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Abstract

Online structured prediction is a task of sequentially predicting outputs with com-
plex structures based on inputs and past observations, encompassing online classifi-
cation. Recent studies showed that in the full-information setting, we can achieve
finite bounds on the surrogate regret, i.e., the extra target loss relative to the best
possible surrogate loss. In practice, however, full-information feedback is often un-
realistic as it requires immediate access to the whole structure of complex outputs.
Motivated by this, we propose algorithms that work with less demanding feedback,
bandit and delayed feedback. For bandit feedback, by using a standard inverse-
weighted gradient estimator, we achieve a surrogate regret bound of O(

√
KT ) for

the time horizon T and the size of the output set K. However, K can be extremely
large when outputs are highly complex, resulting in an undesirable bound. To
address this issue, we propose another algorithm that achieves a surrogate regret
bound of O(T 2/3), which is independent of K. This is achieved with a carefully
designed pseudo-inverse matrix estimator. Furthermore, we numerically compare
the performance of these algorithms, as well as existing ones. Regarding delayed
feedback, we provide algorithms and regret analyses that cover various scenar-
ios, including full-information and bandit feedback, as well as fixed and variable
delays.

1 Introduction

In many machine learning problems, given an input vector from a set X of input vectors, we aim to
predict a vector in a finite output space Y . Multiclass classification is one of the simplest examples,
while in other cases, output spaces may have more complex structures. Structured prediction refers to
such a class of problems with structured output spaces, including multiclass classification, multilabel
classification, ranking, and ordinal regression, and it has applications in various fields, ranging from
natural language processing to bioinformatics [2, 43]. In structured prediction, training models that
directly predict outputs in complex discrete output spaces is typically challenging. Therefore, we
often adopt the surrogate loss framework [3]—define an intermediate space of score vectors and
train models that estimate score vectors from inputs based on surrogate loss functions. Examples of
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Table 1: Upper and lower bounds on the surrogate regret in online multiclass classification and OSP.
Here, T is the time horizon, K = |Y| is the size of the output space, and D is the fixed-delay time.
Delayed feedback is considered only when “Delayed” appears in the feedback column. In the target
loss column, “SELF*” means SELF that satisfies Assumption 3.5. Note that the O(T 2/3) bounds for
SELF* in lines 6 and 9 do not explicitly depend on K but on d; in the case of multiclass classification
with the 0-1 loss, the dependence on K appears as d = K.

Setting Reference Feedback Target loss Surrogate regret bound

Binary classification Van der Hoeven et al. [45, Cor. 1] Graph bandit 0-1 loss Ω(
√
T ) (d = 2)

Multiclass
classification

Van der Hoeven [44, Thm. 4] Bandit 0-1 loss O(K
√
T )

Van der Hoeven et al. [45, Thm. 1] Bandit 0-1 loss O(K
√
T )

Structured
prediction

Sakaue et al. [41, Thms. 7 and 8] Full-info SELF O(1)

This work (Theorems 3.4 and D.2) Bandit SELF O(
√
KT )

This work (Theorem 3.6) Bandit SELF* O(T 2/3)
This work (Theorems 4.3 and E.3) Full-info & Delayed SELF O(D2 + 1)
This work (Theorems 4.4 and E.4) Full-info & Delayed SELF O(D + 1)
This work (Theorem 4.5) Full-info & Delayed SELF Ω(D + 1)

This work (Theorem 5.1) Bandit & Delayed SELF O(
√

(K +D)T )
This work (Theorem 5.2) Bandit & Delayed SELF* O(D1/3T 2/3)

surrogate losses include squared, logistic, and hinge losses, and a general framework encompassing
them is the Fenchel–Young loss [7], which we rely on in this study.

Structured prediction can be naturally extended to the online setting, called Online Structured Pre-
diction (OSP) [41]. In OSP, at each round t = 1, . . . , T , an environment selects an input–output pair
(xt,yt) ∈ X × Y . A learner then predicts ŷt ∈ Y based on the input xt and incurs a loss L(ŷt;yt),
where L:Y × Y → R≥0 is the target loss function. Following prior work [41, 44, 45], we focus
on the simple yet fundamental case where the learner’s model for estimating score vectors is linear.

The goal of the learner is to minimize the cumulative loss
∑T

t=1 L(ŷt;yt). On the other hand, the best
the learner can do in the surrogate loss framework is to minimize the cumulative surrogate loss, namely∑T

t=1 S(Uxt;yt), where U :X → Rd is the best offline linear estimator and S:Rd × Y → R≥0 is
a surrogate loss, which measures the discrepancy between the score vector Uxt ∈ Rd and yt ∈ Y .
Given this, a natural performance measure of the learner’s predictions is the surrogate regret,RT , de-
fined by

∑T
t=1 L(ŷt;yt) =

∑T
t=1 S(Uxt;yt)+RT . It has recently attracted increasing attention fol-

lowing the seminal work by Van der Hoeven [44] on online classification. The surrogate regret is an ap-
pealing, data-dependent performance measure, as it can provide better bounds on the target loss when
the surrogate loss of the best offline estimator,

∑T
t=1 S(Uxt;yt), is smaller. Further background and

a comparison with the standard regret are provided in Appendix C. Of particular relevance to our work,
Sakaue et al. [41] recently obtained a finite surrogate regret bound for online structured prediction
(OSP) under full-information feedback, i.e., when the learner observes yt at the end of each round t.

However, the assumption that full-information feedback is available is often demanding, especially
when outputs have complex structures. For example, in sequential ad assortment on an advertising
platform, we may be able to observe only the click-through rate but not which ads were clicked, which
boils down to the bandit feedback setting [24, 29]. Also, we may only have access to feedback from
a while ago when designing an ad assortment for a new user—namely, delayed feedback [32, 47].
Similar situations have led to a plethora of studies in various online learning settings. In combinatorial
bandits, algorithms under bandit feedback (referred to as full-bandit feedback in their context),
instead of full-information feedback, have been widely studied [9, 14, 18, 39]. Delayed feedback
is also explored in various other settings, including full-information and bandit feedback [11, 27].
Due to space limitations, we defer a further discussion of the background to Appendix B.

Our contributions To extend the applicability of OSP, this study develops OSP algorithms that
can handle weaker feedback—bandit feedback and delayed feedback—instead of full-information
feedback. Following the work of Sakaue et al. [41], we consider the case where target loss functions
belong to a class called the Structured Encoding Loss Function (SELF) [6, 12], a general class that
includes the 0-1 loss in multiclass classification and the Hamming loss in multilabel classification and
ranking (see Section 2.4 for the definition). Table 1 summarizes the surrogate regret bounds provided
in this study and comparisons with the existing results.
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One of the major challenges in the bandit feedback setting is that the true output yt is not observed,
making it impossible to compute the true gradient of the surrogate loss. To address this, we use
an inverse-weighted gradient estimator, a common approach that assigns weights to gradients by
the inverse probability of choosing each output, establishing an O(

√
KT ) surrogate regret upper

bound (Theorems 3.4 and D.2), where K = |Y| denotes the cardinality of Y . This O(
√
KT ) bound

has a desirable dependence on T , matching an Ω(
√
T ) lower bound known in a problem closely

related to online multiclass classification with bandit feedback [45, Corollary 1]. Furthermore, our
bound is better than the existing O(K

√
T ) bounds [44, 45] by a factor of

√
K, although the bound

of Van der Hoeven et al. [45] applies to a broader class of surrogate losses and thus it is not directly
comparable to ours (see Appendix C.3 for a more detailed discussion). We also conduct numerical
experiments on online multiclass classification and find that our methods, which apply to general
OSP, are comparable to the existing ones specialized for multiclass classification (see Appendix H.1).

While the O(
√
KT ) bound is satisfactory when K = |Y| is small, K can be extremely large in some

structured prediction problems. In multilabel classification with m correct labels, we have K =
(
d
m

)
,

and in ranking problems with m items, we have K = m!. To address this issue, we consider a special
case of SELF (denoted by SELF* in Table 1), which still includes the aforementioned examples: the
0-1 loss in multiclass classification and the Hamming loss in multilabel classification and ranking. A
technical challenge to resolve the issue lies in designing an appropriate gradient estimator used in
online learning methods. To this end, we draw inspiration from pseudo-inverse estimators used in the
adversarial linear/combinatorial bandit literature [1, 9, 16]. Indeed, we cannot naively use the existing
estimators, and hence we design a new gradient estimator that applies to various structured prediction
problems with target losses belonging to the special SELF class. Armed with this gradient estimator,
we achieve a surrogate regret upper bound of O(T 2/3) (Theorem 3.6). This successfully eliminates
the explicit dependence on K, although the dependence on T increases compared to the O(

√
KT )

bound. We also numerically observe the benefit of this approach when K is large, aligning with the
implication of the theoretical bounds (see Appendix H.2).

For the delayed feedback setting, the surrogate regret bounds depend on whether the delay time
is fixed or variable. We here describe our results for the known fixed-delay time, denoted by D,
under the full-information setting. It is relatively straightforward to obtain a surrogate regret bound
of O(

√
(D + 1)T ) with standard Online Convex Optimization (OCO) algorithms for the delayed

feedback. We improve this to surrogate regret bounds of O(min{D2 + 1, (D + 1)2/3T 1/3}) (The-
orems 4.3 and E.3) and O(D + 1) (Theorems 4.4 and E.4), which are notably independent of
T . The proofs require carefully bridging different lines of research: OCO algorithms for delayed
feedback [20, 27] and surrogate regret analysis in OSP. In addition, we provide the lower bound of
Ω(D + 1) (Theorem 4.5), which matches the upper bound.

Given the contributions so far, it is natural to explore OSP in environments where both delay and
bandit feedback are present. We develop algorithms for this setting by combining the theoretical
developments for bandit feedback without delay and delayed full-information feedback, achieving
surrogate regret bounds of O(

√
(D +K)T ) (Theorem 5.1) and O(D1/3T 2/3) (Theorem 5.2). It is

worth noting that similar surrogate regret bounds can also be obtained in the variable-delay setting—
where the delay may differ for each round of feedback—for both full-information and bandit feedback.
Due to space constraints, most of the details are provided in Appendix G.

2 Preliminaries

This section describes the detailed setting of OSP and key tools used in this work: the Fenchel–Young
loss, SELF, and randomized decoding.

Notation For any integer n > 0, let [n] = {1, 2, . . . , n}. Let ‖·‖ denote a norm with κ‖y‖ ≥ ‖y‖2
for some κ > 0 for any y ∈ Rd. For a matrix W , let ‖W ‖F =

√
tr(W>W ) be the Frobenius

norm. Let 1 denote the all-ones vector and ei the ith standard basis vector. For K ⊂ Rd, let
conv(K) be its convex hull and IK:Rd → {0,+∞} be its indicator function, which takes zero if the
argument is contained inK and +∞ otherwise. For any function Ω:Rd → R∪{+∞}, let dom(Ω) ={
y ∈ Rd : Ω(y) < +∞

}
be its effective domain and Ω∗(θ) = sup

{
〈θ,y〉 − Ω(y) : y ∈ Rd

}
be its

convex conjugate. Table 2 in Appendix A summarizes the notation used in this paper.
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2.1 Online structured prediction (OSP)

We describe the problem setting of OSP. Let X be the space of input vectors and Y be the finite set of
outputs. Define K = |Y|. Following the literature [7, 41], we assume that Y is embedded into Rd in
a standard manner, e.g., Y = {e1, . . . , ed} in multiclass classification with d classes.

LetW be a closed convex domain. A linear estimator W ∈ W transforms the input vector x into the
score vector Wx. In OSP, at each round t = 1, . . . , T , the environment selects an input xt ∈ X and
the true output yt ∈ Y . The learner receives xt and computes the score vector θt = Wtxt using the
linear estimator Wt. Then, the learner selects a prediction ŷt based on θt, which is called decoding,
and incurs a loss of L(ŷt;yt). Finally, the learner receives feedback, which depends on the problem
setting, and updates Wt to Wt+1 using some online learning algorithm, denoted by ALG, which is
applied to the surrogate loss function W 7→ S(Wxt;yt).

The goal of the learner is to minimize the cumulative target loss
∑T

t=1 L(ŷt;yt), which is equivalent
to minimizing the surrogate regret RT =

∑T
t=1 L(ŷt;yt) −

∑T
t=1 S(Uxt;yt). We assume that

the input and output are generated in an oblivious manner. Note that when Y = {e1, . . . , ed} and
L(ŷt;yt) = 1[ŷt 6= yt], the above setting reduces to online multiclass classification, which was
studied in prior work [44, 45]. Let B = diam(W) denote the diameter ofW measured by ‖·‖F and
Cx = maxx∈X ‖x‖2 the maximum Euclidean norm of input vectors in X .

The feedback observed by the learner depends on the problem setting. The most basic setting is the
full-information setting, where the true output yt is observed as feedback at the end of each round t,
extensively investigated by Sakaue et al. [41]. By contrast, we study the following weaker feedback:
In the bandit feedback setting, only the value of the loss function is observed. Specifically, at the
end of each round t, the learner observes the target loss value L(ŷt;yt) as feedback. In the delayed
feedback setting, the feedback is observed with a certain delay. In this paper, we consider especially
a fixed D-round delay setting, i.e., no feedback for round t ≤ D, and for t > D, the learner observes
either full-information feedback yt−D or bandit feedback L(ŷt−D;yt−D). We also discuss the
variable-delay setting in Appendix G.

In this paper, we make the following assumptions:

Assumption 2.1. (1) There exists ν > 0 such that for any distinct y,y′ ∈ Y , it holds that ‖y−y′‖≥ ν.
(2) For each y ∈ Y , the target loss function L(·;y) is defined on conv(Y), non-negative, and affine
w.r.t. its first argument. (3) There exists γ such that for any y′ ∈ conv(Y) and y ∈ Y , it holds that
L(y′;y) ≤ γ‖y′ − y‖ and L(y′;y) ≤ 1. (4) It holds that L(y′;y) = 0 if and only if y′ = y.

As discussed in [41, Section 2.3], these assumptions are natural and hold for various structured pre-
diction problems and target loss functions, including SELF (see Section 2.4 for the formal definition).

