
Under review as a conference paper at ICLR 2024

FairProof : CONFIDENTIAL AND CERTIFIABLE FAIR-
NESS FOR NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Machine learning models are increasingly used in societal applications, yet legal
and privacy concerns demand that they very often be kept confidential. Conse-
quently, there is a growing distrust about the fairness properties of these models
in the minds of consumers, who are often at the receiving end of model predic-
tions. To this end, we propose FairProof – a system that uses Zero-Knowledge
Proofs (a cryptographic primitive) to publicly verify the fairness of a model, while
maintaining confidentiality. We also propose a fairness certification algorithm for
fully-connected neural networks which is befitting to ZKPs and is used in this
system. We implement FairProof in Gnark and demonstrate empirically that our
system is practically feasible.

1 INTRODUCTION

Recent usage of ML models in high-stakes societal applications Khandani et al. (2010); Brennan
et al. (2009); Datta et al. (2014) has raised serious concerns about their fairness (Angwin et al., 2016;
Vigdor, November, 2019; Dastin, October 2018; Wallarchive & Schellmannarchive, June, 2021).
As a result, there is growing distrust in the minds of a consumer at the receiving end of ML-based
decisions Dwork & Minow (2022). In order to increase consumer trust, there is a need for developing
technology that enables public verification of the fairness properties of these models.

A major barrier to such verification is that legal and privacy concerns demand that models be kept
confidential by organizations. The resulting lack of verifiability can lead to potential misbehavior,
such as model swapping, wherein a malicious entity uses different models for different customers
leading to unfair behavior. Therefore what is needed is a solution which allows for public verification
of the fairness of a model and ensures that the same model is used for every prediction (model
uniformity) while maintaining model confidentiality. The canonical approach to evaluating fairness is
a statistics-based third-party audit Yadav et al. (2022); Yan & Zhang (2022); Pentyala et al. (2022).
This approach however is replete with problems arising from the usage of a reference dataset, the
need for a trusted third-party, and lack of guarantees of model uniformity Fukuchi et al. (2019);
Shamsabadi et al. (2023).

We address the aforementioned challenges by proposing a system called FairProof involving two parts:
1) a fairness certification algorithm which outputs a certificate of fairness , and 2) a cryptographic
protocol using commitments and Zero-Knowledge Proofs (ZKPs) that guarantees model uniformity
and gives a proof that the certificate is correct.

Figure 1: Pictorial Representation of FairProof

Given an input query, the fairness certification
algorithm outputs how fair the model is at that
point according to a fairness metric. The metric
we use is local Individual Fairness (IF) Dwork
et al. (2012); John et al. (2020); Benussi et al.
(2022); Bertrand & Mullainathan (2004), which
is desirable for two reasons. First, it evaluates
fairness of the model at a specific data point
(rather than for the entire input space) – this
allows us to give a personalized certificate to ev-
ery customer, as would be required by customer-

1

Under review as a conference paper at ICLR 2024

facing organizations. Second, it works on the model post-training, making it completely agnostic to
the training pipeline.

How do we design a certification algorithm for the chosen metric? We observe that certifying local
IF can be reduced to an instantiation of certifying robustness.1 We then leverage techniques from
the robustness literature to design our algorithm. One of our key contributions is to design the
algorithm so that it is ZKP-friendly. In particular, the computational overhead for ZKPs depends on
the complexity of the statement being proved. To this end, we design a fairness certificate which
results in relatively low complexity statements.

Once the fairness certificate has been computed, we want to enable the consumer to verify that the
certificate was indeed computed correctly, but without revealing the model weights. To do this, we
rely on Succinct Zero Knowledge Proofs Goldwasser et al. (1985); Goldreich et al. (1991). This
cryptographic primitive enables a prover (eg. bank) to prove statements (eg. fairness certificate)
about its private data (eg. model weights) without revealing the private data itself. It provides a proof
of correctness as an output. Then a verifier (eg. customer) verifies this proof without access to the
private data. In our case, if the proof passes verification, it implies that the fairness certificate was
computed correctly with respect to the hidden model.

We design and implement a specialized ZKP protocol to efficiently prove and verify the aforemen-
tioned fairness certification algorithm. Doing this naively would be very computationally expensive.
We tackle this challenge with three insights. First, we show that verification of the entire certification
algorithm can be reduced to a few strategically chosen sub-functionalities, each of which can be
proved and verified efficiently. Second, we provide a lower bound on the certificate, i.e., a conserva-
tive estimate of the model’s fairness, for performance optimization. Third, we observe that certain
computations can be done in an offline phase thereby reducing the online computational overhead.

Our solution ensures model uniformity through standard cryptographic commitments. A crypto-
graphic commitment to the model weights binds the organization to those weights publicly while
maintaining confidentiality of the weights. This has been widely studied in the ML security litera-
ture (Gupta et al., 2023; Boemer et al., 2020; Juvekar et al., 2018; Liu et al., 2017; Srinivasan et al.,
2019; Mohassel & Zhang, 2017; Mohassel & Rindal, 2018).

We focus on fully-connected neural networks with ReLU activations as the models. We implement
and evaluate FairProof on three standard fairness benchmark datasets to demonstrate its practicality.

2 PRELIMINARIES & SETTING

Fairness. Existing literature has put forth a wide variety of fairness definitions Mehrabi et al. (2021);
Barocas et al. (2019). In this paper, we focus on the notion of local individual fairness John et al.
(2020); Dwork et al. (2012); Benussi et al. (2022) defined below, as it best aligns with our application
(see Sec. 2 for more details).

Definition 1 (Local Individual Fairness). A machine learning model f : Rn 7→ Y is defined to be
ϵ-individually fair w.r.t to a data point x∗ ∼ D under some distance metric d : Rn × Rn 7→ R if

∀x : d(x, x∗) ≤ ϵ =⇒ f(x∗) = f(x) (1)

We say a model f is exactly ϵ∗-individually fair w.r.t x∗ if ϵ∗ is the largest value that satisfies Eq. 1.
In particular, ϵ∗ is known as the local individual fairness parameter. For brevity we will be using ϵ
to mean ϵ∗ and fairness/individual fairness to refer to the notion of local individual fairness,
unless stated otherwise, throughout the rest of the paper.

Individual fairness formalizes the notion that similar individuals should be treated similarly; more
precisely, get the same classification. The similarity is defined according to a task dependent distance
metric d(·) that can be provided by a domain expert. Examples of such a metric could be weighted ℓp
norm where the weights of the sensitive features (race, gender) are set to 0 Benussi et al. (2022).

Neural Networks. We focus on the classification task and consider neural network (NN) classifiers
f : X 7→ Y , where f is a fully-connected neural network with ReLU activations, X = Rn is the

1Certifiable Robustness quantifies a model’s resistance to adversarial attacks by measuring the extent to
which a data point can be perturbed without altering the model prediction.

2

Under review as a conference paper at ICLR 2024

input space and Y is a discrete label set. This NN classifier (pre-softmax) can also be viewed a
collection of piecewise linear functions over a union of convex polytopes Xu et al. (2021); Hanin
& Rolnick (2019); Robinson et al. (2019); Croce et al. (2019); Serra et al. (2018). Here each linear
function corresponds to one polytope and each polytope corresponds to one activation pattern of the
nodes in the NN. A polytope P is represented by a set of linear inequalities, P = {x|Ax ≤ b} ; then
the collection of all such polytopes forms a partition of the input domain, X =

⋃P (Fig. 2a).

A facet is an (n− 1)-face of the polytope corresponding to the set {x|x ∈ P ∩Aix = bi} where Ai

and bi are the values of A and b at the ith dimension. Two polytopes that share a facet are known as
neighboring polytopes. The decision region of f at a data point x∗ is defined as the set of points for
which the classifier returns the same label as it does for x∗, essentially the set {x|f(x) = f(x∗)}.
This decision region can also be expressed as a union of convex polytopes Jordan et al. (2019). A
facet that coincides with the decision boundary of f is known as a boundary facet. See Fig. 2a and
App. A for more details.

Cryptographic Primitives. We use two cryptographic primitives, namely commitment schemes and
zero knowledge proof, for verifying the individual fairness certification. For a discussion on both of
these, kindly refer to the Appendix Sec. A.2.

Problem Setting. A model owner holds a confidential classification model f that cannot be publicly
released. A user supplies an input query x∗ to the model owner, who provides the user with a
prediction label y = f(x∗) along with a fairness certificate C w.r.t to x∗. This certificate can be
verified by the user, who is also guaranteed that the model owner uses the same model for everyone.

The above setting needs three tools. First, the model owner requires an algorithm for generating
the fairness certificate with white-box access to the model weights. This algorithm is discussed
in Sec. 3. Second, a mechanism is needed that enables the user to verify the received certificate
(public verification) without violating model confidentiality. This mechanism is discussed in Sec.
4. Third, a mechanism is needed to guarantee that the same model is used for everyone (model
uniformity), also without violating model confidentiality. For ensuring uniformity, the model owner
should commit the model in the initially itself, before it is deployed for users. This has been widely
studied and implemented by prior work as discussed in the introduction and an actual implementation
of commitments is out of scope of this work.

3 HOW TO CERTIFY INDIVIDUAL FAIRNESS?

In this section we present an algorithm to compute a local individual fairness certificate. This
certificate is computed by the model owner with white-box access to the model weights and is specific
to each user query, thereby leading to a personalized certificate. The certificate guarantees to the user
that the model has certain fairness properties at their specific query.

Preliminaries. Starting with some notation, let S be the set of k sensitive features, S := {S1, · · · , Sk}
where Si denotes the ith sensitive feature. We assume that each sensitive feature Si has a discrete
and finite domain, denoted by domain(Si), which is in line with typical sensitive features in practice,
such as race (eg. black/white/asian), presence of a medical condition (yes/no). Let domain(S)
represent the set of all possible combinations of the values of sensitive features, domain(S) :=
domain(S1) × · · · × domain(Sk). Without loss of generality, any data point x ∈ Rn is also
represented as x = x\S ∪ xS , where x\S and xS are the non-sensitive and sensitive features of x.

