
Effective Layer Pruning Through Similarity Metric Perspective

Ian Pons 1 Bruno Yamamoto 1 Anna H. Reali Costa 1 Artur Jordao 1

Abstract

Deep neural networks have been the predominant
paradigm in machine learning for solving cogni-
tive tasks. Such models, however, are restricted
by a high computational overhead, limiting their
applicability and hindering advancements in the
field. Extensive research demonstrated that prun-
ing structures from these models is a straightfor-
ward approach to reducing network complexity.
In this direction, most efforts focus on removing
weights or filters. Studies have also been devoted
to layer pruning as it promotes superior computa-
tional gains. However, layer pruning often hurts
the network predictive ability (i.e., accuracy) at
high compression rates. This work introduces
an effective layer-pruning strategy that meets all
underlying properties pursued by pruning meth-
ods. Our method estimates the relative importance
of a layer using the Centered Kernel Alignment
(CKA) metric, employed to measure the similar-
ity between the representations of the unpruned
model and a candidate layer for pruning. We
confirm the effectiveness of our method on stan-
dard architectures and benchmarks, in which it
outperforms existing layer-pruning strategies and
other state-of-the-art pruning techniques. Particu-
larly, we remove more than 75% of computation
while improving predictive ability. At higher com-
pression regimes, our method exhibits negligible
accuracy drop, while other methods notably dete-
riorate model accuracy. Apart from these benefits,
our pruned models exhibit robustness to adversar-
ial and out-of-distribution samples.

1. Introduction
It is well known that deep neural networks are capable of
obtaining remarkable results in various cognitive fields, of-

1Escola Politécnica, Universidade de São Paulo. Correspon-
dence to: Ian Pons <ian.pons@usp.br >.

Accepted to the Workshop on Advancing Neural Network Training
at International Conference on Machine Learning (WANT@ICML
2024).

Higher Better

H
ig

he
r B

et
te

r

DECORE
(CVPR, 2022)

OURS

SOKS
(TNNLS, 2023)

WhiteBox
(SPL, 2022)

ESNB*
(TNNLS, 2022)

LPSR*
(SPL, 2022)

DAIS
(TNNLS, 2023)

GCNP
(IJCAI, 2022)

Ideal Point

A
cc

ur
ac

y
Im

pr
ov

em
en

t

A
cc

ur
ac

y
D

eg
ra

da
tio

n

FRPP*
(TPAMI, 2019)

PLS*
(JSTSP, 2020)

CLR-RNF
(TNNLS, 2023)

OURS+ℓ -norm1

Figure 1. Comparison with state-of-the-art on the popular
ResNet56 + CIFAR-10 setting. (Here, for illustration purposes,
we abuse notation and bound the ideal point close to two percent-
age points (pp); however, it may be higher). Overall, our method
obtains the best compromises between accuracy and computa-
tional reduction (estimated by Floating Point Operations – FLOPs).
Specifically, our method dominates existing layer pruning methods
(indicated by symbol *) by a remarkable margin. Compared to
state-of-the-art pruning techniques, our method removes more than
75% of FLOPs without hurting accuracy (sometimes improving
it). Other methods, however, degrade accuracy when operating at
these high FLOP reduction regimes. Since our method is orthogo-
nal to modern structured filter pruning, we can combine them to
achieve even higher computation gains (e.g., Ours + ℓ1-norm). The
behavior shown in this figure is consistent across other benchmarks
and architectures.

ten outperforming humans from image recognition to com-
plex games such as chess and go (Silver et al., 2016; Han
et al., 2023). However, this performance comes with high
computational cost and storage demand. Advances in the
foundation model paradigm – large deep learning models
trained on a broad range of data with the capacity to transfer
its knowledge to unseen (downstream) tasks – have fur-
ther intensified the resource-intensive nature of the field, as
large models play a crucial role in transferring knowledge
to downstream tasks (Bommasani et al., 2021; Amatriain
et al., 2023).

To mitigate the above issues, compression techniques are

1

Effective Layer Pruning Through Similarity Metric Perspective

becoming more popular due to their positive results in im-
proving the resource demand of deep models (He & Xiao,
2023; Xu & McAuley, 2023; Wang et al., 2022). Among the
most promising techniques, pruning emerges as a straightfor-
ward approach capable of enhancing different performance
metrics such as Floating Point Operations (FLOPs), mem-
ory consumption and number of parameters. At the heart
of a pruning technique lies the task of accurately estimat-
ing the importance of structures that compose a model and
subsequently removing the least important ones.

