© N O O A~ W N =

N o o~ W N = O ©

19
20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36

Healthcare TimeSeries Reasoning Benchmarks at
Scale

Anonymous Author(s)
Affiliation
Address

email

Abstract

We introduce TimeSeriesExamAgent, a scalable and domain-agnostic framework
for automatically generating and validating time series reasoning benchmarks.
Existing benchmarks lack scalability, are limited to a few specific domains, while
building them remains labor intensive. Automated solutions for benchmark creation
have been proposed, but these typically rely on a single-step generation process
without verification, leading to lower-quality exams. Our framework addresses
these limitations by enabling stakeholders—such as institutions with highly confi-
dential data—to easily construct high-quality, domain-specific benchmarks from
their own private datasets. A domain expert provides a dataset, a natural language
description, and a simple data-loading method. The agent then orchestrates the gen-
eration pipeline, including creating question templates, robustness verification from
multiple perspectives, and iterative refinement. We demonstrate the framework
on two medical datasets and evaluate multiple state-of-the-art language models
on the generated benchmarks. Empirically, we demonstrate that the framework
produces domain-agnostic benchmarks whose diversity matches human-generated
counterparts, and our evaluation of several Large Language Models shows that
accuracy remains limited, underscoring open challenges in time-series reasoning.

1 Introduction

Many recent works have applied Large Language Models (LLMs) to time series analysis tasks such
as forecasting, anomaly detection, and classification [[1} 2} 3 14} 5] 6]]. More recently, attention has
shifted to evaluating the reasoning capabilities of LLMs in time series tasks. These evaluations are
typically framed in two ways: 1) contextualized traditional tasks such as forecasting, but with added
contextual information (e.g., providing a clinical scenario before a prediction) [[7, 189} [10} 111, and 2)
reasoning and understanding tasks that directly probe concepts in time series (e.g., “what kind of
trend does the following series exhibit?”) [12,[13].

However, existing benchmarks have clear limitations. Contextualized tasks remain close to tradi-
tional metrics (e.g., mean-squared-error for forecasting) without testing deeper reasoning, while
reasoning-style benchmarks often focus only on simple properties like trend or seasonality. In
practice, real-world domains such as healthcare require more complex reasoning, where tasks like
diagnosis naturally combine anomaly detection, classification, and domain knowledge. Curation is
another challenge. Annotation or template-based benchmarks are labor-intensive, while LLM-based
augmentation often lacks diversity because it simply expands existing datasets. As a result, building
specialized, domain-specific benchmarks remains difficult and time-consuming.

This challenge is especially pronounced in healthcare. Clinical datasets are both highly sensitive and
highly specialized: tasks in cardiology, radiology, or genomics often require nuanced reasoning that
combines statistical patterns with medical expertise and domain knowledge. Unlike open domains

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

37
38
39
40
41

42
43
44
45
46
47
48

49

50
51
52
53
54
55
56
57
58

59
60
61
62
63
64
65
66
67
68
69
70
71
72

where public benchmarks are available, stakeholders in healthcare cannot easily share their datasets
due to patient privacy, regulatory constraints, and ethical concerns. At the same time, they need ways
to rigorously evaluate whether generative models can reason about ECG signals, imaging studies, or
longitudinal patient records without exposing protected health information. This creates an urgent
need for customizable, automated benchmark generation tailored to private clinical datasets.

Inspired by recent agent-based approaches in other domains [14, [15], we propose
TimeSeriesExamAgent, a pipeline that (1) generates domain-specific multiple-choice questions
on time-series data, (2) scales efficiently, and (3) ensures reliable ground truth through iterative
verification. We also evaluate four state-of-the-art LLMs on a benchmark of 348 automatically
generated questions samples. Our results show that many models struggle on highly complex tasks
that require combining quantitative analysis with domain knowledge. For brevity, we provide detailed
related work in Appendix [A]

2 TimeSeriesExamAgent

(= Dataset + Loading
()

class

Figure 1: TimeSeriesExamAgent architecture. The user provides exam-making instructions and a
custom dataset with minimal loading code. Agent outputs question templates — Python functions
generated by a generator LLM and filtered through three progressive stages of verification (syntax
and output format check, validation by LLM judge, capability-aligned filtering). Arrows denote data
flow, red ones show direction for rejected templates.

In this section, we introduce TimeSeriesExamAgent, a multi-agent framework that combines
planning, generation, and verification to enable automatic benchmark construction. In this section,
we describe TimeSeriesExamAgent and its workflow in detail. An overview is shown in Fig. [T}
The Generation Agent takes as input a description of the natural language task 7" and a data set
D. The description T" may include user guidelines for generation, contextual information about the
dataset, or other relevant instructions. For convenience, we denote each sample in D as (z;, 2;),
where z; € R"* is a time series with n observations and d variables, and z; is an auxiliary array
containing metadata or labels related to the series. The user provides a dataset class D that supports
basic operations such as querying the i-th sample.