For the distance metric in individual fairness (Eq. 1), we consider a weighted ℓ2-norm where the
non-sensitive features have weight 1 while the sensitive features have weight 0. This distance metric
is equivalent to the ℓ2-norm sans the sensitive features. Thus, based on Def. 1, f is ϵ-individually fair
w.r.t x∗ iff,

∀x : ||x\S − x∗
\S ||2 ≤ ϵ =⇒ f(x∗) = f(x) (2)

With this notation in place, observe that our fairness certificate C is essentially the value of the
parameter ϵ. Intuitively it means that the model’s classification is independent of the sensitive features
as long as the non-sensitive features lie within an ℓ2 ball of radius ϵ centered at x∗

\S . Eq.2 can
also be equivalently viewed as follows: set the sensitive features of x∗ and x to a particular value
s ∈ domain(S) (so that they cancel out in the norm), then find the corresponding certificate ϵs and
repeat this procedure for all values in domain(S); the final certificate ϵ is the minimum of all ϵs.

3

Under review as a conference paper at ICLR 2024

Next we propose an algorithm to compute this fairness certificate. Our algorithm is based on three
key ideas, as we describe below.

Decision	Boundary

Facet

(a) ReLU NN

N
on

-s
en

si
ti

ve
 fe

at
ur

e
Q

Sensitive feature S

 𝑥*

(b) Robustness

N
on

-s
en

si
ti

ve
 fe

at
ur

e
Q

Sensitive feature S

ε
a ε

b ε
c

S = a S = b S = c

𝑥*

(c) Fairness

Figure 2: (a) ReLU-activated Neural Network as
a union of polytopes. (b) and (c) : Connection
between robustness & fairness for n = 2 and one
sensitive feature S with values {a, b, c}. Final fair-
ness certificate is the minimum of {ϵa, ϵb, ϵc}. Red
color denotes decision boundary.

Idea 1: Reduction from fairness to robust-
ness. Our first key observation is that in our
setting, certifiable fairness can be reduced to an
instantiation of certifiable robustness, which en-
ables us to re-use ideas from existing robustness
literature for our purpose. In particular, the re-
duction is as follows. A model f is defined to
be ϵ-pointwise ℓ2 robust (henceforth robustness)
for a data point x∗, if

∀x : ||x− x∗||2 ≤ ϵ =⇒ f(x∗) = f(x) (3)

Comparing this definition to Eq.2 and its alter-
nate view, we observe that once the sensitive fea-
tures have been fixed to a value s ∈ domain(S),
computing the corresponding fairness certificate
ϵs is equivalent to solving the robustness prob-
lem in (n − k) dimensions where the k dimensions corresponding to the sensitive features S are
excluded. Let us assume there exists an algorithm which returns the pointwise ℓ2 robustness value for
an input. Then the final fairness certificate ϵ computation requires |domain(S)| calls to this algorithm,
one for each possible value of the sensitive features in S . Fig. 2 illustrates this idea pictorially.

Idea 2. Using an efficient certified robustness algorithm. For ReLU-activated neural networks (see
Sec.2), the naive algorithm for certifying robustness is infeasible; it entails computing the distance
between x∗ and all boundary facets (facets coinciding with the decision boundary of the model)
induced by the model, which is exponential in the number of hidden neurons. Instead, we rely on an
efficient iterative algorithm GeoCert (Alg. 1 in App. B), proposed by Jordan et al. (2019). Additional
details are in App. B.

Idea 3: Generate a lower bound ϵLB for efficient ZKP. GeoCert provides exact fairness certificates
ϵ∗, by using a constrained quadratic program solver to get the actual distance between the input
point and a facet. However, verifying this solver using ZKPs would be a highly computationally
intensive task. Instead we propose to report a lower bound on the certificate, ϵLB < ϵ∗, using
simple projection distance, which considerably improves performance. A lower bound means that the
reported certificate ϵLB is a conservative estimate – the true measure of the model’s fairness could
only be higher. See Fig. 6 for intuition.
Theorem 3.1. Given a data point x∗ and a neural network f , Alg. 2 provides a lower bound ϵLB of
the correct individual fairness parameter of x∗.
Proof for this theorem is given in App. D, Thm. D.3. Our resulting fairness certification algorithm is
described in Alg.2 and detailed in App. B.

4 FairProof : VERIFICATION OF THE INDIVIDUAL FAIRNESS CERTIFICATE

Without careful design choices ZKPs can impose significant computational overhead. To this end, we
design an efficient verification protocol named FairProof by combining insights from cryptography
and ML. Specifically, FairProof is based on three key ideas described below.

Idea 1: Strategic verification of sub-functionalities. A naive verification mechanism replicates
all the computations outlined in Alg.2. However, this would involve computing all the polytopes
during every proof generation – this is computationally expensive since the number of polytopes is
exponential in the number of hidden neurons in the model. In contrast, we show that the verification
can be streamlined by focusing on five strategically chosen sub-functionalities, each of which can be
checked using certain properties of polytopes and neural networks. Consequently, we only verify the
polytopes traversed by the certification mechanism.

Idea 2: Representative points. Certain numeric properties of a polytope can be efficiently proven if
one has access to a representative point in the interior of the polytope. We leverage this insight in
FairProof to efficiently verify our chosen sub-functionalities.

4

Under review as a conference paper at ICLR 2024

Idea 3: Offline computation. We show that certain computations can be performed offline which
further reduces the time needed in the online phase.

Next, we detail our verification mechanism FairProof . Recall that in our setting model owner is the
prover and user is the verifier. The verification consists of two phases:

Phase 1: Pre-processing. All the operations in this phase are executed only once and before the
model is deployed to the users. The following two actions need to be taken by the model owner here.

1. Commit to the weights W of the model f , resulting in the commitment comW (we assume
that the architecture of f is known, i.e., f is a fully connected neural lnetwork with ReLU
activations).

2. Compute a representative point zP for each polytope P . Additionally, it computes a
representative point zF for every facet F23.

Phase 2: Online verification. The online verification phase is executed every time a user submits a
query x∗ to the model owner for prediction. Verifying the computation of Algorithm 2 essentially
amounts to verifying GeoCert with some modifications and consists of five steps. The model owner
generates proofs for these five functionalities and the user validates them.

Next, we present our security guarantee. Formal guarantee and detailed proof is presented in App. E.
Theorem 4.1. (Informal) Given a model f and a data point x∗, FairProof provides the prediction
f(x∗) and a lower bound ϵLB on the individual fairness parameter for x∗ without leaking anything,
except the number of total facets traversed, about the model f .

5 EVALUATION

In this section we evaluate the performance of FairProof empirically. Specifically, we ask the
following questions: (1) Can our fairness certification mechanism distinguish between fair and unfair
models? (2) Is FairProof practically feasible, in terms of time and communication costs?

Datasets. We use three standard fairness benchmarks. Adult Becker & Kohavi (1996) is a dataset
for income classification, where we select gender (male/female) as the sensitive feature. Default
Credit Yeh (2016) is a dataset for predicting loan defaults, with gender (male/female) as the chosen
sensitive feature. Finally, German Credit Hofmann (1994) is a loan application dataset, where Foreign
Worker (yes/no) is used as the sensitive feature.

Configuration. We train fully-connected ReLU networks with stochastic gradient descent in PyTorch.
Our networks have 2 hidden layers with different sizes including (4, 2), (2, 4) and (8, 2). All the
dataset features are standardized Sta. FairProof is implemented using the Gnark Botrel et al. (2023)
zk-SNARK library in GoLang. We run all our code for FairProof without any multithreading or
parallelism, on an Intel-i9 CPU chip with 28 cores.

8 9 10 11 12 13
Individual Fairness Parameter

0

2

4

6

8

10

Fr
eq

ue
nc

y

Mean = 9.64
Std. Dev. = 1.13

Credit, Fair

18 19 20 21 22 23 24
Individual Fairness Parameter

0

2

4

6

8

10

Fr
eq

ue
nc

y

Mean = 20.26
Std. Dev. = 0.93

Adult, Fair

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Individual Fairness Parameter

0

5

10

15

20

Fr
eq

ue
nc

y

Mean = 0.33
Std. Dev. = 0.38

Credit, Unfair

0 1 2 3 4
Individual Fairness Parameter

0

5

10

15

20

25

Fr
eq

ue
nc

y

Mean = 0.51
Std. Dev. = 0.61

Adult, Unfair

Figure 3: Histogram of fairness parameter ϵ for fair & unfair models. ϵ values are higher than those
for unfair models.

Model Fairness. We first evaluate if our certification mechanism can distinguish between fair and
unfair models. Prior work (Islam et al., 2021) has shown that overfitting leads to more unfair models

2A facet is also essentially a polytope, albeit in the (n− 1)-dimensional space.
3Although the number of polytopes and facets are exponential in the number of the neurons in the model,

this is a one-time computation performed completely offline and can be parallelized. See Sec. 5 for empirical
overhead of this pre-processing step on models for standard datasets.

5

Under review as a conference paper at ICLR 2024

while regularization encourages fairness. Thus, to obtain models with different fairness, we vary
regularization by changing the weight decay parameter in PyTorch. Then we randomly sample 100
test data points as input queries and find the fairness parameter ϵ for both types of models on these
queries. As demonstrated in Fig. 3, the unfair models have a lower ϵ than the corresponding fair
models. This consistent difference in ϵ values across different model sizes and datasets shows that
our certification mechanism can indeed distinguish between fair and unfair models. Results for other
models are included in App. F.

Performance of FairProof Since computation is a known bottleneck in ZKPs, we next investigate
the overhead of FairProof in terms of time and communication costs. All reported numbers are
averages over a 100 random test points. Fig. 4 (a) shows the proof generation costs for various models.
Note that the proof generation time varies with the models, due to its dependence on the number of
traversed facets4 which in turn depends on the model and query. On average, the adult model has
a larger number of traversed facets than others as shown in Table 1 in App. F, leading to a higher
proof generation time. We also observe that performing some computations in an offline phase results
in significant reductions in the online time cost, the largest being 1.74×. See Table 1 and Fig.12 in
App.F for details.

