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ABSTRACT

We propose a novel probabilistic framework for modeling stochastic dynamics with
the rigorous use of stochastic optimal control theory. The proposed model called
the neural Markov controlled stochastic differential equation (CSDE) overcomes
the fundamental and structural limitations of conventional dynamical models by
introducing the following two components: (1) Markov dynamic programming to
efficiently train the proposed CSDE and (2) multi-conditional forward-backward
losses to provide information for accurate inference and to assure theoretical
optimality. We demonstrate that our dynamical model efficiently generates a
complex time series in the data space without extra networks while showing
comparable performance against existing model-based methods on several datasets.

1 INTRODUCTION

Recently, there has been interest in using continuous dynamical systems to approximate complex time
series. Neural ODE Chen et al. (2018), which opened the way for continuous representation of neural
networks, have been widely investigated and thoroughly analyzed by Massaroli et al. (2020). As the
stochastic generalization of ODE, Neural SDEs Li et al. (2020) have been proposed by regarding
intrinsic stochasticity in data representations (e.g., stock market data). Since the conventional Neural
ODE/SDEs only utilize the initial information of trajectories when propagating dynamics, modelling
complex time-series with naive Neural ODE/SDEs has been regarded as inefficient and undesirable
choices, as pointed out by Kidger et al. (2020).

To address these problems, Rubanova et al. (2019) presented an auto-regressive model to generalize
recurrent neural networks (RNNs) to have continuous hidden dynamics with neural ODE. Furthermore,
Chen et al. (2018) proposed an encoder-decoder structure with Neural ODE in the latent space to
reconstruct/predict complex data representation. Although the aforementioned approaches produce
remarkable results, they focus on suggesting additional probabilistic structures rather than improving
the learnability of the Neural ODE model itself. Compared to aforementioned approaches, we focus
on solving the fundamental issues of Neural ODE/SDEs. First, we raise two important questions.

Q1) How can we construct an efficient network architecture for Neural ODE/SDE models that do not
require additional recurrent networks to model complex time series?

Q2) How can we train Neural ODE/SDEs that can utilize richer information of observed sequences
to accurately generate complex time series?

As SDEs can be posed as stochastic generalizations of ODEs, we focus on a stochastic framework
and adopt the stochastic optimal control theory as our primary analysis tool for the rigorous and
systematic analysis of the aforementioned problems. Keeping this in mind, the contributions of our
paper are to answer the above two questions.
A1) Novel probabilistic framework for stochastic dynamics. We propose a novel neural controlled
stochastic differential equation (CSDE) to model the complex stochastic time series, where multiple
control agents are defined to construct local dynamics in their own private temporal states. With this
property, the proposed CSDE incorporates Markov dynamic programming, enables our model to
directly infer the complex trajectory on data space rather than the latent space without any extra
network (e.g., encoders/decoders), and shows remarkable efficiency compared to existing methods.

A2) Novel conditional losses. We introduce a novel Markov forward conditional (MFcond) loss to
utilize multi-conditioned dynamics instead of the conventional dynamics determined by partial initial
conditions. The proposed MFcond loss makes our method to model the complex information of
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time-series data. To impose regularization and to ensure the optimality of control agents, we also
suggest a novel Markov backward conditional (MBcond) loss.

2 RELATED WORK

ODE As a Latent Probabilistic Model. Rubanova et al. (2019) suggested an ODE-RNN by com-
bining RNN with the latent dynamics induced by the Neural ODE. To deal with irregular time-stamps,
exponential-decaying of the hidden states was also discussed by Che et al. (2018). De Brouwer et al.
(2019) assumed that the observations are sampled from the stochastic dynamics induced from SDEs
and introduced GRU-ODE to approximate the observed stochastic time series.

SDE As a Latent Probabilistic Model. Liu et al. (2021) incorporated Neural SDEs with recurrent
models as a primary probabilistic dynamical model to generate stochastic continuous-time latent
variables. While this SDE model could describe the stochastic dynamics on the latent space with
recurrent structures (e.g., RNN encoder/decoder), it required a whole sequence of historical observa-
tions as inputs to the model. Unfortunately, this type of formulation leads to non-Markov types of
SDEs, which makes it difficult to analyze the probabilistic characteristics of the dynamics. Unlike
this model, we focus on the Markov SDEs while maintaining identical objectives.

Neural CDE and RDE. Kidger et al. (2020) proposed a data-driven neural controlled differential
equation called Neural CDE to incorporate a rough-path analysis theory and model complex time
series. Morrill et al. (2021) extended the rough-path theory with a Neural RDE to deal with the
continuous time series over long time.

Generative SDE Models. Recently, Kidger et al. (2021) suggested SDE-based generative adversarial
networks (GANs). Park et al. (2021) utilized the temporal conditional Wasserstein distance to
construct GANs for time-series generation.

Please refer to Appendix A.1 for additional discussion on related works.

3 MARKOV NEURAL CONTROLLED SDE
In Section 3.1, we introduce a novel SDE model that considers temporally private agents. In
Section 3.2, we propose the Markov-DP-TP framework to efficiently solve the stochastic optimal
control problem with the proposed neural SDE model. Finally, we suggest novel Markov conditional
forward and backward losses in Section 3.3 and 3.4, respectively. In the Appendix, we provided the
detailed technical definitions.

3.1 CONTROLLED STOCHASTIC DIFFERENTIAL EQUATIONS

The basic object of our interest is a controlled Ft-adapted process Xα
t with multiple control agents

α = {α1, · · · , αM} ∈ A where A denotes the set of admissible control agents. In particular, the
stochastic process Xα

t is defined as a solution to the following CSDE:

dXα
t =

M∑
i=1

wi(t)b
i
(
t,Xα

t , α
i
)
dt+

M∑
i=1

wi(t)σ
i
(
t,Xα

t , α
i
)
dWt, (1)

where b and σ : [0, T ]×Rd×A→ Rd are the drift and diffusion functions, respectively. Each control
agent αi : [0, T ]× Rd × Rm, αi = αi(t,Xt; θ

i),∀1 ≤ i ≤ M is defined as a Markov closed-loop
feedback control, which is parameterized by the neural network θi. While every agent is defined as a
closed-loop feedback-type Carmona (2016b), the solution to the CSDE above, Xα

t , is the Markov
process, which means that process Xα

t is propagated using the information of the current state.

Let T = {tk}1≤k≤N be a set of ordered times1 such that 0 = t1 < · · · < tk < tl < · · · < tN = T .
The set of functions {wi(t)}1≤i≤M is defined as an indicator function on the intervals, wi(t) =
1tk≤t≤tl with predetermined starting/ending points tk, tl in T. We call this function temporal
privacy (TP) because it represents each agent’s attention on different sub-intervals. Overall, in (1),
the stochastic process Xα

t is propagated by summing M -number of individual agent’s weighted
attentions

{∑M
wib

i(·, ·, αi),
∑M

wiσ
i(·, ·, αi)

}
. To understand the behavior of the proposed

CSDE more deeply, we consider the following detailed example:

1The time interval dt ≈ ∆t = |tk − tl| for any k, l can be set regularly/irregularly in our method.
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Role of Temporal Privacy. We define wr(s) = 1t≤s≤u, t, u ∈ T with r ≤ M . Then, Xα
u in (1)

given Xt at an interval [t, u] can be equivalently rewritten in the integration form:

Xα=[α1,··· ,αM ]
u = Xα

t +

∫ u

t

M∑
i

wi(s)b
i(s,Xα

s , α
i)ds+

∫ u

t

M∑
i

wi(s)σ
i(s,Xα

s , α
i)dWs

= Xα
t +

∫
wr(s)

br(s,Xα
s , α

r)ds+

∫
wr(s)

σr(s,Xα
t , α

r)dWs = Xαr

u .

(2)

In (2), the activated control agent to evaluate the stochastic process Xα
u for the interval [t, u] is only

αr (i.e., Xα
u = Xαr

u ) owing to the definition of the weighting function w(·)(t). This means that
the remaining control agents {αj}j 6=r are not used for the evaluation of the stochastic process in
the sub-interval [t, u]. While each agent αi is activated at its own private sub-interval, this leads
our method to adopt dynamic programming (DP) to train Neural CSDEs in the form of (1). In this
paper, we aim to solve the optimal control problem via DP with multiple agents, where each agent
specializes in solving a particular sub-problem in its private interval.