Generation We generate question templates instead of samples directly, as shown in Fig.[2| Tem-
plates offer two advantages: they are scalable, and their abstraction adds an extra layer of robustness.
By relying on structured, rule-based generation rather than manual inputs, they reduce the chance of
human errors or inconsistencies. Our generator LLM produces a predefined number of templates,
each implemented as a Python function. A template contains a formatted string for the question and
options, together with parameters that control how many questions to generate. For each question, the
template samples a pair (x;, z;) from the dataset D and applies a rule-based calculation to determine
the correct answer from the time series. For example, in a trend-detection template, the function
computes the linear trend coefficient of x; and selects “Yes, there is a linear trend” if the coefficient
exceeds a specified threshold. In addition to such signal-derived logic, templates can also utilize the
auxiliary property z;, effectively transforming classification problems into question—answer form.
For instance, if an ECG series in the dataset is labeled as exhibiting atrial fibrillation, the template
can present this label as one of the multiple-choice options. Each generated sample consists of
the question, its options, the correct answer, and one or more associated time series represented as

73
74

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
20
91

92
93
94

95
96
97
98
99
100
101

102

104
105
106
107
108
109

110

111
112
113
114

115
116
117

118
119
120
121
122
123
124

numerical values. We provide a breakdown of the Generation Agent and its prompt in Appendix
An example template is also provided.

Verification We observe
that LLM-based generation
frequently produces errors or Input Template Sampled question
. . . A
irrelevant outputs, motlvatlng &er/ def questighTEIERDY Jesint) -> What kind of AV
the need for a structured veri- List{QAPair: conduction
fication process. We propose a JuL« 1 L S
1ti ifi . w # Question and option definition present in this ECG?
mu tlStage verl Catlon pI‘OCGSS - # Requierments for time series —
to check the accuracy and (oaraser ramdier) # Finding records in dataset Do e
Vooo Yooo
relevance of each template. If a + getDataframe() Pl |
. . + query(id) qa_pairs_list) = num_samples
template fails at any stage, it is et o T g , L J t
. i AL A
returned to the generation agent \ J h

with feedback. The generation

is iterative with a maximum of Figure 2: Question generation process: With information about
three attempts, after which the dataset, TimeSeriesAgent generates question template in a form
ongoing template is discarded to of Python functions. The created function can be called to get
avoid excessive context length arbitrary number of question samples.

and cost from repeated failures.

Structure verification We check whether the generated template can be executed successfully. We
execute the generated template k = 5 times; if there are failures, the error message is returned as a
feedback.

Content verification Certain aspects of quality control are particularly well-suited for LLM-as-a-
judge evaluation. For example, verifying that a question is grammatically correct, free of ambiguity
or bias, and genuinely answerable from the accompanying time series can be effectively handled by
an LLM. To this end, we use an LLLM verifier to assess the validty of each template. A quantitative
score is given, and we set a threshold for rejection. If the verifier raises any rejection, its explanation
is treated similarly to a structural error and the template is regenerated. We provide the detailed
prompt in Appendix [C]

Capability-Aligned Filtering To detect templates that generate overly simple or irrelevant exams,
we evaluate them using a set of test-taking LLMs with varying capabilities. This approach is inspired
by educational theory, particularly the expertise reversal effect [16]. A template is discarded if
weaker LLMs achieve higher average accuracy than stronger models, as this typically indicates
that the template is flawed or noisy rather than genuinely discriminative. Templates are retained if
performance scales with model capability— or if all models perform poorly, since such questions
may still capture genuine difficulty. We provide hyper-parameters in Appendix [Fand other design
specifics in Appendix [D]

3 Experimental Setup, Results and Discussion

First, we generate one exam for each of the two real world datasets: PTB-XL [17], MIT-BIH [[18]. In
total, we have 197 samples for MIT-BIH, and 151 samples for PTB-XL. We sample 4 or 5 instances
per template. Thus, the difference in the number of generated samples is a result of the template
filtering mechanism above.

We select candidate models to cover a diverse range of performance levels, as indicated by the
OpenVLM Leaderboard [23]. In both cases, the best results achieves Gemma-3-27b-it, which
outperforms the remaining models.

To further evaluate our benchmark, we compare multiple metrics on questions generated from the
dataset with those in ECG-QA [10], a template-based benchmark also built on PTB-XL. The goal is to
demonstrate that our framework achieves comparable diversity without requiring manual template
curation. We picked random 50 question samples from each benchmark and calculated the distances
for every possible pair within the set. We used the Qwen/Qwen3-0. 6B sentence transformer model
to extract embeddings, as it achieved the second-best performance among all models on the Hugging
Face MTEB leaderboard.

125
126
127
128
129
130
131

132

133
134
135
136
137

139
140
141
142
143
144

145

146
147

\ Dataset
Model ‘ MIT-BIH PTB-XL

gpt-4o [19] 0.416 0.424

03-mini [20] 0.442 0.477
Qwen2.5-VL-Instruct [21]] 0411 0.490
Gemma-3-27b-it [22]] 0.497 0.517

Table 1: Comparative performance of four vision-language models across medical (MIT-BIH, PTB-
XL) time-series datasets.

Mean =+ Std
Benchmark Dataset Embedding Normalized Levenshtein
ECG-QA 0.207 + 0.079 0.519 £ 0.157
TimeSeriesExamAgent (ours) | 0.301 & 0.070 0.542 + 0.039

Table 2: Question diversity comparison using embedding and normalized Levenshtein distance.

