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Abstract

Large language models (LLMs) have demon-
strated striking reasoning capability. Recent
works have shown the benefits to LLMs from
fine-tuning golden-standard CoT rationales or
using them as correct examples in few-shot
prompting. While humans can indeed imitate
correct examples, learning from our mistakes is
another vital aspect of human cognition. Hence,
a question naturally arises: can LLMs learn and
benefit from their mistakes, especially for their
reasoning? This study investigates this prob-
lem from both the prompting and model-tuning
perspectives. We begin by introducing COTER-
RORSET, a new benchmark with 609,432 ques-
tions, each designed with both correct and error
references, and demonstrating the types and rea-
sons for making such mistakes. To explore the
effectiveness of those mistakes, we design two
methods: (1) Self-rethinking prompting guides
LLMs to rethink whether they have made simi-
lar previous mistakes; and (2) Mistake tuning
involves finetuning models in both correct and
incorrect reasoning domains, rather than only
tuning models to learn ground truth in tradi-
tional methodology. We conduct a series of
experiments to prove LLMs can obtain benefits
from mistakes. Both of our two methods serve
as potential low-cost solutions to utilize mis-
takes to improve reasoning abilities compared
with the high cost of making hand-crafted refer-
ences. We ultimately make a thorough analysis
of the reasons behind LLMs’ errors, which pro-
vides directions that future research needs to
overcome. COTERRORSET will be published
soon on Anonymity Link.

1 Introduction

LLMs have recently proven strong capabilities
across various reasoning tasks (Huang, 2022; Ko-
jima et al., 2022). (Wei et al., 2022) proposed CoT
prompting, guiding LLMs to think step by step,
which becomes a new paradigm to align LLMs’
reasoning with the human thinking process. Unfor-
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Figure 1: Our two proposed methods to utilize incorrect
CoT rationales: self-rethinking prompting and mistake
tuning. Our experiments demonstrate LLMSs can consis-
tently benefit from incorrect rationales.
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tunately, few studies have focused on fully under-
standing what kinds of intermediate errors occur
in making CoT procedures and whether LLMs can
learn from those mistakes like humans.

Indeed, recognizing and correcting previous mis-
takes serves as a critical component for better learn-
ing and reasoning abilities for our humans (Mercer,
2008; Reich et al., 2023). In order to thoroughly
explore whether LLMs have similar capabilities
of utilizing their errors in LLMs’ reasoning, we
systematically collect a vast dataset of LLMs’ rea-
soning outputs and built COTERRORSET, which
consists of 609,432 questions collected from 1060
tasks across various domains. Each is designed
with both the hand-crafted correct reference and
PalLM2-540B’s incorrect rationales. Additionally,
we provide the LLMs with the correct reference
and annotate the type of each error made and the
potential reasons behind them.

In this study, we introduce two possible solutions
to investigate the potential benefits of mistakes:
self-rethinking prompting and mistake tuning. For
self-rethinking, we first provide LLMs with corre-
sponding 8 incorrect rationales randomly selected
from COTERRORSET as the in-domain knowledge



for all tasks in arithmetic reasoning. Similarly, for
commonsense reasoning, another distinct set of
8 incorrect rationales in the same domain is em-
ployed for all questions in commonsense reasoning.
Then, after each subsequent reasoning, we guide
LLMs to self-rethink whether they make similar
mistakes. If they recognize such errors in their out-
put, they are then instructed to correct their reason-
ing based on the provided domain knowledge. To
prevent excessive computational expenditure and
avoid loops, we set a threshold to limit the num-
ber of times the model can perform self-rethink
and corrections. We conduct a series of experi-
ments and prove that LLMs can utilize mistakes
through self-rethinking, which vastly and consis-
tently outperforms self-consistency under the same
computational costs.

We propose mistake tuning to offer another per-
spective investigating the potential benefits of uti-
lizing mistakes to make LLMs better capable of
reasoning. Mistake tuning incorporates the combi-
nations of both correct references and incorrect ra-
tionales. We finetune two different sizes of Flan-T5
and reveal that tuning on the two domains leads to
consistent improvement across various tasks com-
pared with only tuning on the correct CoT rationale.
Introducing prefixes [CORRECT RATIONALE]
and [INCORRECT RATIONALE] before each cor-
responding rationale enables Flan-T5 to differenti-
ate and contribute to making correct rationales. Our
results have proven that learning from mistakes is
beneficial to LLMs’ reasoning in both prompting
and finetuning.

We conduct comprehensive experiments and
studies to prove the effectiveness of utilizing mis-
takes in LLMs’ reasoning. Aligning self-rethinking
to guide the PalLM2-540B model, there have
been significant improvements with fewer comput-
ing resources observed in areas such as GSM8K
(+6.75%) and LogiQA (+5.69%) compared to self-
consistency. Finetuning Flan-T5-large (780M)
with our principles of mistake tuning, there are
notable improvements compared to finetuning on
only correct rationales, such as GSM8K(+4.08%)
and MathQA (+6.16%).