3.2 MARKOV DYNAMIC PROGRAMMING PRINCIPLES

The dynamic programming principle is one of the fundamental philosophies for dealing with stochastic
optimal control problems. Its basic idea is to consider a family of sub-problems with different initial
times/states and establish the relation among the sub-problems to systemically solve them. Using the
mathematical property of the proposed CSDE with TP, we present an efficient learning strategy to
solve stochastic optimal control problems via Markov dynamic programming (Markov-DP).

In this paper, we aim to solve the stochastic optimal control problem by training control agents
α = [α1, · · · , αM ] and minimizing the cost functional J(t,Xα

t ) : [0, T ]× Rd → R+:

J(t,Xα
t ) = E

[∫ T

t

l(s,Xα
s )ds+ Ψ(Xα

T )

∣∣∣∣∣Ft
]

= E
[∫ u

t

l(s,Xα
s )ds+ J(u,Xα

u )

∣∣∣∣Xα
t

]
, (3)

where l : [0, T ]×Rd → R+ is the running cost (e.g., L2 loss) that computes the discrepancy between
the propagated process Xα

t and the observed data point yt at each time t, Ψ(Xα
T ) : Rd → R+ is the

terminal cost that estimates the discrepancy between the terminal state and the data yT . To evaluate
the cost functional J(t,Xα

t ) at time t with control agents α, the running cost is integrated over the
time interval [t, T ] conditioned on filtration Ft. Note that the expectation conditioned on Ft in (3)
can be substituted to the expectation conditioned on Xα

t in light of the Markov property presented in
Section A.2, and the cost functional at time t only depends on the current state of the process Xα

t .

Markov-DP with Temporal Privacy. By combining the tower property of the conditional expecta-
tions with the dynamic programming principle and Itô’s formula (Oksendal (1992)), one can show
that a minimization problem can be recursively decomposed into sub-problems owing to the property
of TP in our proposed CSDE:

V (t,Xα
t ) , inf

α
J(t,Xα

t ) = inf
α

E
[∫ u

t

l(s,Xα
s )ds+ J(u,Xα

u )

∣∣∣∣Xα
t

]
︸ ︷︷ ︸

(A)

= inf
αr

E
[∫ u

t

l(s,Xα
s )ds

∣∣∣∣Xα
t

]
︸ ︷︷ ︸

(B)

+ inf
α(−r)

E[J(u,Xα
u )|Xα

t ]︸ ︷︷ ︸
(B’)

,

(4)

where V is an optimal cost functional (i.e., value function), αr denotes the r-th control agent, and
α(−r) = [α1, · · · , 0, · · · , αM ] indicates the set of remaining agents (the r-th component is zero).
In (4), the minimization problem (A) over α is divided into two sub-problems using the dynamic
programming principle, which are (B) and (B’). Because the minimization problem (B) is only
dependent on the control agent αr parameterized by the neural network θr, we compute the gradient
descent of θr to solve the sub-problem (B):

θrk+1 = θrk −
∂

∂θr
E

[∫
{s:wr(s)=1}

l
(
s,X

αr(·,·,θrk)
s

)
ds

∣∣∣∣∣Xα
t

]
, (5)
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where wr(s) = 1t≤s≤u is the TP function at an interval [t, u] and k is the index for the learning
iterations. In (5), the r-th control agent αr minimizes the cost functional using the gradient descent
scheme at its own temporal sub-interval. As the remaining sub-problem (B’) over agents α(−r) can
also be recursively decomposed into smaller sub-problems using the dynamic programming principle,
the original problem (A) is solved separately with M -number of control agents α = {α1, · · · , αM}
with the M -number of gradient descent schemes. This indicates that we can obtain the set of agents
α? = {αi(·, ·; θi?)} by collecting individual optimal agents with sub-problems.

In this paper, we combine the Markov-DP with M gradient descent schemes in (5) and CSDE
with TP in (1) and introduce a novel Markov-DP-TP framework. In the numerical experiments in
Section 4.4, we show that the proposed Markov-DP-TP framework remarkably increases the model
efficiency compared to conventional non-DP naive approaches, which makes our method directly
model the complex time series in the data space. However, despite the improvements with our novel
Markov-DP-TP framework, there exist remaining practical/theoretical issues that should be addressed
to solve the optimal control problem with complex datasets.

1) Conditional Dependency. The main practical issue in implementing the Markov-DP-TP frame-
work is that explicit conditional states are not given, e.g., Xα

t in (5). As different initial/terminal
conditions of SDE lead to totally different behaviors of induced dynamics, well-designed conditional
information is a crucial factor in training the Neural CSDE for specific applications. In Section 3.3,
we introduce the Markov Forward conditional (MFcond) loss to train the Neural CSDE with
well-posed conditional information that ensures accurate network predictions.

2) Theoretical Optimality. In the optimal control theory, there are well-known partial differential
equations called Hamiltonian-Jacobi-Bellman (HJB) equations, which assure the theoretical opti-
mality of control agents. If the control agents can solve the HJB equation, the proposed method
attains the optimal state Vt(Xα

t ) = infα Jt(X
α
t ) = Jt(X

α?
t ). However, the optimal agents α? of

the proposed CSDE with gradient descent are not generally equivalent to the solution to the HJB
equation. In Section 3.4, we propose the Markov Backward conditional (MBcond) loss to assure
the optimality of control agents and to provide information in backward dynamics for regularization.

3.3 MARKOV FORWARD CONDITION

In this section, we first raise the important question: Why is the well-posed conditional estimation
in cost functional important to accurately train Neural SDE (CSDE) models? To elucidate the
importance of this question, we consider the following minimization problem with the cost functional
with naive partial information:

inf
α
L(α) = inf

α
Ey0

[∫ T

0

l(s,Xα
s )ds+ Ψ(Xα

T )

∣∣∣∣∣X0 = y0

]
, (6)

where y(·) = {yt}t∈[0,T ] denotes a set of observed data, and y0 is the initial data at time t = 0.
In (6), the conditional expectation is taken to the single initial state X0 = y0, and the control agents
minimize the accumulated losses using this partial information. As pointed out by Kidger et al.
(2020), this naive cost functional causes a problem when dealing with high-dimensional complex
datasets. This is because the Neural CSDE should disentangle the inherent latent information of
complex high-dimensional data to generate accurate results, but the control agents are trained with
only the restrictive and partial information of the observed data (i.e., initial condition X0 = y0). To
solve this problem, we introduce a novel loss function called the MFcond loss that can fully exploit
the information of the given observed data y(·), while keeping the Markov structure of Xα

t :
Definition 1. (MFcond loss) We define the prediction operator T αs,t as follows, for s < t,

T αs,t :=
1

|I(s, t)|
∑

m∈I(s,t)

[
Xα
tm +

∫ t

tm

M∑
i=1

wib
i(u,Xα

u , α)du+

∫ t

tm

M∑
i=1

wiσ
i(u,Xα

u , α)dW (m)
u

∣∣∣∣Xα
tm = ytm

]
,

(7)
where I(s, t) := {m : s ≤ tm < t}, |I(s, t)| is the cardinality of I(s, t), and {W (m)

u }m∈I(s,t)
denotes the Wiener processes with respect to time u. Let us define a random stopping time τs such that
τs := inft{t : l(t, T αs,t) > ε} for the pre-determined threshold ε2. Then, we can define the MFcond
loss with the stopping time τ(·), as follows:

2Please refer to Appendix (A.7) for detailed information
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(a) Network Training with the MFcond loss (b) Network Inference
Figure 1: Conceptual illustration of the MFcond loss and network inference. (a) The bold green lines
indicate a single trajectory of the proposed CSDE, while other trajectories are shown in shaded regions. The
MFcond loss estimates the conditioned losses l ◦ T αs,τs (e.g., red vertical lines) at τs. The empty parts of the
black lines indicate the irregularly-sampled (unobserved) data representation. (b) The average decision X̂α

tk (e.g.,
green cross) is estimated to approximate the true test data ŷtk (e.g., red cross) using multiple past observations.
This figure shows the failure case as process X̂α

tk hardly approximates ŷtk .

Lf
(
α,y(·)

)
= Ey(·)

[∫ T

t

l
(
τs, T αs,τs

)
χ(s)ds+ Ψ(Xα

T )

]
, (8)

where χ(s) is an indicator function that produces values at the observed time (i.e., χ(s) = 1 if ys
is observed at s; otherwise, χ(s) = 0). This function is used to consider the irregularly sampled
data points. In (8), naive running cost l of (6) is replaced with l ◦ T αs,τs , in which the MFcond loss
recursively accumulates the expected future losses l ◦ T αs,τs conditioned on multiple observations.