As shown in Table 2] benchmark generated by our framework shows a diversity comparable to one
developed by humans. This indicates that the proposed framework is able to capture a wide range of
expressions without relying on handcrafted templates, supporting its scalability and adaptability to
other domains. We also employed G-Eval, a probabilistic LLM-as-a-judge framework [24]. An LLM
is used to evaluate the relevance of each question, assigning a score between 0 and 1 to indicate how
well it meets the specified criteria. Results are presented in Table 3] We provide the detailed G-Eval
prompt in Appendix [E]

Mean Result
Dataset Specificity Unambiguity Domain Relevance = Answerability
ECG-QA 0.604 0.562 0.827 0.898
TimeSeriesExamAgent (ours) 0.922 0.932 0.989 0.992

Table 3: Question diversity comparison using G-Eval framework.

4 Limitations and Conclusions

In this work, we present a scalable, domain-specific framework for the automatic generation of
time-series benchmarks, enabling the creation of high-quality, large-scale evaluation datasets while
minimizing the need for labor-intensive human annotation. A limitation of this study is that the quality
of the generated exams depends on the quality and coverage of the time series dataset. Additionally,
domain specialists must provide carefully crafted prompts.

For future work, we will explore human-in-the-loop improvements to template generation. In offline
sessions with clinicians, we observed that exams produced with such feedback are more likely to be
deemed valid. We also plan to validate exam quality by training time series—text alignment models
and testing their transfer performance on other established reasoning benchmarks [8]]. Finally, there
is growing attention on building time series agentic frameworks [2526]. Enabling these frameworks
to write code in order to answer our benchmark questions would provide valuable insights to the
community.

References

[1] Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin
Shen, Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham

148
149

150
151
152

153
154

156
157
158

159
160
161

162
163

164
165
166

167
168
169

170
171
172
173

174
175
176

177
178
179
180

181
182

183
184
185

186
187
188

189
190
191

192
193

194
195
196

(2]

(3]

(4]

(51

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Kapoor, et al. Chronos: Learning the language of time series. arXiv preprint arXiv:2403.07815,
2024.

Mononito Goswami, Konrad Szafer, Arjun Choudhry, Yifu Cai, Shuo Li, and Artur Dubrawski.
Moment: A family of open time-series foundation models. arXiv preprint arXiv:2402.03885,
2024.

Defu Cao, Furong Jia, Sercan O Arik, Tomas Pfister, Yixiang Zheng, Wen Ye, and Yan Liu.
Tempo: Prompt-based generative pre-trained transformer for time series forecasting. arXiv
preprint arXiv:2310.04948, 2023.

Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y Zhang, Xiaoming Shi, Pin-Yu
Chen, Yuxuan Liang, Yuan-Fang Li, Shirui Pan, et al. Time-llm: Time series forecasting by
reprogramming large language models. arXiv preprint arXiv:2310.01728, 2023.

Tian Zhou, Peisong Niu, Liang Sun, Rong Jin, et al. One fits all: Power general time series
analysis by pretrained Im. Advances in neural information processing systems, 36:43322-43355,
2023.

Nina Zukowska, Mononito Goswami, Michat Wilifiski, Willa Potosnak, and Artur Dubrawski.
Towards long-context time series foundation models. arXiv preprint arXiv:2409.13530, 2024.

Jialin Chen, Aosong Feng, Ziyu Zhao, Juan Garza, Gaukhar Nurbek, Cheng Qin, Ali Maatouk,
Leandros Tassiulas, Yifeng Gao, and Rex Ying. Mtbench: A multimodal time series benchmark
for temporal reasoning and question answering. arXiv preprint arXiv:2503.16858, 2025.

Yaxuan Kong, Yiyuan Yang, Yoontae Hwang, Wenjie Du, Stefan Zohren, Zhangyang Wang,
Ming Jin, and Qingsong Wen. Time-mqa: Time series multi-task question answering with
context enhancement. arXiv preprint arXiv:2503.01875, 2025.

Haoxin Liu, Shangqing Xu, Zhiyuan Zhao, Lingkai Kong, Harshavardhan Prabhakar Kamarthi,
Aditya Sasanur, Megha Sharma, Jiaming Cui, Qingsong Wen, Chao Zhang, et al. Time-mmd:
Multi-domain multimodal dataset for time series analysis. Advances in Neural Information
Processing Systems, 37:77888-77933, 2024.

Jungwoo Oh, Gyubok Lee, Seongsu Bae, Joon-myoung Kwon, and Edward Choi. Ecg-qa: A
comprehensive question answering dataset combined with electrocardiogram. Advances in
Neural Information Processing Systems, 36:66277-66288, 2023.

Xu Wang, Jiaju Kang, Puyu Han, Yubao Zhao, Qian Liu, Liwenfei He, Lingqiong Zhang,
Lingyun Dai, Yongcheng Wang, and Jie Tao. Ecg-expert-qa: A benchmark for evaluating
medical large language models in heart disease diagnosis. arXiv preprint arXiv:2502.17475,
2025.

Yifu Cai, Arjun Choudhry, Mononito Goswami, and Artur Dubrawski. Timeseriesexam: A time
series understanding exam. arXiv preprint arXiv:2410.14752, 2024.

Willa Potosnak, Cristian Challu, Mononito Goswami, Kin G. Olivares, Michal Wilinski, Nina
Zukowska, and Artur Dubrawski. Investigating compositional reasoning in time series founda-
tion models, 2025.

Natasha Butt, Varun Chandrasekaran, Neel Joshi, Besmira Nushi, and Vidhisha Balachan-
dran. Benchagents: Automated benchmark creation with agent interaction. arXiv preprint
arXiv:2410.22584, 2024.