We also breakdown the overall proof generation time in terms of different sub-functionalities. We
report this breakdown for the query with the median proof generation cost, in Fig. 4 (b). As shown
in the figure, VerifyBoundary is the costliest sub-function for all the models; this is so since it is
executed in every iteration (every time a facet is popped) and involves costly non-linear comparison
operations (see Alg. 8). Other functionalities that are also executed multiple times based on number
of traversed facets but are not as expensive include VerifyNeighbor, VerifyDistance and VerifyOrder
(see Alg. 7, 6, 9). The least time is taken by VerifyMin which basically finds the minimum in a list;
this is so since the function is straight-forward and is ran only once per query (see Alg. 10).

We also report the average verification times - time for checking the validity of the proof by the
verifier - in Fig. 4 (a). Note that the verification costs are orders of magnitude lower (in seconds)
than the proof generation costs (in minutes) for all models; as is standard in ZKPs. Fig.4 (c) reports
the communication overheads, i.e. size of the generated proofs. The proof size is very small, only
certain kilobytes. Low verification time and communication cost is advantageous since it implies
quick real-time verification which does not require complex machinery at the customer end. For
detailed results on all models, refer to Fig. 13 and Fig. 14 in App. F.

German (2,4) Credit (2,4) Adult (8,2)
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ti
m

e
(m

in
s/

se
cs

)

Offline Proof Generation Time (in mins)
Online Proof Generation Time (in mins)
Verification Time (in secs)

(a)

Adult (4,2) Adult (8,2) German (2,4) German (4,2) Credit (2,4) Credit (4,2)
0

1

2

3

4

5

6

Ti
m

e
(in

 m
in

s)

Boundary
Distance
Order
Neighbor
Polytope
Inference
Min
Offline

(b)

German (2,4) Credit (2,4) Adult (8,2)
0

25

50

75

100

125

150

175

200

Pr
oo

f S
ize

 (i
n

KB
)

(c)

Figure 4: (a) Proof Generation (in mins) and Verification times (in secs) for different models. Offline
computations are done in the initial setup phase while Online computations are done for every new
query. Verification is only done online, for every query. (b) Breakdown of the proof generation time
(in mins) for the data point with the median time. (c) Total Proof Size (in KB) for various models.
This includes the proof generated during both online and offline phases.

Conclusion. In this paper we proposed FairProof – a protocol enabling model owners to issue
publicly verifiable certificates while ensuring model uniformity and confidentiality. Our experiments
demonstrate the practical feasibility of FairProof for small neural networks and tabular data. While
our work is grounded in fairness and societal applications, we believe that ZKPs are a general-purpose
tool and can be a promising solution for overcoming problems arising out of the need for model
confidentiality in other areas/applications as well. We call for further research in this direction.

4As mentioned in Thm. 4.1, this information is leaked by FairProof .

6

Under review as a conference paper at ICLR 2024

REFERENCES

Standarization. https://scikit-learn.org/stable/modules/generated/
sklearn.preprocessing.StandardScaler.html.

Aws Albarghouthi, Loris D’Antoni, Samuel Drews, and Aditya V. Nori. Fairsquare: Probabilistic
verification of program fairness. Proc. ACM Program. Lang., 1(OOPSLA), oct 2017. doi:
10.1145/3133904. URL https://doi.org/10.1145/3133904.

Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirch-
ner. Machine bias. https://www.propublica.org/article/
machine-bias-risk-assessments-in-criminal-sentencing, 2016.

Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness and Machine Learning: Limitations
and Opportunities. fairmlbook.org, 2019. http://www.fairmlbook.org.

Osbert Bastani, Xin Zhang, and Armando Solar-Lezama. Probabilistic verification of fairness
properties via concentration. Proc. ACM Program. Lang., 3(OOPSLA), oct 2019. doi: 10.1145/
3360544. URL https://doi.org/10.1145/3360544.

Barry Becker and Ronny Kohavi. Adult. UCI Machine Learning Repository, 1996. DOI:
https://doi.org/10.24432/C5XW20.

Elias Benussi, Andrea Patané, Matthew Wicker, Luca Laurenti, Marta Kwiatkowska University
of Oxford, and Tu Delft. Individual fairness guarantees for neural networks. In International Joint
Conference on Artificial Intelligence, 2022. URL https://api.semanticscholar.org/
CorpusID:248722046.

Marianne Bertrand and Sendhil Mullainathan. Are emily and greg more employable than lakisha
and jamal? a field experiment on labor market discrimination. American Economic Review, 94(4):
991–1013, September 2004. doi: 10.1257/0002828042002561. URL https://www.aeaweb.
org/articles?id=10.1257/0002828042002561.

Sumon Biswas and Hridesh Rajan. Fairify: Fairness verification of neural networks. In 2023
IEEE/ACM 45th International Conference on Software Engineering (ICSE), pp. 1546–1558, 2023.
doi: 10.1109/ICSE48619.2023.00134.

Fabian Boemer, Rosario Cammarota, Daniel Demmler, Thomas Schneider, and Hossein Yalame.
Mp2ml: A mixed-protocol machine learning framework for private inference. In Proceedings of
the 15th international conference on availability, reliability and security, pp. 1–10, 2020.

Gautam Botrel, Thomas Piellard, Youssef El Housni, Ivo Kubjas, and Arya Tabaie. Consensys/gnark:
v0.9.0, February 2023. URL https://doi.org/10.5281/zenodo.5819104.

Tim Brennan, William Dieterich, and Beate Ehret. Evaluating the predictive validity of the compas
risk and needs assessment system. Criminal Justice and Behavior, 36(1):21–40, 2009. doi:
10.1177/0093854808326545. URL https://doi.org/10.1177/0093854808326545.

Francesco Croce, Maksym Andriushchenko, and Matthias Hein. Provable robustness of relu networks
via maximization of linear regions. In the 22nd International Conference on Artificial Intelligence
and Statistics, pp. 2057–2066. PMLR, 2019.

J Dastin. Amazon scraps secret ai recruiting tool that showed bias against women, October 2018.

Amit Datta, Michael Carl Tschantz, and Anupam Datta. Automated experiments on ad privacy
settings: A tale of opacity, choice, and discrimination. ArXiv, abs/1408.6491, 2014. URL
https://api.semanticscholar.org/CorpusID:6817607.

Alice Doherty, Matthew Wicker, Luca Laurenti, and Andrea Patane. Individual fairness in bayesian
neural networks, 2023.

Cynthia Dwork and Martha Minow. Distrust of artificial intelligence: Sources & responses from
computer science & law. Daedalus, 151(2):309–321, 2022.

7

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://doi.org/10.1145/3133904
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
http://www.fairmlbook.org
https://doi.org/10.1145/3360544
https://api.semanticscholar.org/CorpusID:248722046
https://api.semanticscholar.org/CorpusID:248722046
https://www.aeaweb.org/articles?id=10.1257/0002828042002561
https://www.aeaweb.org/articles?id=10.1257/0002828042002561
https://doi.org/10.5281/zenodo.5819104
https://doi.org/10.1177/0093854808326545
https://api.semanticscholar.org/CorpusID:6817607

Under review as a conference paper at ICLR 2024

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness through
awareness. In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference,
ITCS ’12, pp. 214–226, New York, NY, USA, 2012. Association for Computing Machinery.
ISBN 9781450311151. doi: 10.1145/2090236.2090255. URL https://doi.org/10.1145/
2090236.2090255.

Kazuto Fukuchi, Satoshi Hara, and Takanori Maehara. Faking fairness via stealthily biased sampling,
2019.

Sanjam Garg, Aarushi Goel, Somesh Jha, Saeed Mahloujifar, Mohammad Mahmoody, Guru-Vamsi
Policharla, and Mingyuan Wang. Experimenting with zero-knowledge proofs of training. Cryp-
tology ePrint Archive, Paper 2023/1345, 2023. URL https://eprint.iacr.org/2023/
1345. https://eprint.iacr.org/2023/1345.

Bishwamittra Ghosh, D. Basu, and Kuldeep S. Meel. Justicia: A stochastic sat approach to formally
verify fairness. In AAAI Conference on Artificial Intelligence, 2020. URL https://api.
semanticscholar.org/CorpusID:221655566.

Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity or
all languages in np have zero-knowledge proof systems. J. ACM, 38(3):690–728, jul 1991. ISSN
0004-5411. doi: 10.1145/116825.116852. URL https://doi.org/10.1145/116825.
116852.

S Goldwasser, S Micali, and C Rackoff. The knowledge complexity of interactive proof-systems. In
Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing, STOC ’85, pp.
291–304, New York, NY, USA, 1985. Association for Computing Machinery. ISBN 0897911512.
doi: 10.1145/22145.22178. URL https://doi.org/10.1145/22145.22178.

Kanav Gupta, Neha Jawalkar, Ananta Mukherjee, Nishanth Chandran, Divya Gupta, Ashish Panwar,
and Rahul Sharma. Sigma: secure gpt inference with function secret sharing. Cryptology ePrint
Archive, 2023.

Boris Hanin and David Rolnick. Deep relu networks have surprisingly few activation patterns.
Advances in neural information processing systems, 32, 2019.

Hans Hofmann. Statlog (German Credit Data). UCI Machine Learning Repository, 1994. DOI:
https://doi.org/10.24432/C5NC77.

Rashidul Islam, Shimei Pan, and James R Foulds. Can we obtain fairness for free? In Proceedings of
the 2021 AAAI/ACM Conference on AI, Ethics, and Society, pp. 586–596, 2021.

Philips George John, Deepak Vijaykeerthy, and Diptikalyan Saha. Verifying individual fairness in
machine learning models, 2020.

Matt Jordan, Justin Lewis, and Alexandros G. Dimakis. Provable Certificates for Adversarial
Examples: Fitting a Ball in the Union of Polytopes. Curran Associates Inc., Red Hook, NY, USA,
2019.

Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. {GAZELLE}: A low latency
framework for secure neural network inference. In 27th USENIX Security Symposium (USENIX
Security 18), pp. 1651–1669, 2018.

Mintong Kang, Linyi Li, Maurice Weber, Yang Liu, Ce Zhang, and Bo Li. Certifying some
distributional fairness with subpopulation decomposition, 2022.