2.2 Fenchel–Young loss

We use the Fenchel–Young loss [7] as the surrogate loss, which subsumes many representative surro-
gate losses, such as the logistic loss, Conditional Random Field (CRF) loss [30], and SparseMAP [35].
See [7, Table 1] for more examples.

Definition 1 ([7, Fenchel–Young loss]). Let Ω:Rd → R ∪ {+∞} be a regularization function with
Y ⊂ dom(Ω). The Fenchel–Young loss generated by Ω, denoted by SΩ: dom(Ω∗)×dom(Ω)→ R≥0,
is defined as SΩ(θ;y) = Ω∗(θ) + Ω(y)− 〈θ,y〉.

The Fenchel–Young loss has the following useful properties:

Proposition 2.2 ([7, Propositions 2 and 3] and [41, Proposition 3]). Let Ψ:Rd → R ∪ {+∞}
be a differentiable, Legendre-type function2 that is λ-strongly convex w.r.t. ‖·‖, and suppose that
conv(Y) ⊂ dom(Ψ) and dom(Ψ∗) = Rd. Define Ω = Ψ+Iconv(Y) and let SΩ be the Fenchel–
Young loss generated by Ω. For any θ ∈ Rd, we define the regularized prediction function as
ŷΩ(θ) = argmax{〈θ,y〉−Ω(y) | y ∈ Rd} = argmax{〈θ,y〉−Ψ(y) | y ∈ conv(Y)}. Then, for
any y ∈ Y , SΩ(θ,y) is differentiable w.r.t. θ, and it satisfies∇SΩ(θ;y) = ŷΩ(θ)−y. Furthermore,
it holds that SΩ(θ;y) ≥ λ

2 ‖y − ŷΩ(θ)‖2.

2A function Ψ is called Legendre-type if, for any sequence x1, x2, . . . in int(dom(Ψ)) that converges to a
boundary point of int(dom(Ψ)), it holds that limi→∞‖∇Ψ(xi)‖2= +∞.
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In what follows, let St(W ) = SΩ(Wxt;yt) for simplicity. Importantly, from the properties of the
Fenchel–Young loss, there exists some b > 0 such that for any W ∈ W ,

‖∇St(W )‖2F ≤ bSt(W ). (1)

Indeed, from Proposition 2.2, we have ‖∇St(Wt)‖2F = ‖ŷΩ(θt)− yt‖22‖xt‖22 ≤ C2
xκ

2‖ŷΩ(θt)−
yt‖2 ≤ 2C2

xκ
2

λ St(Wt), where we used ∇St(Wt) = (ŷΩ(θt) − yt)x
>
t and ‖·‖2 ≤ κ‖·‖. Thus, (1)

holds with b = 2C2
xκ

2/λ. Below, let Lt(y) = L(y;yt) and Gt = ∇St(Wt) = (ŷΩ(θt)− yt)x
>
t .

2.3 Examples of structured prediction

We present several instances of structured prediction along with specific parameter values introduced
so far; see [41, Section 2.3] for further details.

Multiclass classification Let Y = {e1, . . . , ed} and ‖·‖= ‖·‖1. As the 0-1 loss satisfies L(y; ei) =
1[y 6= ei] =

∑
j 6=i yj = 1

2 (1− yi +
∑

j 6=i yj) =
1
2‖ei − y‖1, we have γ = 1

2 in Assumption 2.1.
Also, ν = 2 holds since ‖ei − ej‖1= 2 if i 6= j. The logistic surrogate loss is a Fenchel–Young
loss SΩ generated by the negative Shannon entropy Ω = Hs+ I∆d

(up to a constant factor originating
from the base of log), where Hs(y) = −

∑d
i=1 yi log yi and ∆d is the (d−1)-dimensional probability

simplex. Since Ω is a 1-strongly convex function w.r.t. ‖·‖1 on ∆d, we have λ = 1.

Multilabel classification Let Y = {0, 1}d and ‖·‖= ‖·‖2. When using the Hamming loss as the
target loss functionL(y′;y) = 1

d

∑d
i=1 1[y

′
i 6= yi], Assumption 2.1 is satisfied with ν = 1 and γ = 1

d .
The SparseMAP surrogate loss SΩ(θ,y) =

1
2‖y − θ‖22 − 1

2‖ŷΩ(θ)− θ‖22 is a Fenchel–Young loss
generated by Ω = 1

2‖·‖
2 + Iconv(Y). Since Ω is 1-strongly convex w.r.t. ‖·‖2, we have λ = 1.

Ranking We consider predicting the ranking ofm items. Let ‖·‖ = ‖·‖1, d = m2, and Y ⊂ {0, 1}d
be the set of all vectors representing m×m permutation matrices. We use the target loss function
that counts mismatches, L(y′;y) = 1

m

∑m
i=1 1[y

′
i,ji
6=yi,ji ], where ji ∈ [m] is a unique index with

yiji = 1 for each i ∈ [m]. In this case, Assumption 2.1 is satisfied with ν = 4 and γ = 1
2m . We use a

surrogate loss given by SΩ(θ;y)=〈θ, ŷΩ(θ)−y〉+1
ζH

s(ŷΩ(θ)), where Ω=− 1
ζH

s+Iconv(Y) and ζ
controls the regularization strength. The first term in SΩ measures the affinity between θ and y, while
the second term evaluates the uncertainty of ŷΩ(θ). Since Ω is 1

mζ -strongly convex, we have λ = 1
mζ .

2.4 Structured encoding loss function (SELF)

We introduce a general class of target loss functions, called the (generalized) Structured Encoding
Loss Function (SELF) [6, 12, 13]. A target loss function is SELF if it can be expressed as

L(yt; ŷt) = 〈ŷt,V yt + b〉+ c(yt), (2)

where b ∈ Rd is a constant vector, V ∈ Rd×d is a constant matrix, and c:Y → R is a function. The
following examples of target losses, taken from [6, Appendix A], belong to the SELF class:

• Multiclass classification: the 0-1 loss is a SELF with V = 11> − I , b = 0, and c(y) = 0.
• Multilabel classification: the Hamming loss, L(y′;y)= 1

d

∑d
i=1 1[y

′
t,i 6=yi], is a SELF with V =

− 2
dI , b= 1

d1, and c(y)= 1
d 〈y,1〉, where c(y) is constant if the number of correct labels is fixed.

• Ranking: the Hamming loss L(y′;y) = 1
m

∑m
i=1 1[y

′
i,ji
6= yi,ji ], where ji ∈ [m] is a unique

index with yi,ji = 1 for each i ∈ [m], is a SELF with V = −I/m, b = 0, and c(y) = 1.

Following the work by Sakaue et al. [41], we assume that the target loss function L is a SELF.

2.5 Randomized decoding

We employ the randomized decoding [41], which plays an essential role, particularly in deriving
an upper bound independent of the output set size K = |Y| in Section 3.4. The randomized de-
coding (Algorithm 1) returns either the closest y∗ ∈ Y to ŷΩ(θ) ∈ conv(Y) (see Proposition 2.2)
or a random ỹ ∈ Y satisfying E[ỹ | Z = 1] = ŷΩ(θ), where Z follows the Bernoulli distri-
bution with a parameter p. Intuitively, the parameter p is chosen so that if ŷΩ(θ) is close to y∗,
the decoding more likely returns y∗; otherwise, it more likely returns ỹ, reflecting uncertainty.
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Algorithm 1 Randomized decoding φΩ

Input: θ ∈ Rd

1: Compute ŷΩ(θ) defined in Proposition 2.2.
2: y∗ ← argmin{‖y − ŷΩ(θ)‖ : y ∈ Y}.
3: ∆∗←‖y∗ − ŷΩ(θ)‖, p←min{1, 2∆∗/ν}.
4: Sample Z ∼ Ber(p).
5: if Z = 0 then ŷ ← y∗.
6: if Z = 1 then ŷ ← ỹ where ỹ is randomly

drawn from Y so that E[ỹ|Z = 1] = ŷΩ(θ).
Output: φΩ(θ) = ŷ

A crucial property of the randomized decoding
is the following lemma, which we use in the
subsequent analysis:
Lemma 2.3 ([41, Lemma 4]). For any (θ,y) ∈
Rd × Y , the randomized decoding φΩ satisfies
E[L(φΩ(θ);y)] ≤ 4γ

λνSΩ(θ;y), where the ex-
pectation is taken w.r.t. the randomness of φΩ.

Remark 1. In randomized decoding, computa-
tion of ŷΩ(θ) is the dominant cost, but we can
compute it efficiently using a Frank–Wolfe-type
algorithm (see e.g., Garber and Wolf [22] and
Sakaue et al. [41, Section 3.1] for details).

3 Bandit feedback

In this section, we present two OSP algorithms for the bandit feedback setting and analyze their
surrogate regret. Our results can be extended to handle bandit and delayed feedback; see Section 5.
Here, we focus on the simpler case without delay to provide a clearer exposition of our core ideas.

3.1 Randomized decoding with uniform exploration
Algorithm 2 Randomized decoding with
uniform exploration (RDUE) ψΩ

Input: θ ∈ Rn, q ∈ [0, 1]
1: Sample X ∼ Ber(q).
2: if X = 0 then ŷ ← φΩ(θ).
3: if X = 1 then Sample y∗ from Y

uniformly at random and ŷ←y∗.
Output: ψΩ(θ) = ŷ

We discuss the properties of our decoding function, called
Randomized Decoding with Uniform Exploration (RDUE),
which will be used in subsequent sections. As discussed
in Section 2.5, the randomized decoding (Algorithm 1)
was introduced as a decoding function [41] for OSP with
full-information feedback. However, naively applying it
does not lead to a desired bound under bandit feedback
due to the lack of exploration. We extend the randomized-
decoding framework to handle bandit feedback effectively.

RDUE (Algorithm 2) is a procedure that, with probability q ∈ [0, 1], selects ŷ uniformly at random
from Y , and with probability 1− q, selects the output of the randomized decoding. Let pt(y) be the
probability that the output of RDUE, ŷt, coincides with y at round t. Note that for any y ∈ Y , it
holds that pt(y) ≥ q

K thanks to the uniform exploration. Furthermore, similar to the property of the
randomized decoding in Lemma 2.3, RDUE satisfies the following property:

Lemma 3.1. For any (θ,y) ∈ Rd×Y , RDUE ψΩ satisfies E[L(ψΩ(θ);y)] ≤ 4γ
λν (1− q)SΩ(θ;y)+

qK−1
K , where the expectation is taken w.r.t. the internal randomness of RDUE.

Proof. With probability 1 − q, the randomized decoding is used; otherwise, a uniformly random
output is chosen. Thus, E[L(ψΩ(θ);y)] ≤ (1− q)E[L(φΩ(θ);y)] + qK−1

K holds, where φΩ is the
randomized decoding and we used L(·; ·) ≤ 1. Combining this with Lemma 2.3 completes the
proof.

Based on this lemma, we make the following assumption for convenience:

Assumption 3.2. There exists a ∈ (0, 1) such that Et[Lt(ŷt)] ≤ (1 − a)St(Wt) + q. Here, Et[·]
denotes the conditional expectation given the past outputs, ŷ1, . . . , ŷt−1.

This assumption can be satisfied by using RDUE for a ≤ 1 − 4γ
λν (1 − q) if λ > 4γ

ν (1 − q), due
to Lemma 3.1. In what follows, we set a = 1 − 4γ

λν . Note that λ > 4γ
ν ≥

4γ
ν (1 − q) holds in the

cases of multiclass classification, multilabel classification, and ranking (see Section 2.3 and [41] for
details). The purpose of this assumption is to ensure that a reduction in the surrogate loss leads to a
proportional reduction in the target loss.

3.2 Online gradient descent

We use the adaptive Online Gradient Descent (OGD) algorithm [42] as ALG, which we apply to
surrogate loss St. OGD updates Wt to Wt+1 by using the gradient Gt = ∇St(Wt) and learning
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rate ηt as Wt+1 ← ΠW(Wt − ηtGt), where ΠW(Z) = argminX∈W‖X −Z‖F. OGD achieves
the following bound:

Lemma 3.3 (e.g., [37, Theorem 4.14]). Let ηt = B/
√
2
∑t

i=1‖Gi‖2F. Then, OGD achieves∑T
t=1 (St(Wt)− St(U)) ≤

∑T
t=1 〈Gt,Wt −U〉 ≤

√
2B
√∑T

t=1 ‖Gt‖2F for any U ∈ W .

3.3 Algorithm based on inverse-weighted gradient estimator with O(
√
KT ) regret

We present an algorithm that achieves a surrogate regret upper bound of O(
√
KT ).

Algorithm based on inverse-weighted gradient estimator In the bandit setting, the true output yt

is not observed, and thus we need to estimate the gradient of St(Wt) required for updating Wt. To
do this, we use the inverse-weighted gradient estimator Ĝt =

1[ŷt=yt]
pt(yt)

Gt, where Gt = ∇St(Wt) =

(ŷΩ(θt)− yt)x
>
t . Note that Ĝt is unbiased, i.e., Et[Ĝt] = Gt. We use RDUE with q = B

√
K/T

as the decoding function (assuming T ≥ B2K for simplicity). For ALG, we employ the adaptive

OGD in Section 3.2 with the learning rate of ηt = B/
√
2
∑t

i=1‖Ĝi‖2F.
Remark 2. This study defines the bandit feedback as the value of the target loss function Lt(ŷt).
Note, however, that the above algorithm operates using only the weaker feedback of 1[ŷt 6= yt].

Regret bounds and analysis The above algorithm achieves the following surrogate regret bound:

Theorem 3.4. The above algorithm achieves the surrogate regret of E[RT ] ≤
(

b
2a + 1

)
B
√
KT.

This upper bound achieves the rate of
√
T , which matches the existing surrogate regret upper bound

for bandit multiclass classification in [45]. Regarding the dependence on K, our bound improves the
existing O(K

√
T ) bound in [44, 45] by a factor of

√
K. Note, however, that the O(K

√
T ) bound

in [45] applies to a broader class of surrogate loss functions. For example, in K-class classification,
their bound applies to the base-k logistic loss for k ≤ K, while ours is restricted to the base-2 logistic
loss. A more detailed discussion is given in Appendix C.3. As for tightness, an Ω(

√
T ) lower bound is

provided in [45] for the graph feedback setting, a variant of the bandit feedback model. This suggests
that the

√
T dependence would be close to being tight, although this lower bound does not directly

apply to the bandit setting. Therefore, whether the rate of
√
T is improvable or not is left open.