Studies classify pruning into unstructured and structured
categories (He & Xiao, 2023; Xu & McAuley, 2023; Wang
et al., 2022). The former removes individual connections
(weights), while the latter focuses on eliminating entire
structures such as filters and layers. Despite achieving high
compression rates, unstructured approaches promote theoret-
ical inference speed-up only, requiring specific hardware to
handle sparse matrix computations to obtain practical speed-
up (Wang et al., 2022; Xu & McAuley, 2023). On the other
hand, structured pruning facilitates practical acceleration
without any hardware/software constraints. Furthermore, its
advantages extend beyond computational gains: it acts as a
regularization mechanism that improves generalization and
robustness (Zhao & Wressnegger, 2023; Bair et al., 2024).

Most efforts on structured pruning strategies focus on elimi-
nating small structures and are often optimized for standard
metrics such as FLOP and parameter reduction (He & Xiao,
2023; Xu & McAuley, 2023). Unfortunately, recent studies
suggest that these metrics may correlate weakly with infer-
ence time (Shen et al., 2022; Dehghani et al., 2022; Vasu
et al., 2023). Nevertheless, layer pruning reduces network
depth, which directly addresses model latency while also
providing all the benefits of filter pruning, such as FLOP
and parameter reduction, without specialized software or
hardware (Jordao et al., 2020; Zhang et al., 2022; Zhou
et al., 2022). The idea behind pruning layers is not novel
and dates back to 2016 (Veit et al., 2016; Huang et al., 2016).
Efforts in this direction, however, either apply simple filter
criteria and combine (e.g., average) the scores to compose
the importance of a layer (Jordao et al., 2020; Zhang et al.,
2022) or solve a (computationally expensive) multi objec-
tive optimization (Zhou et al., 2022). Therefore, one of
the challenges in layer removal is developing a criterion
capable of accurately ranking the importance of all layers.
It turns out that existing criteria operate well on small struc-
tures but may be inadequate when applied to large ones,
primarily because of varying magnitudes (i.e., ℓ1-norm and
its variations) exhibited by layers (Zhang et al., 2022; Jor-
dao et al., 2023). Additionally, recent studies highlight that
different layers play a distinct role in the expressive power
and training dynamics of deep models (Zhang et al., 2022;
Masarczyk et al., 2023; Chen et al., 2023). Such factors sug-
gest that simple criteria are unable to characterize all these

underlying properties exhibited by layers. Lastly, a layer-
pruning method must inherit a fundamental requirement of
pruning techniques: remove structures without significantly
compromising predictive ability.

To meet the aforementioned requirements and achieve
computational-friendly models, we propose a novel layer
pruning method. Our method relies on the hypothesis that
similar representations between a dense (unpruned) network
and its optimal sparse (pruned) candidate indicate lower
relative importance. Existing evidence support this idea,
revealing that layers share similar representations (Zhang
et al., 2022; Masarczyk et al., 2023). By eliminating unim-
portant layers, we can preserve predictive capability and
reduce computational demand.

For this purpose, we employ Centered Kernel Alignment
(CKA) due to its effectiveness and flexibility in measur-
ing similarity between two networks (Kornblith et al., 2019;
Nguyen et al., 2021; 2022; Masarczyk et al., 2023). Leverag-
ing CKA, the overall of our method is the following. Given
a dense network, we first extract its representation from
some input examples. Here, representation refers to the
feature maps of the layer just before the classification layer.
Then, we create a temporary pruned model by removing a
candidate layer. Building upon previous works (Veit et al.,
2016; Zhang et al., 2022), at this step, we avoid any fine-
tuning or parameter adjustment, since modern architectures
are robust to single layer removal and perturbations. After-
ward, for each temporary model (n layers, n candidates),
we compare their representations with the original network
using CKA. Finally, we select the temporary network that
yields the highest similarity, thus removing the unimportant
layer.