At each time s, stopping time τs decides the future time to stop the CSDE propagation by determining
if the accumulated losses are larger than the predetermined threshold ε or not. While the proposed loss
requires a set of multiple conditions on the Markov process Xα

t to train control agents, information
is utilized to generate time-series data, and complex dynamics can be expressed. A conceptual
illustration of the proposed MFcond loss is shown in Figure 1-(a).

The main idea of our MFcond loss in (8) is to minimize the differences between the future estimations
Xα,s
u for any given s ≤ u. In other words, the proposed CSDE is trained to generate an identical future

estimation of Xα
u given any past initial conditions Xα

(·) = y(·), i.e., (Xα,s
u ≈ Xα,t

u ,∀s ≤ t ≤ u) to
estimate network inference with multiple conditions in the test time. This idea is used to introduce a
novel inference procedure to overcome the raised issues on the partial information.

Network Inference. Let {ytm} be the observed data sequences until the current time t in the test
dataset. Our objective is to predict the future points {ŷtk}, (tm ≤ t < tk). Our model generates the
stochastic estimation X̂tk to approximate ŷtk at a future time given multiple initial conditions ŷtm :

ŷtk ≈ X̂
α
tk = T αtm,tk =

1

|I|
∑

s∈I(tm,tk)

[
Xα
ts +

M∑
i=1

∫ tk

ts

wib
i(t,Xα

t , α
i)dt+

M∑
i=1

∫ tk

ts

wiσ
i(t,Xα

t , α
i)dW

(s)
t

∣∣∣∣Xα
ts = ŷts

]
(9)

Network Inference

In (9), each control agent makes decisions on its specialized temporal state and collaborates to
generate a stochastic conditional estimation X̂α

tk
and approximate ŷtk . As our MFcond loss induces

identical estimations Xα,ŷtm
tk

for any tm, X̂α
tk

utilizes multiple conditions {ŷtm} and fully exploits
the past information to predict/estimate future values. A conceptual illustration of the network
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inference is shown in Figure 1-(b). While the proposed inference mechanism utilizes enlarged
information3 compared to a single initial condition, it can model the complex time-series data.

If the control agents are trained with the naive cost functional, the terminal states Xα,s
u (conditioned

on initial state Xs = ys) and Xα,t
u (conditioned on initial state Xt = yt) are largely different,

which causes problems when we generate complex time-series data during the test time, whereas our
inference mechanism introduced in (9) utilizes averaged multi-decisions Xα

tk
given different initial

conditions. Thus, the MFcond loss is essential for utilizing the proposed inference procedure.

Unlike the dynamical auto-regressive probabilistic models (e.g., ODE-RNNs) that encode whole (or
partial) data sequences, as shown in (1), the proposed Markovian CSDE model only uses the current
observation to propagate stochastic dynamics. An additional inference mechanism coordinates the
multi-conditioned trajectories to utilize information and produces complex time series.

3.4 MARKOV BACKWARD CONDITION

In the previous section, we suggested the Markov forward conditional loss that exploits the entire
information of time-series data to generate accurate results. Aside from its empirical benefits to some
applications, no theoretical/empirical optimality of (4) is assured by minimizing the MFcond loss
in general. To tackle this problem, in this section, we further introduce the additional stochastic
dynamics relating optimality of proposed CSDE-TP.

Let us define the auxiliary process Zt = V (t,Xα?
t ) with a value function V , where α? denotes

the optimal control agents. Subsequently, we consider the following forward-backward stochastic
differential equations (FBSDEs):

(Xα?
t , Zt) =


dXα?

t =
∑M
i=1 wib

i(t,Xα?
t , αi?)dt+

∑M
i=1 wiσ

i(t,Xα?
t , αi?)dWt

dZt = −l(s,Xα?
t )dt+

∑M
i=1∇V (t,Xt)wiσ

i(t,Xα?
t , αi?)dWt

ZT = Ψ(Xα?

T )

(10)

FBSDEs

The first SDE (i.e., Xα?
t ) called the forward SDE has an identical form of (1) and propagates

stochastic evaluation in the forward direction with optimal control agents. The second SDE (i.e., Zt)
called backward SDE recursively subtracts the running cost from the terminal state Ψ(Xα?

T ) in the
backward direction using forward estimations Xα?

t and cancels the effect of martingales in the
diffusion term. We utilize the property of backward dynamics Zt to train the control agents for the
following reasons.

1) Backward Multi-conditions. Like the MFcond loss with multi-conditions in the forward direction,
we want to provide additional information to backward dynamics to train the control agents.

2) Approximated Solution of HJBE. The auxiliary process Zt gives the theoretical optimality for
control agents related to the HJB equation based on the results developed in Yong & Zhou (1999);
Pardoux & Tang (1999), where the process Zt = V (t, ·) admits a solution of the HJB equation in (11)
and induces an optimal solution for the minimization problem infα J in (4).

∂V (t, x)

∂t
+

1

2
Tr[σTσ(t, x, α?)∇2V (t, x)] +∇V (t, x)T b(t, x, α?) + l(t, x) = 0, (11)

where V (T, x) = Ψ(x). In (11), we want to approximate Zt using control agents for optimality.
However, the process Zt requires optimal control agents α? that cannot be obtained during the training
time. To overcome this problem, we approximate the auxiliary process Zt with Zαt parameterized by
neural control agents α(·, ·, θ), which is defined as the modified version of Zt. In particular, Zt can
be expressed in the following integral form:

Zαt = Ψ(Xα
T )−

∫ t

T

M∑
i

wi(s)l(s,X
α
s )ds+

∫ t

T

M∑
i

wi(s)σ
i(s,Xα

s , α
i)∇J(s,Xα

s )dWT
s , (12)

where J is the cost functional defined in (3), and∇J denotes the gradient of the cost functional with
respect to its spatial axis. Using the proposed process Zαt , we introduce a novel loss function called
the MBcond loss to satisfy the two objectives discussed above.

3Please refer to detailed explanation in Appendix A.3.
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Algorithm 1 Neural Markov CSDE-TP
Require: γ = 0.95,

for k = 1 to K (i.e., the total number of training iterations) do
1) Simulate forward controlled SDE with Markov control agents
1-1) dXαk

t =
∑M
i=1 wib

i(t,X
αk
t , αik)dt+

∑M
i=1 wiσ

i(t,X
αk
t , αik)dWt

1-2) Evaluate each decision of control agents αik = αik(t,X
αk
t ; θik)

1-3) Compute the MFcond loss for M -control agents {Lf (αik(·, ·, θik))} with stopping time τ(·)
1-4) Update threshold ε for random stopping time, εk+1 ← 1

2
max l

(
t, T αk

s,t (ys)
)

2) Simulate backward controlled SDE
2-1) dZαk

t = −
∑M
i wil(s,X

αk
t )dt+

∑M
i=1∇J(t,X

αk
t )wiσ

idWt

2-2) Evaluate the MBcond loss for M -control agents, {Lb(αik(·, ·, θik))}1≤i≤M

3) Update control agents with Markov-DP
3-1) θik+1 = θik − γ∇θiLf (αi(·, ·, θik))− (1− γ)∇θiLb(αi(·, ·, θik))

end for

Definition 2. (MBcond loss) Let us define the auxiliary process Zαt as the solution to (12). Then,
the MBcond loss can be defined as follows:

Lb(α) = Ey(·),t∈[0,T ]

[
|Zαt |2

∣∣∣Xt = yt

]
. (13)

Theoretically, if we optimize the MBcond loss (13) according to the proposed backward dynamics Zαt ,
the PDE reformulation of backward dynamics, called Non-linear Feynmann-Kac, have the identical
solution4 to HJB equation in (11). Thus, our method can attain the optimal solution of original
problem posed in section 3.2.

Intuitively saying, one can show that the MBcond loss is equivalent to the reformulation of the
minimization problems in (4) using Itô’s formula. Thus, solving the minimization problem infα Lb
induces an identical effect to solve the original problem infα J . The only difference is that we
utilize multiple conditions to provide conditional information on the backward dynamics Zαt for the
regularization of control agents trained with forward conditional dynamics and to impose constraints
on control agents, which induces an approximated solution to the HJB equation.

