiling perfor-
mance of the LLM on various reasoning tasks. Ad-
ditionally, the introduction of atom reasoning steps
and self-evaluation mechanism improves the relia-
bility and human-like quality of the model’s reason-
ing These results demonstrate the effectiveness and
efficiency of Atom Reasoner, offering a scalable

framework for developing large language models
capable of handling intricate reasoning tasks.

7 Limitations

We acknowledge that this work has several lim-
itations that require further exploration. First of
all, we optimize the entire reasoning path for DPO,
disregarding the optimization of each atomic step,
which may encounter longest common prefix (LCP)
gradient cancelation (Zhang et al., 2024¢). Further-
more, the preference datasets are collected ahead
of training and our method is purely offline, as 7y
cannot get feedback on its own generations over
training.This may lead to significant distribution
shift between the policy that generated the dataset
and the policy being aligned (Guo et al., 2024).

Ethics Statement

Our proposed method Atom Reasoner effectively
improves the ability of complex problems reason-
ing of LLMs without the need for larger models for
data distillation. Therefore, this process does not
entail additional risks.

We utilize a variety of open-source English
datasets for training, including MATH, GSMS8K,
ARC and SCIQ. And we utilize a variety of open-
source model for fintuning, including Qwen2.5-7B-
Instruct and so on. We acknowledge that there may
be inherent biases present within these datasets and
the model.

References

Renat Aksitov, Sobhan Miryoosefi, Zonglin Li, Daliang
Li, Sheila Babayan, Kavya Kopparapu, Zachary

Fisher, Ruiqi Guo, Sushant Prakash, Pranesh Srini-
vasan, Manzil Zaheer, Felix Yu, and Sanjiv Kumar.
2023. Rest meets react: Self-improvement for multi-
step reasoning 1lm agent.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Ger-
stenberger, Michal Podstawski, Lukas Gianinazzi,
Joanna Gajda, Tomasz Lehmann, Hubert Niewiadom-
ski, Piotr Nyczyk, and Torsten Hoefler. 2024. Graph
of thoughts: Solving elaborate problems with large
language models. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 38(16):17682-17690.

Bradley and Terry. 1952. Rank analysis of incomplete
block designs: The method of paired comparisons.
Biometrika, 39(3-4):324-345.

Cameron B. Browne, Edward Powley, Daniel White-
house, Simon M. Lucas, Peter I. Cowling, Philipp
Rohlfshagen, Stephen Tavener, Diego Perez, Spyri-
don Samothrakis, and Simon Colton. 2012. A survey
of monte carlo tree search methods. IEEE Transac-
tions on Computational Intelligence and Al in Games,
4(1):1-43.

Guillaume Chaslot, Sander Bakkes, Istvan Szita, and
Pieter Spronck. 2021. Monte-carlo tree search: A
new framework for game ai. Proceedings of the AAAI
Conference on Artificial Intelligence and Interactive
Digital Entertainment, 4(1):216-217.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji,
and Quanquan Gu. 2024. Self-play fine-tuning con-
verts weak language models to strong language mod-
els.

Paul Christiano, Jan Leike, Tom B. Brown, Miljan Mar-
tic, Shane Legg, and Dario Amodei. 2023. Deep
reinforcement learning from human preferences.

Michael Chung, Michael Buro, and Jonathan Schaeffer.
2005. Monte carlo planning in rts games.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems.

Xidong Feng, Ziyu Wan, Muning Wen, Stephen Marcus
McAleer, Ying Wen, Weinan Zhang, and Jun Wang.
2024. Alphazero-like tree-search can guide large
language model decoding and training.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
and Abhinav Pandey. 2024. The llama 3 herd of
models.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srini-
vasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen
Wang, Chenjie Gu, Wolfgang Macherey, Arnaud
Doucet, Orhan Firat, and Nando de Freitas. 2023.
Reinforced self-training (rest) for language model-
ing.

Shangmin Guo, Biao Zhang, Tianlin Liu, Tianqi Liu,
Misha Khalman, Felipe Llinares, Alexandre Rame,
Thomas Mesnard, Yao Zhao, Bilal Piot, Johan Ferret,
and Mathieu Blondel. 2024. Direct language model
alignment from online ai feedback.