Overall, this study introduces the COTER-
RORSET, a comprehensive dataset of 609,432 ques-
tions with both correct and incorrect rationales
across various domains. We underscore the benefits
of learning from mistakes to further improve LLMs’
reasoning abilities at low cost by proposing two
strategies: self-rethinking prompting and mistake

tuning, both of which have demonstrated remark-
able improvements. These findings validate the util-
ity of the COTERRORSET as a promising direction
to advance LLMs’ reasoning performance. Further-
more, we delve into COTERRORSET and conduct a
comprehensive analysis of the errors made by CoT,
as well as potential categorizations and reasons for
those mistakes.

2 Related Work

Model Tuning. In the evolving landscape of
Natural Language Processing (NLP), the concept
of mistake tuning has emerged as a significant
advancement in the instruction tuning of Large
Language Models (LLMs). Our experiments with
Flan-T5 demonstrate that finetuning models on a
blend of correct and incorrect rationales, rather
than solely on correct Chain-of-Thought (CoT) ra-
tionales, yields consistent improvements across
a range of tasks. This approach marks a depar-
ture from traditional methods that mainly leverage
human-crowdsourced tasks from sources like TO
(Sanh et al., 2021), FLAN (Wei et al., 2022), and
Naturallnstructions (Mishra et al., 2021), or model-
generated tasks. While human-crowdsourced tasks
guarantee high quality, they are often limited in
scope and require significant human labor. In con-
trast, model-generated tasks, which utilize the capa-
bilities of advanced language models like Pal.LM2-
540B, create extensive sets of instructions, inputs,
and outputs from initial seed sets (Wang et al.,
2022; Peng et al., 2023). Our approach, integrating
insights from the COTERRORSET, applies mistake
tuning to PalLM2-540B, aiming to improve the qual-
ity and expand the scope of instruction-following
data by incorporating a nuanced understanding of
both correct and incorrect reasoning processes. Al-
though concurrent work (An et al., 2023) has done
similar experiments on instruction tuning LLMs to
learn why those rationales are incorrect with our
mistake tuning, they make GPT4 as a teacher model
to finetune the explanations for incorrect answers to
downstream LLMs, which demands computational
resources and associated costs.

CoT Rationales. In the realm of LLMs, the
CoT prompting technique, particularly in zero-shot
scenarios, has revolutionized complex reasoning by
generating intermediary reasoning steps (Wei et al.,
2022). This approach, initiated by simple prompts
like “Let’s think step by step”, has been promis-
ing in enhancing the reasoning abilities of models



like PaLM2-540B (Zhou et al., 2022b). Following
this trend, Zelikman et al. (2022) employed GPT-J
(Wang and Komatsuzaki, 2021) to produce ratio-
nales, selecting the most effective ones. Our study
advances this concept using Pal.M2-540B, focus-
ing on complex logical reasoning and incorporating
insights from the COTERRORSET to understand
and correct reasoning errors.

LLMs with CoT Reasoning. The research con-
ducted by (Wei et al., 2022) on the emergence of
CoT reasoning in large models like PaLM2-540B
has catalyzed new research directions. These ca-
pabilities have been explored across logical rea-
soning (Creswell et al., 2022; Pan et al., 2023;
Lei et al., 2023), commonsense reasoning (Talmor
et al., 2018; Geva et al., 2021; Ahn et al., 2022),
and mathematical reasoning (Miao et al., 2021;
Koncel-Kedziorski et al., 2016; Patel et al., 2021;
Cobbe et al., 2021; Hendrycks et al., 2021). The
exceptional performance of models like PalL M2-
540B has motivated further exploration into opti-
mizing CoT reasoning (Wang et al., 2022; Zhou
et al., 2022a; Creswell and Shanahan, 2022; Li
et al., 2023b; Lightman et al., 2023), particularly
with a focus on error analysis and learning as em-
phasized by our COTERRORSET initiative.

Mathematical Reasoning. Considerable re-
search efforts have been directed toward enhancing
the capabilities of Large Language Models (LLMs)
in solving mathematical problems. This enhance-
ment has been approached from various innova-
tive perspectives. Some studies have focused on
employing voting or verification methods that uti-
lize multiple reasoning paths to improve accuracy
and reliability in solutions (Wang et al., 2022; Li
et al., 2023b; Lightman et al., 2023). Another di-
rection has involved the generation of executable
programs or the integration of plug-in tools to en-
able the execution of external APIs during the rea-
soning process, thereby augmenting the LLMs’
problem-solving capabilities (Jie and Lu, 2023;
Wang et al., 2023a; Gou et al., 2023). Additionally,
there has been a significant focus on data augmen-
tation strategies. These include methods to expand
the training datasets and provide external annota-
tions, which enrich the LLMs’ understanding and
approach towards complex mathematical problems
(Magister et al., 2022; Huang et al., 2022; Ho et al.,
2022; Li et al., 2022; Yuan et al., 2023; Li et al.,
2023a; Luo et al., 2023; Yu et al., 2023; Liang
et al., 2023). Our work, in particular, leverages
the MathQA benchmark of multiple-choice math

problems (Amini et al., 2019). This benchmark
provides a comprehensive and challenging set of
mathematical problems, which serves as an excel-
lent platform for refining and testing the enhanced
problem-solving capabilities of LLMs through CoT
reasoning and mistake tuning methods.