3.5 OBJECTIVE FUNCTION

In this section, we describe the overall training procedure, which incorporates all the proposed
components (i.e., Markov-DP with CSDE-TP, MFcond loss, and MBcond loss) as follows:

inf
α
L(α)︸ ︷︷ ︸

MFBcond

= inf
α=[α1,··· ,αM ]

γLf (α)︸ ︷︷ ︸
MFcond

+ (1− γ)Lb(α)︸ ︷︷ ︸
MBcond

CSDE-TP
≈

M∑
i

inf
αi
γLf ([αi, α(−i)]) +

[
(1− γ)Lb([αi, α(−i)])

]
,

(14)

where Lf and Lb are defined in (8) and (13), respectively, and γ is a balancing hyperparameter.
In (14), the control agents α = [α1, · · · , αM ] are trained with a convex combination of MFcond
and MBcond losses. Using the property of CSDE-TP with Markov-DP, the original problem is
approximated with the collection of M sub-problems, and each control agent is separately trained
with M gradient descent schemes. Algorithm 1 describes the detailed procedure of our method.

4 EXPERIMENTS

Network structure of control agents. The neural network structure for each agent control consists
of 2-layers of fully-connected layers, where each module has 128 latent dimensions. For the activation
units, we used the specialized module LipSwish, Chen et al. (2019); Kidger et al. (2021), to stabilize
the FBSDEs during training. Please refer to Appendix A.6 for detailed information on the network
architecture.
Datasets. For the evaluations, we used PhysioNet, Speech Commands, Beijing Air-Quality, and S&P-
500 Stock Market datasets. Refer to Appendix A.5 for data statistics and prepossessing procedures.

4Please refer to Appendix A.4 for the discussion on theoretical optimality induced by the MBcond loss.
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4.1 TIME-SERIES DATA RECONSTRUCTION

Table 1: Evaluation of reconstruction tasks on the PhysioNet/Speech Commands datasets.

PhysioNet Speech Commands
Methods MSE (×10−1) ↓ NLL (×102) ↑ MSE (×100) ↓ NLL (×103) ↑

RNN-VAE 6.655 −33.238 0.984 −4.918
ODE2VAE 5.523 −24.195 0.723 −3.763

Latent SDE (ODE-Enc) 2.403 −11.978 0.841 −4.226
Latent SDE (RNN-Enc) 2.418 −12.051 0.851 −4.250
Latent ODE (ODE-Enc) 2.395 −11.933 0.851 −4.251
Latent ODE (RNN-Enc) 2.375 −11.840 0.880 −4.402

RNN-Decay 1.431 −7.119 0.865 −4.323
ODE-RNN 1.311 −6.517 0.697 −3.479

GRU-D 1.424 −7.083 0.838 −4.116
mTAND 0.887 −4.396 0.581 −2.902

CSDE-TP 0.755 −3.667 0.435 −2.172
CSDE-TP-MV 0.728 −3.605 0.423 −2.109

In this experiment, we compared our model against baseline dynamic models: [Latent ODE, Chen
et al. (2018)], [Latent SDE, Li et al. (2020)], [ODE-RNN, Rubanova et al. (2019)], [GRU-D, Che
et al. (2018)], [mTAND, Shukla & Marlin (2021)], and [ODE2VAE, Çağatay Yıldız et al. (2019)].
We used open-source codes provided by the authors for comparison. For the Latent ODE (SDE)
methods, RNN and ODE-RNN were used for the encoder structures, where the decoder structures
were identically set to ODE (SDE). Table 1 shows the performance of all baseline methods compared
to the proposed CSDE-TP for the reconstruction tasks. As evaluation metrics, we used mean squared
errors (MSE) and negative log-likelihood (NLL) with open-source code in Rubanova et al. (2019).
As shown in Table 1, the proposed method consistently outperformed the baseline methods by a large
margin. In this experiment, we observed that latent dynamics-based methods (e.g., Latent ODE/SDE
with RNN and ODE-RNN encoders) on models attained similar performances. We set the latent
dimensions of each control agent to 128 for both the reconstruction and prediction experiments. In
the experiments on both datasets, the Mckean-Vlasov (MV) type of the SDE model slightly improved
the performance, where it subtracted the mean (i.e., mean-shifting) of the control agent outputs to
normalize/reduce the intrinsic volatility in the inferred process X̂α

tk
.

4.2 TIME-SERIES DATA PREDICTION

Table 2: Evaluation of prediction tasks on the PhysioNet/Air Quality datasets.

PhysioNet Air Quality
Methods MSE (×10−1) ↓ NLL (×102) ↑ MSE (×10−1) ↓ NLL (×103) ↑

ODE2VAE 5.369 −26.812 7.938 −3.965
Latent ODE (RNN-Enc) 2.038 −10.153 3.403 −1.772
Latent ODE (ODE-Enc) 1.977 −9.849 3.374 −1.683
Latent SDE (RNN-Enc) 2.002 −9.975 3.676 −1.834
Latent SDE (ODE-Enc) 1.995 −9.936 3.328 −1.660

mTAND 1.551 −7.719 1.867 −0.929

CSDE-TP 1.195 −5.937 1.277 −0.630
CSDE-TP-MV 1.057 −5.811 1.671 −0.638

In this experiment, all the methods were evaluated to predict the remaining 12 time sequences
(e.g., 20%) on the test dataset given the first 36 time-sequences (e.g., 80%), and we followed a
procedure similar to that suggested by Rubanova et al. (2019) to predict the future time series. Table 2
compares the performance in terms of MSE and NLL, in which the proposed method considerably
outperforms the baseline methods. In the experiment on the Air quality dataset, we set a smaller
latent dimension of 64 as the feature dimension compared to those of the other datasets. Interestingly,
the CSDE-TP-MV model exhibited worse performance than the vanilla CSDE-TP model when the
data dimension was very small. This result indicates that the mean-shifting in a low-dimensional data
space reduces the expressiveness of the CSDEs.

4.3 UNCERTAINTY ESTIMATION ON STOCK MARKET DATASET

When high volatility is observed over the temporal/spatial axes, conventional evaluation metrics
such as MSEs hardly capture the stochastic property of the time-series variations. Thus, to cap-
ture the stochasticity, we evaluated the distance between the distributions of the test data and the
inferred/generated data using the maximum mean discrepancy (MMD). We followed the protocol

8
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Table 3: Uncertainty estimation on the Stock Market dataset.

Methods RNN RNN-VAE ODE-RNN Latent ODE Latent SDE CSDE-TP

MMD (×10−3) ↓ 526.12 427.05 201.48 194.75 190.11 94.79

suggested by Li et al. (2017) to evaluate the MMD distance, where we used two Gaussian RBF kernels
with bandwidths of [5.0, 10.0]. Using this evaluation metric, we experimented on reconstruction tasks
using the S&P-500 Stock Market dataset. Table 3 shows that the proposed CSDE-TP outperforms
baselines and effectively recovers the distributional information of stock prices with the stochastic
property of the SDE models and the proposed optimization framework. Interestingly, the latent SDE
model attains better performance compared to the Latent ODE, as it utilizes an additional Wiener
process to model the data uncertainty. The performance improvement of the Latent SDE vanishes
when we remove the diffusion term (σ = 0) of the latent SDE.

4.4 EMPIRICAL STUDY

(a) Efficiency of Markov-DP with CSDE-TP (b) Efficiency of the MFcond loss
Figure 2: Ablation study on the effectiveness of the proposed method.

Efficiency of the Markov-DP-TP framework. To show the empirical advantages of our CSDE-TP
model with Markov-DP learning schemes, we evaluated our CSDE-TP according to a different
number of control agents on the prediction task using the Air Quality dataset. Figure 2-(a) shows the
training MSEs for several variants of the proposed model in the first 20 epochs, where CSDE-TP-
Shallow1, -Shallow2, and -Deep (i.e., black, blue, and red lines) denote the proposed models with a
different number of control agents, i.e., M = 2, 8, and 48, respectively. The standard CSDE model
(i.e., the black dashed line) utilized a single agent,M = 1. For all models, the total number of training
parameters was equivalently set to ≈ 40K, and the number of parameters was normalized. As shown
in Figure 2-(a), despite using the same number of parameters, employing multiple agents clearly
outperforms the standard CSDE in terms of the learning curve. From this fact, we can conclude that
the Markov-DP-TP significantly increased the network efficiency compared to the standard CSDE,
which indicates that our Markov-DP framework is crucial for training controlled dynamics models.
Efficiency of the MFcond loss. In this experiment, we show the empirical advantages of the multi-
conditioned CSDE in (8) against the naive partial-conditioned CSDE in (6). Similar to previous
experiments, the results were obtained for the prediction task with the Air Quality dataset. Figure
2-(b) shows the model confidence in testing MSEs for the first 50 epochs, where shaded areas indicate
the confidence regions (i.e., ± std). The proposed MFcond loss exhibits considerable performance
improvement (.08 � .87) compared to the conventional native cost functional and reduces the
variances in loss landscapes with stable learning. With the theoretical discussion in Appendix A.3,
we conclude that the proposed CSDE actively exploits the information of the complex time series
with multiple conditions to accurately generate complex time-series.