Gauthier Guinet, Behrooz Omidvar-Tehrani, Anoop Deoras, and Laurent Callot. Automated

evaluation of retrieval-augmented language models with task-specific exam generation. arXiv
preprint arXiv:2405.13622, 2024.

Slava Kalyuga. Expertise reversal effect and its implications for learner-tailored instruction.
Educational psychology review, 19(4):509-539, 2007.

Patrick Wagner, Nils Strodthoff, Ralf-Dieter Bousseljot, Dieter Kreiseler, Fatima I Lunze,
Wojciech Samek, and Tobias Schaeffter. Ptb-xl, a large publicly available electrocardiography
dataset. Scientific data, 7(1):1-15, 2020.

197
198

199
200
201

202
203

204
205
206
207
208

209
210
211

212
213
214
215

216
217
218

219
220
221

224

244
245

[18] George B Moody and Roger G Mark. The impact of the mit-bih arrhythmia database. IEEE
engineering in medicine and biology magazine, 20(3):45-50, 2001.

[19] Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark,
Al Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv
preprint arXiv:2410.21276, 2024.

[20] OpenAl. Openai 03-mini system card. https://openai.com/index/
03-mini-system-card/, January 2025. Accessed: 2025-08-22.

[21] Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang
Wan, Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen
Cheng, Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report.
arXiv preprint arXiv:2502.13923, 2025.

[22] Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona
Merhej, Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Riviere, et al. Gemma
3 technical report. arXiv preprint arXiv:2503.19786, 2025.

[23] Haodong Duan, Junming Yang, Yuxuan Qiao, Xinyu Fang, Lin Chen, Yuan Liu, Xiaoyi Dong,
Yuhang Zang, Pan Zhang, Jiaqi Wang, et al. Vlmevalkit: An open-source toolkit for evaluating
large multi-modality models. In Proceedings of the 32nd ACM International Conference on
Multimedia, pages 11198-11201, 2024.

[24] Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. G-eval:
Nlg evaluation using gpt-4 with better human alignment. arXiv preprint arXiv:2303.16634,
2023.

[25] Yifu Cai, Xinyu Li, Mononito Goswami, Michat Wiliriski, Gus Welter, and Artur Dubrawski.
Timeseriesgym: A scalable benchmark for (time series) machine learning engineering agents.
arXiv preprint arXiv:2505.13291, 2025.

[26] Wen Ye, Wei Yang, Defu Cao, Yizhou Zhang, Lumingyuan Tang, Jie Cai, and Yan Liu. Domain-
oriented time series inference agents for reasoning and automated analysis. arXiv preprint
arXiv:2410.04047, 2024.

[27] Yilin Wang, Peixuan Lei, Jie Song, Yuzhe Hao, Tao Chen, Yuxuan Zhang, Lei Jia, Yuanxiang
Li, and Zhongyu Wei. Itformer: Bridging time series and natural language for multi-modal qa
with large-scale multitask dataset. arXiv preprint arXiv:2506.20093, 2025.

[28] Wanying Wang, Zeyu Ma, Pengfei Liu, and Mingang Chen. Testagent: A framework for domain-
adaptive evaluation of 1lms via dynamic benchmark construction and exploratory interaction.
arXiv preprint arXiv:2410.11507, 2024.

[29] Mike A Merrill, Mingtian Tan, Vinayak Gupta, Tom Hartvigsen, and Tim Althoff. Language
models still struggle to zero-shot reason about time series. arXiv preprint arXiv:2404.11757,
2024.

[30] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824-24837, 2022.

[31] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rocktischel, et al. Retrieval-augmented
generation for knowledge-intensive nlp tasks. Advances in neural information processing
systems, 33:9459-9474, 2020.

[32] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

[33] Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer,
2020.

https://openai.com/index/o3-mini-system-card/
https://openai.com/index/o3-mini-system-card/
https://openai.com/index/o3-mini-system-card/

246
247

248
249

250
251
252

253

254
255
256
257
258
259
260
261
262

264
265

274

275

276
277

[34] Jesse Mu, Xiang Lisa Li, and Noah Goodman. Learning to compress prompts with gist tokens,
2024.

[35] Qingyue Wang, Yanhe Fu, Yanan Cao, Shuai Wang, Zhiliang Tian, and Liang Ding. Recursively
summarizing enables long-term dialogue memory in large language models, 2025.

[36] Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi
Pan, Yueqi Song, Bowen Li, Jaskirat Singh, et al. Openhands: An open platform for ai software
developers as generalist agents. arXiv preprint arXiv:2407.16741, 2024.

A Related Work

Time series benchmarks The task of creating domain-specific time series reasoning benchmarks
is challenging. Existing benchmarks are either domain-agnostic, or limited to a specific domains
with high quality datasets. For example, TimeSeriesExam [12] introduced over 700 multiple-choice
questions to evaluate five general reasoning skills, but its questions primarily assess signal properties
(e.g. trend, cyclicity, stationarity) and lack the contextual depth needed for real-world applications.
Domain-specific benchmarks address this gap but have limited scope and poor extensibility, since
their curation often relies on templates. For instance, ECG-QA [10] and ECG-Expert-QA [11] focus
on ECG interpretation, while EngineMT-QA [27/]] targets industrial settings. Automatic benchmark
generation offers a scalable alternative but raises concerns about quality and diversity of generated
questions. Without extensive verification, LLM-generated questions often require heavy manual
curation [8}, 9], which is both difficult and time-consuming—undermining the main advantage of
automation.