Logical Reasoning. Logical reasoning is a
fundamental element in both human cognition and
Al systems. Various methodologies have been pur-
sued to enhance this capability in Al, including
rule-based and symbolic systems (MacCartney and
Manning, 2007), the finetuning of large language
models (Wang et al., 2018), and a combination of
neural and symbolic strategies (Li and Srikumar,
2019). This intricate, multi-step nature of logical
reasoning tasks makes them suitable for CoT in-
struction tuning. Our work is novel in applying this
technique to logical reasoning with PaLM2-540B,
using a comprehensive dataset of reasoning chains
from COTERRORSET to refine the model’s reason-
ing abilities, thereby improving its performance in
logical reasoning tasks.

3 A Novel Benchmark: COTERRORSET

In order to investigate whether incorrect ratio-
nales can also contribute to LLMs’ reasoning
performance, we introduce COTERRORSET, a
novel benchmark based on the source of COT-
COLLECTION (Kim et al., 2023), built upon various
domains, including multiple-choice QA, extractive
QA, closed-book QA, formal logic, natural lan-
guage inference, and arithmetic reasoning. Those
public available datasets are QASC (Khot et al.,
2020), AQuA (Ling et al., 2017), GSMS8K (Cobbe
et al., 2021), QED (Lamm et al., 2021), Strate-
gyQA (Geva et al., 2021), SenseMaking (Wang
et al.,, 2019), CREAK (Onoe et al., 2021), e-
SNLI (Camburu et al., 2018) and ECQA (Aggarwal
et al., 2021). Each task within this collection is sys-
tematically organized to include a question and
instruction section, followed by an answer paired
with its golden rationale reference.
COTERRORSET diverges from traditional CoT
datasets by employing PalLM2-540B’s mistakes.
We utilized PalLM2 to generate rationales for each
question in the dataset, focusing specifically on
collecting incorrect rationales. Then we provide
PalLM2 with both correct references and its incor-
rect answers to demonstrate and reflect and demon-
strate why it makes such mistakes. This systematic
collection of incorrect rationales can make COTER-



RORSET a promising benchmark in providing fu-
ture improvements from a different perspective.

4 Our Methodology

4.1 Self-rethinking Prompting

Self-rethinking introduces a unique strategy for
prompting LLMs to rethink whether they have
made the same previous mistakes. This process
begins by presenting LLMs with several incorrect
rationales and deducing the reasons for making
such errors. The primary objective of this stage is
to enable the LLM to introspectively deduce and
categorize the nature of mistakes. For example,
PalLM2-540B can recognize specific errors they
made in GSM8K: application of percentage or ra-
tio, making assumptions without basis, etc.

This explicit demonstration of errors, coupled
with the question, golden reference, and incorrect
rationales, is instrumental in enabling the LLM
to recognize specific types of mistakes it tends to
make. Following this, the LLM enters the forward
reasoning phase, where it employs a CoT reason-
ing approach. Here, it logically progresses step-
by-step to solve the problem, actively engaging in
the reasoning process. The core of self-rethinking
lies in the backward-checking stage. In this phase,
the LLM reviews its reasoning chain, but with a
specific focus on the error types it previously iden-
tified. This targeted review helps the LLM to not
just correct random errors but to consciously avoid
repeating the same types of mistakes it has made
in the past. The process includes a loop for error
correction and confirmation. If the LLM finds that
it has repeated any of the previously identified mis-
takes, it revisits the reasoning process to correct
them.

However, the iterative checking process should
have a crucial repeating boundary, denoted as 'k’
iterations. If the LLM’s error-checking and correc-
tion cycles surpass this predefined threshold and
errors still persist, the process concludes under the
assumption that the issue at hand or the error de-
tection might exceed the LLLM’s current capabili-
ties. This constraint prevents the LLM from being
caught in an endless loop of self-rethinking, ensur-
ing the efficiency and practicality of the reasoning
process. In this work, we set k equal to 1 in or-
der to trade between the accuracy and computing
resources.