5 CONCLUSION
In this paper, we introduce a novel Markov-type CSDE with the TP function that records the individual
attention of each control agent at sub-intervals along the temporal axis. Using the properties of the
CSDE and TP, we suggest Markov DP to efficiently train the control agents by decomposing the
original problem into smaller sub-problems. To overcome the practical/theoretical issues, we propose
two novel losses, namely, MFcond and MBcond losses. The MFcond loss captures the future time
to estimate the running costs, while multiple conditions are actively provided to forward dynamics.
The MBcond loss assures the theoretical optimality of the control agents and imposes regularization
by providing additional information to backward dynamics. Experimental results demonstrate the
efficiency of the proposed method for various tasks using real datasets.

9
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A APPENDIX

A.1 DETAILED COMPARISON TO EXISTING METHODS

In this section, we investigate the relation between our method and existing methods.

Reverse SDE vs. Backward SDE. Song et al. (2020) suggested a novel SDE called reverse SDE,
which shares semantically similar idea with BSDE: both reverse/backward SDEs enhance the forward
SDE by providing additional information to drift/diffusion functions in forward dynamics.

The mathematical motivation of the reverse SDE in Anderson (1982) is to pose the SDEs with Wiener
processes Wt, Ŵt with respect to these minimal increasing/decreasing sigma algebras At, Ât and
define the relation between them:

dŴt =
1

pt(Xt)
∇[pt(Xt)σ(t,Xt)]dt+ dWt, (15)

where Xt is a solution to the forward SDE and pt is the probability density of Xt. Using the relation
in (15), the reverse SDE transforms the prior distribution (e.g., Gaussian noise distribution) back into
the data distribution (e.g., 2D images) by gradually removing the noises and reconstruct the original
data with the well-designed score function (i.e., ∇pt(x)) in backward dynamics. In contrast to the
reverse SDE, the role of backward SDE in this paper is to consider the probabilistic reformulation to
access the cost functional to provide the additional information in backward dynamics.

Stacked ODE vs. CSDE-TP. Massaroli et al. (2020) suggested the stacked Neural ODE that shares
similar idea with the proposed CSDE-TP, where temporally piece-wise neural nets are considered
to model the complex dynamics. However, the stacked ODE faces the aforementioned problem on
partial conditional information when generating complex data as their models only take initial values
to propagate dynamics. As opposed to their models, the proposed model is trained with multiple
observations and directly generates time series in data space without any latent embedding network.
Furthermore, we generalize their optimal control problems to the stochastic version and propose the
Markov-DP-TP framework that can systemically solve the problem.

DDPMs vs. CSDE-TP. Tashiro et al. (2021) suggested denoising denoising diffusion models
(DDPMs) that are conditioned on the set of the observed data, where the generated sequential
data is assumed to be gradually transformed from an initial state in the forward direction and the
backward process is parameterized by the neural network and trained to minimize specific ELBOs.

Specifically, the transition probability pθ(Xt−1|Xt) in the backward process is defined as a parame-
terized Gaussian distribution:

pθ(Xt|Xt−1) = N (Xt−1;µθ(t,Xt), σθ(t,Xt)), (16)

where mean and covariance (µθ, σθ) are parameterized by the neural network θ. Similar to the pro-
posed CSDE, their parameterized functions are closed-loop type processes and the whole probabilistic
sequential model pθ is posed as the Markov chain: pθ(X0:T ) = pθ(XT )

∏T
t=1 pθ(Xt−1|Xt).

In contrast to the DDPM, the probability transition in the proposed CSDE is defined as the continuous
generalization called controlled Fokker-Planck equation (CFPE):

∂

∂t
pαθ (x, t|y, s) = −∇f(x, t, αθ)pt(x) +

1

2
Tr
[
∇2σσT (x, t, αθ) · pt(x)

]
, (17)

where t > s ∈ [0, T ) and x, y ∈ Rd, pt ∼ Xα
t is the probability distribution ofXα

t . The CFPE in (17)
one-to-one corresponds to the CSDE (i.e., Xα

t ). Compared to the discrete-time Gaussian transition
model, this conditional probability can express complex continuous-time probability transitions while
maintaining the Markov structure.

A.2 NOTATIONS AND BACKGROUND

We first define the basic definitions of probabilistic objects:
Definition 3. A filtration {Ft} is an increasing sequence of {Ft} of σ-algebra such that F0 · · · ,⊂
Ft ⊂ F . The triplet (Ω,Ft,P) is called a filtered probability space.
Definition 4. The filtration generated by Wiener process Wt is defined as FWt = σ{W0, · · · ,Wt}.
In this case, Wt is naturally FWt -adapted by construction.
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Definition 5. The stochastic process {Xt} is called {Ft}-adapted if Xt is Ft measurable for every
0 ≤ t ≤ T .

Throughout this paper, we work on the filtered probability space (Ω, {Ft}t∈[0,T ],P) with the d-
dimensional Ft-Wiener process Wt and natural filtration FWt . We assume that αi for all 1 ≤ i ≤M
is admissible Markov control, (i.e., αi is Ft-adapted and αi ∈ Ai, Xα

t has a unique solution).
Definition 6. (Markov Process) Let Xt be a Ft-adapted stochastic process. Then, Xt is the Markov
process if the following equality holds:

E[Xt|Fs] = E[Xt|Xs], ∀s ≤ t. (18)
Definition 7. (Controlled Stochastic Differential Equation)

Xα
t = Xs +

∫ t

s

b (u,Xα
u , α) du+

∫ t

s

σ (u,Xu, α) dWu, for 0 ≤ s ≤ t ≤ T. (19)

The solution to the above CSDE is denoted as Xα,s
t . If the initial states are specified (i.e., starting

point Xs = x), we denote the solution as Xα,s,x
t . By the definition of Markovian control agents, in

all cases, the solution to the proposed CSDE in (1) is a Markov process.

Mathematical Assumptions. In this paper, we assume that functions b, σ are uniformly Lipschitz
continuous along its spatial axis and bounded ‖b(t, 0; ·)‖ , ‖σ(t, 0; ·)‖ at the entire interval [0, T ].
We assume that each functions bi(·, x, ·), σi(·, x, ·),Ψ(x), l(·, x) are twice differentiable for all
1 ≤ i ≤ M , (i.e., , bi, σi,Ψ, l ∈ C2(Rn). and both drift and diffusion functions are uniformly
Lipschitz on its spatial axis, i.e., bi, ∂xbi, ∂2

xb
i, σi, ∂xσ

i, ∂2
xσ

i ∈ Lip), and the trainable parameters
of the control agents αi, θi are lying in the compact subset C of its ambient space (i.e., θi ∈ C ⊂ Rm).

A.3 ENLARGED INFORMATION BY COLLECTION OF OBSERVED DATA

In the proposed inference procedure, we define a novel operator T in (9) to consider the multi-
conditioned dynamics with the Markov-type SDE model. Although this operator plays a central role
in the paper, its mathematical properties have not been carefully dealt and investigated thoroughly.
In this section, we discuss the relation between this operator and the enlarged information that is
obtained by collecting past observations. In addition, we generalize the inference mechanism in (9) to
a mathematically rigorous form and discuss the effect of the proposed operator T by showing some
probability inequality.

