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Abstract

Large language models (LLMs) have demon-001
strated striking reasoning capability. Recent002
works have shown the benefits to LLMs from003
fine-tuning golden-standard CoT rationales or004
using them as correct examples in few-shot005
prompting. While humans can indeed imitate006
correct examples, learning from our mistakes is007
another vital aspect of human cognition. Hence,008
a question naturally arises: can LLMs learn and009
benefit from their mistakes, especially for their010
reasoning? This study investigates this prob-011
lem from both the prompting and model-tuning012
perspectives. We begin by introducing COTER-013
RORSET, a new benchmark with 609,432 ques-014
tions, each designed with both correct and error015
references, and demonstrating the types and rea-016
sons for making such mistakes. To explore the017
effectiveness of those mistakes, we design two018
methods: (1) Self-rethinking prompting guides019
LLMs to rethink whether they have made simi-020
lar previous mistakes; and (2) Mistake tuning021
involves finetuning models in both correct and022
incorrect reasoning domains, rather than only023
tuning models to learn ground truth in tradi-024
tional methodology. We conduct a series of025
experiments to prove LLMs can obtain benefits026
from mistakes. Both of our two methods serve027
as potential low-cost solutions to utilize mis-028
takes to improve reasoning abilities compared029
with the high cost of making hand-crafted refer-030
ences. We ultimately make a thorough analysis031
of the reasons behind LLMs’ errors, which pro-032
vides directions that future research needs to033
overcome. COTERRORSET will be published034
soon on Anonymity Link.035

1 Introduction036

LLMs have recently proven strong capabilities037

across various reasoning tasks (Huang, 2022; Ko-038

jima et al., 2022). (Wei et al., 2022) proposed CoT039

prompting, guiding LLMs to think step by step,040

which becomes a new paradigm to align LLMs’041

reasoning with the human thinking process. Unfor-042

Figure 1: Our two proposed methods to utilize incorrect
CoT rationales: self-rethinking prompting and mistake
tuning. Our experiments demonstrate LLMs can consis-
tently benefit from incorrect rationales.

tunately, few studies have focused on fully under- 043

standing what kinds of intermediate errors occur 044

in making CoT procedures and whether LLMs can 045

learn from those mistakes like humans. 046

Indeed, recognizing and correcting previous mis- 047

takes serves as a critical component for better learn- 048

ing and reasoning abilities for our humans (Mercer, 049

2008; Reich et al., 2023). In order to thoroughly 050

explore whether LLMs have similar capabilities 051

of utilizing their errors in LLMs’ reasoning, we 052

systematically collect a vast dataset of LLMs’ rea- 053

soning outputs and built COTERRORSET, which 054

consists of 609,432 questions collected from 1060 055

tasks across various domains. Each is designed 056

with both the hand-crafted correct reference and 057

PaLM2-540B’s incorrect rationales. Additionally, 058

we provide the LLMs with the correct reference 059

and annotate the type of each error made and the 060

potential reasons behind them. 061

In this study, we introduce two possible solutions 062

to investigate the potential benefits of mistakes: 063

self-rethinking prompting and mistake tuning. For 064

self-rethinking, we first provide LLMs with corre- 065

sponding 8 incorrect rationales randomly selected 066

from COTERRORSET as the in-domain knowledge 067
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for all tasks in arithmetic reasoning. Similarly, for068