Title | Multi-Domain Curation # Samples Skill type
| Fully Automatic P R PS
Time-MQA [8] v X 200,000 v /7 v
TimeSeriesExam [12] X X 763 v /7 X
Time-MMD [9] v X 17,113 v X X
MT-Bench [7] v v 22,000 v /7 X
ECG-QA [10] X X 414,348 v /7 X
TimeSeriesExamAgent (ours) v v 600+ v v v

Table 4: Overview of time series and multimodal datasets with curation and skill types (P — Prediction,
R — Reasoning, PS — Practical skills (tasks beyond classification and reasoning such as performing
calculations and applying formulas). TimeSeriesExamAgent is universal — tailored to user’s needs
and with advanced automatic verifications.

Agents for benchmark creation An Al agent is an autonomous system that can observe its
environment, reason about possible actions, and act toward achieving a goal. In LLM-based settings,
the language model often provides the reasoning or planning layer that guides the agent’s decisions.
Recent work has shown success in using agents for automatic benchmark creation. Most solutions
adopt a multi-agent pipeline with planning, generation, validation, and evaluation modules [14].
For instance, [28] integrates exploratory evaluation using reinforcement learning, while [[14] takes
a natural language task description as input. However, most of these approaches are not tailored to
time series and struggle to generate questions conditioned on numeric data. One recent solution does
incorporate time series but is limited to single-step design and lacks extensive verification [29]].

B Generation Agent Workflow

We rely on two stages of generation for the templates: planning and generating, inspired by the
chain-of-thought (CoT) prompting[30].

278
279

280
281

282

283
284

285

286

287
288

289
290

291
292

293

294

296
297
298
299
300
301

303
304
305
306
307

309
310
311
312
313

314

315
316
317
318
319
320
321
322
323
324
325
326
327

Generation planning To provide a relevant and diverse set of templates, we rely on a comprehensive
list of domain-specific concepts. There are several ways our pipeline generates a list of concepts:

1. LLM generation: User guidelines and dataset descriptions are provided as input to an LLM,
which proposes the concepts.

2. Web Search: We provide the option for generator LLM obtain concepts through web search.

3. Retrieval Augmented Generation: As an option, the user could also provide a relevant file
from which the LLM reads and generates concepts[31]].

Template generation As input to our generator, the following components are provided:

* User-provided guidelines: a document containing the user’s goal or specific requirements,

* Dataset description: a list of columns and example values with ranges from the dataset, with
a short usage example,

* List of concepts: generated in previous step. For each template, our pipeline will choose a
concept at random to ensure diversity.

» Example templates[Optional]: user-provided few-shot examples presenting required struc-
tural elements [32].

B.1 Generation Prompt

Here is the goal of the exam questions:
{user_info_text}

Here are sample concepts on which you can base your question generation:
{concept_conversation}

Use the concept numbered {concept_no} from the list to guide the design of
your question template.

Here is the description of the dataset you will use to generate the
question:
{dataset_describe}

In your template, use the provided ‘user_dataset‘ object. Use its ‘query(
index) ¢ method to load relevant time series data.

Do not select time series randomly. First, formulate the question, and then
choose a time series that fits its logic and reasoning needs.

Generate one function-based question template now.

B.2 Example of Question Template

def question_hypertrophic_cardiomyopathy(num_samples, verbose=False):
hyperparameters = {
"min_probability_threshold": 75.0,
"target_abnormalities": ["SEHYP", "LVH", "VCLVH", "RVH"],
"normal_codes": ["NORM"],
"max_attempts": 1000,
X

question = "Based on the morphological characteristics and voltage
patterns observed in this ECG recording, what is the most likely

structural cardiac finding?"

options = [

328
329
330
331
332
333
334
335
336
337
338
339

341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372

374
375
376
377
378
379
380
381
382
383
384
385
386

"Septal hypertrophy with voltage criteria consistent with
hypertrophic cardiomyopathy",

"Left ventricular hypertrophy with strain pattern indicating
pressure overload",

"Right ventricular hypertrophy suggesting pulmonary hypertension",

"Normal cardiac structure with physiological variant morphology",

]

def has_high_probability_abnormality(scp_codes_dict, target_codes,
threshold):
for code in target_codes:
if code in scp_codes_dict and scp_codes_dict[code] >= threshold:

return code
return None

def is_normal_ecg(scp_codes_dict, normal_codes, threshold):
for code in normal_codes:
if code in scp_codes_dict and scp_codes_dict[code] >= threshold:

return True
return False

qa_pairs = []
attempts = 0
df = user_dataset.get_dataframe()

while len(ga_pairs) < num_samples and attempts < hyperparameters["
max_attempts"]:
attempts += 1
if verbose:
print (f" [Hypertrophic Cardiomyopathy] Generating question {len(
qa_pairs)+1}/{num_samples}")

Sample a random record
sample_row = df.sample(1).iloc[0]
ecg_id = sample_row[’ecg_id’]
scp_codes = sample_row[’scp_codes’]

if not isinstance(scp_codes, dict):
continue

Check for target abnormalities with high probability
detected_abnormality = has_high_probability_abnormality(
scp_codes, hyperparameters["target_abnormalities"],
hyperparameters["min_probability_threshold"]

is_normal = is_normal_ecg(scp_codes, hyperparameters["normal_codes
"], hyperparameters["min_probability_threshold"])

if detected_abnormality is None and not is_normal:
continue

try:
ts = user_dataset.query(ecg_id)
if ts is None or ts.shape != (12, 1000):
continue