Thilo Hagendorff, Sarah Fabi, and Michal Kosinski.
2023. Human-like intuitive behavior and reasoning
biases emerged in large language models but disap-
peared in chatgpt. Nature Computational Science,
3(10):833-838.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong,
Zhen Wang, Daisy Zhe Wang, and Zhiting Hu. 2023.
Reasoning with language model is planning with
world model.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the math dataset.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. Lora: Low-rank adaptation of
large language models.

Yixin Ji, Juntao Li, Hai Ye, Kaixin Wu, Jia Xu, Linjian
Mo, and Min Zhang. 2025. Test-time computing:
from system-1 thinking to system-2 thinking.

Jinhao Jiang, Zhipeng Chen, Yingqian Min, Jie Chen,
Xiaoxue Cheng, Jiapeng Wang, Yiru Tang, Haoxiang
Sun, Jia Deng, Wayne Xin Zhao, Zheng Liu, Dong
Yan, Jian Xie, Zhongyuan Wang, and Ji-Rong Wen.
2024. Technical report: Enhancing llm reasoning
with reward-guided tree search.

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom
Henighan, Dawn Drain, Ethan Perez, Nicholas
Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli
Tran-Johnson, Scott Johnston, Sheer El-Showk,
Andy Jones, Nelson Elhage, Tristan Hume, Anna
Chen, Yuntao Bai, Sam Bowman, Stanislav Fort,
Deep Ganguli, Danny Hernandez, Josh Jacobson,
Jackson Kernion, Shauna Kravec, Liane Lovitt, Ka-
mal Ndousse, Catherine Olsson, Sam Ringer, Dario
Amodei, Tom Brown, Jack Clark, Nicholas Joseph,
Ben Mann, Sam McCandlish, Chris Olah, and Jared
Kaplan. 2022. Language models (mostly) know what
they know.

Levente Kocsis and Csaba Szepesvari. 2006. Bandit
based monte-carlo planning. In Machine Learning:
ECML 2006, pages 282-293, Berlin, Heidelberg.
Springer Berlin Heidelberg.

http://arxiv.org/abs/2312.10003
http://arxiv.org/abs/2312.10003
http://arxiv.org/abs/2312.10003
https://doi.org/10.1609/aaai.v38i16.29720
https://doi.org/10.1609/aaai.v38i16.29720
https://doi.org/10.1609/aaai.v38i16.29720
https://doi.org/10.1609/aaai.v38i16.29720
https://doi.org/10.1609/aaai.v38i16.29720
https://doi.org/10.1093/biomet/39.3-4.324
https://doi.org/10.1093/biomet/39.3-4.324
https://doi.org/10.1093/biomet/39.3-4.324
https://doi.org/10.1109/TCIAIG.2012.2186810
https://doi.org/10.1109/TCIAIG.2012.2186810
https://doi.org/10.1109/TCIAIG.2012.2186810
https://doi.org/10.1609/aiide.v4i1.18700
https://doi.org/10.1609/aiide.v4i1.18700
https://doi.org/10.1609/aiide.v4i1.18700
http://arxiv.org/abs/2401.01335
http://arxiv.org/abs/2401.01335
http://arxiv.org/abs/2401.01335
http://arxiv.org/abs/2401.01335
http://arxiv.org/abs/2401.01335
http://arxiv.org/abs/1706.03741
http://arxiv.org/abs/1706.03741
http://arxiv.org/abs/1706.03741
http://arxiv.org/abs/1803.05457
http://arxiv.org/abs/1803.05457
http://arxiv.org/abs/1803.05457
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2309.17179
http://arxiv.org/abs/2309.17179
http://arxiv.org/abs/2309.17179
http://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2308.08998
http://arxiv.org/abs/2308.08998
http://arxiv.org/abs/2308.08998
http://arxiv.org/abs/2402.04792
http://arxiv.org/abs/2402.04792
http://arxiv.org/abs/2402.04792
https://doi.org/10.1038/s43588-023-00527-x
https://doi.org/10.1038/s43588-023-00527-x
https://doi.org/10.1038/s43588-023-00527-x
https://doi.org/10.1038/s43588-023-00527-x
https://doi.org/10.1038/s43588-023-00527-x
http://arxiv.org/abs/2305.14992
http://arxiv.org/abs/2305.14992
http://arxiv.org/abs/2305.14992
http://arxiv.org/abs/2103.03874
http://arxiv.org/abs/2103.03874
http://arxiv.org/abs/2103.03874
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2501.02497
http://arxiv.org/abs/2501.02497
http://arxiv.org/abs/2501.02497
http://arxiv.org/abs/2411.11694
http://arxiv.org/abs/2411.11694
http://arxiv.org/abs/2411.11694
http://arxiv.org/abs/2207.05221
http://arxiv.org/abs/2207.05221
http://arxiv.org/abs/2207.05221

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2023. Large lan-
guage models are zero-shot reasoners.