commonsense reasoning, another distinct set of069

8 incorrect rationales in the same domain is em-070

ployed for all questions in commonsense reasoning.071

Then, after each subsequent reasoning, we guide072

LLMs to self-rethink whether they make similar073

mistakes. If they recognize such errors in their out-074

put, they are then instructed to correct their reason-075

ing based on the provided domain knowledge. To076

prevent excessive computational expenditure and077

avoid loops, we set a threshold to limit the num-078

ber of times the model can perform self-rethink079

and corrections. We conduct a series of experi-080

ments and prove that LLMs can utilize mistakes081

through self-rethinking, which vastly and consis-082

tently outperforms self-consistency under the same083

computational costs.084

We propose mistake tuning to offer another per-085

spective investigating the potential benefits of uti-086

lizing mistakes to make LLMs better capable of087

reasoning. Mistake tuning incorporates the combi-088

nations of both correct references and incorrect ra-089

tionales. We finetune two different sizes of Flan-T5090

and reveal that tuning on the two domains leads to091

consistent improvement across various tasks com-092

pared with only tuning on the correct CoT rationale.093

Introducing prefixes [CORRECT RATIONALE]094

and [INCORRECT RATIONALE] before each cor-095

responding rationale enables Flan-T5 to differenti-096

ate and contribute to making correct rationales. Our097

results have proven that learning from mistakes is098

beneficial to LLMs’ reasoning in both prompting099

and finetuning.100

We conduct comprehensive experiments and101

studies to prove the effectiveness of utilizing mis-102

takes in LLMs’ reasoning. Aligning self-rethinking103

to guide the PaLM2-540B model, there have104

been significant improvements with fewer comput-105

ing resources observed in areas such as GSM8K106

(+6.75%) and LogiQA (+5.69%) compared to self-107

consistency. Finetuning Flan-T5-large (780M)108

with our principles of mistake tuning, there are109

notable improvements compared to finetuning on110

only correct rationales, such as GSM8K(+4.08%)111

and MathQA(+6.16%).112

Overall, this study introduces the COTER-113

RORSET, a comprehensive dataset of 609,432 ques-114

tions with both correct and incorrect rationales115

across various domains. We underscore the benefits116

of learning from mistakes to further improve LLMs’117

reasoning abilities at low cost by proposing two118

strategies: self-rethinking prompting and mistake119

tuning, both of which have demonstrated remark- 120

able improvements. These findings validate the util- 121

ity of the COTERRORSET as a promising direction 122

to advance LLMs’ reasoning performance. Further- 123

more, we delve into COTERRORSET and conduct a 124

comprehensive analysis of the errors made by CoT, 125

as well as potential categorizations and reasons for 126

those mistakes. 127

2 Related Work 128

Model Tuning. In the evolving landscape of 129

Natural Language Processing (NLP), the concept 130

of mistake tuning has emerged as a significant 131

advancement in the instruction tuning of Large 132

Language Models (LLMs). Our experiments with 133

Flan-T5 demonstrate that finetuning models on a 134

blend of correct and incorrect rationales, rather 135

than solely on correct Chain-of-Thought (CoT) ra- 136

tionales, yields consistent improvements across 137

a range of tasks. This approach marks a depar- 138

ture from traditional methods that mainly leverage 139

human-crowdsourced tasks from sources like T0 140

(Sanh et al., 2021), FLAN (Wei et al., 2022), and 141

NaturalInstructions (Mishra et al., 2021), or model- 142

generated tasks. While human-crowdsourced tasks 143

guarantee high quality, they are often limited in 144

scope and require significant human labor. In con- 145

trast, model-generated tasks, which utilize the capa- 146

bilities of advanced language models like PaLM2- 147

540B, create extensive sets of instructions, inputs, 148

and outputs from initial seed sets (Wang et al., 149

2022; Peng et al., 2023). Our approach, integrating 150

insights from the COTERRORSET, applies mistake 151

tuning to PaLM2-540B, aiming to improve the qual- 152

ity and expand the scope of instruction-following 153

data by incorporating a nuanced understanding of 154

both correct and incorrect reasoning processes. Al- 155

though concurrent work (An et al., 2023) has done 156

similar experiments on instruction tuning LLMs to 157

learn why those rationales are incorrect with our 158

mistake tuning, they make GPT4 as a teacher model 159

to finetune the explanations for incorrect answers to 160

downstream LLMs, which demands computational 161

resources and associated costs. 162

CoT Rationales. In the realm of LLMs, the 163

CoT prompting technique, particularly in zero-shot 164

scenarios, has revolutionized complex reasoning by 165

generating intermediary reasoning steps (Wei et al., 166

2022). This approach, initiated by simple prompts 167

like “Let’s think step by step”, has been promis- 168

ing in enhancing the reasoning abilities of models 169
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like PaLM2-540B (Zhou et al., 2022b). Following170