Amir E. Khandani, Adlar J. Kim, and Andrew W. Lo. Consumer credit-risk models via machine-
learning algorithms. Journal of Banking & Finance, 34(11):2767–2787, 2010. ISSN 0378-4266.
doi: https://doi.org/10.1016/j.jbankfin.2010.06.001. URL https://www.sciencedirect.
com/science/article/pii/S0378426610002372.

Haitham Khedr and Yasser Shoukry. Certifair: A framework for certified global fairness of neural
networks, 2022.

8

https://doi.org/10.1145/2090236.2090255
https://doi.org/10.1145/2090236.2090255
https://eprint.iacr.org/2023/1345
https://eprint.iacr.org/2023/1345
https://eprint.iacr.org/2023/1345
https://api.semanticscholar.org/CorpusID:221655566
https://api.semanticscholar.org/CorpusID:221655566
https://doi.org/10.1145/116825.116852
https://doi.org/10.1145/116825.116852
https://doi.org/10.1145/22145.22178
https://www.sciencedirect.com/science/article/pii/S0378426610002372
https://www.sciencedirect.com/science/article/pii/S0378426610002372

Under review as a conference paper at ICLR 2024

Niki Kilbertus, Adria Gascon, Matt Kusner, Michael Veale, Krishna Gummadi, and Adrian Weller.
Blind justice: Fairness with encrypted sensitive attributes. In Jennifer Dy and Andreas Krause
(eds.), Proceedings of the 35th International Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research, pp. 2630–2639. PMLR, 10–15 Jul 2018. URL
https://proceedings.mlr.press/v80/kilbertus18a.html.

Jian Liu, Mika Juuti, Yao Lu, and Nadarajah Asokan. Oblivious neural network predictions via
minionn transformations. In Proceedings of the 2017 ACM SIGSAC conference on computer and
communications security, pp. 619–631, 2017.

Tianyi Liu, Xiang Xie, and Yupeng Zhang. zkcnn: Zero knowledge proofs for convolutional
neural network predictions and accuracy. Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, 2021. URL https://api.semanticscholar.
org/CorpusID:235349006.

Pranav Maneriker, Codi Burley, and Srinivasan Parthasarathy. Online fairness auditing through
iterative refinement. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining, KDD ’23, pp. 1665–1676, New York, NY, USA, 2023. Association
for Computing Machinery. ISBN 9798400701030. doi: 10.1145/3580305.3599454. URL
https://doi.org/10.1145/3580305.3599454.

Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan. A survey
on bias and fairness in machine learning. ACM Comput. Surv., 54(6), jul 2021. ISSN 0360-0300.
doi: 10.1145/3457607. URL https://doi.org/10.1145/3457607.

Payman Mohassel and Peter Rindal. Aby3: A mixed protocol framework for machine learning. In
Proceedings of the 2018 ACM SIGSAC conference on computer and communications security, pp.
35–52, 2018.

Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable privacy-preserving machine
learning. In 2017 IEEE symposium on security and privacy (SP), pp. 19–38. IEEE, 2017.

Saerom Park, Seongmin Kim, and Yeon-sup Lim. Fairness audit of machine learning models with con-
fidential computing. In Proceedings of the ACM Web Conference 2022, WWW ’22, pp. 3488–3499,
New York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450390965. doi:
10.1145/3485447.3512244. URL https://doi.org/10.1145/3485447.3512244.

Sikha Pentyala, David Melanson, Martine De Cock, and Golnoosh Farnadi. Privfair: a library for
privacy-preserving fairness auditing, 2022.

Haakon Robinson, Adil Rasheed, and Omer San. Dissecting deep neural networks. arXiv preprint
arXiv:1910.03879, 2019.

Anian Ruoss, Mislav Balunovic, Marc Fischer, and Martin Vechev. Learning certified individually
fair representations. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.),
Advances in Neural Information Processing Systems, volume 33, pp. 7584–7596. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/
2020/file/55d491cf951b1b920900684d71419282-Paper.pdf.

Shahar Segal, Yossi Adi, Benny Pinkas, Carsten Baum, Chaya Ganesh, and Joseph Keshet. Fairness in
the eyes of the data: Certifying machine-learning models. In Proceedings of the 2021 AAAI/ACM
Conference on AI, Ethics, and Society, AIES ’21, pp. 926–935, New York, NY, USA, 2021.
Association for Computing Machinery. ISBN 9781450384735. doi: 10.1145/3461702.3462554.
URL https://doi.org/10.1145/3461702.3462554.

Thiago Serra, Christian Tjandraatmadja, and Srikumar Ramalingam. Bounding and counting linear
regions of deep neural networks. In International Conference on Machine Learning, pp. 4558–4566.
PMLR, 2018.

Ali Shahin Shamsabadi, Sierra Calanda Wyllie, Nicholas Franzese, Natalie Dullerud, Sébastien
Gambs, Nicolas Papernot, Xiao Wang, and Adrian Weller. Confidential proof of fair training of
trees. ICLR, 2023.

9

https://proceedings.mlr.press/v80/kilbertus18a.html
https://api.semanticscholar.org/CorpusID:235349006
https://api.semanticscholar.org/CorpusID:235349006
https://doi.org/10.1145/3580305.3599454
https://doi.org/10.1145/3457607
https://doi.org/10.1145/3485447.3512244
https://proceedings.neurips.cc/paper_files/paper/2020/file/55d491cf951b1b920900684d71419282-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/55d491cf951b1b920900684d71419282-Paper.pdf
https://doi.org/10.1145/3461702.3462554

Under review as a conference paper at ICLR 2024

Wenting Zheng Srinivasan, PMRL Akshayaram, and Popa Raluca Ada. Delphi: A cryptographic
inference service for neural networks. In Proc. 29th USENIX Secur. Symp, pp. 2505–2522, 2019.

Haochen Sun and Hongyang Zhang. zkdl: Efficient zero-knowledge proofs of deep learning training,
2023.

Ehsan Toreini, Maryam Mehrnezhad, and Aad van Moorsel. Verifiable fairness: Privacy-
preserving computation of fairness for machine learning systems. 2023. URL https:
//api.semanticscholar.org/CorpusID:261696588.

Caterina Urban, Maria Christakis, Valentin Wüstholz, and Fuyuan Zhang. Perfectly parallel fairness
certification of neural networks. Proc. ACM Program. Lang., 4(OOPSLA), nov 2020. doi:
10.1145/3428253. URL https://doi.org/10.1145/3428253.

N Vigdor. Apple card investigated after gender discrimination complaints., November, 2019.

Sheridan Wallarchive and Hilke Schellmannarchive. Linkedin’s job-matching ai was biased. the
company’s solution? more ai., June, 2021.

Shaojie Xu, Joel Vaughan, Jie Chen, Aijun Zhang, and Agus Sudjianto. Traversing the local
polytopes of relu neural networks: A unified approach for network verification. arXiv preprint
arXiv:2111.08922, 2021.

Chhavi Yadav, Michal Moshkovitz, and Kamalika Chaudhuri. A learning-theoretic framework for
certified auditing with explanations, 2022.

Tom Yan and Chicheng Zhang. Active fairness auditing, 2022.

I-Cheng Yeh. default of credit card clients. UCI Machine Learning Repository, 2016. DOI:
https://doi.org/10.24432/C55S3H.

Samuel Yeom and Matt Fredrikson. Individual fairness revisited: Transferring techniques from
adversarial robustness. In Proceedings of the Twenty-Ninth International Joint Conference on
Artificial Intelligence, IJCAI’20, 2021. ISBN 9780999241165.

Mikhail Yurochkin, Amanda Bower, and Yuekai Sun. Training individually fair ml models with
sensitive subspace robustness. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=B1gdkxHFDH.

Jiaheng Zhang, Zhiyong Fang, Yupeng Zhang, and Dawn Song. Zero knowledge proofs for decision
tree predictions and accuracy. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’20, pp. 2039–2053, New York, NY, USA, 2020. Association
for Computing Machinery. ISBN 9781450370899. doi: 10.1145/3372297.3417278. URL
https://doi.org/10.1145/3372297.3417278.

Lingchen Zhao, Qian Wang, Cong Wang, Qi Li, Chao Shen, and Bo Feng. Veriml: Enabling integrity
assurances and fair payments for machine learning as a service. IEEE Transactions on Parallel
and Distributed Systems, 32(10):2524–2540, 2021. doi: 10.1109/TPDS.2021.3068195.

10

https://api.semanticscholar.org/CorpusID:261696588
https://api.semanticscholar.org/CorpusID:261696588
https://doi.org/10.1145/3428253
https://openreview.net/forum?id=B1gdkxHFDH
https://doi.org/10.1145/3372297.3417278

Under review as a conference paper at ICLR 2024

A BACKGROUND CNTD.

A.1 POLYTOPES

The polytopes described succinctly by their linear inequalities (i.e., they are H-polytopes), which
means that the number of halfspaces defining the polytope, denoted by m, is at most O(poly(n)), i.e.
polynomial in the ambient dimension.

Next, we present a lemma which states that slicing a polyhedral complex with a hyperplane also
results in a polyhedral complex.

Lemma A.1. Given an arbitrary polytope P := {x|Ax ≤ B} and a hyperplane H := {x|cTx = d}
that intersects the interior of P , the two polytopes formed by the intersection of P and the each of
closed halfspaces defined by H are polyhedral complices.

Fact A.2. Two ReLU activation codes of two neighboring polytopes differ in a single position and
the differing bit corresponds to the facet common to both.

A.2 CRYPTOGRAPHIC TOOLS

A Commitment Scheme commits to a private input w without revealing anything about w; its output
is a commitment string comw. A commitment scheme has two properties:

1. Hiding: the commitment string comw reveals nothing about the committed value w.
2. Binding: it is not possible to come up with another input w′ with the same commitment

string as w, thus binding w to comw (simplified).