Nicholas Lee, Thanakul Wattanawong, Sehoon Kim,
Karttikeya Mangalam, Sheng Shen, Gopala Anu-
manchipalli, Michael W. Mahoney, Kurt Keutzer, and
Amir Gholami. 2024. LIm2llm: Boosting llms with
novel iterative data enhancement.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike, John
Schulman, Ilya Sutskever, and Karl Cobbe. 2023.
Let’s verify step by step.

Jiacheng Liu, Andrew Cohen, Ramakanth Pasunuru,
Yejin Choi, Hannaneh Hajishirzi, and Asli Celikyil-
maz. 2024a. Don’t throw away your value model!
generating more preferable text with value-guided
monte-carlo tree search decoding.

Zichen Liu, Siyi Li, Wee Sun Lee, Shuicheng Yan, and
Zhongwen Xu. 2023. Efficient offline policy opti-
mization with a learned model.

Zixuan Liu, Xiaolin Sun, and Zizhan Zheng. 2024b. En-
hancing llm safety via constrained direct preference
optimization.

Jieyi Long. 2023. Large language model guided tree-of-
thought.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat
Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun Zhu,
Lei Meng, Jiao Sun, and Abhinav Rastogi. 2024. Im-
prove mathematical reasoning in language models by
automated process supervision.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023. Self-refine: Iterative
refinement with self-feedback.

Dakota Mahan, Duy Van Phung, Rafael Rafailov, Chase
Blagden, Nathan Lile, Louis Castricato, Jan-Philipp
Frianken, Chelsea Finn, and Alon Albalak. 2024.
Generative reward models.

Meta. 2024. Introducing llama 3.1.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, Red Avila, and Igor Babuschkin.
2024. Gpt-4 technical report.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback.

10

Zhenting Qi, Mingyuan Ma, Jiahang Xu, Li Lyna Zhang,
Fan Yang, and Mao Yang. 2024. Mutual reasoning
makes smaller 1lms stronger problem-solvers.

Yiwei Qin, Xuefeng Li, Haoyang Zou, Yixiu Liu, Shijie
Xia, Zhen Huang, Yixin Ye, Weizhe Yuan, Hector
Liu, Yuanzhi Li, and Pengfei Liu. 2024. O1 repli-
cation journey: A strategic progress report — part
1.

Qwen. 2024. Qwen?2.5: A party of foundation models.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano
Ermon, Christopher D. Manning, and Chelsea Finn.
2024. Direct preference optimization: Your language
model is secretly a reward model.

Christopher D. Rosin. 2011. Multi-armed bandits with
episode context. Annals of Mathematics and Artifi-
cial Intelligence, 61:203-230.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. 2017. Proximal policy
optimization algorithms.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioan-
nis Antonoglou, Matthew Lai, Arthur Guez, Marc
Lanctot, Laurent Sifre, Dharshan Kumaran, Thore
Graepel, Timothy Lillicrap, Karen Simonyan, and
Demis Hassabis. 2017. Mastering chess and shogi
by self-play with a general reinforcement learning
algorithm.

Ye Tian, Baolin Peng, Linfeng Song, Lifeng Jin, Dian
Yu, Haitao Mi, and Dong Yu. 2024. Toward self-
improvement of llms via imagination, searching, and
criticizing.

Ante Wang, Linfeng Song, Ye Tian, Baolin Peng, Dian
Yu, Haitao Mi, Jinsong Su, and Dong Yu. 2024a.
Litesearch: Efficacious tree search for llm.

Chaojie Wang, Yanchen Deng, Zhiyi Lyu, Liang Zeng,
Jujie He, Shuicheng Yan, and Bo An. 2024b. Q¥*:
Improving multi-step reasoning for llms with deliber-
ative planning.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2023. Self-consistency improves chain
of thought reasoning in language models.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems,
volume 35, pages 24824-24837. Curran Associates,
Inc.