this trend, Zelikman et al. (2022) employed GPT-J171

(Wang and Komatsuzaki, 2021) to produce ratio-172

nales, selecting the most effective ones. Our study173

advances this concept using PaLM2-540B, focus-174

ing on complex logical reasoning and incorporating175

insights from the COTERRORSET to understand176

and correct reasoning errors.177

LLMs with CoT Reasoning. The research con-178

ducted by (Wei et al., 2022) on the emergence of179

CoT reasoning in large models like PaLM2-540B180

has catalyzed new research directions. These ca-181

pabilities have been explored across logical rea-182

soning (Creswell et al., 2022; Pan et al., 2023;183

Lei et al., 2023), commonsense reasoning (Talmor184

et al., 2018; Geva et al., 2021; Ahn et al., 2022),185

and mathematical reasoning (Miao et al., 2021;186

Koncel-Kedziorski et al., 2016; Patel et al., 2021;187

Cobbe et al., 2021; Hendrycks et al., 2021). The188

exceptional performance of models like PaLM2-189

540B has motivated further exploration into opti-190

mizing CoT reasoning (Wang et al., 2022; Zhou191

et al., 2022a; Creswell and Shanahan, 2022; Li192

et al., 2023b; Lightman et al., 2023), particularly193

with a focus on error analysis and learning as em-194

phasized by our COTERRORSET initiative.195

Mathematical Reasoning. Considerable re-196

search efforts have been directed toward enhancing197

the capabilities of Large Language Models (LLMs)198

in solving mathematical problems. This enhance-199

ment has been approached from various innova-200

tive perspectives. Some studies have focused on201

employing voting or verification methods that uti-202

lize multiple reasoning paths to improve accuracy203

and reliability in solutions (Wang et al., 2022; Li204

et al., 2023b; Lightman et al., 2023). Another di-205

rection has involved the generation of executable206

programs or the integration of plug-in tools to en-207

able the execution of external APIs during the rea-208

soning process, thereby augmenting the LLMs’209

problem-solving capabilities (Jie and Lu, 2023;210

Wang et al., 2023a; Gou et al., 2023). Additionally,211

there has been a significant focus on data augmen-212

tation strategies. These include methods to expand213

the training datasets and provide external annota-214

tions, which enrich the LLMs’ understanding and215

approach towards complex mathematical problems216

(Magister et al., 2022; Huang et al., 2022; Ho et al.,217

2022; Li et al., 2022; Yuan et al., 2023; Li et al.,218

2023a; Luo et al., 2023; Yu et al., 2023; Liang219

et al., 2023). Our work, in particular, leverages220

the MathQA benchmark of multiple-choice math221

problems (Amini et al., 2019). This benchmark 222

provides a comprehensive and challenging set of 223

mathematical problems, which serves as an excel- 224

lent platform for refining and testing the enhanced 225

problem-solving capabilities of LLMs through CoT 226

reasoning and mistake tuning methods. 227

Logical Reasoning. Logical reasoning is a 228

fundamental element in both human cognition and 229

AI systems. Various methodologies have been pur- 230

sued to enhance this capability in AI, including 231

rule-based and symbolic systems (MacCartney and 232

Manning, 2007), the finetuning of large language 233

models (Wang et al., 2018), and a combination of 234

neural and symbolic strategies (Li and Srikumar, 235

2019). This intricate, multi-step nature of logical 236

reasoning tasks makes them suitable for CoT in- 237

struction tuning. Our work is novel in applying this 238

technique to logical reasoning with PaLM2-540B, 239

using a comprehensive dataset of reasoning chains 240

from COTERRORSET to refine the model’s reason- 241

ing abilities, thereby improving its performance in 242

logical reasoning tasks. 243

3 A Novel Benchmark: COTERRORSET 244

In order to investigate whether incorrect ratio- 245

nales can also contribute to LLMs’ reasoning 246

performance, we introduce COTERRORSET, a 247

novel benchmark based on the source of COT- 248

COLLECTION (Kim et al., 2023), built upon various 249

domains, including multiple-choice QA, extractive 250

QA, closed-book QA, formal logic, natural lan- 251

guage inference, and arithmetic reasoning. Those 252

public available datasets are QASC (Khot et al., 253

2020), AQuA (Ling et al., 2017), GSM8K (Cobbe 254

et al., 2021), QED (Lamm et al., 2021), Strate- 255

gyQA (Geva et al., 2021), SenseMaking (Wang 256

et al., 2019), CREAK (Onoe et al., 2021), e- 257

SNLI (Camburu et al., 2018) and ECQA (Aggarwal 258

et al., 2021). Each task within this collection is sys- 259

tematically organized to include a question and 260

instruction section, followed by an answer paired 261

with its golden rationale reference. 262

COTERRORSET diverges from traditional CoT 263

datasets by employing PaLM2-540B’s mistakes. 264

We utilized PaLM2 to generate rationales for each 265

question in the dataset, focusing specifically on 266

collecting incorrect rationales. Then we provide 267

PaLM2 with both correct references and its incor- 268

rect answers to demonstrate and reflect and demon- 269

strate why it makes such mistakes. This systematic 270

collection of incorrect rationales can make COTER- 271
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RORSET a promising benchmark in providing fu-272

ture improvements from a different perspective.273

4 Our Methodology274

4.1 Self-rethinking Prompting275

Self-rethinking introduces a unique strategy for276

prompting LLMs to rethink whether they have277

made the same previous mistakes. This process278

begins by presenting LLMs with several incorrect279

rationales and deducing the reasons for making280

such errors. The primary objective of this stage is281

to enable the LLM to introspectively deduce and282

categorize the nature of mistakes. For example,283

PaLM2-540B can recognize specific errors they284

made in GSM8K: application of percentage or ra-285

tio, making assumptions without basis, etc.286

This explicit demonstration of errors, coupled287

with the question, golden reference, and incorrect288

rationales, is instrumental in enabling the LLM289

to recognize specific types of mistakes it tends to290

make. Following this, the LLM enters the forward291

reasoning phase, where it employs a CoT reason-292

ing approach. Here, it logically progresses step-293

by-step to solve the problem, actively engaging in294

the reasoning process. The core of self-rethinking295

lies in the backward-checking stage. In this phase,296

the LLM reviews its reasoning chain, but with a297

specific focus on the error types it previously iden-298

tified. This targeted review helps the LLM to not299

just correct random errors but to consciously avoid300

repeating the same types of mistakes it has made301

in the past. The process includes a loop for error302

correction and confirmation. If the LLM finds that303

it has repeated any of the previously identified mis-304

takes, it revisits the reasoning process to correct305

them.306

However, the iterative checking process should307

have a crucial repeating boundary, denoted as ’k’308

iterations. If the LLM’s error-checking and correc-309

tion cycles surpass this predefined threshold and310

errors still persist, the process concludes under the311

assumption that the issue at hand or the error de-312

tection might exceed the LLM’s current capabili-313

ties. This constraint prevents the LLM from being314

caught in an endless loop of self-rethinking, ensur-315

ing the efficiency and practicality of the reasoning316

process. In this work, we set k equal to 1 in or-317

der to trade between the accuracy and computing318

resources.319

Algorithm 1 self-rethinking

Correct & Incorrect Rationales = {...}
ErrorCounter← 0
Prompt: Why you made the mistakes?
Mistakes← Error Type, Demonstrations, Exam-
ples.
Stage1 Prompt: Let’s think step by step.
Stage2 Prompt: Do you make the same mis-
takes in Mistakes?
while ErrorCounter < k do

if Yes then
go to Step2
ErrorCounter← ErrorCounter + 1

else if No then
get the answer
break

end if
end while
if ErrorCounter == k then

Assume: Problem or error detection exceeds
the model’s capabilities.