Suppose that we have two observed conditional states {Xtm}, {Xtn} until the current time t,
(tn, tm < t < tk) and the objective is to predict/generate the future value ytk using this infor-
mation. We consider the deterministic time tk by replacing random stopping time τtm to simplify the
discussion. First, we define the two-parameter stochastic process Y to model the proposed operator
T in an alternative way:

Ttm,tk = Y (tm, tn)(w) ,
1

2

(
Xα,tm

1,tk
(w) +Xα,tn

2,tk
(w)
)
, (20)

where w ∈ Ω takes a value in the probability space. The stochastic process Y is the (Ftm ∨ Ftn)-
valued random variable for any fixed tm, tn < t by the definition, whereFtm∨Ftn , Σ(FM1∪FM2)
is the composited smallest sigma algebra with two filtrations. In the definition, we assume that
processes Xα,tm

1,tk
, Xα,tn

2,tk
are derived from two independent Wiener processes Wt and Ŵt. Then, we

can define the two-parameter martingale Zakai (1981); Khoshnevisan (2003) in the following form:
M(tm, tn)(w) = E [l(tk, Y (tm, tn))|Ftm ∨ Ftn ] . (21)

By the definition of M, it can be easily shown that M is the reformulation of the MFcond loss for
some fixed number of past observations. Note that M is truly a martingale because conditional
estimations are summed in the definition of T . The control agents are trained to minimize the M
given the information induced by past observations (i.e., composited filtration {

∨
tm<t

FMtm }),
which indicates that the proposed inference procedure can infer the future value X̂α

tk
according to

the enlarged information {
∨
tm<t

FMtm }. By the fact that M is a martingale with respect to the
composited filtration, we obtain the following result using Doob’s maximal inequality:

1− 1

2η

(
E
[∥∥Xα,t

1,tk
− ytk

∥∥]+ E
[∥∥Xα,t

2,tk
− ytk

∥∥]) ≤ P
[

sup
tn<t

sup
tm<t

E[l ◦ T |Ftm ∨ Ftn ] ≤ η
]
,

(22)
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where the inequality shows that errors between the future value ytk and the generated samples Xα,t
tk

at time tk are bounded by the maximal perturbation probability. As the control agents are trained to
minimize the MFcond loss (i.e.,M) in the right-hand side of inequality, it renders the probabilistic
bound of L2 errors at future time tk.

A.4 DETAILED DISCUSSIONS ON THE MBCOND LOSS

In this section, we investigate the detailed theoretical structure of the MBcond loss and its fundamental
rationale for the optimality of control agents. For this, we rephrase the cost functional in the general
form:

J(t, x) = E

[∫ T

t

l(s,Xα
s )ds+ Ψ(Xα

T )

∣∣∣∣∣Xt = x

]
. (23)

The classical non-linear Feynman-Kac theorem in Yong & Zhou (1999) states that given the cost
functional J with the control agents α, one can obtain the second-order parabolic partial differential
equation from (23):

∂J

∂t
+ 〈∇J, b(t, x, α)〉+

1

2
Tr
[
σσT (t, x, α)∇2J

]
+ l(s, x) = 0, (24)

where 〈·, ·〉 denotes the inner product and the boundary condition is given as J(T, x) = Ψ(x).
Subsequently, by applying Itô’s formula to (23), we obtain the following probabilistic formulation:

Ψ(Xα
T ) = J(s,Xs) +

∫ T

t

[
∂J

∂t
(s,Xs) +

1

2
Tr[σσT (s,Xs, α)∇2J ] + 〈b(s,Xs, α),∇J〉

]
dt

+

∫ T

t

〈σT (s,Xs, α)∇J(s,Xs), dWt〉 = −
∫ T

t

l(s,Xs)ds+

∫ T

s

〈σT (s,Xs, α)∇J(s,Xs), dWs〉.

(25)

By rearranging each term above, the backward stochastic differential equation is induced directly.

Zαt = J(t,Xα
t ) = Ψ(Xα

T ) +

∫ T

t

l(s,Xs)ds−
∫ T

t

〈σT (t,Xt, α)∇J(s,Xs), dWs〉. (26)

Note that, in the main paper, we use the inverse sign convention,
∫ T
t

(·) = −
∫ t
T

(·), to emphasize
the backward direction. By using the formulations, the MBcond loss in (13) can be rewritten in full
description as follows:

Lb(α,Zαt ) =

∫
[0,T ]

Ey(·)

[∣∣∣∣Ψ(Xα
T ) +

∫ T

t

l(s,Xα
s )ds−

∫ T

t

〈σT (t,Xα
t , α)∇J(s,Xα

s ), dWs〉
∣∣∣∣2
∣∣∣∣∣Xα

t = yt

]
dt,

(27)
where y(·) = (y1, · · · , yT ) ∼ p(y1, · · · , yT ) denotes the set of observed data. The regularization
effect comes from the expectation evaluation of the third term in (26). Specifically, one can obtain
the following equality by using the Itô’s isometry:

E

∣∣∣∣∣
∫ T

t

〈σT (t,Xt, α)∇J(s,Xs), dWs〉

∣∣∣∣∣
2

|Xt

 = E

[∫ T

t

∥∥σT (t,Xt, α)∇J(s,Xs)
∥∥2
dt|Xt

]
.

(28)
Because the MBcond loss is posed to minimize this additional martingale term in (28) in backward
dynamics according to the forward dynamics Xα

t , it reduces the over-confidence of generated time-
series. By the relation (t, x)→ J(t, x)→ Zαt → Lb(t, x) for any (t, x) ∈ [0, T ]× R+, the update
rule for the MBcond loss can be expressed as follows:

θrk+1 = θrk −
∂

∂θr

[
Lb
(
s,X

αr(·,·,θrk)
s

)
ds
]
, (29)

where this formulation is similar to (5) and shows that gradient descent with respect to θr for the
MBcond loss can be explicitly defined.

Admissible Control Set A. In previous discussions, we show the relation between J with BSDE
dynamics Zt and the well-defined gradient descent. The next step is to define the proper control set
A to relate the gradient descent with optimality.
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Let us define the Hilbert space L2 , {ϕ(t, x; θ̄);Rn-valued Ft-progressively measurable ∀θ̄ ∈ C}
with the norm ‖ϕ‖2L2 = E

[∫ T
0
|ϕ(t, x; θ)|2dt

]
< ∞. We assume that control agents αr is Lαr

Lipschitz on the parameter variable, i.e.,
∥∥∥αr(·, ·; θrk,1)− αr(·, ·; θrk,2)

∥∥∥
L2
≤ Lαr

∥∥∥θrk,1 − θrk,2∥∥∥ for
any θrk,1 6= θrk,2 ∈ Rm and any 1 ≤ k ≤ K. In all case, we assume that any θrk lies in the compact
subset C of Rm. Each functions bi(·, x, ·), σi(·, x, ·),Ψ(x), l(·, x) are twice differentiable for all
1 ≤ i ≤ M , (i.e., , bi, σi,Ψ, l ∈ C2(Rn). and both drift and diffusion functions are uniformly
Lipschitz on its spatial axis, i.e., bi, ∂xbi, ∂2

xb
i, σi, ∂xσ

i, ∂2
xσ

i ∈ Lip). As we defined Ψ and l as
usual Euclidean distance, regularity/uniform Lipschitzness for these functions are trivial.

For the fixed parameter θ, we define the r-th control agent as θr → αr(·, ·, θr) , αr(θ) ∈ L2. Truly,
the image space of αr(θ) is the closed subspace of the Hilbert space L2 due to the Lipschitzness with
compactness of θ.

Let θr(k) : N → Rm be the trajectory for the training parameters of the r-th control agent at

learning iteration k. Without loss of generality, Jr[αr] = J(t,X
(αr,α(−r))
t ). We define the Euclidean

closed metric balls {Bδkr }k∈N centered at θ(k) with the radius δkr < ∞ such that Bδkr = {ϑ ∈
Rm; ‖ϑ− θr(k)‖ ≤ δkr , θr(k) is local minimum of Jr[θ(k)]}. Let us consider the sub-sequence
{θ(k̄)}k̄∈N̄ ⊆ {θr(k)}k∈N , which induces the strictly-decreasing cost functional {Jr[θ(k̄)]}k̄∈N̄
with the ordered index set N̄ . Then, the admissible control set A is defined as follows:

α , [α1, · · · , αr · · · , αM ] ∈ A =

M⊗
r=1


K⋂
K̄

K̄⋃
j̄=1

αr(·, ·, Bδj̄ ); j̄ ≤ K̄ ∈ N̄

 ⊂
M⊗
r=1

L2, (30)

where K̄ is the maximal element in N̄ and the constant K ∈ N indicates the last iteration index of
training defined in Algorithm 1. Intuitively, the control set A can be understood as a collection of
local minimum obtained by M gradient descent schemes during training.

V , J [α?] = J [α(θ(K))] = inf
α∈A

J [α(θ)]. (31)

where V ∈ C1,2([0, T ],Rd). By the definition of metric balls {Bδk} and strictly-decreasing proper-
ties, the infimum in (31) is attained when θ(K) = θ and the control agent α(θ(K)) is optimal in this
control set.