Proof of Theorem 3.4. From the convexity of St and the unbiasedness of Ĝt,
E[
∑T

t=1 (St(Wt)− St(U))] ≤ E[
∑T

t=1 〈Ĝt,Wt −U〉]. From Lemma 3.3 and Jensen’s in-

equality, this is further upper bounded as E[
∑T

t=1 〈Ĝt,Wt −U〉] ≤
√
2B
√
E[
∑T

t=1 ‖Ĝt‖2F] ≤

B
√

2bK
q E[

∑T
t=1 St(Wt)], where we used Et[‖Ĝt‖2F] =

‖Gt‖2
F

pt(yt)
≤ K

q ‖Gt‖2F≤ bK
q St(Wt),

which follows from pt(y) ≥ K/q and (1). From Assumption 3.2, E[RT ] ≤
E[
∑T

t=1 ((1− a)St(Wt)− St(U))] + qT ≤ B
√

2bK
q E[

∑T
t=1 St(Wt)] − aE[

∑T
t=1 St(Wt)] +

qT ≤ bB2K
2aq + qT , where we used c1

√
x− c2x ≤ c21/(4c2) for x ≥ 0, c1 ≥ 0, and c2 > 0. Plugging

q = B
√
K/T into the last inequality completes the proof.

We can also prove a surrogate regret bound of O(
√
KT log(1/δ) + log(1/δ)), which holds with

probability 1 − δ. The precise statement and proof are provided in Appendix D.2. To prove this
high-probability bound, we follow the analysis of Theorem 3.4 and use Bernstein’s inequality.
To address the challenges posed by the randomness introduced by bandit feedback, we adopt an
approach similar to that used in [45], and arguably, we have simplified their analysis.

3.4 Algorithm based on pseudo-inverse matrix estimator with O(T 2/3) regret

We provide an algorithm with a new estimator that achieves a K-independent surrogate bound, and
we identify the conditions and the class of loss functions under which this new estimator can be used.
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While the surrogate regret bound of O(
√
KT ) achieves the presumably tight dependence on T , the

dependence on K = |Y| is undesirable for general structured prediction. In fact, we have K =
(
d
m

)
in multilabel classification with m correct labels and K = m! in ranking with m items. To address
this issue, we present an algorithm that significantly improves the dependence on K when the target
loss function belongs to a special class of SELF (2) with the following additional assumptions:
Assumption 3.5. (i) The matrix V is known and invertible, and b and c(·) are known and non-
negative. (ii) Let Q = Ey∼µ[yy

>], where µ is the uniform distribution over Y . At least one of the
following two conditions holds: (ii-a) Q is invertible, or (ii-b) for any y ∈ Y , V y lies in the linear
subspace spanned by vectors in Y . (iii) For some ω > 0, it holds that tr(V −1Q+(V −1)>) ≤ ω. (iv)
For any ŷt ∈ Y and yt ∈ Y , it holds that |〈ŷt,V yt〉|≤ 1.

The first and fourth conditions are true in the examples in Section 2.4, assuming that the number
of correct labels, m, is fixed in multilabel classification. (While the fourth condition does not hold
when m > d/2 in multilabel classification, we can flip 0 and 1 in the labels to redefine the problem
that satisfies the condition.) The second one holds if Y consists of d linearly independent vectors
or V is proportional to the identity matrix; either is true in the examples. Also, deriving reasonable
bounds on ω in those examples is not difficult; see also Appendix D.4 for details.

Algorithm based on pseudo-inverse matrix estimator As with Section 3.3, we consider estimating
the gradient. Let Pt = Ey∼pt

[yy>] and define the estimator ỹt of yt by ỹt = V −1P+
t ŷt〈ŷt,V yt〉,

where P+
t is the Moore–Penrose pseudo-inverse matrix of Pt. Note that, given that b and c(·)

are known, we can compute 〈ŷt,V yt〉 = Lt(ŷt) − 〈ŷt, b〉 − c(yt). Importantly, ỹt is unbiased,
i.e., Et[ỹt] = yt from the second requirement of Assumption 3.5.

By using this ỹt, we define the pseudo-inverse matrix estimator G̃t by G̃t = (ŷΩ(θt)− ỹt)x
>
t ,

which is also unbiased, i.e., Et[G̃t] = Gt. Our estimator is inspired by those used in adversarial
linear bandits and adversarial combinatorial full-bandits [1, 9, 16].

We use RDUE with q = (4ωB2C2
x/T )

1/3 as the decoding function (assuming T ≥ 4ωB2C2
x for

simplicity). To update Wt, we use OGD in Section 3.2 as ALG with ηt = B/
√
2
∑t

i=1‖G̃i‖2F.

Regret bounds This algorithm achieves the following surrogate regret bound independent of K:

Theorem 3.6. The above algorithm achieves E[RT ] = O(ω1/3T 2/3).

The proof can be found in Appendix D.3. Note that we leverage the structure of OSP when using the
pseudo-inverse matrix estimator, which largely differs from the existing approaches to surrogate regret
analysis for online classification and OSP [41, 44, 45]. With the pseudo-inverse matrix estimator, we
can upper bound the second moment of the gradient estimator G̃t without K, which allows for the
surrogate regret bound that does not explicitly involves K. This is in contrast to the inverse-weighted
gradient estimator in Section 3.3. The inverse-weighted gradient estimator involves division by pt,
whose lower bound comes from uniform exploration on Y; consequently, its upper bound depends
on K = |Y|. In other words, the above pseudo-inverse matrix estimator offers an alternative way
to obtain an unbiased gradient estimator while eschewing uniform exploration on Y . However,
this comes at the price of a somewhat looser bound on the second moment, which increases the
dependence on T .

As a corollary of Theorem 3.6, we can derive specific bounds for each problem as follows:

Corollary 3.7. The above algorithm achieves E[RT ] = O(d2/3T 2/3) in multiclass classification
with the 0-1 loss (ω = d2), E[RT ] = O((d5/m(d−m))1/3T 2/3) in multilabel classification with m
correct labels and the Hamming loss (ω = d5/4m(d−m)), and E[RT ] = O(m5/3T 2/3) in ranking
with the number of items m and the Hamming loss (ω = m5).

The proof of Corollary 3.7 is deferred to Appendix D.4. The bound for multilabel classification with

m correct labels can be significantly better than theO(
√
KT ) bound in Section 3.3 sinceK =

√(
d
m

)
;

similarly, the bound for ranking can be much better than the O(
√
KT ) bound since K =

√
m!.

Complexity of computing P+
t The matrix Pt equals the sum of Ey∼pt

[yy>] and Ey∼µ[yy
>].

The expectation Ey∼pt
[yy>] can be calculated analytically in the multiclass and multilabel clas-
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sification and ranking. For Ey∼µ[yy
>], when ŷΩ(θ) is obtained via the Frank–Wolfe algorithm,

pt is obtained from the convex combination coefficients, whose support size is at most O(d) as
implied by Carathéodory’s theorem (cf. [4]). Therefore, we can compute Pt in O(d3) time, and the
pseudo-inversion takes the same order of complexity.

4 Delayed full-information feedback

This section discusses OSP with fixed-delay full-information feedback and presents two algorithms
that achieve surrogate regret bounds of O(min{D2 + 1, (D + 1)2/3T 1/3}) and O(D + 1), which
are better than the O(

√
(D + 1)T ) bound obtained by a standard OCO algorithm under delayed

feedback [27]. Although the first upper bound is worse than the second, we include it here as a
preliminary step toward the algorithm for the delayed and bandit feedback setting described in
Section 5.

Below, we make the following assumption based on the randomized decoding of [41].

Assumption 4.1. There exists a constant a ∈ (0, 1) that satisfies Et[Lt(ŷt)] ≤ (1− a)St(Wt).

From Lemma 2.3, if λ > 4γ
ν , this condition is satisfied with a = 1− 4γ

λν by using the randomized
decoding. We suppose that such a decoding function is used in this section.

4.1 Algorithm based on ODAFTRL with O(min{D2 + 1, (D + 1)2/3T 1/3}) regret

Algorithm We employ the Optimistic Delayed Adaptive FTRL algorithm (ODAFTRL) [20] as
ALG, which we detail in Appendix E.1 for completeness. ODAFTRL computes the linear estimator
by Wt+1 ∈ argminW∈W{

∑t−D
i=1 〈Gi,W 〉 + λt

2 ‖W ‖
2
F}, where λt ≥ 0 is the regularization

parameter. By updating λt using an AdaHedge-type algorithm (AdaHedgeD), ODAFTRL achieves
the following AdaGrad-type regret upper bound:

Lemma 4.2 (Informal version of [20, Theorem 12]). Consider the delayed full-information set-
ting. For any U ∈ W , ODAFTRL with the AdaHedgeD update of λt achieves a regret bound of∑T

t=1 (St(Wt)− St(U)) = O
(√∑T

t=1 ‖Gt‖2F +D
∑T

t=1

∑t
s=t−D‖Gs‖2F

)
.

Regret bounds and analysis The above algorithm achieves the following surrogate regret bound:

Theorem 4.3. The above algorithm achieves E[RT ] = O(min{D2 + 1, (D + 1)2/3T 1/3}).

Recall that the proof ideas for deriving surrogate regret bounds in the non-delayed setting [41, 45]
differ from those in the standard OCO and multi-armed bandits, and thus we cannot naively extend
the analyses of the algorithms for delayed feedback in those settings to our case. Below is the proof
sketch, and the complete proof is given in Appendix E.2.

Proof sketch. From Lemma 4.2 with ‖Gt‖2F ≤ bSt(Wt) in (1) and Cauchy–Schwarz, we have∑T
t=1 (St(Wt)− St(U)) = O(D

√
S1:T ), where S1:T =

∑T
t=1 St(Wt). Thus, Assumption 4.1

implies E[RT ] ≤
∑T

t=1 (St(Wt)− St(U))− a
∑T

t=1 St(Wt) = O(D
√
S1:T )− aS1:T = O(D2),

where we used c1
√
x− c2x ≤ c21/(4c2) for x ≥ 0, c1 ≥ 0, and c2 > 0.

We can also prove a high-probability surrogate regret bound of O(min{D2 + 1, (D + 1)2/3T 1/3}+
log(1/δ)), which holds with probability at least 1− δ. See Appendix E.3 for the proof.

4.2 Algorithm based on BOLD with O(D + 1) regret

Algorithm We use the Black-box Online Learning under Delayed feedback (BOLD) [27] as ALG.
BOLD constructs D + 1 independent instances of any deterministic non-delayed online learning
algorithm (called BASE) denoted as BASE0,BASE1, . . . ,BASED. This algorithm selects which
instance to use according to the value of remainder rt ∈ {0, . . . , D}, which satisfies rt = t−k(D+1)
for some k ∈ Z≥0. At each round t, BOLD invokes BASErt . Here, we adopt OGD as BASE. The
pseudocode of BOLD is given in Appendix E.4.
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Regret bound The above algorithm achieves the following surrogate regret bound:
Theorem 4.4. The above algorithm achieves E[RT ] = O(D + 1).

The proof is given in Appendix E.4. The upper bound in Theorem 4.4 matches the following lower
bound, whose proof is provided in Appendix E.5.
Theorem 4.5. Let d ≥ 2. For B = Ω(log(dT )), there exists a sequence {(xt,yt)}Tt=1 with ‖xt‖2 =
1 such that the surrogate regret with respect to the logistic surrogate loss of any possibly randomized
algorithm is lower bounded by E[RT ] = Ω

(
B2(D + 1)/(log d)2

)
.

5 Delayed bandit feedback
Given the results so far, it is natural to explore OSP with delayed bandit feedback. We construct
algorithms for this setting by combining the theoretical developments from Sections 3 and 4.1.

5.1 Algorithm for bandit delayed feedback with O(
√

(K +D)T ) regret

We adopt RDUE with q = B
√
K/T for decoding (assuming T ≥ B2K), the inverse-weighted

gradient estimator Ĝt, and ODAFTRL with AdaHedgeD as ALG. Then, the following bound holds:
Theorem 5.1. The above algorithm achieves E[RT ] = O(

√
(K +D)T ).

The proof can be found in Appendix F.2. This upper bound incurs an additional additive O(
√
DT )

factor compared to the bound in the non-delayed case in Theorem 3.4. Whether this surrogate regret
upper bound is optimal remains open. While an Ω(

√
T ) surrogate regret lower bound exists in the

graph feedback setting [45], no such lower bound is known for the bandit non-delayed setting, and
constructing lower bounds under delayed feedback would be more difficult.

5.2 Algorithm for bandit delayed feedback with O(D1/3T 2/3) regret

We provide an algorithm that improves the dependence on K from Section 5.1. We make the same
assumptions on the target loss function as Section 3.4. We use RDUE with q =

(
ωB2C2

xD/T
)1/3

for decoding (assuming T ≥ ωB2C2
xD), the pseudo-inverse matrix estimator G̃t, and ODAFTRL

with the AdaHedgeD update as ALG. Then, the following bound holds:
Theorem 5.2. The above algorithm achieves E[RT ] = O(D1/3T 2/3).3

The proof can be found in Appendix F.3. Due to the presence of the delay, the surrogate regret bound
worsens by a factor of D1/3 compared to the non-delayed bandit setting. Additionally, we present
algorithms for the variable-delay setting, which we defer to Appendix G due to space limitations.

The algorithm in this section employs ODAFTRL rather than BOLD for the following reasons. First,
ODAFTRL leads to at least as good regret upper bounds as BOLD under bandit delayed feedback.
BOLD-based algorithms with the inverse-weighted gradient estimator and the pseudo-inverse matrix
estimator attain regret upper bounds of O(

√
KDT ) and O(D1/3T 2/3), respectively, which are not

better than the bounds in Theorems 5.1 and 5.2 obtained with ODAFTRL. Second, as noted by
Flaspohler et al. [20], approaches such as BOLD, which run multiple parallel instances, cause each
instance to operate independently and observe only T/(D+1) losses. This reduction can significantly
worsen empirical performance, particularly when T is not very large relative to D.