Algorithm 1 self-rethinking

Correct & Incorrect Rationales = {...}
ErrorCounter < 0
Prompt: Why you made the mistakes?
Mistakes <— Error Type, Demonstrations, Exam-
ples.
Stagel Prompt: Let’s think step by step.
Stage2 Prompt: Do you make the same mis-
takes in Mistakes?
while ErrorCounter < k do
if Yes then
go to Step2
ErrorCounter <— ErrorCounter + 1
else if No then
get the answer
break
end if
end while
if ErrorCounter == k then
Assume: Problem or error detection exceeds
the model’s capabilities.
end if
Prompt: So the final answer is:

4.2 Mistake Tuning

In order to fully investigate the potential utiliza-
tion of incorrect rationales in COTERRORSET, we
propose mistake tuning, instructing LLMs to mem-
orize common mistakes, which can further improve
their abilities to output correct rationales. By sim-
ply appending prefixes [CORRECT RATIONALE]
and [INCORRECT RATIONALE] before corre-
sponding rationales, mistake tuning is built upon
the foundational conclusions of self-rethinking,
where LLLMs can differentiate the implicit reasons
and types of mistakes they made in CoT reasoning.
This process can be formulated as:

p=[Q®S® R, (1)
[pwod|

L=— Z logP(pt|p<t), 2
t=1

Where (), S and R represent the given question,
special prefix and corresponding rationale respec-
tively. & represents the operation of concatenation.

Mistake tuning presents a cost-effective, straight-
forward, and efficient alternative.



S Experiments

In this section, we conducted a series of exper-
iments to compare the proposed self-rethinking
methods with the existing approach on both arith-
metic and commonsense reasoning benchmarks.

5.1 Experiment Setup

We conduct comparisons between self-rethinking
and several other baselines on multiple bench-
marks.

Benchmarks: We consider the following ex-
isting math problems benchmarks designed with
human rationale reference.

* GSM8K benchmark of math word prob-
lems (Cobbe et al., 2021).

* AQuA dataset of algebraic math prob-
lems (Ling et al., 2017).

* MathQA benchmark of multiple-choice math
problems (Amini et al., 2019).

* Openbook benchmark modeled after open
book exams for assessing human understand-
ing of a subject (Mihaylov et al., 2018).

* LogiQA dataset sourced from expert-written
questions for testing human logical reason-
ing (Liu et al., 2020).

* Critical Reasoning in MARB benchmark of
several graduate admission tests, highlighting
the reasoning to assumptions, conclusions and
paradoxes in arguments (Tong et al., 2023).

Models: In order to evaluate self-rethinking’s
effects, we choose PalLM2-540B (Anil et al., 2023)
and GPT4 (OpenAl, 2023) as the baseline model.
PalLM2-540B is a dense left-to-right, decoder-only
language model with 540 billion parameters. It is
pre-trained on a high-quality corpus of 780 billion
tokens with filtered webpages, books, Wikipedia,
news articles, source code, and social media conver-
sations. GPT4 is a large-scale multimodal SOTA
model that exhibits human-level performance on
various tasks.

For mistake tuning, we choose two different-
sized Flan T5 (Chung et al., 2022), which are
specifically designed for instruction tuning strate-
gies. This model excels in understanding and gen-
erating human-like text, demonstrating remarkable
performance across a wide range of natural lan-
guage processing tasks. We choose the common
settings(random seed=42, learning rate=1e-4) and

finetune using the AdamW optimizer. Consider-
ing the vast number of data in AQuA, we only
randomly select 10,000 of them to represent the
differences in tuning on two different domains.

5.2 Self-rethinking Results

Table 1 presents PalLM2-540B’s evaluation re-
sults on chosen benchmarks. The self-rethinking
method shows superior performance with signifi-
cant improvements, especially in GSM8SK, AQuA,
MathQA, and LogiQA, clearly outperforming self-
consistency within the same computing budget.
However, while our method surpasses CoT in per-
formance on the OpenbookQA dataset, it falls
short of achieving self-consistency results. This
can be attributed to the nature of the tasks in this
dataset, which are less focused on logical difficulty
and more on assessing commonsense knowledge.
Unlike the other datasets where logical reason-
ing and mathematical skills are paramount, Open-
bookQA requires a strong understanding of gen-
eral knowledge. Table 3 compares GPT4’s per-
formance of CoT and self-rethinking. The results
demonstrate a notable improvement when using
the self-rethinking method over CoT. These find-
ings suggest that self-rethinking is a more effective
approach for enhancing GPT-4’s performance.

Table 2 presents the 8-shot examples of CoT
and self-rethinking, using the PalLM2-540B model
across four different tasks: GSMS8K, AQuA,
MathQA, and LogiQA. The experiment was de-
signed with a common setting, employing a ran-
dom seed of 42 and selecting 8-shot examples
from the respective training sets. A key part of
the process involved collecting PalLM2-540B’s in-
correct rationales for these examples, which were
then used as learning demonstrations to rethink.
The results show a clear advantage of the self-
rethinking method over the standard 8-shot CoT
approach. These results highlight the efficacy of the
self-rethinking method in improving accuracy in
few-shot learning scenarios for complex problem-
solving tasks.