387
388
389
390
391
392
393
394
395
396
397
398
399

401
402
403
404
405

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430

431

432

434
435
436
437
438
439
440
441
442

except Exception as e:
if verbose:
print (f"Error loading ECG {ecg_id}: {e}")
continue

Determine correct answer based on detected abnormality
if detected_abnormality == "SEHYP":
correct_answer = options[0]
answer_type = "septal_hypertrophy"
elif detected_abnormality == "LVH" or detected_abnormality == "
VCLVH":
correct_answer = options[1]
answer_type = "left_ventricular_hypertrophy"
elif detected_abnormality == "RVH":
correct_answer = options[2]
answer_type = "right_ventricular_hypertrophy"
elif is_normal:
correct_answer = options[3]
answer_type = "normal"
else:
continue

ga_pairs.append ({
"question": question,
"options": optioms,
"answer": correct_answer,
"answer_type": answer_type,
"ecg_id": ecg_id,
"ts": ts.tolist(),
"scp_codes": scp_codes,
"detected_abnormality": detected_abnormality,
"relevant_concepts": ["Hypertrophic Cardiomyopathy", "
Structural Heart Disease", "ECG Morphology", "Voltage Criteria"],

"domain": "cardiology",

"detractor_types": ["Similar structural abnormalities", "Normal
variants"],

"question_type": "multiple_choice",

"format_hint": "Please answer the question and provide the

correct option letter, e.g., [A]l, [B], [C], [D], and option content at
the end of your answer. All information needed to answer the question
is given. If you are unsure, please provide your best guess.",

D

return qa_pairs

B.3 Example of Natural Language Description

I want to create time series exam testing model understanding of ecg

signals.

To load the data, use the provided user_dataset object.

The PTB-XL ECG dataset is a large dataset of 21799 clinical 12-lead ECGs

from 18869 patients

of 10 second length. The raw waveform data was annotated by up to two

cardiologists, who assigned

potentially multiple ECG statements to each record. The in total 71

different ECG statements conform

10

443 to the SCP-ECG standard and cover diagnostic, form, and rhythm statements.

444 The dataset is complemented by extensive metadata on demographics,
445 infarction characteristics, likelihoods for diagnostic ECG statements
446 as well as annotated signal properties.

448 You can focus some of the questions around those scp codes:

450 NDT non-diagnostic T abnormalities
451 NST_ non-specific ST changes
452 DIG digitalis-effect

453 LNGQT long QT-interval
454 NORM normal ECG

455 IMI inferior myocardial infarction

456 ASMI anteroseptal myocardial infarction
457 LVH left ventricular hypertrophy

458 LAFB left anterior fascicular block

459 ISC_ non-specific ischemic

460 IRBBB incomplete right bundle branch block

461 1AVB first degree AV block

462 IVCD non-specific intraventricular conduction disturbance (block)
463 ISCAL ischemic in anterolateral leads

464 CRBBB complete right bundle branch block

465 CLBBB complete left bundle branch block

466 ILMI inferolateral myocardial infarction
467 LAO/LAE left atrial overload/enlargement

468 AMI anterior myocardial infarction

469 ALMI anterolateral myocardial infarction

470 ISCIN ischemic in inferior leads
471 INJAS subendocardial injury in anteroseptal leads

472 LMI lateral myocardial infarction
473 ISCIL ischemic in inferolateral leads
474 LPFB left posterior fascicular block

475 ISCAS ischemic in anteroseptal leads

476 INJAL subendocardial injury in anterolateral leads
477 ISCLA ischemic in lateral leads

478 RVH right ventricular hypertrophy

479 ANEUR ST-T changes compatible with ventricular aneurysm
4s0 RAO/RAE right atrial overload/enlargement

481 EL electrolytic disturbance or drug (former EDIS)
482 WPW Wolf-Parkinson-White syndrome

483 ILBBB incomplete left bundle branch block

484 IPLMI inferoposterolateral myocardial infarction

485 ISCAN ischemic in anterior leads

486 IPMI inferoposterior myocardial infarction

487 SEHYP septal hypertrophy

488 INJIN subendocardial injury in inferior leads

489 INJLA subendocardial injury in lateral leads

490 PMI posterior myocardial infarction

491 3AVB third degree AV block

492 INJIL subendocardial injury in inferolateral leads
493 2AVB second degree AV block

494 ABQRS abnormal QRS

495 PVC ventricular premature complex

496 STD_ non-specific ST depression

497 VCLVH voltage criteria (QRS) for left ventricular hypertrophy
498 QWAVE Q waves present

499 LOWT low amplitude T-waves

s00 NT_ non-specific T-wave changes

501 PAC atrial premature complex

11

502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520

521

LPR
INVT
LVOLT
HVOLT
TAB_
STE_
PRC(S)
SR
AFIB
STACH
SARRH
SBRAD
PACE
SVARR
BIGU
AFLT
SVTAC
PSVT
TRIGU

prolonged PR interval

inverted T-waves

low QRS voltages in the frontal and horizontal leads
high QRS voltage

T-wave abnormality

non-specific ST elevation

premature complex(es)

sinus rhythm

atrial fibrillation

sinus tachycardia

sinus arrhythmia

sinus bradycardia

normal functioning artificial pacemaker
supraventricular arrhythmia

bigeminal pattern (unknown origin, SV or Ventricular)
atrial flutter

supraventricular tachycardia

paroxysmal supraventricular tachycardia

trigeminal pattern (unknown origin, SV or Ventricular)

B.4 Examples of Generated Questions

12

[N

ECG Question Example

Q: Analyze the P-wave morphology and amplitude characteristics in this recording. What atrial
abnormality is present?