end if
Prompt: So the final answer is:

4.2 Mistake Tuning 320

In order to fully investigate the potential utiliza- 321

tion of incorrect rationales in COTERRORSET, we 322

propose mistake tuning, instructing LLMs to mem- 323

orize common mistakes, which can further improve 324

their abilities to output correct rationales. By sim- 325

ply appending prefixes [CORRECT RATIONALE] 326

and [INCORRECT RATIONALE] before corre- 327

sponding rationales, mistake tuning is built upon 328

the foundational conclusions of self-rethinking, 329

where LLMs can differentiate the implicit reasons 330

and types of mistakes they made in CoT reasoning. 331

This process can be formulated as: 332

p = [Q⊕ S ⊕R], (1) 333

L = −
|pwod|∑
t=1

logP (pt|p<t), (2) 334

Where Q, S and R represent the given question, 335

special prefix and corresponding rationale respec- 336

tively. ⊕ represents the operation of concatenation. 337

Mistake tuning presents a cost-effective, straight- 338

forward, and efficient alternative. 339
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5 Experiments340

In this section, we conducted a series of exper-341

iments to compare the proposed self-rethinking342

methods with the existing approach on both arith-343

metic and commonsense reasoning benchmarks.344

5.1 Experiment Setup345

We conduct comparisons between self-rethinking346

and several other baselines on multiple bench-347

marks.348

Benchmarks: We consider the following ex-349

isting math problems benchmarks designed with350

human rationale reference.351

• GSM8K benchmark of math word prob-352

lems (Cobbe et al., 2021).353

• AQuA dataset of algebraic math prob-354

lems (Ling et al., 2017).355

• MathQA benchmark of multiple-choice math356

problems (Amini et al., 2019).357

• Openbook benchmark modeled after open358

book exams for assessing human understand-359

ing of a subject (Mihaylov et al., 2018).360

• LogiQA dataset sourced from expert-written361

questions for testing human logical reason-362

ing (Liu et al., 2020).363

• Critical Reasoning in MARB benchmark of364

several graduate admission tests, highlighting365

the reasoning to assumptions, conclusions and366

paradoxes in arguments (Tong et al., 2023).367

Models: In order to evaluate self-rethinking’s368

effects, we choose PaLM2-540B (Anil et al., 2023)369

and GPT4 (OpenAI, 2023) as the baseline model.370

PaLM2-540B is a dense left-to-right, decoder-only371

language model with 540 billion parameters. It is372

pre-trained on a high-quality corpus of 780 billion373

tokens with filtered webpages, books, Wikipedia,374

news articles, source code, and social media conver-375

sations. GPT4 is a large-scale multimodal SOTA376

model that exhibits human-level performance on377

various tasks.378

For mistake tuning, we choose two different-379

sized Flan T5 (Chung et al., 2022), which are380

specifically designed for instruction tuning strate-381

gies. This model excels in understanding and gen-382

erating human-like text, demonstrating remarkable383

performance across a wide range of natural lan-384

guage processing tasks. We choose the common385

settings(random seed=42, learning rate=1e-4) and386

finetune using the AdamW optimizer. Consider- 387

ing the vast number of data in AQuA, we only 388

randomly select 10,000 of them to represent the 389

differences in tuning on two different domains. 390

5.2 Self-rethinking Results 391

Table 1 presents PaLM2-540B’s evaluation re- 392

sults on chosen benchmarks. The self-rethinking 393

method shows superior performance with signifi- 394

cant improvements, especially in GSM8K, AQuA, 395

MathQA, and LogiQA, clearly outperforming self- 396

consistency within the same computing budget. 397

However, while our method surpasses CoT in per- 398

formance on the OpenbookQA dataset, it falls 399

short of achieving self-consistency results. This 400

can be attributed to the nature of the tasks in this 401

dataset, which are less focused on logical difficulty 402

and more on assessing commonsense knowledge. 403

Unlike the other datasets where logical reason- 404

ing and mathematical skills are paramount, Open- 405

bookQA requires a strong understanding of gen- 406

eral knowledge. Table 3 compares GPT4’s per- 407

formance of CoT and self-rethinking. The results 408

demonstrate a notable improvement when using 409

the self-rethinking method over CoT. These find- 410

ings suggest that self-rethinking is a more effective 411

approach for enhancing GPT-4’s performance. 412

Table 2 presents the 8-shot examples of CoT 413

and self-rethinking, using the PaLM2-540B model 414

across four different tasks: GSM8K, AQuA, 415

MathQA, and LogiQA. The experiment was de- 416

signed with a common setting, employing a ran- 417

dom seed of 42 and selecting 8-shot examples 418

from the respective training sets. A key part of 419

the process involved collecting PaLM2-540B’s in- 420

correct rationales for these examples, which were 421

then used as learning demonstrations to rethink. 422

The results show a clear advantage of the self- 423

rethinking method over the standard 8-shot CoT 424

approach. These results highlight the efficacy of the 425

self-rethinking method in improving accuracy in 426

few-shot learning scenarios for complex problem- 427

solving tasks. 428

In conclusion, our self-rethinking method 429

achieved remarkable accuracy improvements in 430

most tests, particularly in scenarios that demand 431

high logical rigor and offer the opportunity to learn 432

from errors by identifying fixed logical patterns, 433

especially in arithmetic reasoning tasks. It indi- 434

cates self-rethinking effectiveness in tasks requir- 435

ing strong logic and prone to minor errors. Addi- 436

tionally, the self-rethinking method proves partic- 437
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Methods GSM8K AQuA MathQA OpenbookQA LogiQA CR
Standard (Kojima et al., 2022) 17.06 22.40 27.57 80.92 41.21 24.45