In conclusion, our self-rethinking method
achieved remarkable accuracy improvements in
most tests, particularly in scenarios that demand
high logical rigor and offer the opportunity to learn
from errors by identifying fixed logical patterns,
especially in arithmetic reasoning tasks. It indi-
cates self-rethinking effectiveness in tasks requir-
ing strong logic and prone to minor errors. Addi-
tionally, the self-rethinking method proves partic-



Methods GSMSK AQuA MathQA OpenbookQA LogiQA CR
Standard (Kojima et al., 2022) 17.06 22.40 27.57 80.92 41.21 24.45
CoT (Wei et al., 2022) 56.29 32.11 30.89 82.66 41.05 51.98
Self-consistency (Wang et al., 2022) 58.38 42.80 41.37 87.61 42.88 22.58
Self-rethinking (Ours) 65.13 44.72 43.95 85.71 49.12 54.53

Table 1: PaLM2-540B’s accuracy on Standard Prompting(Standard) (Kojima et al., 2022), Chain-of-Thought
Prompting(CoT) (Wei et al., 2022), self-consistency (Wang et al., 2022) and our methods, self-rethinking prompting.
In this experiment, we set the times of inference in self-consistency to 3, aligning the computing budget with our
method. Our approach involves an initial zero-shot CoT inference, then rethinking whether this rationale has made
similar errors. This leads to the final answer if no errors are found. If inaccuracies are detected, it combines a
demonstration and the previously suspected erroneous answer for a third inference to arrive at the final answer.
Hence, the overall inference times in our methods are between 2 and 3 times per question, which is still lower than

self-consistency here.

Methods GSMSK AQuA MathQA LogiQA Models Methods GSMSK MathQA AQuA
8-shot CoT 64.56 30.65 36.21 29.57 Flan-T5-large | Standard Finetuning 14.28 42.79 13.10
8-shot self-rethinking 70.15 34.80 40.56 33.64 (780M) Mistake Tuning 18.36 48.95 18.07
Flan-T5-x1 Standard Finetuning 23.81 47.24 17.81

(3B) Mistake Tuning 24.29 52.22 20.99

Table 2: PalLM2-540B’s accuracy results on few-
shot Chain-of-Thought(CoT) and our methods, self-
rethinking. We select 8-shot examples from the cor-
responding trainset. Then we collect PaLM2-540B’s
incorrect rationales of those 8 examples. The part of
the original correct reference is CoT’s demonstrations.
Those generated incorrect rationales serve as demonstra-
tions for the rethink stage.

Methods GSMS8K AQuA OpenbookQA CR

CoT 97.93 88.98 93.21 78.92
self-rethinking | 98.02 91.03 95.07 81.37
Table 3: GPT4 results on zero-shot Chain-of-

Thought(CoT) and our methods, self-rethinking.

ularly beneficial in assisting LLMs in identifying
and rectifying low-level mistakes or misunderstand-
ings that are within the model’s capabilities but
have been previously overlooked. This capability
indicates that self-rethinking can serve as a valu-
able tool in refining the accuracy and reliability of
responses in LLMs, especially in complex problem-
solving contexts.

5.3 Mistake Tuning Results

Table 4 showcases the performance of Flan-T5
models in the context of mistake tuning, highlight-
ing the impact of combining correct and incorrect
rationales. The data presented in Table 4 reveals
significant insights into the performance of Flan-
T5 models under mistake tuning, which involves
integrating both correct and incorrect rationales.
This approach is evident across different model
scales, whether it’s the smaller 780M version or the
larger 3B variant. Notably, in the MathQA domain,
Flan-T5-large(780M) tuned by our methods demon-
strates superior performance compared to PaLM?2-

Table 4: Accuracy of Standard Finetuning models (with
only correct rationales) vs. our methods, mistake tuning
(combined correct and incorrect rationales). Mistake
tuning shows consistent and superior performance com-
pared with only fine-tuned correct CoT rationales.

540B, achieving an accuracy of 48.95% versus
41.37%. This phenomenon suggests that LLMs
can benefit from engaging with incorrect reason-
ing, thereby enhancing their problem-solving and
reasoning capabilities. It extends beyond merely
bolstering the model’s grasp of correct CoT, to also
encompassing the ability to identify and learn from
incorrect rationales.

Furthermore, the expense of obtaining ground
truth or hand-crafted references is significantly
higher compared to generating and collecting in-
correct rationales. This cost disparity underscores
the practical value of our approach, offering a more
cost-effective solution without compromising the
quality of training data for machine learning mod-
els. All mentioned provides a direction for further
work of reasoning, which involves not only en-
hancing the model’s understanding and learning
of correct CoT but also the ability to identify and
learn from incorrect rationales.

6 Further Studies

6.1 Hyperparameter Analysis of Rethinking
Iteration Times

In this section, we conduct experiments to assess
the impact of different rethinking iterations, de-
noted as k, on the performance of our framework.
We evaluate it on two mainstream benchmarks in



the field of mathematics and commonsense rea-
soning, GSM8K and LogiQA. Figure 2 represents
the detailed trend under varying re-thinking times.
Notably, as k increases from 1 to 24, GSMS8K rep-
resents a growth of 8.11% and 12.37% in LogiQA.
It is evident as k increases, both LLMs’ arithmetic
and commonsense reasoning accuracy exhibit an
upward trend. This trend suggests a positive corre-
lation between the number of rethinking iterations
and the overall reasoning abilities. These observa-
tions indicate self-thinking’s potential benefits with
more inference time.
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Figure 2: Accuracy of different re-thinking iterations(k).
As the value of k increases, the overall prediction accu-
racy improves.