A. RAO/RAE: Right atrial overload/enlargement with prominent P-waves
B. LAO/LAE: Left atrial overload/enlargement with bifid P-waves
C. Normal P-wave morphology with no atrial abnormalities

D. Absent P-waves indicating atrial fibrillation

522 K j

N i i i e A A A R i
S5 50 S5) | \EESES) | SE8ss) \55ss 5 =g Enu 1| |BSSE 58 A5E RS 155 5 1 S S
}\/"V”"k\/ LSY& N W U SVani “J LW Y I
I 1 i i 1 I 1 i [~
EEESEEREsSIEE s en e IEESEEY Bt e
: S s A B ANN= A N iSTesEas
[
A, Py al n fat N /\V
 [msBsEa| ESE [iEd Beatianas | lzza hui npunel =
An N D o (N A [A) AL M
e LU e T pAss S] e 7/ e e B e
7 v I i y I i U i]
A e A jis=EE [EESSE
avl EZSEsE=ozs i
e
LA i jiESEESE \ i i S 557 S G EEp== A
ot = s &= o7 ~ V™

0.0 0.5 1.0 15 2.0 2.5 3.0 35 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5
(s)

13

il b ~L i L
P i i il MHW i i
AH\\ AI A””.! Hu HHW HHW
[b |
[= Jimn MHL MHHK | manem e
il i i ; 1
/HH”U. A/ A\.ull. MHM MHHW A”H\
q L | < il il W P
J _1] il
N NI NI L] L e
Lﬁltv il TR i JM
DGRl N SR .\W_ ._\l\u L
o A\.M L i //
_.n [Ty = i o A.I!JIN LHHW HHH.f
A/lIUv /ﬂh A/l ﬁ\m gt ﬂl\w
i 1] [Tk i i)
m\l\ Am Am,t B nnw g
N s e - 4 e e
i ; il
= AU AM.I -7 JHHW e
J \w \1w i il
B T
/!” = /IV | M\.L i e | ey
il il Pl il [T .M
S g | nlw \lw | Lhe

0.5 1.0 15 2.0 25 3.0 35 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5
(s)

0.0

14

523

524

525

526

527

528

529

530
531
532
533

535
536
537
538
539
540
541
542
543

Q: Examine the ECG at shown. Which of the following statements best describes the T-wave
morphology in this single-beat ECG?

A. The T-wave is upright (positive), suggesting normal ventricular repolarization.

B. The T-wave is inverted (negative), which may indicate myocardial ischemia or ventricular
strain.

C. The T-wave is biphasic (partly positive, partly negative), which may indicate regional repo-
larization abnormalities.

D. The T-wave is flattened, which may indicate electrolyte disturbances such as hypokalemia.

Amplitude (mv)

T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Time (secends)

C LLM Verifier

For each template, we use an LLM to evaluate the generated question. Specifically, we ask:

¢ Is the question relevant to the given concept?
* Does answering the question require the provided time series?

* Are the question and answer free from ambiguity and bias?

C.1 Validation Prompt

You are an expert validator of question templates involving reasoning over
{exam_type} time series data.
You are given an exam question template:

{exam_template}

Your task is to validate the question template using the following criteria:
1. Is the question relevant to {exam_type} time series analysis?

2. Would you need the time series itself to answer the question?

3. Are there no ambiguity in the question or its answer?

If the answer to all is YES or MOSTLY YES, return only the number 1.

If the answer to either is NO, return your objections.
Return 1 (do not include any additional text then) or describe your objectiomns.

15

544

545
546
547

548
549
550

552
553
554
555
556
557
558

559

560
561

563
564
565
566
567
568
569
570
571
572
573
574

576
577
578
579
580
581

583
584
585
586
587
588
589
590
591
592
593
594
595
596
597

D Other Design Specifics

Detractors In addition, the mechanism of plausible but incorrect answer choices was implemented.
The LLM is prompted to reflect on possible mistakes that the test taker might make while solving the
exam. Using this knowledge, misleading, incorrect option choices can be generated.

Context Condensation A common issue we encountered in the framework was context window
overflow during exam regeneration. To mitigate this, we applied context condensation, which
reduces the number of tokens while preserving essential information. In our setup, the agent
generates templates in a conversational manner. The process begins with a generation prompt,
followed by a message containing the generated exam. If errors occur or the exam is rejected during
verification, the feedback and regenerated exams are appended to the conversation. Several context
condensation techniques exist, such as windowing [33] and context compression [34]. We adopt a
summarization-based method [35} [36]], which has shown strong results in prior work and fits our use
case. Specifically, we summarize non-recent pairs of failing exams and error messages into short
descriptions that highlight the issues encountered. These summaries provide the LLM with concise
feedback, supporting the generation of higher-quality templates.