6 Conclusion
We have developed several algorithms for online structured prediction under bandit and delayed
feedback and analyzed their surrogate regret. Among these contributions, of particular note is the
algorithm for bandit feedback whose surrogate regret bound does not explicitly depend on the output
set size K, achieved by leveraging the pseudo-inverse matrix estimator. An important direction for
future work is to investigate the corresponding lower bounds in the bandit feedback setting. The
existing lower bound of Ω(

√
T ) in the graph-feedback setting [45] suggests that a similar bound

likely holds here as well; however, this has yet to be proven for our settings, and the tightness of our
upper bounds remains an open question.

3Here, unlike in the previous sections, we use D instead of D + 1, since this algorithm is not intended to
handle the non-delayed case of D = 0.
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A Notation

Table 2 summarizes the symbols used in this paper.

Table 2: Notation

Symbol Meaning

T ∈ N Time horizon
d ∈ N Dimension of output space Y
B = diam(W) Diameter ofW
Cx = maxx∈X ‖x‖2 Maximum norm of input vectors in X

Cy
The maximum of the largest Euclidean norm
of vectors in conv(Y) or the diameter of conv(Y)

K = |Y| Cardinality of Y

ALG Algorithm for updating linear estimators
ŷt ∈ Y Output chosen by the learner at round t
pt(y) Probability that y is chosen as ŷt at time t
L:Y × Y −→ R≥0 Target loss function
Lt(ŷt) = L(ŷt;yt) Value of target loss L(ŷt;yt)

SΩ:Rn × Y −→ R≥0 Fenchel–Young loss generated by Ω

St(W ) = SΩ(Wxt;yt) Shorthand of surrogate loss SΩ(Wxt;yt)

RT =
∑T

t=1 (Lt(ŷt)− St(U)) Surrogate regret
Gt = ∇St(Wt) Gradient of surrogate loss
Ĝt Inverse weighted estimator
G̃t Pseudo-inverse matrix estimator

µ Uniform distribution over Y
Pt = Ey∼pt [yy

>] Second moment matrix under pt
Q = Ey∼µ[yy

>] Second moment matrix under µ
λmin(A) Minimum eigenvalue of matrix A

ω Upper bound of tr(V −1Q+V )

Et[·] Conditional expectation given ŷ1, . . . , ŷt−1

D ∈ N Fixed-delay time
τt Variable delay time
τ∗ = maxt τt Maximum value of delay time
ρ(t) Time step of the tth feedback from SOLID to BASE

τ̃t = t− 1−
∑ρ(t)−1

s=1 1[s+ τs < ρ(t)]
The number of feedback from SOLID to BASE
pending during the tth feedback

B Additional related work

We discuss additional related work that could not be included in the main text.

Structured prediction Before the development of the Fenchel–Young loss framework, Niculae
et al. [35] proposed SparseMAP, which used the squared `2-norm regularization. The Fenchel–Young
loss, described in Section 2.2, is built upon the idea of SparseMAP. The Structure Encoding Loss
Function (SELF) was introduced by Ciliberto et al. [12, 13] to analyze the relationship between
surrogate and target losses, a concept known as Fisher consistency. For a more extensive literature
review, we refer the reader to Sakaue et al. [41, Appendix A].
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Online classification with full and bandit feedback In the full-information setting, the perceptron
is one of the most representative algorithms for binary classification [40], and the multiclass setting
has also been extensively studied [15, 19]. Online logistic regression is another relevant research
stream, with Foster et al. [21] being a particularly representative study. The study of the bandit setting
was initiated by Kakade et al. [29], and it has since been extensively explored in subsequent research
[5, 21, 25]. However, to the best of our knowledge, no prior work has addressed general structured
prediction under bandit feedback. One of the most relevant studies is the work by Gentile and Orabona
[24], who investigated online multilabel classification and ranking. However, their setting assumes
access to feedback of the form {1[yt,i 6= ŷt,i]}i, which is more informative than bandit feedback
and differs from our setting. Van der Hoeven [44] introduced the surrogate regret in the context of
online multiclass classification. This study has been extended to the setting where observations are
determined by a directed graph [45] and to structured prediction [41]. For a more extensive overview
of the literature on online classification, we refer the reader to Van der Hoeven [44].

Delayed feedback The study of delayed feedback was initiated by Weinberger and Ordentlich
[47]. Since then, it has been extensively explored in various online learning settings, primarily in
the full-information setting of online convex optimization [20, 27, 28, 34]. Algorithms for delayed
bandit feedback have been studied mainly in the context of multi-armed bandits and their variants
[11, 26, 33, 46, 48]. In online classification, research considering delay is scarce; the only work is
that of Manwani and Agarwal [32] to our knowledge. There are several differences between their
work and ours. Among them, a key distinction is that their study focuses on multiclass classification,
whereas we address the more general OSP.

C Discussion on the surrogate regret

Our work employs the surrogate regret as the performance measure, which represents the excess
target loss relative to the surrogate loss achieved by the best offline estimator. This differs from the
standard regret, which is defined solely in terms of the target loss. Below, we discuss the motivation
and background of the surrogate regret, and compare it to the standard regret.

C.1 Background and motivation

Although the term “surrogate regret” has only recently come into use, its concept dates back to the
classic analysis of the perceptron [36, 40]. Specifically, the celebrated convergence of the perceptron
under linear separability can be interpreted as a finite upper bound on the surrogate regret, where
the hinge loss of the best offline estimator,

∑T
t=1 St(U), equals zero; see Orabona [37, Section 8.2].

Since then, similar performance measures have continued to attract considerable attention in the
literature [8, 10, 19, 21, 23, 29]. The concept of the surrogate regret was highlighted in the recent
work by Van der Hoeven [44] on online classification, and the terminology was explicitly used in the
subsequent work by Van der Hoeven et al. [45]. Later, Sakaue et al. [41] extended this concept to
online structured prediction.

The surrogate regret is designed to evaluate how small the cumulative target loss can be made, sharing
the same spirit as the standard regret in this regard. The main motivation for using the surrogate
regret lies in the empirical observation that the cumulative surrogate loss can often be made very
small. An extreme case is the linearly separable setting considered in the convergence analysis of the
perceptron, where

∑T
t=1 St(U) = 0 holds for the hinge loss. Thus, the surrogate regret naturally

captures the data-dependent easiness of a problem and yields better upper bounds on the cumulative
target loss as the cumulative surrogate loss becomes smaller.

C.2 Comparison to the standard regret

In online classification, given a hypothesis classH consisting of mappings fromX to ∆d, the standard
regret is defined as

∑T
t=1 1[ŷt 6= yt] − infh∈H

∑T
t=1 1[h(xt) 6= yt]. Unlike the surrogate regret,

it is defined solely in terms of the target loss. At a conceptual level, the standard regret focuses
more on worst-case analysis under the agnostic setting, whereas the surrogate regret is designed to
benefit from data-dependent analysis, as discussed above. For the standard regret, Daniely et al. [17]
established a lower bound of Ω(

√
Ldim(H)T ), where Ldim(H) denotes the Littlestone dimension
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ofH. This does not contradict the finite upper bound on the surrogate regret, since the cumulative
surrogate loss may grow with T .

C.3 Discussion on the difference in surrogate loss functions

As in Section 1, the surrogate regret,RT , is defined by
∑T

t=1 L(ŷt;yt) =
∑T

t=1 S(Uxt;yt) +RT ,
which means the choice of the surrogate loss function, S, affects the bound on the cumulative loss∑T

t=1 L(ŷt;yt). Van der Hoeven et al. [45, Theorem 1], which applies to a more general setting
than bandit feedback, implies RT = O(K

√
T ) for the bandit setting with S being a logistic loss

defined with the base-K logarithm. On the other hand, our bound of RT = O(
√
KT ) applies to

the logistic loss S defined with the base-2 logarithm. As a result, while our bound onRT is better,
the
∑T

t=1 S(Uxt;yt) term can be worse; this is why we cannot directly compare our O(
√
KT )

bound with the O(K
√
T ) bound in Van der Hoeven et al. [45, Theorem 1]. We may use the decoding

procedure in Van der Hoeven et al. [45], instead of RDUE, to recover their bound that applies to
the base-K logistic loss. It should be noted that their method is specific to multiclass classification;
naively extending their method to structured prediction formulated as |Y|-class classification results
in the undesirable dependence on K = |Y|, as is also discussed in Sakaue et al. [41]. By contrast,
our pseudo-inverse estimator, combined with RDUE, can rule out the explicit dependence on K, at
the cost of the increase from

√
T to T 2/3.

D Details omitted from Section 3

This section provides the omitted details of Section 3.

D.1 Concentration inequality

To prove high probability regret bounds, we will use the following concentration inequality.
Lemma D.1 (Bernstein’s inequality, e.g., [8, Lemma A.8]). Let Z1, . . . , ZT be a martingale dif-
ference sequence and δ ∈ (0, 1). If there exist a and v which satisfy |Zt|≤ a for any t ∈ [T ] and∑T

t=1 Et

[
Z2
t

]
≤ v , then with probability at least 1− δ, it holds that

T∑
t=1

Zt ≤
√
2v log

1

δ
+

√
2

3
a log

1

δ
.

D.2 Proof of high probability bound

Here, we provide the proof of a high probability bound. Hereafter, we let Smax = maxW∈W St(W )

and Ŝt(W ) = vtSt(W ) = 1[yt=ŷt]
pt(ŷt)

St(W ). The following theorem is the formal version of the high
probability bound under the bandit feedback:
Theorem D.2. Consider the bandit and non-delayed setting. Let

C =
(

3

2(a+ ξ − 1)
+ 1

)
KSmax log(2/δ) +

B2Kb

2(1− ξ)
.

Then, for any T ≥ C and δ ∈ (0, 1/2), with probability at least 1− δ, the algorithm in Section 3.3
with q =

√
C/T achieves

RT ≤ 2
√
CT +

√
2 log(2/δ)(CT )1/4 +

(
1− a

2(a+ ξ − 1)
+ 2

)
log(2/δ).

Before proving this theorem, we provide the following lemma:
Lemma D.3. It holds that

T∑
t=1

(
Et[Lt(ŷt)]− Ŝt(U)

)
≤

T∑
t=1

(
(1− a)St(Wt)− Ŝt(Wt)

)
+ qT +

√
2B

√√√√ b

q

T∑
t=1

vtSt(Wt).
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Proof. We have

T∑
t=1

(
Et[Lt(ŷt)]− Ŝt(U)

)
=

T∑
t=1

(
Et[Lt(ŷt)]− Ŝt(Wt)

)
+

T∑
t=1

(
Ŝt(Wt)− Ŝt(U)

)
.

From Assumption 3.2, the first term is bounded as

T∑
t=1

(
Et[Lt(ŷt)]− Ŝt(Wt)

)
≤

T∑
t=1

(
(1− a)St(Wt)− Ŝt(Wt)

)
+ qT,

and the second term is bounded as

T∑
t=1

(
Ŝt(Wt)− Ŝt(U)

)
≤
√
2B

√√√√ T∑
t=1

‖Ĝt‖2F =
√
2B

√√√√ T∑
t=1

v2t ‖Gt‖2F

≤
√
2B

√√√√b

T∑
t=1

v2tSt(Wt) ≤
√
2B

√√√√bK

q

T∑
t=1

vtSt(Wt),

where we used Lemma 3.3 and vt ≤ K/q. Combining the above three, we obtain

T∑
t=1

(
Et[Lt(ŷt)]− Ŝt(U)

)
≤

T∑
t=1

(
(1− a)St(Wt)− Ŝt(Wt)

)
+ qT +

√
2B

√√√√bK

q

T∑
t=1

vtSt(Wt),

which completes the proof.

Proof of Theorem D.2. The surrogate regret can be decomposed as

RT =
T∑

t=1

(Lt(ŷt)− Et[Lt(ŷt)]) +
T∑

t=1

(Et[Lt(ŷt)]− St(U)). (3)

We first upper bound the first term in (3). Let Zt = Lt(ŷt)−Et[Lt(ŷt)] for simplicity. Then, we have
Zt ≤ 1, Et[Zt] = 0, and Et

[
Z2
t

]
≤ Et

[
(Lt(ŷt))

2
]
≤ (1− a)St(Wt) + q. Hence, from Bernstein’s

inequality in Lemma D.1, for any δ′ ∈ (0, 1), at least 1− δ′ we have

T∑
t=1

Zt ≤

√√√√2 log(1/δ′)

T∑
t=1

((1− a)St(Wt) + q) +

√
2

3
log(1/δ′). (4)

We next consider the second term in (3). Define rt = St(U)− ξSt(Wt) for some ξ ∈ (0, 1), which
will be determined later, and let vt = 1[yt = ŷt]/pt(ŷt) ≤ K/q for simplicity. Then, we have
Et[vtrt − rt] = 0, |vtrt − rt| ≤ KSmax/q, and

Et[(vtrt − rt)2] ≤ Et[(vtrt)
2] ≤ KSmax

q
|rt| ≤

KSmax

q
(St(U) + St(Wt)).

Hence, from Bernstein’s inequality in Lemma D.1, for any δ′′ ∈ (0, 1), with probability at least
1− δ′′ we have

T∑
t=1

(vtrt − rt) ≤

√√√√3 log(1/δ′′)

T∑
t=1

KSmax

q
(St(U) + St(Wt)) +

√
2KSmax

3q
log(1/δ′′). (5)

Below, we proceed by case analysis.

When
∑T

t=1 St(U) ≤
∑T

t=1 St(Wt). We first consider the case of
∑T

t=1 St(U) ≤
∑T

t=1 St(Wt).
From Lemma D.3, we have

T∑
t=1

Et[Lt(ŷt)]− qT
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≤
T∑

t=1

vtSt(U) +

T∑
t=1

((1− a)St(Wt)− vtSt(Wt)) +
√
2B

√√√√bK

q

T∑
t=1

vtSt(Wt)

=

T∑
t=1

vt (St(U)− ξSt(Wt))︸ ︷︷ ︸
=rt

−(1− ξ)
T∑

t=1

vtSt(Wt)

+ (1− a)
T∑

t=1

St(Wt) +
√
2B

√√√√bK

q

T∑
t=1

vtSt(Wt)

≤
T∑

t=1

vtrt + (1− a)
T∑

t=1

St(Wt) +
B2Kb

2q(1− ξ)
,

where the last inequality follows from c1
√
x− c2x ≤ c21/(4c2) for x ≥ 0, c1 ≥ 0, and c2 > 0. From

the concentration result provided in (5), this is further bounded as

T∑
t=1

Et[Lt(ŷt)]− qT ≤
T∑

t=1

(St(U)− ξSt(Wt)) +

√√√√3 log(1/δ′′)

T∑
t=1

KSmax

q
(St(U) + St(Wt))

+

√
2KSmax

3q
log(1/δ′′) + (1− a)

T∑
t=1

St(Wt) +
B2Kb

2q(1− ξ)
,

where we recall that rt = St(U)− ξSt(Wt). Rearranging the last inequality and using the inequality
that

∑T
t=1 St(U) ≤

∑T
t=1 St(Wt), we obtain

T∑
t=1

(Et[Lt(ŷt)]− St(U)) ≤ qT +

√√√√6 log(1/δ′′)

T∑
t=1

KSmax

q
St(Wt) +

√
2KSmax

3q
log(1/δ′′)

+ (1− a− ξ)
T∑

t=1

St(Wt) +
B2Kb

2q(1− ξ)
.