6.2 Ablation Study on Rethinking Process

In this ablation study, we examined the impact of
various component combinations in promptings to
guide LLMs to self-rethink. Table 5 shows the
performance of different components. The results
indicate that the inclusion or exclusion of different
components has varying effects on PaLM?2-540B’s
accuracy in domains of GSM8K and LogiQA. How-
ever, the overall performance across various com-
ponents is relatively similar. It performs similarly
well regardless of the specific combination of com-
ponents, indicating good generalizability of the
method. This study suggests our method’s flexibil-
ity and stability in future usage.

7 Unveiling LLM’s Reasoning Errors

In this section, we delve into the detailed types and
underlying reasons that lead to mistakes in LLMs’s
inference process. We sample mistake examples
from GSMB8K and LogiQA to conduct an in-depth
analysis of both arithmetic and commonsense rea-
soning. We put some examples in Appendix A.
For commonsense reasoning, we find errors
like the misinterpretation of facts or concepts usu-

CAT. DEM. COR. INC. | GSMSK LogiQA
v 64.30 50.21
v v 62.70 48.57
v v v 65.70 51.01
v v v v 65.13 49.21

Table 5: Impact of Component Combinations. CAT.
stands for the previous mistakes’ type name, DEM. are
the reasons for making such mistakes, and COR. and
INC. mean corresponding correct and incorrect rationale
examples. All components here are generated by LLM
itself before reasoning.

Calculation
59%

mContext ™ Linguistics Commonsense Logical m Calculation = Numeric Logical

(a) Commonsense Reasnoing (b) Arithmetic Reasoning

Figure 3: PaLM2’s error type distribution in the com-
monsense and arithmetic reasoning task.

ally arise due to the model’s limitations in under-
standing and applying context accurately. This
reveals current LLMs may still fall short of consis-
tently recalling precise factual knowledge within
a given context. Consequently, this underscores
the imperative to advance toward the develop-
ment of Retrieval-Augmented Generation(RAG)
systems (Guu et al., 2020; Mallen et al., 2022),
as they hold the promise of yielding more faithful
and contextually aligned results. Additionally, er-
rors stemming from logical fallacies or incorrect
inferences reveal LLMs’ reliance on pattern recog-
nition over logical reasoning, sometimes leading
them to make logically inconsistent or unsupported
connections by the given facts.
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Figure 4: Our pipeline for clustering PaLM2-540B’s
mistakes.

Concerning arithmetic reasoning, we observe
that the error types identified by LLMs are notably
more intricate and diverse compared to those asso-
ciated with commonsense reasoning. The complex-
ity presents challenges in conducting a thorough
analysis. Unfortunately, little previous work has



explored what kinds of mistakes LLMs make dur-
ing inference. In order to tackle this issue and gain
a more overarching understanding of LLMs’ error
types, we utilize an LLM-based clustering mecha-
nism shown in Figure 4 to match diverse error types
into more general categories. To be specific, we be-
gin by extracting the specific error type names from
each output of LLM. Subsequently, we input all the
extracted names into the LLMs and prompt them to
generate more general categories that encompass
the entire spectrum of error names. Following this
automated clustering process, we meticulously re-
view each cluster, making necessary adjustments to
refine the matching results. Finally, we distill the
diverse error types into several abstract categories,
such as calculation error, numeric error, and logical
error in domains of arithmetic reasoning. Detailed
content is shown in Appendix B.

As shown in Figure 3, the most errors made by
LLMs in arithmetic reasoning are about calculation.
This can be attributed to the different nature of
LLMs compared to other tools like calculators. To
address this issue, Chen et al. (2022)’s suggestion
using Program-of-Thought (PoT) is a promising
approach to instruct LLMs to generate a segment
of code to solve the given problem, resulting in
more accurate calculation results. Furthermore,
it’s important to note that logical error is also a
type of error that LLMs always suffer from. Com-
pared with calculation errors and numeric errors,
the causes of logical errors are more complicated
and nuanced. For instance, errors like misinterpret-
ing given data or misapplying arithmetic operations
reveal a lack of depth in understanding mathemati-
cal relationships. This can result from the model’s
limitations in comprehending the nuances of math-
ematical concepts or its inability to correctly infer
the needed function from the context of the ques-
tion. In the future, more fine-grained analysis and
methods are needed to address such complex logi-
cal errors in arithmetic reasoning.

For commonsense reasoning, results in Figure 3
demonstrate that context understanding is the most
problematic issue. This problem is intricate and dif-
ficult to tackle since this can result from the model’s
limitations in comprehending the nuances of con-
text information and the context’s relationship with
its own knowledge. Wang et al. (2023b) aligns
reward models to enhance LLMs’ understanding
of context information and successfully enhances
the model’s reasoning abilities, which is consistent
with our findings. Table 6 demonstrates one ex-

ample where our methods guide PalLM2-540B to
change their understanding of the context based on
provided mistake examples.