Zero Knowledge Proofs Goldwasser et al. (1985) describe a protocol between two parties – a prover
and a verifier, who both have access to a circuit P . A ZKP protocol enables the prover to convince the
verifier that it possesses an input w such that P (w) = 1, without revealing any additional information
about w to the verifier. A simple example is when Pφ(w) = 1 iff φ is a SAT formula and φ(w) = 1;
a ZKP protocol enables the prover to convince a verifier that there is a w for which φ(w) = 1, while
revealing nothing else about w. A ZKP protocol has the following properties:

1. Completeness. For any input w such that P (w) = 1, an honest prover who follows the
protocol correctly can convince an honest verifier that P (w) = 1.

2. Soundness. Given an input w that P (w) ̸= 1, a malicious prover who deviates arbitrarily
from the protocol cannot falsely convince an honest verifier that P (w) = 1, with more than
negligible probability.

3. Zero knowledge. If the prover and verifier execute the protocol to prove that P (w) = 1,
even a malicious verifier, who deviates arbitrarily from the protocol, can learn no additional
information about w other than P (w) = 1.

Theory suggests that it is possible to employ ZKPs to verify any predicate P in the class NP Goldreich
et al. (1991). Moreover, the resulting proofs are non-interactive and succinct. However, in practice,
generating a proof for even moderately complex predicates often incurs significant computational
costs. To this end, our main contribution lies in introducing a ZKP-friendly certification algorithm, to
facilitate efficient fairness certificate generation.

B INDIVIDUAL FAIRNESS CERTIFICATION CNTD.

Working of GeoCert. This algorithm starts from the polytope containing the data point x∗ and
iteratively searches for the boundary facet with the minimum distance from x∗. A priority queue of
facets is maintained, sorted according to their distance from x∗. At each iteration, the facet with the
minimum distance is popped and its neighbors (polytopes adjacent to this facet) are examined. If
the neighboring polytope is previously unexplored, the distance to all of its facets is computed and
inserted them into the priority queue; otherwise the next facet is popped. The algorithm terminates as
soon as a boundary facet is popped. Fig. 5 presents a pictorial overview of GeoCert.

Our Certification Algorithm. In this section, we describe the concrete algorithm to compute the
local individiual fairness parameter for a data point x∗ (Algorithm 2).

11

Under review as a conference paper at ICLR 2024

𝑥∗ 𝜀"∗

Figure 5: GeoCert’s behavior on point x∗. Colored facets are in the priority queue; red and solid black
lines denote boundary and non-boundary facets respectively. Algorithm stops when the minimum
distance facet is a boundary facet (rightmost).

d`2(x
⇤, F)

<latexit sha1_base64="USgCdbKcBotjqsftmH6Nf4CRylo=">AAACBHicbVDLSsNAFJ3UV62vqMtugkWoIiWpgi6LgrisYB/QxDCZTNqhk0mYmYglZOHGX3HjQhG3foQ7/8ZJm4VWD1w4nHMv997jxZQIaZpfWmlhcWl5pbxaWVvf2NzSt3e6Iko4wh0U0Yj3PSgwJQx3JJEU92OOYehR3PPGF7nfu8NckIjdyEmMnRAOGQkIglJJrl713dTGlLrNrH5/e3hkh1COEKTpZXbg6jWzYU5h/CVWQWqgQNvVP20/QkmImUQUCjGwzFg6KeSSIIqzip0IHEM0hkM8UJTBEAsnnT6RGftK8Y0g4qqYNKbqz4kUhkJMQk915jeKeS8X//MGiQzOnJSwOJGYodmiIKGGjIw8EcMnHCNJJ4pAxIm61UAjyCGSKreKCsGaf/kv6TYb1nGjeX1Sa50XcZRBFeyBOrDAKWiBK9AGHYDAA3gCL+BVe9SetTftfdZa0oqZXfAL2sc312CXkw==</latexit>dproj(x
⇤, F)

<latexit sha1_base64="VOpi9jz00suY+cVL2nbip5rldv4=">AAACAnicbVDLSsNAFJ3UV62vqCtxEyxCFSlJFXRZFMRlBfuANobJZNKOnWTCzEQsIbjxV9y4UMStX+HOv3HSZqGtBy4czrmXe+9xI0qENM1vrTA3v7C4VFwurayurW/om1stwWKOcBMxynjHhQJTEuKmJJLiTsQxDFyK2+7wIvPb95gLwsIbOYqwHcB+SHyCoFSSo+94ThJxdpdWHm4Pj3oBlAMEaXKZHjh62ayaYxizxMpJGeRoOPpXz2MoDnAoEYVCdC0zknYCuSSI4rTUiwWOIBrCPu4qGsIACzsZv5Aa+0rxDJ9xVaE0xurviQQGQowCV3VmN4ppLxP/87qx9M/shIRRLHGIJov8mBqSGVkehkc4RpKOFIGIE3WrgQaQQyRVaiUVgjX98ixp1arWcbV2fVKun+dxFMEu2AMVYIFTUAdXoAGaAIFH8AxewZv2pL1o79rHpLWg5TPb4A+0zx/XK5cQ</latexit>

F
<latexit sha1_base64="0GKwjezZDa6BOR5Fs3+zk2FsV9w=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFQVxWsA+YDiWTZtrQTDIkGaEM/Qw3LhRx69e482/MtLPQ1gOBwzn3knNPmHCmjet+O6W19Y3NrfJ2ZWd3b/+genjU0TJVhLaJ5FL1QqwpZ4K2DTOc9hJFcRxy2g0nt7nffaJKMykezTShQYxHgkWMYGMlvx9jMyaYZ3ezQbXm1t050CrxClKDAq1B9as/lCSNqTCEY619z01MkGFlGOF0VumnmiaYTPCI+pYKHFMdZPPIM3RmlSGKpLJPGDRXf29kONZ6God2Mo+ol71c/M/zUxNdBxkTSWqoIIuPopQjI1F+PxoyRYnhU0swUcxmRWSMFSbGtlSxJXjLJ6+STqPuXdQbD5e15k1RRxlO4BTOwYMraMI9tKANBCQ8wyu8OcZ5cd6dj8VoySl2juEPnM8feTWRYA==</latexit>

x⇤
<latexit sha1_base64="jnMY0T6KnzJdaKDPvvumscr85XM=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBDEQ9iNgh6DXjxGNA9I1jA76SRDZmeXmVkxLPkELx4U8eoXefNvnCR70MSChqKqm+6uIBZcG9f9dpaWV1bX1nMb+c2t7Z3dwt5+XUeJYlhjkYhUM6AaBZdYM9wIbMYKaRgIbATD64nfeESleSTvzShGP6R9yXucUWOlu6eH006h6JbcKcgi8TJShAzVTuGr3Y1YEqI0TFCtW54bGz+lynAmcJxvJxpjyoa0jy1LJQ1R++n01DE5tkqX9CJlSxoyVX9PpDTUehQGtjOkZqDnvYn4n9dKTO/ST7mME4OSzRb1EkFMRCZ/ky5XyIwYWUKZ4vZWwgZUUWZsOnkbgjf/8iKpl0veWal8e16sXGVx5OAQjuAEPLiACtxAFWrAoA/P8ApvjnBenHfnY9a65GQzB/AHzucPAN2NnA==</latexit>

H

Figure 6: Projection of x∗ onto the hyperplane H containing facet F gives a lower bound on the ℓ2
distance between x∗ and F , i.e., dproj(x∗,F) ≤ dℓ2(x

∗,F).

Our construction is based on the Geocert algorithm by Jordan et. al (Algorithm 1, Section 2) for
computing the pointwise ℓ2 robustness of neural networks with two key distinctions. First, we run
on all the union of (n − k)-dimensional polytopes each of which corresponds to a fixed value of
the sensitive feature set S. Second, for each of these complices, we compute a lower bound on the
pointwise ℓ2 robustness. The final certificate of fairness is the minimum over all the above bounds.

In the following, we describe the working of the algorithm 2 in more detail. First, we compute the
polyhedral complex P for the model f (Step 1). Next for a fixed value of the set of the sensitive
features S (Step 3), we compute the corresponding (n − k)-dimensional polyhedral complex P′

from the original n-dimensional polyhedral complex (ReducePolyDim function Alg. 3). The key
idea is to fix the corresponding values of the features in S in the linear constraints of the polytopes
in P. In the next step, we compute a lower bound on the pointwise ℓ2 robustness of x∗ for the
polyhedral complex P′ using the Geocert algorithm (Step 5-6). In particular, instead of minimizing
the ℓ2 distance to a facet F , we compute the projection of x∗ onto a hyperplane H , where F lies
entirely on H . The above computation is repeated for all the values of the set of sensitive features S .
The final certificate of fairness is the minimum of all the lower bounds as computed above (Step 8).

In what follows, we briefly describe how to compute of the pointwise ℓ2 robustness of a point x. The
problem essentially boils down to computing the largest ℓ2 ball centered at x that fits within the union
of n-dimensional polytopes defined by f .

12

Under review as a conference paper at ICLR 2024

Algorithm 1 Geocert: Pointwise ℓ2 Robustness

Input x∗ - Data point for pointwise ℓ2 robustness certification; f - Neural network; dist -
Distance Metric;
Output ϵ - Pointwise ℓ2 robustness certificate on x∗;

1: Compute all the polytopes for f
2: Setup priority queue Q← []
3: Setup list of seen polytopes C ← {P(x)} ▷ P(x) denotes the polytope containing x
4: For Facet F ∈ P(x) do
5: Q.push(ComputeDistance(F , x∗),F , dist)
6: End For
7: While Q ̸= ∅ do
8: (d,F)← Q.pop()
9: If IsBoundary(F) == 1

10: Return d
11: Else
12: For P ∈ N (F) \ C do

▷ N (F) denote the two polytopes sharing the facet F
13: For F ∈ P do
14: Q.push(ComputeDistance(F , x∗),F , dist)
15: End For
16: End For
17: End If
18: End While

Algorithm 2 Individual Fairness Certification

Inputs x∗ ∈ Rn, f : ReLU-activated Neural Network
Output ϵLB : Our Fairness Certificate for x∗

1: Construct the set of all polytopes P =
⋃P for f where each polytope is expressed as

P = {x|Ax ≤ b}
2: E := []
3: for s ∈ domain(S1)× · · · × domain(Sk)
4: P′ := ReducePolyDim(P, s) (Alg. 3 in Appendix)
5: ϵs := GeoCert(x∗,P′, dproj)
6: E.append(ϵs)
7: end for
8: ϵLB := minE
9: Return ϵLB

Algorithm 3 ReducePolyDim : Construct (n− k)-dimensional polytopes from n-dimensional poly-
topes

Inputs P =
⋃P : Set of Polytopes where each polytope P is expressed as {x|Ax ≤ b}, s =

(s1, · · · , sk) : Values of k sensitive features
Output P′ : Set of (n− k)-dimensional Polytopes

1: P′ := {}
2: for P ∈ P
3: for i ∈ |row(A)|
4: for j ∈ [k + 1, n]
5: A′[i][j − k] = A′[i][j]
6: end for
7: b′[i] = b[i]−∑k

j=1 A[i][j] · sj
8: end for
9: Express P ′ = {x|A′x ≤ b′}

10: P′ := P′ ∪ P ′

11: end for
12: Return P′

13

Under review as a conference paper at ICLR 2024

C VERIFICATION ALGORITHMS

Now we describe the sub-functionalities to be verified by FairProof .