In what follows, we let δ′ = δ′′ = δ/2 and ξ = (4+c)γ
λν for a sufficiently small constant c > 0, which

satisfies a+ ξ > 1. Then, plugging (4) and the last inequality in (3), with probability at least 1− δ,
we obtain

RT ≤

√√√√2 log(2/δ)

T∑
t=1

((1− a)St(Wt) + q) +

√
2

3
log(2/δ) + qT

+

√√√√6 log(2/δ)

T∑
t=1

KSmax

q
St(Wt) +

√
2KSmax

3q
log(2/δ)

+ (1− a− ξ)
T∑

t=1

St(Wt) +
B2Kb

2q(1− ξ)

≤ 1

2(a+ ξ − 1)

(
(1− a) + 3KSmax

q

)
log(2/δ) +

√
2qT log(2/δ) +

√
2

3
log(2/δ) + qT

+

√
2KSmax

3q
log(2/δ) +

B2b

2q(1− ξ)

≤ 1

q

(
3KSmax log(2/δ)

2(a+ ξ − 1)
+KSmax log(2/δ) +

B2Kb

2(1− ξ)

)
+ qT +

√
2qT log(2/δ)

+
1

2(a+ ξ − 1)
(1− a) log(2/δ) +

√
2

3
log(2/δ)

=
C
q
+ qT +

√
2qT log(2/δ) +

1

2(a+ ξ − 1)
(1− a) log(2/δ) +

√
2

3
log(2/δ).
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Using the definition of q =
√
C/T with the last inequality, we obtain

RT ≤ 2
√
CT + (CT )1/4

√
log(2/δ) +

(
1− a

2(a+ ξ − 1)
+

√
2

3

)
log(2/δ).

When
∑T

t=1 St(U) >
∑T

t=1 St(Wt). We next consider the case of
∑T

t=1 St(U) >
∑T

t=1 St(Wt).
We have

RT =

T∑
t=1

(Lt(ŷt)− Et[Lt(ŷt)]) +

T∑
t=1

(Et[Lt(ŷt)]− St(U))

≤

√√√√2 log(1/δ′)

T∑
t=1

((1− a)St(Wt) + q) +

√
2

3
log(1/δ′) +

T∑
t=1

(Et[Lt(ŷt)]− St(Wt))

≤

√√√√2 log(1/δ′)

T∑
t=1

((1− a)St(Wt) + q) +

√
2

3
log(1/δ′) +

T∑
t=1

(−aSt(Wt) + q)

≤ (1− a) log(1/δ′)
2a

+
√

2qT log(1/δ′) +

√
2

3
log(1/δ′) + qT,

where the first inequality follows from (4) and
∑T

t=1 St(U) >
∑T

t=1 St(Wt), and the second
inequality follows from Assumption 3.2, the last inequality follows from c1

√
x− c2x ≤ c21/(4c2) for

x ≥ 0, c1 ≥ 0, and c2 > 0. Substituting q =
√
C/T and δ′ = δ/2 in the last inequality, we obtain

RT ≤
(1− a) log(2/δ)

2a
+
√
2 log(2/δ)(CT )1/4 +

√
2

3
log(2/δ) +

√
CT .

This completes the proof.

D.3 Proof of Theorem 3.6

Here, we provide the formal version and the proof of Theorem 3.6.

Theorem D.4 (Formal version of Theorem 3.6). The algorithm in Section 3.4 achieves

E[RT ] ≤
bB2

a
+ 25/3ω1/3(BCxT )

2/3
.

We recall that Pt = Et

[
ŷtŷ

>
t

]
. We then estimate yt by ỹt = V −1P+

t ŷt〈ŷt,V yt〉 and Gt by G̃t =

(ŷΩ(θt) − ỹt)x
>
t under Assumption 3.5. This G̃t satisfies Et

[
G̃t

]
= Gt. To prove Theorem 3.6,

we will upper bound Et

[
‖G̃t‖2F

]
. To do so, we begin by proving the following lemma:

Lemma D.5. Let A and B positive semi-definite matrices with Im(A) = Im(B) and A � B. Then,
it holds that A+ � B+.

Proof. Since Im(A) = Im(B), there exists an orthogonal matrix R, a diagonal matrix Λ, and an
invertible matrix B′ that has same dimensions as Λ such that

A = R

(
O O
O Λ

)
R> and B = R

(
O O
O B′

)
R>.

Then, we have

A+ = R

(
O O
O Λ−1

)
R> and B+ = R

(
O O

O B′−1

)
R>. (6)

From A � B, we have Λ � B′, which implies Λ−1 � B′−1. From this and (6), we have
A+ � B+, as desired.
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Using this lemma, we prove a property of Pt and an upper bound of Et

[
tr
(
ŷtŷ

>
t

)]
. In what follows,

we use λmin(A) to denote the minimum eigenvalue of a matrix A.

Lemma D.6. Suppose that tr
(
V −1Q(V −1)>

)
≤ ω for Q = Ey∼µ[yy

>], where we recall that µ is
the uniform distribution over Y . Then, we have

Et

[
tr(ỹtỹ

>
t )
]
≤ ω

q
.

Proof. By the linearity of expectation and the trace property, we have

Et

[
tr(ỹtỹ

>
t )
]
≤ tr

(
V −1P+

t Et

[
ŷtŷ

>
t

]
P+

t

(
V −1

)>)
= tr

(
V −1P+

t PtP
+
t

(
V −1

)>)
= tr

(
V −1P+

t

(
V −1

)>)
,

where the first inequality follows from −1 ≤ 〈ŷt,V yt〉 ≤ 1 and the last equality follows from
P+

t PtP
+
t = P+

t . The right-hand side is bounded as follows:

tr
(
V −1P+

t

(
V −1

)>)
=

d∑
i=1

e>i V
−1P+

t

(
V −1

)>
ei ≤

d∑
i=1

e>i V
−1(qQ)

+(
V −1

)>
ei

≤ tr
((

V −1
)>

V −1(qQ)+
)
=

1

q
tr
(
V −1Q+(V −1)>

)
≤ ω

q
,

where in the first inequality we used Lemma D.5 and in the last inequality we used the assumption
that tr

(
V −1Q+(V −1)>

)
≤ ω. This completes the proof.

Now, we are ready to upper bound Et

[
‖G̃t‖2F

]
.

Lemma D.7. Under the same assumption as Lemma D.6, it holds that

Et

[
‖G̃t‖2F

]
≤ 2bSt(Wt) +

2C2
xω

q
.

Proof. We have

‖G̃t‖2F = ‖(ŷΩ(θt)− ỹt)x
>
t ‖2F ≤ 2‖(ŷΩ(θt)− yt)x

>
t ‖2F + 2‖(yt − ỹt)x

>
t ‖2F

≤ 2‖Gt‖2F + 2C2
x‖yt − ỹt‖22,

where we recall Cx = diam(X ). From this inequality, we obtain

Et

[
‖G̃t‖2F

]
≤ 2‖Gt‖2F + 2C2

xEt

[
‖yt − ỹt‖22

]
≤ 2bSt(Wt) + 2C2

x

(
‖yt‖22 − 2y>

t Et[ỹt] + Et

[
‖ỹt‖22

])
= 2bSt(Wt) + 2C2

x

(
‖yt‖22 − 2‖yt‖22 + Et

[
‖ỹt‖22

])
≤ 2bSt(Wt) + 2C2

xEt

[
tr(ỹtỹ

>
t )
]
≤ 2bSt(Wt) +

2C2
xω

q
,

where in the second inequality we used ‖Gt‖2F ≤ bSt(Wt), in the equality we used Et[ỹt] = yt, and
in the last inequality we used Lemma D.6.

Finally, we are ready to prove Theorem D.4.

Proof of Theorem D.4. From Assumption 3.2, we have

E[RT ] ≤ E

[
T∑

t=1

(St(Wt)− St(U))

]
− aE

[
T∑

t=1

St(Wt)

]
+ qT

≤ E

[
T∑

t=1

〈Gt,Wt −U〉

]
− aE

[
T∑

t=1

St(Wt)

]
+ qT.
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From Lemma D.7 and the unbiasedness of G̃t, the first term in the last inequality is further bounded
as

E

[
T∑

t=1

〈Gt,Wt −U〉

]
= E

[
T∑

t=1

〈
G̃t,Wt −U

〉]
≤
√
2B

√√√√E

[
T∑

t=1

‖G̃t‖2F

]

≤ 2B

√√√√bE

[
T∑

t=1

St(Wt)

]
+ 2BCx

√
ω/q,

where the first inequality follows from Lemma 3.3 and the last inequality follows from Lemma D.7
and the subadditivity of x 7→

√
x for x ≥ 0. Therefore, we obtain

E[RT ] ≤ 2B

√√√√bE

[
T∑

t=1

St(Wt)

]
+ 2BCx

√
ω/q − aE

[
T∑

t=1

St(Wt)

]
+ qT (7)

≤ bB2

a
+ 2BCx

√
ω/q + qT,

where we used c1
√
x − c2x ≤ c21/(4c2) for x ≥ 0, c1 ≥ 0, and c2 > 0. Finally, substituting

q =
(

4ωB2C2
x

T

)1/3
in the last inequality gives

E[RT ] ≤
bB2

a
+ 25/3ω1/3(BCxT )

2/3
,

which is the desired bound.

D.4 Proof of Corollary 3.7

We derive the surrogate regret upper bounds provided by the algorithm established in Theorem D.4
for online multiclass classification, online multilabel classification, and ranking. Recall that we can
achieve

E[RT ] ≤
bB2

a
+ 25/3ω1/3(BCxT )

2/3
, (8)

where we recall that ω is defined as tr
(
V −1Q+(V −1)>

)
≤ ω for Q = Ey∼µ[yy

>]. Note that when
span(Y) = Rd, then the matrix Q is invertible and λmin(Q) > 0, and hence

tr
(
V −1Q+(V −1)>

)
=

d∑
i=1

e>i V
−1Q+(V −1)>ei ≤

1

λmin(Q)

d∑
i=1

‖(V −1)>ei‖22

≤ 1

λmin(Q)
‖V −1‖2F. (9)

Consequently, surrogate regret bounds for specific problems are obtained as follows:

Multiclass classification with 0-1 loss We first consider multiclass classification with the 0-1
loss. From V = 11> − I , we have ‖V −1‖2F ≤ d for d ≥ 2. Recalling that µ is the uniform
distribution over Y = {e1, . . . , ed}, we have Ey∼µ[(y

>x)2] = 1
d

∑d
i=1 x

2
i for any x ∈ Rd. Hence,

λmin(Q) = min‖x‖2=1 Ey∼µ

[
(y>x)2

]
= 1

d , where the first equality follows from [9, Lemma 2].
Since span(Y) = Rd holds in this case, from (9), we can set ω = d/λmin(Q) = d2. Substituting
these into our surrogate regret upper bound in (8), we obtain

E[RT ] ≤
bB2

a
+ 25/3(dBCxT )

2/3
.

Online multilabel classification with m correct labels and the Hamming loss We next consider
online multilabel classification with the number of correct labels m and the Hamming loss. Since
V = − 2

dI , we have ‖V −1‖2F = d3

4 . Let Y ⊂ {0, 1}d be the set of all vectors where exactly m
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components are 1, and the remaining components are all 0. By drawing y ∈ Y according to the
uniform distribution over Y , the probability that a given component of y is 1 is

(
m−1
d−1

)
/
(
m
d

)
= m

d .
Hence, for any x ∈ Rd with ‖x‖2 = 1, we have

Ey∼µ

[
(y>x)2

]
=
m

d

d∑
i=1

x2i +
m2

d2

∑
i6=j

xixj =

(
m

d

d∑
i=1

xi

)2

+
m(d−m)

d2
‖x‖22 ≥

m(d−m)

d2
.

Thus, λmin(Q) = min‖x‖2=1 Ey∼µ

[
(y>x)2

]
≥ m(d−m)

d2 holds, where the equality is from Cesa-
Bianchi and Lugosi [9, Lemma 2]. Since we have span(Y) = Rd, from (9), we can set ω =

d5

4m(d−m) ≥ ‖V
−1‖2F/λmin(Q). Therefore, our surrogate regret upper bound in (8) is reduced to

E[RT ] ≤
bB2

a
+ 2

(
d5

m(d−m)

)1/3

(BCxT )
2/3.

Ranking with the Hamming loss and the number of items m We finally consider online ranking
with the Hamming loss and the number of itemsm. From Cesa-Bianchi and Lugosi [9, Proposition 4],
the smallest positive eigenvalue is at least 1/m. Hence, since V = − 1

mI , we have

tr(V −1Q+(V −1)>) = m2 tr(Q+) ≤ m2

rank(Q+)∑
i=1

m ≤ m5,

where we used rank(Q+) ≤ d = m2, and this allows us to choose ω = m5. Substituting these
values into our surrogate regret upper bound in (8) , we obtain

E[RT ] ≤
bB2

a
+ (2m)5/3(BCxT )

2/3.

E Details omitted from Section 4

This section provides the proofs of the theorems in Section 4.