CoT (Wei et al., 2022) 56.29 32.11 30.89 82.66 41.05 51.98
Self-consistency (Wang et al., 2022) 58.38 42.80 41.37 87.61 42.88 22.58

Self-rethinking (Ours) 65.13 44.72 43.95 85.71 49.12 54.53

Table 1: PaLM2-540B’s accuracy on Standard Prompting(Standard) (Kojima et al., 2022), Chain-of-Thought
Prompting(CoT) (Wei et al., 2022), self-consistency (Wang et al., 2022) and our methods, self-rethinking prompting.
In this experiment, we set the times of inference in self-consistency to 3, aligning the computing budget with our
method. Our approach involves an initial zero-shot CoT inference, then rethinking whether this rationale has made
similar errors. This leads to the final answer if no errors are found. If inaccuracies are detected, it combines a
demonstration and the previously suspected erroneous answer for a third inference to arrive at the final answer.
Hence, the overall inference times in our methods are between 2 and 3 times per question, which is still lower than
self-consistency here.

Methods GSM8K AQuA MathQA LogiQA
8-shot CoT 64.56 30.65 36.21 29.57

8-shot self-rethinking 70.15 34.80 40.56 33.64

Table 2: PaLM2-540B’s accuracy results on few-
shot Chain-of-Thought(CoT) and our methods, self-
rethinking. We select 8-shot examples from the cor-
responding trainset. Then we collect PaLM2-540B’s
incorrect rationales of those 8 examples. The part of
the original correct reference is CoT’s demonstrations.
Those generated incorrect rationales serve as demonstra-
tions for the rethink stage.

Methods GSM8K AQuA OpenbookQA CR
CoT 97.93 88.98 93.21 78.92

self-rethinking 98.02 91.03 95.07 81.37

Table 3: GPT4’ results on zero-shot Chain-of-
Thought(CoT) and our methods, self-rethinking.

ularly beneficial in assisting LLMs in identifying438

and rectifying low-level mistakes or misunderstand-439

ings that are within the model’s capabilities but440

have been previously overlooked. This capability441

indicates that self-rethinking can serve as a valu-442

able tool in refining the accuracy and reliability of443

responses in LLMs, especially in complex problem-444

solving contexts.445

5.3 Mistake Tuning Results446

Table 4 showcases the performance of Flan-T5447

models in the context of mistake tuning, highlight-448

ing the impact of combining correct and incorrect449

rationales. The data presented in Table 4 reveals450

significant insights into the performance of Flan-451

T5 models under mistake tuning, which involves452

integrating both correct and incorrect rationales.453

This approach is evident across different model454

scales, whether it’s the smaller 780M version or the455

larger 3B variant. Notably, in the MathQA domain,456

Flan-T5-large(780M) tuned by our methods demon-457

strates superior performance compared to PaLM2-458

Models Methods GSM8K MathQA AQuA
Flan-T5-large Standard Finetuning 14.28 42.79 13.10

(780M) Mistake Tuning 18.36 48.95 18.07
Flan-T5-xl Standard Finetuning 23.81 47.24 17.81

(3B) Mistake Tuning 24.29 52.22 20.99

Table 4: Accuracy of Standard Finetuning models (with
only correct rationales) vs. our methods, mistake tuning
(combined correct and incorrect rationales). Mistake
tuning shows consistent and superior performance com-
pared with only fine-tuned correct CoT rationales.

540B, achieving an accuracy of 48.95% versus 459

41.37%. This phenomenon suggests that LLMs 460

can benefit from engaging with incorrect reason- 461

ing, thereby enhancing their problem-solving and 462

reasoning capabilities. It extends beyond merely 463

bolstering the model’s grasp of correct CoT, to also 464

encompassing the ability to identify and learn from 465

incorrect rationales. 466

Furthermore, the expense of obtaining ground 467

truth or hand-crafted references is significantly 468

higher compared to generating and collecting in- 469

correct rationales. This cost disparity underscores 470

the practical value of our approach, offering a more 471

cost-effective solution without compromising the 472

quality of training data for machine learning mod- 473

els. All mentioned provides a direction for further 474

work of reasoning, which involves not only en- 475

hancing the model’s understanding and learning 476

of correct CoT but also the ability to identify and 477

learn from incorrect rationales. 478

6 Further Studies 479

6.1 Hyperparameter Analysis of Rethinking 480

Iteration Times 481

In this section, we conduct experiments to assess 482

the impact of different rethinking iterations, de- 483

noted as k, on the performance of our framework. 484

We evaluate it on two mainstream benchmarks in 485
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the field of mathematics and commonsense rea-486

soning, GSM8K and LogiQA. Figure 2 represents487

the detailed trend under varying re-thinking times.488

Notably, as k increases from 1 to 24, GSM8K rep-489

resents a growth of 8.11% and 12.37% in LogiQA.490

It is evident as k increases, both LLMs’ arithmetic491

and commonsense reasoning accuracy exhibit an492

upward trend. This trend suggests a positive corre-493

lation between the number of rethinking iterations494

and the overall reasoning abilities. These observa-495

tions indicate self-thinking’s potential benefits with496

more inference time.497

Figure 2: Accuracy of different re-thinking iterations(k).
As the value of k increases, the overall prediction accu-
racy improves.