1. Verifying initial polytope (Alg. 5). Recall that GeoCert starts from the polytope containing data
point x∗. Hence, the verifier needs to check that the initial polytope (1) indeed contains the data point
x∗, and (2) is one of the polytopes obtained from the model f . The key idea used in this function
is that each polytope is associated with a unique ReLU activation code. Verification for step (1)
involves computing the ReLU activation code for x∗ using the committed weights comW and step
(2) involves deriving the corresponding polytope for this activation code from comW.

2. Verifying distance to facets (Alg. 6). During its course GeoCert computes distance between x∗ and
various facets. Hence, the verifier needs to check the correctness of these distance computations. As
discussed in the preceding section, we compute a lower bound of the exact distance using projections,
which can be efficiently proved under ZKPs.

3. Verifying neighboring polytopes (Alg. 7). In each iteration GeoCert visits a neighboring polytope
adjacent to the current one; the two polytopes share the facet that was popped in the current iteration.
Verifying neighborhood entails checking that the visited polytope indeed (1) comes from the model f ,
and (2) shares the popped facet. The key idea used here is that two neighboring polytopes differ in a
single ReLU activation corresponding to the shared facet (Fact A.2). Specifically, the prover retrieves
the representative point corresponding to the visited polytope and computes its ReLU activation code,
R′, using the committed weights comW. Next, it computes the polytope corresponding to R′ from
comW to prove that it is obtained from the model f . This is followed by showing that the hamming
distance between R′ and R is one, where R is the activation code for the current polytope. Finally,
the prover shows that the current facet is common to both the polytopes.

4. Verifying boundary facet (Alg. 8). The termination condition of GeoCert checks whether the
current facet is a boundary facet or not; we verify this in FairProof as follows. Let R denote the
activation code for the current polytope P and let fR(x) = WRx+ bR represent the linear function
associated with R. For the ease of exposition, let f be a binary classifier. In other words, fR(x) is
the input to the softmax function in the final layer of f (i.e., logits) for all data points x ∈ P . The
key idea for verification is that iff x lies on a boundary facet, fR(x) has the same value for both the
logits. For verifying this computation, we rely on the pre-computed representative point of a facet.
Specifically, the prover retrieves the representative point z for the current facet F = {x|Ax ≤ b}.
First, it proves that z lies on F by showing Az ≤ b holds. Next, the prover computes fR (i.e., the
weights WR and bR) from the committed weights using R and tests the equality of both the logits in
fR(z).

5. Verify order of facet traversal (Alg. 9). The order in which the facets are traversed needs to be
verified – this is equivalent to checking the functionality of the priority queue in GeoCert. Standard
ZKP tools are built for verifying mathematical computations (expressed as an arithmetic or Boolean
circuit) and do not have built-in support for data structures, such as priority queues. We overcome
this challenge by leveraging the following key idea – correctness of the priority queue can be verified
by checking that the next traversed facet is indeed the one with the shortest distance.

Additional optimizations. We identify certain computations in the above algorithms that can
performed offline. Specifically, in VerifyNeighbor the proof of correctness for polytope construction
using representative points can be generated offline. Further, in VerifyBoundary proof for computation
of the linear function fR can also be generated offline. This leads to a significant reduction in the
cost of the online proof generation (see Sec. 5).

End-to-end verification mechanism is presented in Alg. 4. In the final step, the prover has to generate
an additional proof that the reported certificate of fairness corresponds to the smallest value among
all the lower bounds obtained for each element of domain(S) (VerifyMin , Alg. 10). Additionally,
the prover also needs to prove integrity of the inference, i.e., y = f(x∗). For this, after computing
the linear function fRx∗ (x

∗) using the committed weights comW (where Rx∗ is the activation code
for x∗) we need to additionally prove that the label corresponds to the logit with the highest score
(Alg. 11, VerifyInference).

14

Under review as a conference paper at ICLR 2024

Algorithm 4 FairProof : Verifiable Individual Fairness Certification

Input x∗ - Data point for fairness certification; W - Weights of the piecewise linear neural
network;
Output ϵ - Local individual fairness parameter for x; comW - Commitment to the weights of
the model; ZK proof that the ϵ is indeed a lower bound on ϵIF
Pre-Processing Offline Phase

1: Construct the polyhedral complex P =
⋃P from W where each polytope is expressed as

P = {x|Ax ≤ b}
2: Compute a reference point zi for each polytope Pi ∈ P such that zi ∈ Pi

3: Commit to the model weights comW and release them publicly
Online Phase

4: E = []
5: for (s1, · · · , sk) ∈ domain(S1)× · · · × domain(Sk)
6: for P ∈ P
7: for i ∈ |row(A)|
8: for j ∈ [k + 1, n]
9: A′[i][j − k] = A′[i][j]

10: end for
11: b′[i] = b[i]−∑k

j=1 A[i][j] · sj
12: end for
13: Express P ′ = {x|A′x ≤ b′}
14: P′ = P′ ∪ P ′

15: end for
16:

(
ϵ′,P1, ⟨(F1, d1), · · · , (Fn, dn)⟩

)
= GeoCert(x∗,P′, dproj)

▷ P1 is the first polytope traversed
▷ ⟨(F1, d1), · · · , (Fn, dn)⟩ is the ordered sequence of the visited facets and their corresponding

distances

17: Prover proves that P1 is the polytope in P′ containing x∗ ▷ Using VerifyPolytope
18: Initialize the list of seen facets T = []
19: for facet F ∈ N (P1)
20: Prover proves that the computation of the distance d from x∗ to F is correct ▷ Using

VerifyDistance
21: T.insert

(
(F , d)

)
;

22: end for
23: for i ∈ [m− 1]
24: Prover proves that Fi is indeed the facet with the smallest distance in T▷ Using VerifyOrder
25: Prover proves that F is not a boundary facet ▷ Using VerifyBoundary
26: for P ∈ N (Fi)
27: Prover proves that P is a neighboring polytope sharing facet F ▷ Using VerifyNeighbor
28: for F ∈ N (P)
29: Prover proves that the computation of the distance d from x∗ to F is correct ▷ Using

VerifyDistance
30: T.insert

(
(F , d)

)
31: end for
32: end for
33: T.remove

(
(Fi, di)

)
34: end for
35: Prover proves that Fm is indeed the facet with the smallest distance in T2▷ Using VerifyOrder
36: Prover proves that Fm is a boundary facet ▷ Using VerifyBoundary
37: E.insert

(
dm

)
38: end for
39: Prove that ϵ = minE ▷ Using VerifyMin

15

Under review as a conference paper at ICLR 2024

Algorithm 5 VerifyPolytope

Input x∗ - Data point for fairness certification; comW - Committed weights of the piecewise
linear neural network; (s1, · · · , sk) - Values of the sensitive features;
Output P ′ - Polytope corresponding to W containing x∗; R - ReLU activation code of x∗; π -
ZK proof of the computation;

1: Evaluate x∗ on comW to obtain ReLU activation code R
2: Compute the n − k-dimensional polytope P = {x|Ax ≤ b} corresponding to R on comW

with (s1, · · · , sk) as the values of the sensitive features
3: Generate proof π of the above computation
4: return (P,R, π)

Algorithm 6 VerifyDistance

Input x∗ - Data point for fairness certification; F - Facet;
Output d - Projected distance; π - ZK proof of the computation;

1: Let F be represented as aT · x = b

2: Compute d = (
∣∣∣b− aTx∗)/||a||

∣∣∣
3: Generate proof π of the above computation
4: return (d, π)

Algorithm 7 VerifyNeighbor

Input comW - Weights of the piecewise linear neural network; F - Facet; P - Current polytope;
R - ReLU activation code for P ; z - Representative point for neighboring polytope; (s1, · · · , sk)
- Values of the sensitive features;
Output P ′ - Neighboring polytope; R′ - ReLU activation code of P ′; π - ZK proof of the
computation

1: (P ′,R′, π′)← VerifyPolytope(z, comW, (s1, · · · , sk))
▷ Can be performed apriori in a pre-processing stage for efficiency

2: if (|R−R′|1 ̸= 1) ▷ Check hamming distance 1 between two binary vectors
3: return ⊥
4: if (F ̸∈ N (P ′) ∧ (F ̸∈ N (P))) ▷ Check facet F is common to both the polytopes
5: return ⊥
6: Generate proof π of the above computation
7: return (P ′,R′, (π, π′))

Algorithm 8 VerifyBoundary

Input x∗ - Data point for fairness certification; comW - Weights of the piecewise linear neural
network; F - Current facet represented as {x|Ax ≤ b}; P - Current polytope; R - ReLU
activation code for P; z - Representative point for current facet F (s1, · · · , sk) - Values of the
sensitive features;
Output b - Bit indicating boundary condition; π - ZK proof of the computation

1: Compute the linear function fR corresponding to activation code R on comW with (s1, · · · , sk)
as the values of the sensitive features