E.1 Details of Optimistic Delayed Adaptive FTRL (ODAFTRL)

We provide a more detailed explanation of the Optimistic Delayed Adaptive FTRL (ODAFTRL)
algorithm used for updating Wt in Section 4.1. Recall that ODAFTRL computes Wt by the following
update rule:

Wt+1 = argmin
W∈W

{
t−D∑
i=1

〈Gi,W 〉+
λt‖W ‖2F

2

}
, (10)

where λt ≥ 0 is the regularization parameter. Note that we use the notation a1:t =
∑t

i=1 ai for
simplicity in the following. The ODAFTRL algorithm, when using the parameter update called
AdaHedgeD, satisfies the following lemma:
Lemma E.1 ([20, Theorem 12]). Fix α > 0. Let ft:W → R be a convex function for each
t = 1, . . . , T . Suppose that we update λt in (10) by the following AdaHedgeD update:

λt+1 =
1

α

t−D∑
s=1

δs,

δt = min{Ft+1(Wt)− Ft+1(W̄t), 〈Gt,Wt − W̄t〉, Ft+1(Ŵt)− Ft+1(W̄t) + 〈Gt,Wt − Ŵt〉}+,
W̄t = argmin

W∈W
Ft+1(W ),

Ŵt = argmin
W∈W

{
Ft+1(W )−min

{
‖Gt‖F
‖Gt−D:t‖F

, 1

}
〈Gt−D:t,W 〉

}
, and

Ft+1(W ) =
λt‖W ‖2F

2
+ 〈G1:t,W 〉.
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Then, for any U ∈ W , ODAFTRL achieves

T∑
t=1

ft(Wt)−
T∑

t=1

ft(U) ≤
T∑

t=1

〈Gt,Wt −U〉 ≤
(
B2

2α
+ 1

)2 max
s∈[T ]

as−D:s−1 +

√√√√ T∑
t=1

a2t + 2αbt

,
where
at = Bmin{‖Gt−D:t‖F, ‖Gt‖F},

bt = huber(‖Gt−D:t‖F, ‖Gt‖F), and huber(x, y) =
1

2
x2 − 1

2
(|x|−|y|)2+ ≤ min

{
1

2
x2, |x||y|

}
.

In the following, we let α = B2

2 for simplicity. Then, since St is the convex function ,we have

T∑
t=1

St(Wt)−
T∑

t=1

St(U) ≤
T∑

t=1

〈Gt,Wt −U〉 ≤ 2

2 max
s∈[T ]

as−D:s−1 +

√√√√ T∑
t=1

a2t +B2bt

.
E.2 Proof of Theorem 4.3

We present Theorem 4.3 in a more detailed form and provide its proof. In what follows, let

Cy = max

{
max

y∈conv(Y)
‖y‖2, max

y,y′∈conv(Y)
‖y − y′‖2

}
denote the maximum of the largest Euclidean norm of vectors in conv(Y) or the diameter of conv(Y).
Theorem E.2 (Formal version of Theorem 4.3). Let α = B2

2 . Then, ODAFTRL with the AdaHedgeD
update in online structured prediction with a fixed delay of D achieves

E[RT ] ≤ 4BCxCyD +
2bB2

a
+min

{
b(D + 1)2

2
,
3

2

(
a−1bB4C2

xC
2
y(D + 1)2T

)1/3}
.

Proof. From the definition of bt, it holds that
T∑

t=1

bt ≤
T∑

t=1

min

{
1

2
‖Gt−D:t‖2F, ‖Gt−D:t‖F‖Gt‖F

}

≤ min

b(D + 1)

2

T∑
t=1

t∑
s=t−D

St(Wt), CxCy(D + 1)

√√√√bT
T∑

t=1

St(Wt)

,
where we used ‖

∑n
i=1 Ai‖2F ≤ n

∑n
i=1‖Ai‖2F for any matrix Ai, the Cauchy–Schwarz inequality,

‖Gt‖F ≤ ‖ŷΩ(θt)− yt‖2‖xt‖2 ≤ CxCy , and ‖Gt‖2F ≤ bSt(Wt). Combining this inequality with
Lemma E.1 and the definition of at, we have
T∑

t=1

(St(Wt)− St(U))

≤ 4B max
s∈[T ]

s−1∑
i=s−D

‖Gi‖F

+ 2B

√√√√√ T∑
t=1

‖Gt‖2F +min

b(D + 1)

2

T∑
t=1

t∑
s=t−D

St(Wt), CxCy(D + 1)

√√√√bT

T∑
t=1

St(Wt)


≤ 4BCxCyD +

√√√√bB2

T∑
t=1

St(Wt)

+ 2min


√√√√b(D + 1)2

2

T∑
t=1

St(Wt),

(
bB4C2

xC
2
y(D + 1)2T

T∑
t=1

St(Wt)

)1/4
,
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where we used ‖Gt‖2F ≤ bSt(Wt) and the subadditivity of x 7→
√
x for x ≥ 0 in the last inequality.

From this inequality and Assumption 4.1, we can the evaluate surrogate regret as

E[RT ] ≤
T∑

t=1

((1− a)St(Wt)− St(U))

≤ 4BCxCyD +

√√√√bB2

T∑
t=1

St(Wt)

+ 2min


√√√√b(D + 1)2

2

T∑
t=1

St(Wt),

(
bB4C2

xC
2
y(D + 1)2T

T∑
t=1

St(Wt)

)1/4
− a

T∑
t=1

St(Wt)

≤ 4BCxCyD +
2bB2

a
+min

{
b(D + 1)2

a
,
3

2

(
a−1bB4C2

xC
2
y(D + 1)2T

)1/3}
,

where in the last inequality we used c1
√
x− c2x ≤ c21/(4c2) and c1x− c2x4 ≤ (3/4)

(
c41/(4c2)

)1/3
,

which hold for any x ≥ 0, c1 ≥ 0, and c2 > 0.

E.3 High-probability regret bound

We present the result of the high probability bound in a more detailed form and provide its proof.

Theorem E.3. Let α = B2

2 and δ ∈ (0, 1). Then, ODAFTRL with the AdaHedgeD update in online
structured prediction with a fixed delay of D achieves

RT ≤4BCxCyD +

√
2

3
log

1

δ

+

(√
(1− a) log 1

δ +
√
2bB2

)2
a

+min

{
b(D + 1)2

a
,
3

2

(
a−1bB4C2

xC
2
y(D + 1)2T

)1/3}
,

with probability at least 1− δ.

Proof. We decomposeRT into

RT =

T∑
t=1

(Lt(ŷt)− Et[Lt(ŷt)]) +

T∑
t=1

(Et[Lt(ŷt)]− St(U)). (11)

Let Zt = Lt(ŷt)−Et[Lt(ŷt)]. Then, we have |Zt|≤ 1 and Et

[
Z2
t

]
≤ Et[Lt(ŷt)] ≤ (1− a)St(Wt)

from Assumption 4.1. Hence, from Lemma D.1, with probability at least 1− δ, the first term in (11)
is upper bounded as

T∑
t=1

Zt ≤

√√√√2(1− a)
T∑

t=1

St(Wt) log
1

δ
+

√
2

3
log

1

δ
. (12)

From Assumption 4.1 and Lemma E.1, the second term in (11) is also upper bounded as

T∑
t=1

(Et[Lt(ŷt)]− St(U))

≤ 4BCxCyD +

√√√√bB2

T∑
t=1

St(Wt)

+ 2min


√√√√b(D + 1)2

2

T∑
t=1

St(Wt),

(
bB4C2

xC
2
y(D + 1)2T

T∑
t=1

St(Wt)

)1/4
− a

T∑
t=1

St(Wt),

(13)
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Algorithm 3 Black-box Online Learning under Delayed feedback (BOLD)

Input: BASE instances BASE0,BASE1, . . . ,BASED

1: for time step t = 1, 2, . . . , T do
2: Set r ← rt = t− k(D + 1), where rt ∈ {0, . . . , D} and k ∈ Z≥0.
3: Set Wt ←Wr as the prediction for the current time step.
4: Receive the delayed feedback.
5: Update BASEr with the feedback.
6: Wr ← the next prediction of BASEr.

where we used the subadditivity of x 7→
√
x for x ≥ 0. Therefore, substituting (12) and (13) into

(11) gives

RT ≤ 4BCxCyD +

√
2

3
log

1

δ
+

(√
2(1− a) log 1

δ
+ 2
√
bB2

)√√√√ T∑
t=1

St(Wt)

+ min


√√√√2b(D + 1)2

T∑
t=1

St(Wt), 2

(
bB4C2

xC
2
y(D + 1)2T

T∑
t=1

St(Wt)

)1/4
− a

T∑
t=1

St(Wt)

≤ 4BCxCyD +

√
2

3
log

1

δ
+

(√
(1− a) log 1

δ +
√
2bB2

)2
a

+min

{
b(D + 1)2

a
,
3

2

(
a−1bB4C2

xC
2
y(D + 1)2T

)1/3}
,

where we used c1
√
x− c2x ≤ c21/(4c2) and c1x− c2x4 ≤ (3/4)

(
c41/(4c2)

)1/3
for x ≥ 0, c1 ≥ 0,

and c2 > 0 in the last inequality. This is the desired bound.

E.4 Algorithm based on (D + 1)-copies of online algorithms

Here, we provide the detail of Section 4.2. The pseudocode of BOLD for fixed delayD is Algorithm 3.
By using Algorithm 3, we can achive the following bound:
Theorem E.4 (Formal version of Theorem 4.4). BOLD with adaptive OGD achieves the surrogate
regret of

E[RT ] ≤
bB2(D + 1)

2a
.

Proof. Let Tj be the set of rounds t for which the remainder when dividing t by D + 1 is equal to
j − 1, i.e.,Tj = {t | rt = j − 1}. By partitioning T into these disjoint sets, we have

T∑
t=1

(St(Wt)− St(U)) ≤
D+1∑
j=1

∑
τ∈Tj

(Sτ (Wτ )− Sτ (U))

.
Applying OGD in Section 3.2 with the learning rate of ηt = B/

√
2
∑t

i=1‖Gt‖2F to each independent
block, we obtain ∑

τ∈Tj

(Sτ (Wτ )− Sτ (U)) ≤
√
2B

√∑
τ∈Tj

‖Gτ‖2F.

Thus, it holds that
T∑

t=1

(St(Wt)− St(U)) ≤
√
2B

D+1∑
j=1

√∑
τ∈Tj

‖Gτ‖2F

≤

√√√√2B2(D + 1)

T∑
t=1

‖Gt‖2F ≤

√√√√2bB2(D + 1)

T∑
t=1

St(Wt),
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where the second inequality follows from the Cauchy–Schwarz inequality and the last inequality
follows from (1). Therefore, combining this and Assumption 4.1, we have

E[RT ] ≤
T∑

t=1

(St(Wt)− St(U))− a
T∑

t=1

St(Wt)

≤

√√√√2bB2(D + 1)

T∑
t=1

St(Wt)− a
T∑

t=1

St(Wt) ≤
bB2(D + 1)

2a
,

where we used c1
√
x− c2x ≤ c21/(4c2) for x ≥ 0, c1 ≥ 0, and c2 > 0 in the last inequality.

E.5 Proof of Theorem 4.5

Here we provide the proof of Theorem 4.5.

Proof. Assume for simplicity that M = (B2 − log2(dT ))/(log(2d))2 is a positive integer. We
partition the time indices t = 1, . . . , (D + 1)M into M blocks by grouping every consecutive D + 1
rounds. In each block, we set an identical input vector and a true class. Specifically, we define the
input vectors and the true classes as follows.

For each s = 1, . . . ,M + 1, sample a true class is ∈ [d] uniformly at random. Set xt = es for
t = (D + 1)(s− 1) + 1, . . . , (D + 1)s for each s = 1, . . . ,M , and xt = eM+1 for t > (D + 1)M .
Define the offline estimator U ′ ∈ Rd×(M+1) such that its s-th column (s = 1, . . . ,M) is log(2d)eis ,
and its (M + 1)-th column is log(dT )eiM+1

. Note that ‖U ′‖2F =M(log 2d)2 + (log(dT ))2 = B2

holds.

We denote ŷi
s = ŷ(D+1)(s−1)+i, yi

s = y(D+1)(s−1)+i, and Si
s = S(D+1)(s−1)+i. Note that, within

each block, the corresponding true class is not observed at the beginning of the D + 1 rounds. Thus,
for each s = 1, . . . ,M + 1 and i = 1, . . . , D + 1, we have E[1[ŷi

s 6= yi
s]] ≥ 1 − 1

d . By the same
calculation as that of Sakaue et al. [41, Theorem 13], we also have Si

s(U
′) ≤ 1

2

(
1− 1

d

)
. Thus, for

each i = 1, . . . , D + 1, we have

M∑
s=1

E[1[ŷi
s 6= yi

s]]−
M∑
s=1

Si
s(U

′) ≥ M

2

(
1− 1

d

)
≥ M

4
= Ω

(
B2

(log d)2

)
.

Summing over i = 1, . . . , D + 1 yields

(D+1)M∑
t=1

E[1[ŷt 6= yt]]−
(D+1)M∑

t=1

St(U
′) = Ω

(
B2(D + 1)

(log d)2

)
.

The contribution of rounds t > (D + 1)M to the surrogate regret is non-negative. In fact, by the
definition of U ′, we have

∑
t>(D+1)M St(U

′) ≤ T−(D+1)M
T

(
1− 1

d

)
≤ 1 − 1

d , and we also have∑
t>(D+1)M E[1[ŷt 6= yt]] ≥ 1− 1

d since iM+1 is selected uniformly at random.

Therefore, it holds that

E[RT ] ≥
T∑

t=1

E[1[ŷt 6= yt]]−
T∑

t=1

St(U
′) = Ω

(
B2(D + 1)

(log d)2

)
,

which completes the proof.

F Details omitted from Section 5

This section provides the omitted proofs of the theorems in Section 5.
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F.1 Common analysis

We provide the analysis that is commonly used in the proofs of Theorems 5.1 and 5.2. Although we
use Ĝt as a notation for the estimator for convenience in this subsection, the same argument applies
equally to G̃t. We use ODAFTRL with the AdaHedgeD update in Appendix E.1 as ALG. Here, we
recall that E[

∑T
t=1 (St(Wt)− St(U))] ≤ E[

∑T
t=1 〈Ĝt,Wt −U〉] from the convexity of St and

the unbiasness of Ĝt. From Lemma E.1, it holds that
T∑

t=1

〈Ĝt,Wt −U〉 ≤ 2

2max
t∈[T ]

at−D:t−1 +

√√√√ T∑
t=1

a2t +B2bt

, (14)

where

at = Bmin{‖Ĝt−D:t‖F, ‖Ĝt‖F} and bt ≤ min

{
1

2
‖Ĝt−D:t‖2F, ‖Ĝt−D:t‖F‖Ĝt‖F

}
.