Johannes Welbl, Nelson F. Liu, and Matt Gardner. 2017.
Crowdsourcing multiple choice science questions.

http://arxiv.org/abs/2205.11916
http://arxiv.org/abs/2205.11916
http://arxiv.org/abs/2205.11916
http://arxiv.org/abs/2403.15042
http://arxiv.org/abs/2403.15042
http://arxiv.org/abs/2403.15042
http://arxiv.org/abs/2305.20050
http://arxiv.org/abs/2309.15028
http://arxiv.org/abs/2309.15028
http://arxiv.org/abs/2309.15028
http://arxiv.org/abs/2309.15028
http://arxiv.org/abs/2309.15028
http://arxiv.org/abs/2210.05980
http://arxiv.org/abs/2210.05980
http://arxiv.org/abs/2210.05980
http://arxiv.org/abs/2403.02475
http://arxiv.org/abs/2403.02475
http://arxiv.org/abs/2403.02475
http://arxiv.org/abs/2403.02475
http://arxiv.org/abs/2403.02475
http://arxiv.org/abs/2305.08291
http://arxiv.org/abs/2305.08291
http://arxiv.org/abs/2305.08291
http://arxiv.org/abs/2406.06592
http://arxiv.org/abs/2406.06592
http://arxiv.org/abs/2406.06592
http://arxiv.org/abs/2406.06592
http://arxiv.org/abs/2406.06592
http://arxiv.org/abs/2303.17651
http://arxiv.org/abs/2303.17651
http://arxiv.org/abs/2303.17651
http://arxiv.org/abs/2410.12832
https://ai.meta.com/blog/meta-llama-3-1/
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2408.06195
http://arxiv.org/abs/2408.06195
http://arxiv.org/abs/2408.06195
http://arxiv.org/abs/2410.18982
http://arxiv.org/abs/2410.18982
http://arxiv.org/abs/2410.18982
http://arxiv.org/abs/2410.18982
http://arxiv.org/abs/2410.18982
https://qwenlm.github.io/blog/qwen2.5/
http://arxiv.org/abs/2305.18290
http://arxiv.org/abs/2305.18290
http://arxiv.org/abs/2305.18290
https://api.semanticscholar.org/CorpusID:207081359
https://api.semanticscholar.org/CorpusID:207081359
https://api.semanticscholar.org/CorpusID:207081359
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1712.01815
http://arxiv.org/abs/1712.01815
http://arxiv.org/abs/1712.01815
http://arxiv.org/abs/1712.01815
http://arxiv.org/abs/1712.01815
http://arxiv.org/abs/2404.12253
http://arxiv.org/abs/2404.12253
http://arxiv.org/abs/2404.12253
http://arxiv.org/abs/2404.12253
http://arxiv.org/abs/2404.12253
http://arxiv.org/abs/2407.00320
http://arxiv.org/abs/2406.14283
http://arxiv.org/abs/2406.14283
http://arxiv.org/abs/2406.14283
http://arxiv.org/abs/2406.14283
http://arxiv.org/abs/2406.14283
http://arxiv.org/abs/2203.11171
http://arxiv.org/abs/2203.11171
http://arxiv.org/abs/2203.11171
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
http://arxiv.org/abs/1707.06209

Jinyang Wu, Mingkuan Feng, Shuai Zhang, Feihu Che,
Zengqi Wen, and Jianhua Tao. 2024. Beyond exam-
ples: High-level automated reasoning paradigm in
in-context learning via mcts.

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, Xu Zhao, Min-
Yen Kan, Junxian He, and Qizhe Xie. 2023. Self-
evaluation guided beam search for reasoning.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, and Chang Zhou. 2024a. Qwen?2 techni-
cal report.

Zonghan Yang, Peng Li, Ming Yan, Ji Zhang, Fei Huang,
and Yang Liu. 2024b. React meets actre: When
language agents enjoy training data autonomy.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: Deliberate
problem solving with large language models.

Yao Yao, Zuchao Li, and Hai Zhao. 2024. Beyond chain-
of-thought, effective graph-of-thought reasoning in
language models.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D.
Goodman. 2022. Star: Bootstrapping reasoning with
reasoning.

Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang,
Da Yin, Dan Zhang, Diego Rojas, Guanyu Feng, Han-
lin Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Jiadai
Sun, Jiajie Zhang, Jiale Cheng, Jiayi Gui, Jie Tang,
Jing Zhang, Jingyu Sun, Juanzi Li, Lei Zhao, Lin-
dong Wu, Lucen Zhong, Mingdao Liu, Minlie Huang,
Peng Zhang, Qinkai Zheng, Rui Lu, Shuaiqi Duan,
Shudan Zhang, Shulin Cao, Shuxun Yang, Weng Lam
Tam, Wenyi Zhao, Xiao Liu, Xiao Xia, Xiaohan
Zhang, Xiaotao Gu, Xin Lv, Xinghan Liu, Xinyi Liu,
Xinyue Yang, Xixuan Song, Xunkai Zhang, Yifan
An, Yifan Xu, Yilin Niu, Yuantao Yang, Yueyan Li,
Yushi Bai, Yuxiao Dong, Zehan Qi, Zhaoyu Wang,
Zhen Yang, Zhengxiao Du, Zhenyu Hou, and Zihan
Wang. 2024a. Chatglm: A family of large language
models from glm-130b to glm-4 all tools.

Yongcheng Zeng, Guoqging Liu, Weiyu Ma, Ning Yang,
Haifeng Zhang, and Jun Wang. 2024b. Token-level
direct preference optimization.

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue,
Yuxiao Dong, and Jie Tang. 2024a. Rest-mcts*: Llm
self-training via process reward guided tree search.

Di Zhang, Jianbo Wu, Jingdi Lei, Tong Che, Jiatong
Li, Tong Xie, Xiaoshui Huang, Shufei Zhang, Marco
Pavone, Yugiang Li, Wanli Ouyang, and Dongzhan
Zhou. 2024b. Llama-berry: Pairwise optimization
for o1-like olympiad-level mathematical reasoning.

Xuan Zhang, Chao Du, Tianyu Pang, Qian Liu, Wei
Gao, and Min Lin. 2024c. Chain of preference opti-
mization: Improving chain-of-thought reasoning in
Ilms.

11

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, and Ed Chi.
2023. Least-to-most prompting enables complex rea-
soning in large language models.

A Example Appendix

This section provides templates used in our ex-
periments and some illustrative examples on each
dataset. As shown in the gray box below, We
insert few-shot examples and the input question
into the corresponding positions {examples} and
{instruction} in the prompt template. Here we
give the example of prompt template on mathe-
matic task:

You are an expert AI assistant with
advanced reasoning capabilities. Your
task is to provide detailed, step-by-step
explanations of your thought process. The
steps include:

1. Restate: Used to clarify the problem
and conditions.
2. Recollect: Used to list the basic

mathematical skills, theorems, or concepts
that may be needed to solve the problem.

3. Planning: Used to develop steps or
strategies to solve the problem.

4. Execution: Used "Planning"” results third
step to carry out specific calculations or
reasoning steps.
5. Conclusion:
answer in the format of "The answer is:

Used to give the final

Note:

1. The <planning> section must be concise
and summarized under subheadings, and it
should not exceed 5 points.

2. Each point in the <planning> section
being no more than 10 words.

3. The <execution> section must be carried
out according to the steps outlined in the
<planning> section.

4. The answer output in <conclude> must in
the Latex format.

Example:
{examples}

Instruction:
{instruction}

Response:

The mathematic question which will be inserted
into the {instruction} section is provided below
as follows:

Question: How many vertical asymptotes does

the graph of y = ﬁ have?