▷ Can be performed apriori in a pre-processing stage for efficiency
2: if (Az > b)
3: return ⊥
4: end if
5: b = 1
6: for i ∈ [1, |Y| − 1]
7: b← b · (fR(z)[0] == fR(z)[i])

▷ Testing that fR(z) is equal on all of its elements
8: end for
9: Generate proof π of the above computation

10: return (b, (π, π′))

16

Under review as a conference paper at ICLR 2024

Algorithm 9 VerifyOrder

Input (F , d) - Current facet with distance d; F = {(F1, d1), · · · , (Fk, dk)} - List of all previ-
ously unseen facets and their distances;
Output π - ZK proof of the computation

1: for Fi ∈ F
2: if (d > di)
3: return ⊥
4: end if
5: end for
6: Generate proof π of the above computation
7: return π

Algorithm 10 VerifyMin

Input E - List of values; ϵ∗ - Individual fairness parameter;
Output π - ZK proof of the computation

1: for ϵ ∈ E
2: if (ϵ∗ > ϵ)
3: return ⊥
4: end if
5: end for
6: Generate proof π of the above computation
7: return π

Algorithm 11 VerifyInference

Input x∗ - Data point for fairness certification; comW - Committed weights of the piecewise
linear neural network f ;
Output y - The prediction f(x∗); π - ZK proof of the computation;

1: Evaluate x∗ on comW to obtain ReLU activation code R
2: Compute the linear function fR corresponding to activation code R on comW

3: Compute fR(x∗)
4: y = argmaxi∈[|Y|] fR(x∗)
5: Generate proof π of the above computation
6: return (y, π)

17

Under review as a conference paper at ICLR 2024

D CORRECTNESS OF FairProof

In this section, we prove the correctness of FairProof given in Alg. 4. First, we re-state the correctness
of GeoCert.
Theorem D.1 (Correctness of GeoCert Jordan et al. (2019)). For a fixed polyhedral complex P, a
fixed point x∗ and a distance function ϕ that satisfies ray monotonocity, GeoCert returns a boundary
facet with the minimum distance.

Fact D.2. The projection of a given point x∗ onto a hyperplane H where F ⊆ H gives a lower
bound on its ℓ2 distance to F , i.e., dproj(x,F) ≤ dℓ2(x,F).
Theorem D.3. Let f be a piecewise-linear neural network. Replacing in Algorithm 1 with dℓ2(·)
distance with dproj(·) gives a lower bound on the individual fairness guarantee, i.e., ϵdproj ≤ ϵdℓ2

.

Proof. We will prove by contradiction. Let P be the polyhedral complex associated with the model
f . Let us assume that there exists a boundary facet F∗ such that dℓ2(F , x) < ϵdproj . Now if
the corresponding polytope PF∗ was traversed by GeoCert(x,P, dproj), then all the facets in PF∗

including F∗ were checked. Then from the correctness of GeoCert (Thm. D.1), this leads to a
contradiction of D.2. Now let us consider the alternative case where PF∗ was not traversed by
GeoCert(x,P, dproj). From Thm. D.1 this means that there exists another boundary facet F∗ such
that dproj(x,F∗) ≤ dproj(x,F). Then by Fact D.2, dproj(F∗, x) = ϵdproj

≤ dproj(F , x) ≤
dℓ2(F , x) which contradicts our assumption.

Theorem D.4 (Correctness of FairProof). For a given data point x∗, FairProof (Algorithm 4)
generates ϵ such that ϵ ≤ ϵIF .

Proof. The proof of the above theorem follows directly from Theorem D.1, Theorem D.3 and Fact
D.2.

E SECURITY PROOF

1. Completeness

∀x,W (4)

Pr

pp← FairProof.KeyGen(1λ)
comW ← FairProof.Commit(W,pp, r)
(y, ϵ, π)← FairProof.Prove(W, x,pp, r)
FairProof.Verify(comW, x, y, ϵ, π, pp) = 1

 = 1 (5)

2. Soundness

Pr


pp← FairProof.KeyGen(1λ)
(W∗, comW∗ ,X, ϵ∗, y∗, π∗, r)← A(1λ,pp)
comW∗ ← FairProof.Commit(W∗, r))
FairProof.Verify(comW∗ , x, y∗, ϵ∗, π∗,pp) = 1(
∃x̃, d(x, x̃) ≤ ϵ ∧ f(W∗,X) ̸= f(W∗, X̃)

)
∨y ̸= f(W∗,X)

 < negl(λ) (6)

3. Zero-Knowledge Let λ be the security parameter obtained from λ,pp ←
FairProof.KeyGen(1λ)

|Pr[RealA,W(pp) = 1]− Pr[IdealA,SA(pp) = 1]|
≤ negl(λ) (7)

Proof Sketch. Completeness. The completeness guarantee follows trivially from our construction.

Soundness. L(x) denotes the leakage function for FairProof , specifically, L(x) = {n1, · · · , n|S|},
where ni denotes the number of facets traversed for the i-th value of the sensitive attribute S.

Recall, the functioning of GeoCert can be summarized as follows:

18

Under review as a conference paper at ICLR 2024

RealA,W(pp) :
1. comW ← FairProof.Commit(W,pp, r)
2. x← A(comW,pp)
3. (y, ϵ, π)← FairProof.Prove(W, x,pp, r)
4. b← A(comW, x, y, ϵ, π, pp)
5. Output b

IdealA,SA(pp, h) :
1. com← S1(1λ,pp, r)
2. x← A(com,pp)
3. (y, Lx, ϵ, π) ← SA2 (com, x,pp, r) given oracle access to

y = pred(W, x), Lx = L(x) and ϵ = IFLB(W, x)
4. b← A(comW, x, y, Lx, ϵ, π, pp)
5. Output b

Figure 7: Zero-knowledge games

1. Start traversing from the polytope containing x∗.
2. Compute the distances to all the facets of the current polytope and store them.
3. Select the hitherto unseen facet with the smallest distance.
4. Stop if this is a boundary facet.
5. Else, traverse next to the neighboring polytope that shares the current facet.

A malicious prover can cheat in any (or a combination) of the above steps. We will consider each of
them separately as follows.

Lemma E.1 (Soundness of VerifyPolytope). Let P = {x|Ax ≤ B} be the correct polytope obtained
from the piecewise-linear neural network with weights W for a given value of the sensitive features.
For any polytope P ′ = {A′x < b′} such that (A ̸= A′) ∨ (b ̸= b′), we have

Pr[FairProof.Verify(comW∗ , x, y∗, ϵ∗, π∗,pp) = 1] < negl(λ) (8)

Proof Sketch. As shown in Alg. 5, the verification process re-computes the correct polytope from the
committed model weights. The only way the prover can cheat is if they can produce a P ′ such that
Open(comP) = P ′ which violates the binding property of the commitment scheme.

Lemma E.2 (Soundness of VerifyDistance). For a given facet F = {Ax ≤ b}, data point x∗, and
value d′ such that d′ ̸=

∣∣ b−AT x∗

∥A∥
∣∣, we have:

Pr[FairProof.Verify(comW∗ , x, y∗, ϵ∗, π∗,pp) = 1] < negl(λ) (9)

Proof Sketch. The verification process (Alg. 6) re-computes the correct distance. Hence, the only
way the prover can cheat is if they can produce a d′ such that Open(comd) = d′ which violates the
binding property of the commitment scheme.

Lemma E.3 (Soundness of VerifyOrder). Let d = {d1, · · · , dk} be a set of values such that dmin =
mini di. For any value d′ such that d′ > dmin, we have:

Pr[FairProof.Verify(comW, x, y∗, ϵ∗, π∗,pp) = 1] < negl(λ) (10)

Proof Sketch. The verification checks the minimality of the given value against all values in d (Alg.
9). The only way to cheat would require producing a d with a different minimum which violates the
binding property of the commitment scheme.

Lemma E.4 (Soundness of VerifyBoundary). Consider a piecewise-linear neural network with
weights W. For any facet F such that which is not a boundary facet, we have

Pr[FairProof.Verify(comW, x, y∗, ϵ∗, π∗,pp) = 1] ≤ negl(λ) (11)

19

Under review as a conference paper at ICLR 2024

Proof Sketch. The verification algorithm computes the linear function corresponding to the given
activation code (Alg. 8. A prover can cheat here only if they can compute a different linear function
f ′ which would require violating the binding property of the commitment scheme.

Lemma E.5 (Soundness of VerifyNeighbor). Let P = {x|Ax ≤ b} be a polytope belonging to the
polyhedral complex of the piecewise-linear neural network with weights W and let F ∈ N (P). Let
P̄ = {x|Āx ≤ b̄} and P be neighboring polytopes, sharing the facet F , i.e., P̄ ∈ N (F) \ P . Let
z ∈ Rn be a data point. For any polytope P ′ = {x|A′x ≤ b′} such that (Ā ̸= A′) ∧ (b̄ ̸= b′), we
have

Pr[FairProof.Verify(comW, x, y∗, ϵ∗, π∗,pp) = 1] < negl(λ) (12)

Proof Sketch. The verification algorithm first checks whether P̄ contains the reference point z (Alg.
7). The soundness of this follows from VerifyPolytope. Cheating on the next steps (checking the
hamming distance and facet intersection) means that the prover is essentially able to generate a
polytope P ′ such that Open(comP) = P ′ which violates the binding property of the commitment
scheme.

Zero-Knowledge. The zero-knowledge property follows directly from the commitment scheme and
the zero-knowledge backend proof system we use. We note that the zero-knowledge proof protocol
itself is not the focus of this paper; instead, we show how we can use existing zero-knowledge proof
protocols to provide verifiable individual fairness certification in a smart way for high efficiency.

F EVALUATION CNTD.