By the definition of at, we have

E
[
max
t∈[T ]

at−D:t−1

]
≤ BE

[
max
t∈[T ]

t−1∑
s=t−D

‖Ĝs‖F

]
, (15)

and thus

E

[
T∑

t=1

〈Ĝt,Wt −U〉

]
≤ 2

2E
[
max
t∈[T ]

at−D:t−1

]
+

√√√√E

[
T∑

t=1

a2t

]
+B

√√√√E

[
T∑

t=1

bt

]
≤ 2B

2E

[
max
t∈[T ]

t−1∑
s=t−D

‖Ĝs‖F

]
+

√√√√E

[
T∑

t=1

‖Ĝt‖2F

]
+

√√√√E

[
T∑

t=1

bt

],
(16)

where we used the subadditivity of x 7→
√
x for x ≥ 0. The last term in the last inequality is further

bounded as

E

[
T∑

t=1

bt

]
≤ E

[
T∑

t=1

‖Ĝt−D:t‖F‖Ĝt‖F

]
≤ E

[
T∑

t=1

‖Ĝt‖2F

]
+ E

[
T∑

t=1

‖Ĝt‖F
t−1∑

s=t−D

‖Ĝs‖F

]

= E

[
T∑

t=1

‖Ĝt‖2F

]
+ E

[
T∑

t=1

Et

[
‖Ĝt‖F

] t−1∑
s=t−D

‖Ĝs‖F

]
, (17)

where the second inequality follows from the triangle inequality and the equality follows from the
law of total expectation.

F.2 Proof of Theorem 5.1

We provide the complete version of Theorem 5.1:
Theorem F.1 (Formal version of Theorem 5.1). The algorithm in Section 5.1 achieves

E[RT ] ≤ 4BCxCyD +

(
4bB

a
+ 1

)√
KT + 2BCxCy

√
DT = O(

√
(K +D)T ).

Proof. First, we will upper bound E
[∑T

t=1 bt

]
. From (17), we have

E

[
T∑

t=1

bt

]
≤ E

[
T∑

t=1

‖Ĝt‖2F

]
+ E

[
T∑

t=1

Et

[
‖Ĝt‖F

] t−1∑
s=t−D

‖Ĝs‖F

]

≤ E

[
T∑

t=1

‖Ĝt‖2F

]
+ CxCyE

[
T∑

t=1

t−1∑
s=t−D

Es

[
‖Ĝs‖F

]]

≤ E

[
T∑

t=1

‖Ĝt‖2F

]
+ C2

xC
2
yDT, (18)
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where the second and third inequality follow from the inequality Et

[
‖Ĝt‖F

]
= ‖Gt‖F ≤ CxCy.

Hence, from Et

[
‖Ĝt‖F

]
≤ CxCy , (16) and (18), it holds that

E

[
T∑

t=1

〈Ĝt,Wt −U〉

]
≤ 2B

2CxCyD +

√√√√E

[
T∑

t=1

‖Ĝt‖2F

]
+

√√√√E

[
T∑

t=1

‖Ĝt‖2F

]
+ C2

xC
2
yDT


≤ 4BCxCyD + 4B

√√√√E

[
T∑

t=1

‖Ĝt‖2F

]
+ 2BCxCy

√
DT

≤ 4BCxCyD + 4B

√√√√bK

q
E

[
T∑

t=1

St(Wt)

]
+ 2BCxCy

√
DT, (19)

where in the second inequality we used the subadditivity of x 7→
√
x for x ≥ 0 and in the last

inequality we used

Et

[
‖Ĝt‖2F

]
=
‖Gt‖2F
pt(yt)

≤ K

q
‖Gt‖2F≤

bK

q
St(Wt).

Therefore, combining all the above arguments yields

E[RT ] ≤ E

[
T∑

t=1

(St(Wt)− St(U))

]
− aE

[
T∑

t=1

St(Wt)

]
+ qT

≤ E

[
T∑

t=1

〈Ĝt,Wt −U〉

]
− aE

[
T∑

t=1

St(Wt)

]
+ qT

≤ 4BCxCyD + 4B

√√√√bK

q
E

[
T∑

t=1

St(Wt)

]
+ 2BCxCy

√
DT − aE

[
T∑

t=1

St(Wt)

]
+ qT

≤ 4BCxCyD +
4bB2

a

bK

q
+ 2BCxCy

√
DT + qT,

where the first inequality follows from Assumption 3.2, the second inequality follows from the
convexity of St and the unbiasedness of Ĝt, and the last inequality follows from c1

√
x − c2x ≤

c21/(4c2) for x ≥ 0, c1 ≥ 0, and c2 > 0. Finally, from q = B
√
K/T , we obtain

E[RT ] ≤ 4BCxCyD +

(
4bB

a
+ 1

)√
KT + 2BCxCy

√
DT,

which is the desired bound.

F.3 Proof of Theorem 5.2

We provide the complete version of Theorem 5.2:
Theorem F.2 (Formal version of Theorem 5.2). The algorithm in Section 5.2 achieves

E[RT ] = 4BCxCy(2D +
√
DT ) +

8bB2

a
+O

(
ω1/3D1/3T 2/3

)
.

Proof. First, we will derive an upper bound of E
[∑T

t=1 bt

]
. We first observe that

Et

[
‖G̃t‖F

]
= Et

[
‖(ŷΩ(θt)− ỹt)x

>
t ‖F

]
≤ Et[‖Gt‖F + Cx‖yt − ỹt‖2] ≤ ‖Gt‖F + CxEt[‖yt‖2 + ‖ỹt‖2]

≤ ‖Gt‖F + CxCy + CxEt

[√
tr
(
ỹtỹ>

t

)]
≤ ‖Gt‖F + CxCy + Cx

√
Et

[
tr
(
ỹtỹ>

t

)]
≤ ‖Gt‖F + CxCy +

√
C2

xω/q ≤ 2CxCy +
√
C2

xω/q, (20)
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where the first inequality follows fromCx ≥ ‖xt‖2, the third inequality follows fromCy ≥ ‖yt‖2, the
fourth inequality follows from Jensen’s inequality, and the fifth inequality follows from Lemma D.6.
Thus, combining (17) with the last inequality, we have

E

[
T∑

t=1

bt

]
≤ E

[
T∑

t=1

‖G̃t‖2F

]
+ E

[
T∑

t=1

Et

[
‖G̃t‖F

] t−1∑
s=t−D

‖G̃s‖F

]

≤ E

[
T∑

t=1

‖G̃t‖2F

]
+

(
2CxCy +

√
C2

xω

q

)
E

[
T∑

t=1

t−1∑
s=t−D

Es

[
‖G̃s‖F

]]

≤ E

[
T∑

t=1

‖G̃t‖2F

]
+DT

(
2CxCy +

√
C2

xω

q

)2

. (21)

Hence, from (16), (20), and (21), we have

E

[
T∑

t=1

〈G̃t,Wt −U〉

]

≤ 2B

2E

[
max
t∈[T ]

t−1∑
s=t−D

‖Ĝs‖F

]
+

√√√√E

[
T∑

t=1

‖Ĝt‖2F

]
+

√√√√E

[
T∑

t=1

bt

]
≤ 2B

4CxCyD + 2CxD
√
ω/q +

√√√√E

[
T∑

t=1

‖G̃t‖2F

]
+

√√√√E

[
T∑

t=1

bt

]
≤ 8BCxCyD + 4BCxD

√
ω/q + 4B

√√√√E

[
T∑

t=1

‖G̃t‖2F

]
+ 2B

(
2CxCy + Cx

√
ω/q

)√
DT

≤ 8BCxCyD + 4BCxD
√
ω/q

+ 4B

√√√√2

T∑
t=1

(
bSt(Wt) +

C2
xω

q

)
+ 2B

(
2CxCy + Cx

√
ω/q

)√
DT, (22)

where the first inequality follows from (16), the second inequality follows from (20), the third
inequality follows from (21) and the subadditivity of x 7→

√
x for x ≥ 0, and the last inequality

follows from Lemma D.7. Therefore, combining all the above arguments yields

E[RT ] ≤ E

[
T∑

t=1

(St(Wt)− St(U))

]
− aE

[
T∑

t=1

St(Wt)

]
+ qT

≤ E

[
T∑

t=1

〈G̃t,Wt −U〉

]
− aE

[
T∑

t=1

St(Wt)

]
+ qT

≤ 8BCxCyD + 4B


√√√√2bE

[
T∑

t=1

St(Wt)

]
+ Cx

√
2ωT/q

+ 4BCxD
√
ω/q

+ 2B
(
2CxCy + Cx

√
ω/q

)√
DT − aE

[
T∑

t=1

St(Wt)

]
+ qT

≤ 4BCxCy(2D +
√
DT ) +

8bB2

a
+ 4BCxD

√
ω/q + 2BCx(

√
D + 2

√
2)
√
ωT/q + qT,

where the first inequality follows from Assumption 3.2, the third inequality follows from (22) and
the subadditivity of x 7→

√
x for x ≥ 0, and the last inequality follows from the definition of ε and

c1
√
x − c2x ≤ c21/(4c2) for x ≥ 0, c1 ≥ 0, and c2 > 0. Finally, substituting q =

(
ωB2C2

xD
T

)1/3
gives the desired bound.
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Algorithm 4 Single-instance Online Learning In Delayed environments (SOLID)

Input: BASE, the first prediction W of BASE
1: for time step t = 1, 2, . . . , T do
2: Set Wt ←W as the prediction for the current time step.
3: Receive the feedbacks Ht that arrive at the end of time step t.
4: for all feedback in Ht do
5: Update BASE with feedback.
6: W ← the next prediction of BASE.

G Variable delay

This section provides the algorithms and analyses under the variable-delay setting, which is a natural
extension of the fixed-delay setting. As the notation for the variable-delay setting, let τt denote
the delay time of the feedback received at time t, and define τ∗ = maxt τt. Under this setting, by
leveraging the Single-instance Online Learning In Delayed environments (SOLID) [28], we achieve a
surrogate regret bound of O(

√
τ1:T + τ∗) in the full-information setting (Theorem G.2), and bounds

of O(
√
KT +

√
τ1:T + T 2/3 + τ∗) (Theorem G.3) and O(T 1/6√τ1:T + τ∗) (Theorem G.4) in the

bandit setting.

G.1 Single-instance Online Learning In Delayed environments (SOLID)

We provide a detail of SOLID algorithm used for updating Wt under the variable-delay setting.
Consider any deterministic non-delayed online learning algorithm (call it BASE). SOLID is an
algorithm that, regardless of the original arrival time of the feedback, provides the feedback to
BASE in the order in which it is observed, and makes predictions based on the outputs of BASE
(Algorithm 4). Below, let ρ(t) denote the time step of the tth feedback from SOLID to BASE for any
t ∈ [T ], as in [28]. When we use OGD as BASE, SOLID achieves the following bound:

Lemma G.1 ([28, Theorem 5]). Let BASE OGD with learning rate

η̃t =
√
2R

√√√√ t∑
s=1

(‖Gρ(s)‖2F + 2‖Gρ(s)‖F
t−1∑

i=t−τ̃t

‖Gρ(i)‖F) + C2
xC

2
y(τ

2
∗ + τ∗)

−1

,

where R > 0 satisfies η̃T
∑T

t=1 ‖U −Wt‖2F ≤ 4R2. Then, SOLID achieves

T∑
t=1

(St(Wt)− St(U))

≤ 2
√
2R

√√√√ T∑
t=1

‖Gt‖2F + 2

T∑
t=1

‖Gρ(t)‖F
T∑

s=t+1

‖Gρ(s)‖F1{s− τ̃s ≤ t}+ CxCyR
√

2(τ2∗ + τ∗).

G.2 Full-information

Here, we provide the algorithm for the variable-delay full-information setting. This subsection
assumes Assumption 4.1, as in Section 4.

Algorithm We use SOLID with OGD as ALG for updating Wt.

Regret bound and analysis The above algorithm achieves the following bound:

Theorem G.2. SOLID with OGD update in online structured prediction with a delay of τt achieves

E[RT ] ≤
2bR2

a
+ 4CxCyR

√
τ1:T + CxCyR

√
2(τ2∗ + τ∗) = O(

√
τ1:T + τ∗).
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Proof. Using SOLID with OGD (Lemma G.1), we have

T∑
t=1

(St(Wt)− St(U))

≤ 2
√
2R

√√√√ T∑
t=1

‖Gt‖2F + 2

T∑
t=1

‖Gρ(t)‖F
T∑

s=t+1

‖Gρ(s)‖F1{s− τ̃s ≤ t}+ CxCyR
√

2(τ2∗ + τ∗)

≤ 2
√
2R

√√√√b
T∑

t=1

St(Wt) + 4CxCyR
√
τ1:T + CxCyR

√
2(τ2∗ + τ∗), (23)

where we used ‖Gt‖2F ≤ bSt(Wt), ‖Gt‖F ≤ CxCy,
∑T

s=t+1 1{s − τ̃s ≤ t} = τ̃s,
∑T

t=1 τ̃t =∑T
t=1 τt, and the subadditivity of x 7→

√
x for x ≥ 0 in the last inequality. Therefore, from this

inequality, it holds that

E[RT ] ≤
T∑

t=1

(St(Wt)− St(U))− a
T∑

t=1

St(Wt)

≤ 2
√
2R

√√√√b

T∑
t=1

St(Wt) + 4CxCyR
√
τ1:T + CxCyR

√
2(τ2∗ + τ∗)− a

T∑
t=1

St(Wt)

≤ 2bR2

a
+ 4CxCyR

√
τ1:T + CxCyR

√
2(τ2∗ + τ∗),

where the first inequality follows from Assumption 4.1, the second inequality follows from (23), and
the last inequality follows from c1

√
x− c2x ≤ c21/(4c2) for x ≥ 0, c1 ≥ 0, and c2 > 0. This is the

desired bound.