Relation to Stochastic Maximum Principle (SMP). We consider an arbitrary control in the convex
set K ∈ A with β ∈ K and the optimal control α(θ(K)). Let DJ |β = d

dεJ(θ(K) + ε(β − α))|ε=0

be the Gâteaux derivative (this can be defined while the control set is a vector sub-space, A ⊂ L2).
By the result of Pontryagin maximum principle, Theorem (4.12) in Carmona (2016a), one can obtain
the inequality as follows:∥∥∥∥ ∂∂αH

∥∥∥∥ · (∨Mr Lαr ) ‖θ(K)− θ‖ ≥
∥∥∥∥ ∂∂αH

∥∥∥∥ · ‖[α(t,Xt, θ(K))− β(t,Xt, θ)]‖ ≥ DJ |β ≥ 0 (32)

for t ∈ [0, T ] almost surely, where we defineH , H(t,Xt, Yt, Zt, αt) for the Hamiltonian systemH
with adjoint variables Yt, Zt and define the arbitrary control β = α(·, ·, θ) ∈ A with some θ. The first
inequality is satisfied due to the definition of Lipschitzian control agents. The optimality condition
indicates converging upper-bound of DJ |β to 0.

In our method, the optimality condition of the proposed learning framework is bounded by the
Euclidean distance between θ(K) and θ in parameter space. Thus, the proposed framework poses a
fundamentally different approach to interact with optimality conditions in SMP. As we define that the
θ(K) is a local minimum of J with the inequality ‖θ(K)− θ‖ < δKθ , the gradient descent scheme
that induces the tight radius {δkθ}k∈N+ assures optimality by the relation 0 ≤ DJ |β ≈ δKθ .

Relation to the HJB equation. We consider the infinitesimal generator Lt of the non-homogeneous
controlled Markov process Xt as Lαt f = 〈∇f, b(t, x, α)〉+ 1

2Tr
[
σσT (t, x, α)∇2f

]
. We show the

important relation between the proposed MBcond loss with the HJB equation as follows:
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Figure 3: The pipeline of the proposed CSDE-TP with neural control agents

∂J

∂t
(t, x) + Lα(θ(K))

t J(t, x) + l(t, x)︸ ︷︷ ︸
Non-linear Feynman-Kac, MBcond loss

= 0 =
∂V

∂t
(t, x) + inf

α∈A
[Lαt V (t, x) + l(t, x)]︸ ︷︷ ︸

HJB equation, exact solution

(33)

Equivalence Relation

In the left-hand side of (33), the PDE formula is directly consequence of the non-linear Feynman-Kac
theorem that we derive in (24). The distinct point is that control agents are obtained by the gradient
descent of the MBcond loss with BSDE (i.e., Zt). Note that, as shown in (31), θ(K) is actually an
optimal control. This means that, without heavy calculations to solve the PDEs, the gradient descent
algorithm also assures optimality of control agents in the proposed control set A.

In contrast, the HJB equation in the right-hand side states that the optimal control agent can be
obtained by solving the second-order parabolic formula and the infimum is taken by considering
algebraic properties of candidates for the exact solution. If the solution to HJBE exists in the control
set A, the PDE in the left hand side of (33) approximates the solution to the HJB. Overall, we
argue that the MFBcond loss can provide a novel deep learning-based paradigm to adopt/solve the
conventional stochastic optimal control problem in a feasible way (i.e., well-defined loss functions
with the gradient descent scheme).

A.5 DATA PREPOSSESSING

PhysioNet dataset, Silva et al. (2012), contains overall 8000 multivariate time series obtained for the
first 48 hours of a different patient’s admission to intensive care unit (ICU). Each patient has a set of
35 various clinical features. We normalized features of all patients in the dataset to have zero mean
and unit variance. We used a half of time-series as the training dataset and the remaining parts as the
test dataset.

Speech Commands dataset, Warden (2018), consists of one-second audio records of various spoken
words such as “Yes”, “No”, “Up”, and “Down”. Since there were nearly 100,000 record samples, we
sub-sampled the dataset due to the dimensionality of training instances on two conflicting classes
(i.e., “Right” and “Left”). Overall, 6950 time-series records were selected, where 80% were used as
training dataset and the remaining parts as the test dataset. We pre-processed these time series by
computing Mel-frequency cepstrum coefficients from the audio signal, so that each time series was
spaced with 65 and 54 channels. Then, we normalized each channel of all signals in the dataset to
have zero mean and unit variance.

Beijing Air-Quality dataset, Zhang et al. (2017), consists of multi-year recordings of air quality data
across different locations in Beijing. Each sample contains 6-dimensional time series features of
PM2.5, PM10, SO2, NO2, CO, and O3, which are recorded per hour. We segmented data to have
the length of 48 and normalized each feature of all data in the dataset to have zero mean and unit
variance.
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S&P-500 Stock Market dataset consists of stock market data with 6-dimensional feature vectors (i.e.,
[High, Low, Open, Close, Volume, Adj Close]). For the complete data acquisitions, we excluded
enterprises with incomplete recordings during sampling duration, thus total 381 enterprises are
selected. The time-series are sampled every 30-min with T = 48 temporal states. Similar to Speech
commands dataset, we used first 80% of temporal states to train the model and the remaining parts
are used for prediction task.

A.6 EXPERIMENTS DETAILS

Different SDE candidates for CSDE. Owing to the abstract form of the proposed CSDE in (1),
various types of drift and diffusion functions (i.e., b and σ) can be selected according to different
applications. In Table 4, we enumerate candidate functions. In the experiments, we adopted two
models: Vanilla and Mckean-Vlasov (MV) SDEs.

Hyperparameters. For the running and terminal costs (l and Ψ, respectively), we used the l2
distance, i.e., l(s, x) = ‖x− ys‖22 and Ψ(x) = ‖x− yT ‖2. In all experiments, γ is set to 0.95. To
estimate the gradient of the MBcond loss, we estimated numerical gradients with the auto-grad library
in Pytorch (Paszke et al. (2019)).

Table 4: Examples of Neural CSDEs.

SDE Type bi, σi

Vanilla αi(t,Xα
t )

Langevin ∇αi(Xα
t ),
√

2σi

Ornstein-Ulenbeck
[
µi − αi(Xα

t )
]
, σi

McKean-Vlasov
[
E[αi(t,Xα

t )]− αi
]
, σi

Network Architecture for Neural Control Agents.
Each control agent αi(t,Xt; θ

i) has an identical neu-
ral network architecture, which consists of linear lay-
ers and non-linear units. Figure 3 shows the detailed
network architecture. Each agent takes concatenation
of temporal/spatial tensors (t,Xt) as its input, where
the temporal tensor t is transformed into new form t′

by the time inhomogeneous embedding layer. We fol-
lowed the setting suggested in Park et al. (2021) for
this embedding. After time embedding, concatenated
tensor (t′, Xt) is fed into two Linear layers with non-
linearity units (i.e., LipSwish in Chen et al. (2019); Kidger et al. (2021)). Finally, the transformed
tensors are split into the control terms for drift and diffusion functions. The diffusion functions are
defined as non-degenerate types, where σi(t,Xt, α

i) = Diag(zt) and zt is the output of the last
linear layer. The latent dimension of each Linear layer was set to 128 in all experiments except for
the prediction task with the Air Quality dataset (= 64). Thus, a total number of training parameters
for single control agent αi is ≈ 11K.

Simulation of CSDE and Temporal Privacy Function. Let T = t ∈ {tk}1≤k≤N for the pre-fixed
time interval ∆t. We apply the Euler-Maruyama scheme to approximately simulate the proposed
CSDE:

Xα
t+∆t

= Xα
t +

M∑
i=1

wi(t)bi(t,Xα
t , α

i(t,Xα
t ; θi))∆t +

M∑
i=1

wi(t)σi(t,Xα
t , α

i(t,Xα
t ; θi))Z, (34)

where Z , Z(0,
√

∆tId) is a d-dimensional Gaussian random variable with zero mean and covariance√
∆tId.

Analysis of Instability at Contact Points. In every time stamps t, drift and diffusion functions
are controlled over neural control agents αi where we assume that t− and t+ are adjacent points
of contact point t with infinitesimally small duration. The process At indicates drift integral term
and σαs denotes the diffusion term in our forward CSDE dynamics. As shown in the inequality, the
Markovian property is still preserved, and the magnitude of jumps are controlled by Lipschitzness of
drift/diffusion functions.

E
[∥∥Xt− −Xt+

∥∥2 |Ft−
]
≤ E[‖At‖2 |Xt− ] + E

[∫ t

t−

‖σαs ‖
2
ds|Xt−

]
+ E

[∫ t+

t

∥∥σβs ∥∥2
ds|Xt−

]
.

(35)

In a probabilistic point of view, the set of contact points may be regarded as measure-zero, and the
probabilistic evaluation is not changed.
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Figure 4: The example of the temporal pri-
vacy function.