Dataset-Model Online (in mins) Offline (in mins) Improvement Traversals
German (4,2) 4.90 ± 0.12 3.61 ± 0.19 1.74× 40 ± 3
German (2,4) 1.17 ± 0.02 0.67 ± 0.03 1.57 × 13± 1

Credit (4,2) 3.52 ± 0.08 2.31 ± 0.10 1.66× 28 ± 2
Credit (2,4) 2.08 ± 0.04 1.11 ±0.07 1.49 × 25 ± 1

Adult (4,2) 3.94 ±0.10 1.72 ± 0.08 1.43 × 41 ± 3
Adult (8,2) 3.94 ± 0.30 1.34 ± 0.08 1.36 × 38 ± 8

Table 1: Time for proof generation averaged over 100 randomly sampled data points. Mean and
standard error are reported for each dataset-model. Offline computations are done in the initial setup
phase of FairProof while Online computations are done for every new query. Improvement = (Online
time + Offline time)/ Online time. Traversals gives the total number of iterations (also total number
of popped facets) of GeoCert ran by FairProof .

8 9 10 11 12 13
Individual Fairness Parameter

0

2

4

6

8

10

Fr
eq

ue
nc

y

Mean = 9.64
Std. Dev. = 1.13

(a) Credit, wd=2.5

18 19 20 21 22 23 24
Individual Fairness Parameter

0

2

4

6

8

10

Fr
eq

ue
nc

y

Mean = 20.26
Std. Dev. = 0.93

(b) Adult, wd=0.2

6 8 10 12 14 16
Individual Fairness Parameter

0

2

4

6

8

10

12

14

Fr
eq

ue
nc

y

Mean = 8.41
Std. Dev. = 1.14

(c) German, wd=10

Figure 8: Histogram of fairness parameter ϵ for fair models of size (4,2). ‘wd’ represents the values
of the Weight decay parameter.

20

Under review as a conference paper at ICLR 2024

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Individual Fairness Parameter

0

5

10

15

20

Fr
eq

ue
nc

y

Mean = 0.33
Std. Dev. = 0.38

(a) Credit

0 1 2 3 4
Individual Fairness Parameter

0

5

10

15

20

25

Fr
eq

ue
nc

y

Mean = 0.51
Std. Dev. = 0.61

(b) Adult

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Individual Fairness Parameter

0

2

4

6

8

10

Fr
eq

ue
nc

y

Mean = 0.41
Std. Dev. = 0.38

(c) German

Figure 9: Histogram of fairness parameter ϵ for unfair models of size (4,2). Weight decay is set to
zero here for all.

8 10 12 14 16 18
Individual Fairness Parameter

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Fr
eq

ue
nc

y

Mean = 15.35
Std. Dev. = 1.15

(a) Credit, wd=3

8 9 10 11 12 13 14
Individual Fairness Parameter

0

1

2

3

4

5

6

7

Fr
eq

ue
nc

y

Mean = 10.72
Std. Dev. = 1.04

(b) Adult, wd=0.2

8 9 10 11 12 13 14
Individual Fairness Parameter

0

1

2

3

4

5

6

7

Fr
eq

ue
nc

y

Mean = 10.42
Std. Dev. = 1.24

(c) German, wd=10

Figure 10: Histogram of fairness parameter ϵ for fair models of size (8,2). ‘wd’ represents the values
of the Weight decay parameter.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Individual Fairness Parameter

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Fr
eq

ue
nc

y

Mean = 0.25
Std. Dev. = 0.24

(a) Credit

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Individual Fairness Parameter

0

2

4

6

8

10

12

Fr
eq

ue
nc

y

Mean = 0.65
Std. Dev. = 0.54

(b) Adult

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Individual Fairness Parameter

0

2

4

6

8

10

Fr
eq

ue
nc

y

Mean = 0.37
Std. Dev. = 0.29

(c) German

Figure 11: Histogram of fairness parameter ϵ for unfair models of size (8,2). Weight decay is set to
zero here for all.

21

Under review as a conference paper at ICLR 2024

0

1

2

3

4

5

Ti
m

e
(in

 m
in

s)

Mean = 3.19
Std. Dev. = 1.11
Online
Offline

(a) Credit (2,4)

0

2

4

6

8

10

12

14

16

Ti
m

e
(in

 m
in

s)

Mean = 5.28
Std. Dev. = 3.62
Online
Offline

(b) Adult (8,2)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e
(in

 m
in

s)

Mean = 1.83
Std. Dev. = 0.44
Online
Offline

(c) German (2,4)

0

2

4

6

8

Ti
m

e
(in

 m
in

s)

Mean = 5.83
Std. Dev. = 1.64
Online
Offline

(d) Credit (4,2)

0

2

4

6

8
Ti

m
e

(in
 m

in
s)

Mean = 5.65
Std. Dev. = 1.68
Online
Offline

(e) Adult (4,2)

0

2

4

6

8

10

12

Ti
m

e
(in

 m
in

s)

Mean = 8.51
Std. Dev. = 2.72
Online
Offline

(f) German (4,2)

Figure 12: Proof generation time for 100 random data points.

0 1 2 3 4 5 6
Total Verification Time (in sec)

0

1

2

3

4

5

Fr
eq

ue
nc

y

Mean = 2.09
Std. Dev. = 1.06

(a) Credit (2,4)

0 1 2 3 4 5 6 7 8
Total Verification Time (in sec)

0

1

2

3

4

5

Fr
eq

ue
nc

y

Mean = 2.98
Std. Dev. = 1.66

(b) Adult (8,2)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Total Verification Time (in sec)

0

1

2

3

4

5

6

7

8

Fr
eq

ue
nc

y

Mean = 0.78
Std. Dev. = 0.38

(c) German (2,4)

0 1 2 3 4 5 6 7
Total Verification Time (in sec)

0

1

2

3

4

5

Fr
eq

ue
nc

y

Mean = 3.21
Std. Dev. = 1.21

(d) Credit (4,2)

1 2 3 4 5 6 7 8 9
Total Verification Time (in sec)

0

1

2

3

4

5

Fr
eq

ue
nc

y

Mean = 4.09
Std. Dev. = 1.47

(e) Adult (4,2)

0 2 4 6 8 10
Total Verification Time (in sec)

0

1

2

3

4

5

Fr
eq

ue
nc

y

Mean = 4.58
Std. Dev. = 1.81

(f) German (4,2)

Figure 13: Distribution of verification time for 100 random data points.

22

Under review as a conference paper at ICLR 2024

20 40 60 80 100 120
Total Proof Size (in KB)

0

2

4

6

8

10

12

14

Fr
eq

ue
nc

y

Mean = 51.55
Std. Dev. = 23.82

(a) Credit (2,4)

0 200 400 600 800 1000 1200 1400
Total Proof Size (in KB)

0

2

4

6

8

10

12

14

16

Fr
eq

ue
nc

y

Mean = 180.55
Std. Dev. = 219.20

(b) Adult (8,2)

20 30 40 50 60 70 80
Total Proof Size (in KB)

0

5

10

15

20

25

Fr
eq

ue
nc

y

Mean = 43.46
Std. Dev. = 16.51

(c) German (2,4)

50 100 150 200 250
Total Proof Size (in KB)

0

2

4

6

8

10

Fr
eq

ue
nc

y

Mean = 76.34
Std. Dev. = 39.83

(d) Credit (4,2)

50 100 150 200 250 300 350 400
Total Proof Size (in KB)

0

1

2

3

4

5

6

7

8

Fr
eq

ue
nc

y

Mean = 100.25
Std. Dev. = 65.56

(e) Adult (4,2)

50 100 150 200 250 300
Total Proof Size (in KB)

0

2

4

6

8

10

Fr
eq

ue
nc

y

Mean = 98.16
Std. Dev. = 55.42

(f) German (4,2)

Figure 14: Distribution of communication cost (proof size) for 100 random data points.

23

Under review as a conference paper at ICLR 2024

G RELATED WORK

Verifiable fairness with cryptography. Most of the prior work on verifying fairness while maintain-
ing model confidentiality Pentyala et al. (2022); Kilbertus et al. (2018); Toreini et al. (2023); Segal
et al. (2021); Park et al. (2022) has approached the problem in the third-party auditor setting. The
closest to ours is a recent work by Shamsabadi et al. (2023), which proposed a fairness-aware training
pipeline for decision trees that allows the model owner to cryptographically prove that the learning
algorithm used to train the model was fair by design. In contrast, we focus on neural networks
and issue a fairness certificate by simply inspecting the model weights post-training. Our system
FairProof and certification mechanism is completely agnostic of the training pipeline.

Another line of work has been using cryptographic primitives to verify other properties (rather than
fairness) of an ML model while maintaining model confidentiality – Zhang et al. (2020); Liu et al.
(2021) focus on accuracy and inference, while Zhao et al. (2021); Garg et al. (2023); Sun & Zhang
(2023) focus on the training process.

A separate line of work uses formal verification approaches for verifying the fairness of a model
Albarghouthi et al. (2017); Bastani et al. (2019); Urban et al. (2020); Ghosh et al. (2020); Biswas &
Rajan (2023). However, these works focus on certification in the plain text, i.e., they do not preserve
model confidentiality and do not involve any cryptography.

Fairness Certification Mechanisms. Prior work on certification mechanisms for fairness can be
broadly classified into three categories. The first line of work frames the certification problem as an
optimization program John et al. (2020); Benussi et al. (2022); Kang et al. (2022). The second line of
research has leveraged the connection between robustness and fairness, and proposed fairness-aware
training mechanisms akin to adversarial training Ruoss et al. (2020); Yurochkin et al. (2020); Khedr
& Shoukry (2022); Yeom & Fredrikson (2021); Doherty et al. (2023). In contrast to both, we focus on
local IF specifically for neural networks and use an iterative algorithm rather than solving a complex
optimization problem and are completely agnostic of the training pipeline.

The final line of work is based on black-box query access learning theoretic approaches Yadav et al.
(2022); Yan & Zhang (2022); Maneriker et al. (2023). Contrary to our work, these approaches
however are replete with problems arising from the usage of a reference dataset Fukuchi et al. (2019);
Shamsabadi et al. (2023), the need for a trust third-party, and lack of guarantees of model uniformity.

24

	Introduction
	Preliminaries & Setting
	How to Certify Individual Fairness?
	FairProof: Verification of the Individual Fairness Certificate
	Evaluation
	Background Cntd.
	Polytopes
	Cryptographic Tools

	Individual Fairness Certification Cntd.
	Verification Algorithms
	Correctness of FairProof
	Security Proof
	Evaluation Cntd.
	Related Work