E G-Eval

We evaluated a set of generated questions under the G-Eval framework. We used the following
criteria:

1. SPECIFICITY
Evaluate the specificity of the generated ECG multiple-choice question.

A good question should target a single phenomenon.

Evaluation steps:

1. Read the question and all answer options.

2. Determine if the question targets a single, clearly defined ECG finding
or clinical interpretation.

3. Assess the ratio of unique medical terms to general words.

4. Penalize if:
- The question is overly broad or open-ended (e.g., "Is this ECG normal
?u).
- The wording leaves diagnostic interpretation unclear.
- The question covers multiple unrelated phenomena.

Score highest if the question has one precise focus (e.g., "Is there ST
elevation in lead V37").

1. UNAMBIGUITY
Evaluate the unambiguity of the generated ECG multiple-choice question.
A question and the answers should not have multiple interpretations.

Evaluation steps:

1. Read the question and all answer options.

2. Determine if the question can be objectively assessed.

3. Check if the answers are clear and unambiguous.

4. Penalize if:
- The question uses subjective terms (e.g., "Does this look strange?").
- The answers are open to multiple interpretations.
- The question cannot be objectively answered.

Score highest if the question is clear and objective (e.g., "Is there
tachycardia?"),

2. DOMAIN RELEVANCE

16

598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635

636

637

638
639

640

641

642
643

644

645
646

Evaluate the domain relevance of the generated ECG multiple-choice question.
Does the question actually pertain to ECGs and medicine?

Evaluation steps:

1. Read the question and all answer options.

2. Identify medical and ECG-specific terminology.

3. Determine if the question is relevant to ECG interpretation and medical
diagnosis.

4. Penalize if:
- The question contains non-medical terms (e.g., "Is the line pretty?").
- The question is not related to ECG interpretation.
- The question lacks medical context.

Score highest if the question contains relevant medical terms
(e.g., "QRS," "arrhythmia," "P wave") and pertains to ECG interpretation.

3. ANSWERABILITY

Evaluate the answerability of the generated ECG multiple-choice question.

Even without an answer provided, the question should be answerable based on
the data (ECG).

Evaluation steps:
1. Read the question and all answer options.
2. Determine if the question can be answered by analyzing ECG waveform data.

3. Assess whether the question requires time series analysis or could be
answered without it.

4. Penalize if:
- The question asks about non-ECG factors (e.g., "Was the patient
nervous?").
- The question can be answered without analyzing the ECG time series
data.
- The question is too general and doesn’t require specific ECG analysis.

Score highest if the question requires specific ECG time series analysis

(e.g., "Is there atrial fibrillation?").
Give fewer points if the question can be answered without time series data.

F Hyperparameters
In this section, we list all the hyperparameter used for our agentic workflow.

1. Generator LLM: the LLM use to generate concepts and the corresponding template. We
used claude-sonnet-4-20250514 (initial generation with reasoning_effort="medium").

2. Concept LLM: the LLM use to generate concepts. We used gpt-40-2024-08-06.
3. Verifier LLM: the LLM use to verify templates. We used gpt-40-2024-08-06.

4. Student LLMs: the student LLMs we use to check the exam differentiability. Currently we
have two student LLMs: stronger: gpt-40-2024-08-06 and weaker: gpt-40-mini.

5. Exam type: We are generating the data connected to specific domain. We used "ECG".

6. Few-shot examples: 3 templates prepared beforehand were used to present the desired
structure. For each generation, they were randomly sampled from set of 9.

17

647

648
649

650

651

652
653

654

655
656
657
658
659

660
661

662
663

664
665

666
667

668

669
670

G Evaluation Protocol

All used models were accessed by API with LiteLLM Python library. The following API providers
were used with default parameters:

* Closed source models — OpenAl API, Anthropic API
* Open source models — Hugging Face Inference Providers API

During the evaluation, the images of the plots were encoded with base64 encoding and provided to
the models. Plots were created with DPI = 50. We used setup without context condensation.

H Expert evaluation

We also presented samples of our work to the clinicians. During the first meeting, we received
feedback that our work was interesting but required further improvements. Specifically, the plots
needed to be both stretched, annotated and all 12 leads needed to be included. In addition, the
language and jargon we used could be confusing for specialists. Overall, the clinicians considered 3
out of 5 questions to be answerable and flagged 2 out of 5 as problematic.

At the following meeting, after incorporating experts’ comments into the prompt, we asked a specialist
to provide their opinion on improvements on the exams, using the following criteria:

* Correctness: The answer must be unequivocally accurate according to current medical
knowledge and guidelines.

* No Ambiguity: Only one answer should be valid; distractors must be plausible but clearly
incorrect.

* Precision of Wording: Both questions and answers should be clear, concise, and medically
accurate, avoiding vague phrasing.

* Relevance: The question should be engaging and meaningful to the specialist.

Of the 8 questions evaluated, 7 were rated positively across all four criteria: correctness, lack of
ambiguity, precision of wording, and relevance.

18

	Introduction
	TimeSeriesExamAgent
	Experimental Setup, Results and Discussion
	Limitations and Conclusions
	Related Work
	Generation Agent Workflow
	Generation Prompt
	Example of Question Template
	Example of Natural Language Description
	Examples of Generated Questions

	LLM Verifier
	Validation Prompt

	Other Design Specifics
	G-Eval
	Hyperparameters
	Evaluation Protocol
	Expert evaluation