http://arxiv.org/abs/2411.18478
http://arxiv.org/abs/2411.18478
http://arxiv.org/abs/2411.18478
http://arxiv.org/abs/2411.18478
http://arxiv.org/abs/2411.18478
http://arxiv.org/abs/2305.00633
http://arxiv.org/abs/2305.00633
http://arxiv.org/abs/2305.00633
http://arxiv.org/abs/2407.10671
http://arxiv.org/abs/2407.10671
http://arxiv.org/abs/2407.10671
http://arxiv.org/abs/2403.14589
http://arxiv.org/abs/2403.14589
http://arxiv.org/abs/2403.14589
http://arxiv.org/abs/2305.10601
http://arxiv.org/abs/2305.10601
http://arxiv.org/abs/2305.10601
http://arxiv.org/abs/2305.16582
http://arxiv.org/abs/2305.16582
http://arxiv.org/abs/2305.16582
http://arxiv.org/abs/2305.16582
http://arxiv.org/abs/2305.16582
http://arxiv.org/abs/2203.14465
http://arxiv.org/abs/2203.14465
http://arxiv.org/abs/2203.14465
http://arxiv.org/abs/2406.12793
http://arxiv.org/abs/2406.12793
http://arxiv.org/abs/2406.12793
http://arxiv.org/abs/2404.11999
http://arxiv.org/abs/2404.11999
http://arxiv.org/abs/2404.11999
http://arxiv.org/abs/2406.03816
http://arxiv.org/abs/2406.03816
http://arxiv.org/abs/2406.03816
http://arxiv.org/abs/2410.02884
http://arxiv.org/abs/2410.02884
http://arxiv.org/abs/2410.02884
http://arxiv.org/abs/2406.09136
http://arxiv.org/abs/2406.09136
http://arxiv.org/abs/2406.09136
http://arxiv.org/abs/2406.09136
http://arxiv.org/abs/2406.09136
http://arxiv.org/abs/2205.10625
http://arxiv.org/abs/2205.10625
http://arxiv.org/abs/2205.10625

We present the detailed thought process of math-
ematic reasoning task as follows:

<restate>

The problem is to determine the number
of vertical asymptotes of the function
y = ;7f%:5. To find the vertical
asymptotes, we need to identify the values
of x that make the denominator zero, as
these values will cause the function to
approach infinity or negative infinity.
</restate>

<recollect>
1. **Factoring Quadratic Expressionsxx*
Factoring a quadratic expression involves

expressing it as a product of two binomials.

For the quadratic z? +x — 6, we look for
two numbers that multiply to —6 and add up
to 1.

2. **xSetting Factors Equal to Zeroxx
Once the quadratic expression is factored,
setting each factor equal to zero helps
us find the roots of the equation. These
roots are the values of =z that make the
denominator zero.

3. **Vertical Asymptotes*xx* A vertical
asymptote occurs where the function
approaches infinity or negative infinity as
x approaches a certain value. These values
are found by solving the equation obtained
by setting the denominator equal to zero.
</recollect>

<planning>

1. Factor the
z2 +z — 6.

2. Set each factor equal to zero and solve
for z.

3. Determine the number of
asymptotes based on the solutions.
</planning>

quadratic expression

vertical

<execution>
1. Factor the quadratic expression 22 4z—6:

> 4+z—6=(z+3)(x—2)

2. Set each factor equal to zero and solve
for z:

z+3=0 or z—2=0
Solving these equations gives:
r=—-3 or xz=2

</execution>

<Conclusion>
The answer is 2.
</Conclusion>

Terrestrial ecosystems, also known for
their diversity, are grouped into large
categories called what?: Choices: (A)

bisomes (B) substrates

monomes

(C) biomes (D)

We illustrate the detailed thought process of com-
monsense reasoning task as follows:

<restate>
The problem asks for the term used to

categorize large groups of terrestrial
ecosystems. We need to identify which of
the given options correctly describes these
categories.

</restate>

<recollect>

1. **xDefinition of Biomes**: Biomes
are large ecological areas with
distinct climates and organisms. 2.
*xCharacteristics of Ecosystems**:
Ecosystems are characterized by their

plant and animal life and environmental
conditions.

3. *xEcological Classificationx*:
Different levels of ecological
classification exist, often using terms
like "biomes," "ecosystems,” etc.
</recollect>

<planning>

1. Understand the definition of a biome.

2. Review the characteristics of options A,
B, and D.

3. Compare the definitions with what is
known about ecosystems.

4. Identify any examples that fit the
context.

5e Conclude based on
reviewed.

</planning>

the definitions

<execution>

1. A biome refers to a large community of
plants and animals that occupies a distinct
region defined by climate and vegetation.

2. The definitions of options: A)
*xbisomes** - not a recognized term; B)
*xsubstrates**x - refers to surfaces or
materials; C) **biomes*x - recognized

ecological classifications; D) *xmonomes**
- not a recognized ecological term.

3. Since "biomes” is the term that
comprehensively fits the description of
large categories of ecosystems.

4. Examples (like forests or deserts)
further confirm that they are categorized
as biomes.

5. The other options do not apply to
terrestrial ecosystems.

</execution>

<Conclusion>
The answer is: C.
</Conclusion>

We show the commonsense question is provided
below:

12