True or False? When one consumes the leg
meat of a swine, they are eating Ham.
CoT Reasoning: The leg meat of a swing is
typically referred to as pork. Ham is specifi-
cally the cured or smoked hind leg of the pig.
So the answer is False.
self-rethinking(our method):

Stepl ... So the answer is False.

Step2 Do I make the same mistakes in
those examples:...?7

Step3 Swine is pig and ham comes from
pig’s legs. The context here should not be so
rigorous. So the final answer is: True

Table 6: An example where self-rethinking guides
PalLM2-540B to learn from mistakes to better under-
stand the context.

8 Conclusions and Future Work

In this work, we explore whether LLMs can learn
from their mistakes. In order to investigate LLMs’
abilities to differentiate and learn from mistakes,
we introduce COTERRORSET, a novel benchmark
collecting both correct and incorrect CoT rationales
across various domains and designed with demon-
strations for making errors. We propose two possi-
ble solutions to expose the effects of mistakes from
different perspectives: self-rethinking and mistake
tuning. Both of them have achieved consistent and
significant improvements, which demonstrates the
potential benefits of learning from reasoning er-
rors. In the last, we conduct a comprehensive and
detailed analysis of LLMs’ common mistakes in
both arithmetic and commonsense reasoning. The
findings will provide a clear direction for future
improvements.

For future work, we envision proposing corre-
sponding algorithms or loss functions to learn im-
plicit information from mistakes. The primary in-
tent of this work is to provide a new paradigm
so there are still a lot of improvements that can
be down following this work. For example, in-
corporating contrastive learning to differentiate
correct references and errors is intuitive to make
more improvements. Also, some memorization and
retrieval-augmented skills can help models benefit
from mistakes similar to each question.



Limitations

It is a pity that we can not do very large-scale
mistake tunings considering the computational re-
sources. As the scaling effects proposed in existing
previous work, models over 100B tend to have
leap effects after instruction tuning in the reason-
ing domain. Moreover, we surprisingly find that
most LLMs’ end-end unsupervised clustering abil-
ities, especially API-based LL.Ms are still under-
explored. This work still lacks large-scale clus-
tering for all errors in COTERRORSET to broadly
investigate and analyze error types.
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Table 7: Examples of Error Types in Arithmetic Reasoning. All contents are generated by PaLM?2-540B itself.

Error name: Misinterpretation of Given Data
Error type: Logical

— Example: Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in
May. How many clips did Natalia sell altogether in April and May?

— Correct Answer: Natalia sold 48/2 = 24 clips in May. Natalia sold 48424 =72 clips altogether in
April and May.

— Incorrect Rationale: Natalia sold 48 * 2 = 96 clips in May. Natalia sold 48+96 = 144 clips altogether
in April and May.

— Demonstration: Mistaking multiplication for division led to a significant overestimate of the total
clips sold.

Error name: Misapplication of Arithmetic Operation
Error type: Calculation

— Example: Weng earns $12 an hour for babysitting. Yesterday, she just did 50 minutes of babysitting.
How much did she earn?

— Correct Answer: Weng earns 12/60 = $0.2 per minute. Working 50 minutes, she earned 0.2 x 50 =
$10.

— Incorrect Rationale: Weng earns 12/60 = $2 per minute. Working 50 minutes, she earned 2 x 50 =
$100.

— Demonstration: Confusing the rate per hour with the rate per minute led to a substantial overestima-
tion of earnings.

Error name: Numerical
Error type: Numeric

— Example: The chicken crossed the road to get to the other side twice for the thrill of it. The first
time, it had to dodge 23 speeding cars. The second time, a person tried to catch it and accidentally
pulled out twice as many feathers as the number of cars the chicken had dodged. The chicken had
5263 feathers before its thrill-seeking road crossings. How many feathers did it have afterward?

— Correct Answer: The chicken lost 23 * 2 = «23*2=46»46 feathers on its second road crossing., it
had 5263 - 46 = «5263-46=5217»5217 feathers after crossing the road twice.

— Incorrect Rationale: The chicken lost 23 * 2 = «23%2=46»46 feathers on its second road crossing.,
it had 5263 - 46 = «5263-52=5211»5211 feathers after crossing the road twice.

— Demonstration: 1. The correct answer is 5217, while your answer is 5211. 2. Your answer is wrong
because you subtracted 52 instead of 46. 3. The type name of the incorrect answer is numerical.
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Table 8: Examples of Error Types in Commonsense Reasoning. All contents are generated by PaLM?2-540B itself.

Error name: Logical Fallacy or Incorrect Inference
Error type: Logical

Example: "When standing miles away from Mount Rushmore"
Correct Rationale: Objects appear smaller when viewed from a greater distance.