Contributions. We highlight the following key contribu-
tions. First, we propose a novel pruning criterion that lever-
ages an effective similarity representation metric: CKA. To
the best of our knowledge, we are the first to explore CKA
as a pruning criterion, as previous works widely employ it
for comparing network representations. Powered by this
criterion, we develop a layer-pruning method that removes
entire layers from neural networks without compromising
predictive ability. Such a result is possible since our criterion
identifies unimportant layers – layers that, when removed,
preserve similarity regarding the original model. In partic-
ular, we aggressively prune ResNet56/110 and ResNet50,
encouraging them to converge towards ResNet20 in terms
of depth and computational cost but preserving their orig-
inal accuracy. Second, unlike most existing layer-pruning
criteria that fail to capture underlying properties of lay-
ers, our method effectively assigns layer importance and
thus prevents model collapse. Besides, it is efficient and
scales linearly as a function of the network depth. Third, we
outperform state-of-the-art pruning methods by a notable

2

Effective Layer Pruning Through Similarity Metric Perspective

margin (see Figure 1). We believe our results open new
opportunities to prune through the lens of emerging similar-
ities metrics (Williams et al., 2021; Duong et al., 2023) and
encourage further efforts on layer pruning.

Through extensive experiments on standard architectures
and benchmarks, we demonstrate that our method outper-
forms state-of-the-art pruning approaches. Specifically, it
surpasses existing layer-pruning strategies by a large margin.
In particular, as we increase the levels of FLOP reduction,
most layer-pruning methods fail to preserve accuracy, even
when equipped with additional techniques such as knowl-
edge distillation (Chen & Zhao, 2019; Zhou et al., 2022).
Our method, on the other hand, successfully maintains ac-
curacy while eliminating more than 75% of FLOPs. At a
FLOP reduction exceeding 80%, our method exhibits neg-
ligible accuracy drop, whereas other state-of-the-art tech-
niques are unable to achieve similar performance without
compromising accuracy roughly 2× more. We also demon-
strate that our method preserves generalization in out-of-
distribution and adversarial robustness scenarios, which is
crucial for deploying pruned models in security-critical ap-
plications such as autonomous driving. In terms of Green
AI (Lacoste et al., 2019; Strubell et al., 2019; Faiz et al.,
2024), our method reduces the carbon emissions required in
the training/fine-tuning phase by up to 80.85%, representing
an important step towards sustainable AI. Source code and
models available at: link after review.

2. Related Work
The main (and most challenging) task of pruning is to esti-
mate the relative importance of a given structure to differen-
tiate between those essential for predictive ability and the
less important ones. A popular criterion focuses on the mag-
nitude of weights, namely ℓp-norm. Researchers extensively
explore these criteria in the context of the lottery ticket hy-
pothesis and pruning at initialization (Wang et al., 2022).
Despite their simplicity, previous works pointed out pitfalls
in these criteria (Zhang et al., 2022; Huang et al., 2021; He
et al., 2019). For example, Huang et al. (Huang et al., 2021)
argued that constraining the analysis to surrounding struc-
tures, as ℓ1-norm does, incurs a low variance of importance
scores, hindering unimportant structure search. Further-
more, comparing norms across layers becomes impractical,
as different layers exhibit distinct magnitudes, posing a
challenge for global pruning (i.e., ranking all structures at
once) (Zhang et al., 2022; Jordao et al., 2023). These issues
have motivated efforts towards more elaborate criteria (Shen
et al., 2022). Taking the work by Lin et al. (2020) as an
example, the authors proposed estimating filter importance
based on the rank of its feature maps. Pruning strategies that
leverage information from feature maps (thus involving data
forwarding through the network) are named data-driven

techniques. Since we measure similarity from feature maps,
our method belongs to this category of pruning.

Shen et al. (2022) measure filter importance based on the
Taylor expansion of the loss change. Importantly, they high-
lighted the relevance of focusing on latency instead of stan-
dard metrics such as FLOPs. To tackle this challenge, the
authors transformed the objective of maximizing accuracy
within a given latency budget into a resource allocation
optimization problem, then solved it using the Knapsack
paradigm. In an alternative line of research, studies have
demonstrated that standard performance metrics may corre-
late weakly with inference time (Dehghani et al., 2022; Vasu
et al., 2023). Aligned with these efforts, we demonstrate
that our method achieves notable latency improvements
and other computational benefits. Differently from Shen et
al. (2022), we address the accuracy/latency trade-off without
solving any optimization problem. This is possible because
layer pruning reduces network depth, directly translating
into latency improvement, and our criterion accurately iden-
tifies unimportant layers that preserve accuracy, enabling
us to achieve higher FLOP reductions while maintaining
accuracy simultaneously.