6.2 Ablation Study on Rethinking Process498

In this ablation study, we examined the impact of499

various component combinations in promptings to500

guide LLMs to self-rethink. Table 5 shows the501

performance of different components. The results502

indicate that the inclusion or exclusion of different503

components has varying effects on PaLM2-540B’s504

accuracy in domains of GSM8K and LogiQA. How-505

ever, the overall performance across various com-506

ponents is relatively similar. It performs similarly507

well regardless of the specific combination of com-508

ponents, indicating good generalizability of the509

method. This study suggests our method’s flexibil-510

ity and stability in future usage.511

7 Unveiling LLM’s Reasoning Errors512

In this section, we delve into the detailed types and513

underlying reasons that lead to mistakes in LLMs’s514

inference process. We sample mistake examples515

from GSM8K and LogiQA to conduct an in-depth516

analysis of both arithmetic and commonsense rea-517

soning. We put some examples in Appendix A.518

For commonsense reasoning, we find errors519

like the misinterpretation of facts or concepts usu-520

CAT. DEM. COR. INC. GSM8K LogiQA
✓ 64.30 50.21
✓ ✓ 62.70 48.57
✓ ✓ ✓ 65.70 51.01
✓ ✓ ✓ ✓ 65.13 49.21

Table 5: Impact of Component Combinations. CAT.
stands for the previous mistakes’ type name, DEM. are
the reasons for making such mistakes, and COR. and
INC. mean corresponding correct and incorrect rationale
examples. All components here are generated by LLM
itself before reasoning.

Context

48%

Linguistics

13%

Commonsense

13%

Logical

26%

Context Linguistics Commonsense Logical

(a) Commonsense Reasnoing

Calculation

59%

Numeric

7%

Logical

34%

Calculation Numeric Logical

(b) Arithmetic Reasoning

Figure 3: PaLM2’s error type distribution in the com-
monsense and arithmetic reasoning task.

ally arise due to the model’s limitations in under- 521

standing and applying context accurately. This 522

reveals current LLMs may still fall short of consis- 523

tently recalling precise factual knowledge within 524

a given context. Consequently, this underscores 525

the imperative to advance toward the develop- 526

ment of Retrieval-Augmented Generation(RAG) 527

systems (Guu et al., 2020; Mallen et al., 2022), 528

as they hold the promise of yielding more faithful 529

and contextually aligned results. Additionally, er- 530

rors stemming from logical fallacies or incorrect 531

inferences reveal LLMs’ reliance on pattern recog- 532

nition over logical reasoning, sometimes leading 533

them to make logically inconsistent or unsupported 534

connections by the given facts. 535

Figure 4: Our pipeline for clustering PaLM2-540B’s
mistakes.

Concerning arithmetic reasoning, we observe 536

that the error types identified by LLMs are notably 537

more intricate and diverse compared to those asso- 538

ciated with commonsense reasoning. The complex- 539

ity presents challenges in conducting a thorough 540

analysis. Unfortunately, little previous work has 541
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explored what kinds of mistakes LLMs make dur-542