Figure 4 shows a particular example, where 14 temporal
states (i.e., |T| = 14) with 4 control agents are considered.
In the figure, the black line indicates the trajectory of
time series, blue dots denote the observed data points, and
shaded grey dots denote the missing data points. Each
control agent takes 5 data points, where 2 temporal states
are shared to other agents. In the experiments, the total
number of temporal privacy functions are maximally set
to M = |T|/2, where each control agent shares 2 points
for smooth transitions of stochastic dynamics.

A.7 ADDITIONAL EMPIRICAL STUDY

(a) Effect of hyper-parameter γ (b) Effect of random stopping time (log-scaled)

Figure 5: Ablation study on the effectiveness of the proposed method.

Effect of hyper-parameter γ. In Figure 5-(a), the effect of hyper-parameter γ is shown. Similar to
Fig 2-(b), the results were obtained for the prediction task with the Air Quality dataset. Each red,
black, and blue line indicates the test MSE for different γ ∈ [0.0, 0.95, 1.0] over 50 epochs. If the
MFcond is deactivated during the training time i.e., γ = 0.0, only MBcond loss is utilized to train
the proposed CSDE-TP, and the model produces poor results. As our inference procedure requires
the model to train with multiple conditions, the obtained result seems obvious. If the MBcond loss
is deactivated during the training time i.e., γ = 1.0, multi-conditioned information in backward
dynamics Zαt are canceled, and the performance is decreased significantly i.e., 1.277→ 2.003. This
clearly shows that MBcond loss boost the performance.

Effect of random stopping time. In Figure 5-(b), the effect of strategy to select ε is shown. If we
select threshold ε as an uniform random variable ε ∼ U [s, T ] which is independent to Xt, then the
network quickly falls into instability as shown in the red line of Figure 5-(b). This shows that the
well-designed strategy for selecting threshold ε is crucial factor to stabilize the network learning
landscape. Contrary to the random sampling strategy, our method defined in Algorithm 1 select half
value of maximal MFcond loss in last learning steps as the threshold ε for random stopping time
(i.e., 1

2 max lk−1 → εk). As the threshold ε is always bounded above the maximal loss in the last
steps, random stopping time at iteration k is decided in the time set:

τks ∈ {t : l(t, T αk
s,t ) >

1

2
max l(t, T αk−1

s,t )}, (36)

where τks denotes the stopping time at learning iteration k. If the network trains the MFcond loss so
that lk , l(t, T αk

s,t )→ 0 as training proceeds k →∞, then it is clear that the stopping time vanishes
τk→∞s ∈ ∅. Thus, the strategy in (36) is well-defined.

A.8 DETAILED EXPLANATIONS OF MARKOV DYNAMIC PROGRAMMING WITH TEMPORAL
PRIVACY

For the clear explanation of proposed Markov-DP-TP, let us consider the detailed example. we
decompose sub-problem (B′) in (4) into another smaller sub-problems:
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inf
α(−r)

E[J(u,Xα
u )]︸ ︷︷ ︸

(B′)

= inf
β

E

[∫ u′

u

l(s,Xα
s )ds

]
︸ ︷︷ ︸

(C)

+ inf
β(−r′)

E [J(u′, Xα
u′)]︸ ︷︷ ︸

(C′)

, (37)

where we set α(−r) = β, wr(s) = 1t≤s≤u. In this case, the problem (B) on interval [u, T ] is
now decomposed into smaller sub-problems (C), (C′) on two intervals [u, u′] and [u′, T ]. Similarly
to u in (4), another auxiliary time index u′ is considered here for additional problem (C). The
corresponding new temporal privacy function wr′(s) = 1u≤s≤u′ is defined on the interval [u, u′].

By repeating temporal decomposition of original problem (A) M times, one can find the following
hierarchical relations:

• P1). original problem, T = [t, · · · , T ], α, no temporal privacy

• P2). Two sub-problems (B) + (B′) in (4),
Time set, T = [t, · · · , u, · · · , T ],
control agents, α = [αr, α(−r)],
temporal privacy functions = {wr}

• P3). Three sub-problems (B) + (C) + (C ′),
Time set, T = [t, · · · , u, · · · , u′, · · · , T ],

control agents, α = [αr, β, β(−r′)],
temporal privacy functions = {wr, wr′}

• P4). M sub-problems, (A) + (B) + (C) + . . . ,
Time set, T = [t, · · · , T−tM , · · · , r ∗ T−tM , · · · , T ],

α = [α1, α2, · · · , αr, · · · , αM ],
temporal privacy functions = {w1, w2, · · · , wr, · · · , wM}

The role of u in (3) and (4) is replaced to u and u′ in (P3), and replaced to (r ∗ T−tM ) in (P4) in the
table if the time interval is assumed to be regularly sampled. Similarly, the role of r in (3) and (4) is
replaced to r and r′ in (P3).

A.9 TOY EXAMPLE ON SYNTHETIC DATA

In this section, we conduct the reconstruction experiment on synthetic data to show the different
behaviors and demonstrate the advantages of the proposed CSDE compared to previous methods.

Stochastic Trigonometric Data. In this experiment, we define the 100-dimensional stochastic
process with composition of trigonometric functions (i.e., sin, cos) as follows:

Yt =

[
1

2
sin(5πt+ Z1t) + 0.25 cos

(
13

5
πt+ Z2t

)
+ Z3

]
∈ R100, (38)

where we assume t ∈ [0, 1.0] and the total number of temporal states are set to 48 (i.e., |T| = 48). In
the definition of synthetic process Yt, both the period and amplitude are randomized with mean-zero
Gaussian random variables (i.e., Z1 ∼ N (0, 1.0), Z2 ∼ N (0, 2.0), Z3 ∼ N (0, 1

2Id)). With the
effect of Gaussian random variables, the process contains high volatility in both the spatial/temporal
axes. We compare our method to the auto-regressive ODE-RNN Rubanova et al. (2019) model using
the open-source code implemented by the authors. To observe the fundamental difference between
ODE-RNN and CSDE-TP, we stop the training procedure when the estimated MSEs of both models
attained the threshold (≤ .07). In Figures 6 and 7, the first axis of trigonometric data are visualized.
The results of each model are indicated as the blue lines (i.e., Xt) and the synthetic trigonometric
data is indicated as the red lines (i.e., Yt). The 95%-confidence regions (i.e., CR-95) of both the test
and predicted time-series are shown as red and blue shaded regions, respectively.

ODE-RNN. Figure 6 shows the results of the ODE-RNN model. Although the ODE-RNN model
attains relatively similar MSEs compared to the proposed model, there are two main issues in their
model to be discussed.
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1) It hardly captures the vertical perturbation of test data induced by Z3 and the obtained result
produces a small variance at every temporal states.

2) It hardly captures the horizontal perturbation of test data induced by Z1, Z2, and the obtained
result produces the temporally unmatched trajectories.

These phenomenons occurred due to the deterministic property of the ODE-RNN model, where the
dynamical transition in their model is posed as the ODEs that cannot express the stochastic variation.

Figure 6: ODE-RNN.

Figure 7: CSDE-TP.

CSDE-TP. Figure 7 shows the result of the proposed CSDE-TP model and shows the advantages
of adopting the SDE in modelling stochastic dynamics. Compared to the results of the ODE-RNN,
the proposed method accurately captures both the vertical/horizontal perturbations and recover the
95% confidence region. It is clear that our CSDE-TP delicately expresses the complex volatility of
stochastic trajectories.

Discussions. As aforementioned in Section 4.3, experimental results on synthetic stochastic data
show that the MSE is not the best metric to train/evaluate the time-series models if there exists the
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high volatility in the dataset. In this case, distributional metrics such as MMD and Wasserstein
distance can be good substitutes for training/evaluating stochastic data.

A.10 FUTURE WORK

We plan to extend the proposed CSDE model to a general controlled Markov Itô-Lévy jump diffusion
model (Øksendal & Sulem (2007)) to delicately express the complex time-series data. For example,
the proposed CSDE can be generalized to the Markov Itô-Lévy jump diffusion of the following form:

dXα
t = b(t,Xα

t , α(θ))dt+ σ(t,Xα
t , α(θ))dWt +

∫
Γ(t, Z)N(dt, dZ), (39)

where N(t, z) =
∑

0<s≤t Xz∈U (ηs − ηs−), and Poisson random measure ηt. As the previous
work in Jia & Benson (2019) show the effectiveness of the jump process in modelling complex
discontinuous dynamics, we believe this generalization will produce the comparable results and
broaden our understanding in modelling dynamical systems for time-series data.
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