This result is superior to the algorithm designed for the fixed-delay feedback in that it can handle
variable-delay feedback. WhenD ≥ τ∗ is known and small, we may also use the algorithm developed
for fixed-delay feedback to achieve the O(D2) bound.

G.3 Bandit feedback

We provide algorithms for the variable-delay bandit setting. This subsection assumes Assumption 3.2,
as in Section 3. Then, by using the inverse-weighted gradient estimator and the pseudo-inverse matrix
estimator as gradient estimators, we can achieve surrogate regret upper bounds ofO(

√
KT +

√
τ1:T +

τ∗) and O(T 1/6√τ1:T + T 2/3 + τ∗), respectively. Below, we provide details of these results.

G.3.1 Algorithm based on inverse-weighted gradient estimator with O(
√
KT +

√
τ1:T + τ∗)

regret

Here, we introduce an algorithm with a surrogate regret upper bound of O(
√
KT +

√
τ1:T + τ∗).

Algorithm We use RDUE with q = R
√
K/T for decoding (assuming T ≥ R2K), the gradient

estimator Ĝt as in Section 3.3, and SOLID with OGD as ALG.

Regret bound and analysis The above algorithm achieves the following surrogate regret bound:

Theorem G.3. The above algorithm achieves

E[RT ] ≤
(
2b

a
+ 1

)
R
√
KT +4CxCyR

√
τ1:T +CxCyR

√
2(τ2∗ + τ∗) = O(

√
KT +

√
τ1:T + τ∗).

This result is an extension of the bound under the fixed-delay setting. In particular, if τt = D for any
t, we obtain E[RT ] = O(

√
(K +D)T ).
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Proof. First, we recall that Et[‖Gt‖F] ≤ CxCy and Et[‖Gt‖2F] ≤ bKSt(Wt)/q from the proof of
Theorem 5.1. Using SOLID with OGD (Lemma G.1) and the subadditivity of x 7→

√
x for x ≥ 0,

we have

E

[
T∑

t=1

(St(Wt)− St(U))

]

≤ 2
√
2RE


√√√√ T∑

t=1

‖Ĝt‖2F + 2

T∑
t=1

T∑
s=t+1

‖Ĝρ(t)‖F‖Ĝρ(s)‖F1{s− τ̂s ≤ t}


+ CxCyR

√
2(τ2∗ + τ∗)

≤ 2
√
2RE


√√√√ T∑

t=1

‖Ĝt‖2F

+ 4RE


√√√√ T∑

t=1

T∑
s=t+1

‖Ĝρ(t)‖F‖Ĝρ(s)‖F1{s− τ̂s ≤ t}


+ CxCyR

√
2(τ2∗ + τ∗). (24)

The second term is bounded as

E

[
T∑

t=1

T∑
s=t+1

‖Ĝρ(t)‖F‖Ĝρ(s)‖F1{s− τ̂s ≤ t}

]

≤ E

[
T∑

t=1

T∑
s=t+1

Eρmax

[
‖Ĝρmax‖F

]
‖Ĝρmin‖F1{s− τ̂s ≤ t}

]

≤ CxCyE

[
T∑

t=1

T∑
s=t+1

Eρmin

[
‖Ĝρmin

‖
]
F
1{s− τ̃s ≤ t}

]
≤ C2

xC
2
y

T∑
t=1

τt, (25)

where we assumed ρmax = max{ρ(t), ρ(s)} and ρmin = min{ρ(t), ρ(s)}, used the tower property
in the first and second inequalities, and used Et[‖Gt‖F] ≤ CxCy in the second and last inequalities.
Hence, it holds that

E

[
T∑

t=1

(St(Wt)−St(U))

]
≤2
√
2R

√√√√bK

q
E

[
T∑

t=1

St(Wt)

]
+4CxCyR

√
τ1:T+CxCyR

√
2(τ2∗ + τ∗),

(26)
where the inequality follows from Et[‖Gt‖2F] ≤ bKSt(Wt)/q and (25). Therefore, combining all
the above arguments yields

E[RT ] ≤ E

[
T∑

t=1

(St(Wt)− St(U))

]
− aE

[
T∑

t=1

St(Wt)

]
+ qT

≤ 2
√
2R

√√√√bK

q
E

[
T∑

t=1

St(Wt)

]
+ 4CxCyR

√
τ1:T

+ CxCyR
√
2(τ2∗ + τ∗)− aE

[
T∑

t=1

St(Wt)

]
+ qT

≤ 2bR2K

aq
+ 4CxCyR

√
τ1:T + CxCyR

√
2(τ2∗ + τ∗) + qT,

where the first inequality follows from Assumption 3.2, the second inequality follows from (26), and
the last inequality follows from c1

√
x − c2x ≤ c21/(4c2) for x ≥ 0, c1 ≥ 0, and c2 > 0. Finally,

choosing q = R
√
K/T gives the desired bound.

G.3.2 Algorithm based on pseudo-inverse matrix estimator with O(T 1/6√τ1:T + T 2/3 + τ∗)
regret

Here, we provide an algorithm that achieves a surrogate regret upper bound of O(T 1/6√τ1:T +

T 2/3 + τ∗). This subsection assumes Assumption 3.5 in addition to Assumption 3.2.
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Algorithm We use RDUE with q =
(

ωR2C2
x

T

)1/3
for decoding (assuming T ≥ ωR2C2

x), the

gradient estimator G̃t as in Section 3.4, and SOLID with OGD as ALG.

Regret bound and analysis The algorithm described above achieves the following surrogate regret
bound:

Theorem G.4. The above algorithm achieves

E[RT ] ≤
4bR2K

a
+ 8CxCyR

√
τ1:T + CxCyR

√
2(τ2∗ + τ∗) +O

(
ω1/3R2/3T 1/6√τ1:T + T 2/3

)
= O(T 1/6√τ1:T + T 2/3 + τ∗).

Proof. First, we recall that Et[‖G̃t‖F] ≤ 2CxCy+
√
C2

xω/q and Et[‖G̃t‖2F] ≤ 2bKSt(Wt)+
2C2

xω
q

hold from (20) and Lemma D.7, respectively. Following the same steps as in the proof of Theorem G.3,
we obtain

E

[
T∑

t=1

T∑
s=t+1

‖G̃ρ(t)‖F‖G̃ρ(s)‖F1{s− τ̃s ≤ t}

]
≤
(
2CxCy +

√
C2

xω/q
)2 T∑

t=1

τt. (27)

Therefore, by using these inequalities and (24), we get

E[RT ] ≤ E

[
T∑

t=1

(St(Wt)− St(U))

]
− aE

[
T∑

t=1

St(Wt)

]
+ qT

≤ 4RE


√√√√bKE

[
T∑

t=1

St(Wt)

]
+
C2

xω

q

+ 4R

(
2CxCy +

√
C2

xω

q

)
√
τ1:T

+ CxCyR
√
2(τ2∗ + τ∗)− aE

[
T∑

t=1

St(Wt)

]
+ qT

≤ 4bR2K

a
+ 4R

√
C2

xω

q
+ 4R

(
2CxCy +

√
C2

xω

q

)
√
τ1:T + CxCyR

√
2(τ2∗ + τ∗) + qT,

where the first inequality follows from Assumption 3.2, the second inequality follows from
Lemma D.7, (24), and (27), the last inequality follows from c1

√
x − c2x ≤ c21/(4c2) for x ≥ 0,

c1 ≥ 0, and c2 > 0. Finally, by substituting q =
(

ωR2C2
x

T

)1/3
, we can obtain the desired bound.

H Numerical experiments

This section presents the results of numerical experiments for online multiclass classification and
multilabel classification under bandit feedback on MNIST and synthetic data. All experiments
were run on a system with 16GB of RAM, Apple M3 CPU, and in Python 3.11.7 on a macOS
Sonoma 14.6.1. The code is provided in the supplementary material.

H.1 Multiclass classification

Setup We describe the experimental setup. We compare four algorithms: Gaptron [44] with logistic
loss, Gappletron [45] with logistic loss and hinge loss, and our algorithm in Section 5.1. Theoretically,
these methods have their own advantages: ours enjoys a surrogate regret bound of O(

√
KT ), which

is better than the O(K
√
T ) bounds of the others; however, Gaptron/Gappletron can work with a

broader class of surrogate losses. This section aims to compare those methods from the empirical
perspective.
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Figure 1: Results of the synthetic experiments in multiclass classification with bandit feedback. In all
figures, the horizontal axis represents the number of classes K, and the vertical axis represents the
cumulative target loss.

Details of algorithms As the algorithm ALG for updating the linear estimator, we employ the OGD

in Section 3.2. Following [45], we use the learning rate of ηt = B/
√

2(10−8 +
∑t

i=1‖G̃t‖2F) and no
projection is performed in OGD. Here, the addition of 10−8 to the denominator is to prevent division
by zero. Although B = diam(W) is unknown, we fixed B = 10 in all experiments, regardless of
whether this value represents the actual diameter. All other parameters are set according to theoretical
values. Under these parameter settings, we repeat experiments 20 times.

H.1.1 Synthetic data

We also run experiments on synthetic data to facilitate comparisons across different values of K.

Data generation We describe the procedure for generating synthetic data. The synthetic data were
generated by using the same procedure as Van der Hoeven et al. [45]. The input vector consists of
a binary vector with entries of 0 and 1, and is composed of two parts. The first part corresponds
to a unique feature vector associated with the label, and the second part is randomly selected and
unrelated to the label. Specifically, the data is generated as follows. We generate K ∈ N unique
feature vectors of length 10n′ as follows. First, we randomly select an integer s uniformly from the
range [n′, 5n′], then randomly choose s elements from a zero vector of length 10n′ and set them
to 1. The input vector is obtained by concatenating the feature vector of a randomly chosen class
with a vector of length 30n′, in which exactly 5n′ elements are randomly set to 1. Additionally, with
probability r, the corresponding class label is replaced with a randomly chosen label to introduce
noise. The resulting input vector thus has length n = 40n′. These input vectors are generated for T
rounds. Based on this procedure, we create datasets for n′ ∈ {2, 4} and r ∈ {0.0, 0.1}.

Results The results on the synthetic data are shown in Figure 1. Our algorithm achieves comparable
or better performance than the existing algorithms for datasets with K ≤ 24. In contrast, when
K = 48 or 96, the cumulative losses of our algorithm are larger than those of Gaptron with the
hinge loss and Gappletron with the logistic loss. Note that these observations do not contradict
the theoretical results: for large K, the upper bound on the cumulative 01 loss of Gappletron can
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Figure 2: A box plot of error rates of the MNIST experiment for multiclass classification with bandit
feedback.
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Figure 3: Results of the synsetic experiments in multilabel classification with bandit feedback. The
horizontal axis shows the number of labels, and the vertical axis indicates the cumulative target loss.

be tighter than ours because of differences in the surrogate loss functions (see Appendix C.3 for
details). Nevertheless, our structured prediction method does not fully demonstrate its potential in
this setting, as the setup favors algorithms specialized for multiclass classification. It is also worth
noting that by using the same decoding function as theirs, our approach can achieve the same order
of the cumulative losses in online multiclass classification with bandit feedback.

H.1.2 Real-world data

We also evaluate the algorithms on the MNIST dataset [31], a widely used benchmark of handwritten
digit images.

Result The box plot in Figure 2 summarizes the misclassification rates. It shows that our method
achieves the lowest misclassification rate, even though it is not specifically designed for multiclass
classification, outperforming the existing algorithms on this real dataset with K = 10.

H.2 Multilabel classification

In the results presented in Section 3, the algorithm based on the pseudo-inverse matrix estimator
achieves a tighter upper bound in its dependence on K compared to the one based on the inverse-
weighted gradient estimator. To examine whether this theoretical result can also be observed
empirically, we conduct experiments on multilabel classification with a fixed number of correct
labels.
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Setup We compare two algorithms: the algorithm based on the inverse-weighted gradient estimator
in Section 3.3 and the one based on the pseudo-inverse matrix estimator in Section 3.4.

Data generation We generate synthetic data using the multilabel classification data-generation
function in scikit-learn [38]. Specifically, we employ the make_multilabel_classification
method in scikit-learn to generate T multilabel samples with feature dimension n, label dimension
d, and an average of m correct labels per sample. We then extract only those samples that have
exactly m correct labels and repeat this process until we obtain T = 104 such samples. Based on this
procedure, we create datasets with n = 50, d ∈ {10, 12, 16, 20, 24}, m = 5, and T = 104.

Details of algorithms As the algorithm ALG for updating the linear estimator, we employ OGD

as described in Section 3.2 with learning rate ηt = B/
√
2(10−8 +

∑t
i=1‖G̃t‖2F) and orthogonal

projection. The small constant 10−8 in the denominator prevents division by zero. We fixed B = 50
for all experiments, and the other parameters were set according to their theoretical values. Under
these settings, each experiment was repeated 10 times.

Results The results are shown in Figure 3. When d is small, the algorithm based on the inverse-
weighted gradient estimator incurs a smaller loss, whereas when d is large, the algorithm based on
the pseudo-inverse matrix estimator performs better. The superiority of the inverse-weighted gradient
estimator for small d aligns with the theoretical result that it has a more favorable dependence on T .
Similarly, the better performance of the pseudo-inverse matrix estimator for large d agrees with the
theoretical result that it does not depend explicitly on K. These experimental results thus provide
empirical support for our theoretical findings.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the abstract and introduction, we claim that we study online structured
prediction, present algorithms for bandit and/or delayed feedback, and analyze their surrogate
regret bounds. Those are the contributions of this work.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We present the assumptions in Section 2 and in the beginning of each relevant
section. Theoretical results are followed by proofs, though some of them are deferred to the
appendix due to space limitation.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide details of the experiments in Appendix H.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the code and data used in the experiments as supplemental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/

guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the training/test details in Appendix H.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The focus of this study is on theory, and the experiments are provided for
supplementary purposes.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide it in Appendix H.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The focus of this study is on theory, and the experiments are limited to simple
synthetic data and the MNIST datasets. Thus, we do not violate the Neurips Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The focus of this study is on theory and does not have societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our experiments are for validation purpose, and do not involve any such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: We do not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The focus of this study is on theory and does not introduce new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The focus of this study is on theory and does not involve crowdsourcing nor
research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The focus of this study is on theory and does not involve crowdsourcing nor
research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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