ing inference. In order to tackle this issue and gain543

a more overarching understanding of LLMs’ error544

types, we utilize an LLM-based clustering mecha-545

nism shown in Figure 4 to match diverse error types546

into more general categories. To be specific, we be-547

gin by extracting the specific error type names from548

each output of LLM. Subsequently, we input all the549

extracted names into the LLMs and prompt them to550

generate more general categories that encompass551

the entire spectrum of error names. Following this552

automated clustering process, we meticulously re-553

view each cluster, making necessary adjustments to554

refine the matching results. Finally, we distill the555

diverse error types into several abstract categories,556

such as calculation error, numeric error, and logical557

error in domains of arithmetic reasoning. Detailed558

content is shown in Appendix B.559

As shown in Figure 3, the most errors made by560

LLMs in arithmetic reasoning are about calculation.561

This can be attributed to the different nature of562

LLMs compared to other tools like calculators. To563

address this issue, Chen et al. (2022)’s suggestion564

using Program-of-Thought (PoT) is a promising565

approach to instruct LLMs to generate a segment566

of code to solve the given problem, resulting in567

more accurate calculation results. Furthermore,568

it’s important to note that logical error is also a569

type of error that LLMs always suffer from. Com-570

pared with calculation errors and numeric errors,571

the causes of logical errors are more complicated572

and nuanced. For instance, errors like misinterpret-573

ing given data or misapplying arithmetic operations574

reveal a lack of depth in understanding mathemati-575

cal relationships. This can result from the model’s576

limitations in comprehending the nuances of math-577

ematical concepts or its inability to correctly infer578

the needed function from the context of the ques-579

tion. In the future, more fine-grained analysis and580

methods are needed to address such complex logi-581

cal errors in arithmetic reasoning.582

For commonsense reasoning, results in Figure 3583

demonstrate that context understanding is the most584

problematic issue. This problem is intricate and dif-585

ficult to tackle since this can result from the model’s586

limitations in comprehending the nuances of con-587

text information and the context’s relationship with588

its own knowledge. Wang et al. (2023b) aligns589

reward models to enhance LLMs’ understanding590

of context information and successfully enhances591

the model’s reasoning abilities, which is consistent592

with our findings. Table 6 demonstrates one ex-593

ample where our methods guide PaLM2-540B to 594

change their understanding of the context based on 595

provided mistake examples. 596

True or False? When one consumes the leg
meat of a swine, they are eating Ham.
CoT Reasoning: The leg meat of a swing is
typically referred to as pork. Ham is specifi-
cally the cured or smoked hind leg of the pig.
So the answer is False.
self-rethinking(our method):

Step1 ... So the answer is False.
Step2 Do I make the same mistakes in

those examples:...?
Step3 Swine is pig and ham comes from

pig’s legs. The context here should not be so
rigorous. So the final answer is: True

Table 6: An example where self-rethinking guides
PaLM2-540B to learn from mistakes to better under-
stand the context.

8 Conclusions and Future Work 597

In this work, we explore whether LLMs can learn 598

from their mistakes. In order to investigate LLMs’ 599

abilities to differentiate and learn from mistakes, 600

we introduce COTERRORSET, a novel benchmark 601

collecting both correct and incorrect CoT rationales 602

across various domains and designed with demon- 603

strations for making errors. We propose two possi- 604

ble solutions to expose the effects of mistakes from 605

different perspectives: self-rethinking and mistake 606

tuning. Both of them have achieved consistent and 607

significant improvements, which demonstrates the 608

potential benefits of learning from reasoning er- 609

rors. In the last, we conduct a comprehensive and 610

detailed analysis of LLMs’ common mistakes in 611

both arithmetic and commonsense reasoning. The 612

findings will provide a clear direction for future 613

improvements. 614

For future work, we envision proposing corre- 615

sponding algorithms or loss functions to learn im- 616

plicit information from mistakes. The primary in- 617

tent of this work is to provide a new paradigm 618

so there are still a lot of improvements that can 619

be down following this work. For example, in- 620

corporating contrastive learning to differentiate 621

correct references and errors is intuitive to make 622

more improvements. Also, some memorization and 623

retrieval-augmented skills can help models benefit 624

from mistakes similar to each question. 625

8



Limitations626

It is a pity that we can not do very large-scale627

mistake tunings considering the computational re-628

sources. As the scaling effects proposed in existing629

previous work, models over 100B tend to have630

leap effects after instruction tuning in the reason-631

ing domain. Moreover, we surprisingly find that632

most LLMs’ end-end unsupervised clustering abil-633

ities, especially API-based LLMs are still under-634

explored. This work still lacks large-scale clus-635

tering for all errors in COTERRORSET to broadly636

investigate and analyze error types.637
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Table 7: Examples of Error Types in Arithmetic Reasoning. All contents are generated by PaLM2-540B itself.

Error name: Misinterpretation of Given Data
Error type: Logical

– Example: Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in
May. How many clips did Natalia sell altogether in April and May?

– Correct Answer: Natalia sold 48/2 = 24 clips in May. Natalia sold 48+24 = 72 clips altogether in
April and May.

– Incorrect Rationale: Natalia sold 48 * 2 = 96 clips in May. Natalia sold 48+96 = 144 clips altogether
in April and May.

– Demonstration: Mistaking multiplication for division led to a significant overestimate of the total
clips sold.

Error name: Misapplication of Arithmetic Operation
Error type: Calculation

– Example: Weng earns $12 an hour for babysitting. Yesterday, she just did 50 minutes of babysitting.
How much did she earn?

– Correct Answer: Weng earns 12/60 = $0.2 per minute. Working 50 minutes, she earned 0.2 x 50 =
$10.

– Incorrect Rationale: Weng earns 12/60 = $2 per minute. Working 50 minutes, she earned 2 x 50 =
$100.

– Demonstration: Confusing the rate per hour with the rate per minute led to a substantial overestima-
tion of earnings.

Error name: Numerical
Error type: Numeric

– Example: The chicken crossed the road to get to the other side twice for the thrill of it. The first
time, it had to dodge 23 speeding cars. The second time, a person tried to catch it and accidentally
pulled out twice as many feathers as the number of cars the chicken had dodged. The chicken had
5263 feathers before its thrill-seeking road crossings. How many feathers did it have afterward?

– Correct Answer: The chicken lost 23 * 2 = «23*2=46»46 feathers on its second road crossing., it
had 5263 - 46 = «5263-46=5217»5217 feathers after crossing the road twice.

– Incorrect Rationale: The chicken lost 23 * 2 = «23*2=46»46 feathers on its second road crossing.,
it had 5263 - 46 = «5263-52=5211»5211 feathers after crossing the road twice.

– Demonstration: 1. The correct answer is 5217, while your answer is 5211. 2. Your answer is wrong
because you subtracted 52 instead of 46. 3. The type name of the incorrect answer is numerical.
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Table 8: Examples of Error Types in Commonsense Reasoning. All contents are generated by PaLM2-540B itself.