Incorrect Rationale: "The mountains do not look smaller when standing miles away from Mount Rushmore. They look
larger." (Logical fallacy)

Demonstration: 1. The correct rationale is that objects appear smaller when viewed from a greater distance, whereas the
incorrect rationale states the opposite. 2. This is a logical fallacy as it contradicts a basic principle of perception. 3. The
type name of the incorrect rationale is logical.

Error name: Incorrect Assumptions or Generalizations
Error type: Logical

Example: "Poison causes harm to which of the following?"
Correct Rationale: Poison affects living organisms.
Incorrect Rationale: "Robot do not get hurt by poison." (Incorrect generalization about the effects of poison)

Demonstration: 1. The correct rationale is that poison affects living organisms, but the incorrect rationale generalizes
that robots are immune to poison. 2. This is an incorrect generalization because robots, being non-living entities, are not
subject to biological effects. 3. The type name of the incorrect rationale is logical.

Error name: Misunderstanding Literal vs. Metaphorical Language
Error type: Linguistics

Example: "When food is reduced in the stomach"
Correct Rationale: Digestion involves the breakdown of food by stomach acid.
Incorrect Rationale: "Choice D is incorrect because it is not a fact." (Misunderstanding metaphorical language)

Demonstration: 1. The correct rationale is about the literal process of digestion, whereas the incorrect rationale
misinterprets the metaphorical language. 2. This demonstrates a misunderstanding of metaphorical language. 3. The type
name of the incorrect rationale is linguistics.

Error name: Incorrect Application of Knowledge
Error type: Commonsense

Example: "Stars are"
Correct Rationale: Stars are massive celestial bodies made of gases.
Incorrect Rationale: "Stars are not made of warm lights that float." (Incorrectly applying knowledge about stars)

Demonstration: 1. The correct rationale states that stars are massive celestial bodies made of gases, but the incorrect
rationale describes them as warm lights that float. 2. This is an incorrect application of knowledge, as it fails to accurately
describe the nature of stars. 3. The type name of the incorrect rationale is commonsense.

Error name: Factual Inaccuracy
Error type: Commonsense

Example: "You can make a telescope with a"
Correct Rationale: A telescope requires specific optical elements to function.

Incorrect Rationale: "A telescope needs a lens and a magnifying glass is a lens, so glass is a good choice." (Factually
inaccurate about how telescopes are made)

Demonstration: 1. The correct rationale is that a telescope requires specific optical elements, whereas the incorrect
rationale assumes any lens, like a magnifying glass, can make a telescope. 2. This shows a factual inaccuracy in
understanding how telescopes are constructed. 3. The type name of the incorrect rationale is commonsense.

Error type: Misunderstanding Context or Relevance
Error type: Context

Example: "an inherited characteristic found on all mammals is"
Correct Rationale: Inherited characteristics in mammals include features like fur.
Incorrect Rationale: "Shoes are not found on all mammals" (Misunderstanding the context of biological characteristics)

Demonstration: 1. The correct rationale focuses on relevant inherited physical traits like fur. 2. This error illustrates a
clear lack of understanding of the context. 3. The type name of the incorrect rationale should be context.
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Table 9: PalLM2-540B’s Understanding and Definitions for Error Types. All contents are generated by itself after
providing its mistakes and corresponding golden-standard references.

Error Type Definition

Calculation Mistakes or inaccuracies that occur during the process of performing math-
ematical calculations. These errors can arise from various sources and can
occur at any stage of a mathematical problem-solving process.

Numeric Numeric errors in the context of mathematical reasoning refer to inaccura-
cies that arise from the representation and manipulation of numerical values.
These errors can occur at various stages of mathematical computations and
can result from limitations in the precision of the representation of real
numbers or mistakes in handling numerical data.

Logical Logical errors involve mistakes in the overall reasoning or strategy used to
solve a mathematical problem. This type of error may not be immediately
apparent during the calculation process but can lead to incorrect final results.
It could include using an incorrect formula or assumptions, misunderstand-
ing the problem statement, or applying the wrong concept.

Linguistics Errors in linguistics involve inaccuracies or mistakes in the use of language.
These can include grammatical errors, misuse of vocabulary, incorrect syn-
tax, or problems in semantics. Linguistic errors may arise from a lack of
understanding of the rules of a language, misinterpretation of meaning, or
the inability to effectively convey a message in a given language. Such
errors can affect the clarity, coherence, and overall effectiveness of commu-
nication.

Commonsense Commonsense errors refer to mistakes or inaccuracies that occur in the
application of general world knowledge or everyday reasoning. These errors
can arise from misconceptions, flawed logic, or misunderstandings of basic
principles that are widely accepted as common knowledge. Commonsense
errors often lead to conclusions or decisions that, upon closer examination,
are illogical or inconsistent with general understanding of the world.

Context Errors of misunderstanding context or relevance occur when there is a
failure to correctly interpret or apply the relevant information in a given
scenario. This type of error typically involves overlooking key aspects of
a context, making inappropriate generalizations, or failing to distinguish
between literal and metaphorical language. These errors can significantly
alter the intended meaning or relevance of a response in reasoning tasks.
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