Error name: Logical Fallacy or Incorrect Inference
Error type: Logical

– Example: "When standing miles away from Mount Rushmore"
– Correct Rationale: Objects appear smaller when viewed from a greater distance.
– Incorrect Rationale: "The mountains do not look smaller when standing miles away from Mount Rushmore. They look

larger." (Logical fallacy)
– Demonstration: 1. The correct rationale is that objects appear smaller when viewed from a greater distance, whereas the

incorrect rationale states the opposite. 2. This is a logical fallacy as it contradicts a basic principle of perception. 3. The
type name of the incorrect rationale is logical.

Error name: Incorrect Assumptions or Generalizations
Error type: Logical

– Example: "Poison causes harm to which of the following?"
– Correct Rationale: Poison affects living organisms.
– Incorrect Rationale: "Robot do not get hurt by poison." (Incorrect generalization about the effects of poison)
– Demonstration: 1. The correct rationale is that poison affects living organisms, but the incorrect rationale generalizes

that robots are immune to poison. 2. This is an incorrect generalization because robots, being non-living entities, are not
subject to biological effects. 3. The type name of the incorrect rationale is logical.

Error name: Misunderstanding Literal vs. Metaphorical Language
Error type: Linguistics

– Example: "When food is reduced in the stomach"
– Correct Rationale: Digestion involves the breakdown of food by stomach acid.
– Incorrect Rationale: "Choice D is incorrect because it is not a fact." (Misunderstanding metaphorical language)
– Demonstration: 1. The correct rationale is about the literal process of digestion, whereas the incorrect rationale

misinterprets the metaphorical language. 2. This demonstrates a misunderstanding of metaphorical language. 3. The type
name of the incorrect rationale is linguistics.

Error name: Incorrect Application of Knowledge
Error type: Commonsense

– Example: "Stars are"
– Correct Rationale: Stars are massive celestial bodies made of gases.
– Incorrect Rationale: "Stars are not made of warm lights that float." (Incorrectly applying knowledge about stars)
– Demonstration: 1. The correct rationale states that stars are massive celestial bodies made of gases, but the incorrect

rationale describes them as warm lights that float. 2. This is an incorrect application of knowledge, as it fails to accurately
describe the nature of stars. 3. The type name of the incorrect rationale is commonsense.

Error name: Factual Inaccuracy
Error type: Commonsense

– Example: "You can make a telescope with a"
– Correct Rationale: A telescope requires specific optical elements to function.
– Incorrect Rationale: "A telescope needs a lens and a magnifying glass is a lens, so glass is a good choice." (Factually

inaccurate about how telescopes are made)
– Demonstration: 1. The correct rationale is that a telescope requires specific optical elements, whereas the incorrect

rationale assumes any lens, like a magnifying glass, can make a telescope. 2. This shows a factual inaccuracy in
understanding how telescopes are constructed. 3. The type name of the incorrect rationale is commonsense.

Error type: Misunderstanding Context or Relevance
Error type: Context

– Example: "an inherited characteristic found on all mammals is"
– Correct Rationale: Inherited characteristics in mammals include features like fur.
– Incorrect Rationale: "Shoes are not found on all mammals" (Misunderstanding the context of biological characteristics)
– Demonstration: 1. The correct rationale focuses on relevant inherited physical traits like fur. 2. This error illustrates a

clear lack of understanding of the context. 3. The type name of the incorrect rationale should be context.
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Table 9: PaLM2-540B’s Understanding and Definitions for Error Types. All contents are generated by itself after
providing its mistakes and corresponding golden-standard references.

Error Type Definition
Calculation Mistakes or inaccuracies that occur during the process of performing math-

ematical calculations. These errors can arise from various sources and can
occur at any stage of a mathematical problem-solving process.

Numeric Numeric errors in the context of mathematical reasoning refer to inaccura-
cies that arise from the representation and manipulation of numerical values.
These errors can occur at various stages of mathematical computations and
can result from limitations in the precision of the representation of real
numbers or mistakes in handling numerical data.

Logical Logical errors involve mistakes in the overall reasoning or strategy used to
solve a mathematical problem. This type of error may not be immediately
apparent during the calculation process but can lead to incorrect final results.
It could include using an incorrect formula or assumptions, misunderstand-
ing the problem statement, or applying the wrong concept.

Linguistics Errors in linguistics involve inaccuracies or mistakes in the use of language.
These can include grammatical errors, misuse of vocabulary, incorrect syn-
tax, or problems in semantics. Linguistic errors may arise from a lack of
understanding of the rules of a language, misinterpretation of meaning, or
the inability to effectively convey a message in a given language. Such
errors can affect the clarity, coherence, and overall effectiveness of commu-
nication.

Commonsense Commonsense errors refer to mistakes or inaccuracies that occur in the
application of general world knowledge or everyday reasoning. These errors
can arise from misconceptions, flawed logic, or misunderstandings of basic
principles that are widely accepted as common knowledge. Commonsense
errors often lead to conclusions or decisions that, upon closer examination,
are illogical or inconsistent with general understanding of the world.

Context Errors of misunderstanding context or relevance occur when there is a
failure to correctly interpret or apply the relevant information in a given
scenario. This type of error typically involves overlooking key aspects of
a context, making inappropriate generalizations, or failing to distinguish
between literal and metaphorical language. These errors can significantly
alter the intended meaning or relevance of a response in reasoning tasks.
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