According to existing works (Xu & McAuley, 2023; He &
Xiao, 2023), most efforts have been devoted to filter pruning
techniques. In contrast to this family of methods that may
exhibit bias toward specific metrics like FLOPs or parame-
ters (Dehghani et al., 2022; Vasu et al., 2023), layer pruning
achieves performance gains across all computational met-
rics (Chen & Zhao, 2019; Jordao et al., 2020; Zhou et al.,
2022). In this direction, Chen et al. (2019) proposed learn-
ing classifiers using features from prunable layers to assign
their importance. Following this modeling, layer impor-
tance relies on the performance of classifiers. Similar to
ours, the criterion by Chen et al. (2019) is layer-specific;
however, our criterion focuses on similarity representations
through CKA, which we reveal to be more effective. More
recently, the work by Zhang and Liu (2022) disconnects
residual mapping and estimates its effect using Taylor ex-
pansion. Zhou et al. (2022) proposed an evolutionary-based
approach, using the weights distribution as one of the inputs
for creating the initial population of candidate pruned net-
works. It is worth mentioning that the methods by Zhou et
al. (2022) and Chen et al. (2019) require knowledge distilla-
tion to recover accuracy from the pruned models, while our
method relies on straightforward fine-tuning rounds. Such
observations suggest that our CKA criterion is more precise
than the previously mentioned strategies for selecting layers.

Apart from pruning, efforts have also been devoted to under-
standing the role of layers in the expressive power and train-
ing dynamics of the models (Zhang et al., 2022; Masarczyk
et al., 2023; Chen et al., 2023). For example, Masarczyk et
al. (2023) suggested that the layers of deep networks split

3

Effective Layer Pruning Through Similarity Metric Perspective

into two distinct groups. The initial layers have linearly
separable representations, and the subsequent layers, or the
tunnel, have less impact on the performance, compressing
the already learned representations. This behavior, named
Tunnel Effect, emerges at the early stages of the training
process and corroborates with the notion of redundancy in
overparameterized models. Additionally, their work argued
that the tunnel is responsible for the performance degrada-
tion in out-of-distribution (OOD) samples. We show that
our layer pruning method preserves OOD generalization,
indicating that its degradation is not restricted to tunnel lay-
ers. In summary, we believe our work contributes to these
efforts by demonstrating that unimportant layers can be ef-
fectively identified and removed without compromising the
expressive power of the model and its training dynamics.

3. Preliminaries and Proposed Method
Problem Statement. According to previous works (Veit
et al., 2016; Huang et al., 2016; Dong et al., 2021), residual-
based architectures enable the information flow (i.e., the
representation) to take different paths through the network.
Thereby, layers may not always strongly depend on each
other, reinforcing the idea of redundancy in this type of
structure, which suggests the possibility of removing lay-
ers without compromising the network representation. It
follows that a subset of layers plays a crucial role in the
network performance (Zhang et al., 2022; Masarczyk et al.,
2023; Chen et al., 2023). Upon this evidence, our prob-
lem becomes identifying and removing unimportant layers,
preserving the representation capacity of the model, and
avoiding network collapse. Formally, given a network N
composed of a layer set L, our goal is to remove certain
layers to produce a shallower network N ′ composed by L′,
where |L′| ≪ |L| and the accuracy of N ′ is as close as
possible (ideally better) than its unpruned version N .

Naively, one could estimate optimal layers to prune by iter-
ating over all possible candidates, removing one at a time,
fine-tuning the model, and selecting the candidate that ex-
hibits the lowest performance degradation. However, this
approach becomes computationally expensive as the net-
work depth increases, hence it is unfeasible for most modern
architectures and large scale datasets.

Following previous layer-pruning works (Chen & Zhao,
2019; Zhou et al., 2022; Zhang & Liu, 2022), we indeed
remove building blocks (set of layers) instead of just indi-
vidual layers. Throughout the text, however, we opt to use
the term layer pruning rather than block pruning to main-
tain simplicity and clarity. We provide technical details
involving layer pruning in Appendix 6.1.

Definitions. Consider X and Y a set of training samples
(e.g., images) and their respective class labels. Let N be a

dense (unpruned) network trained using X and Y (i.e., the
traditional supervised paradigm). Consider M(·, X) as a
function that extracts the representation of a network from
the samples X . Following Xu et al. (Xu & McAuley, 2023),
M extracts the feature maps from the layer immediately
preceding the classification layer of the network. It is worth
mentioning that M does not take into account the labels Y .
Let li ∈ L be the candidate layers (i.e., layers the pruning
can eliminate) and, finally, define Nli as a pruned candidate
network yielded by removing the layer li from N .

Proposed Criterion. For each li ∈ L, we obtain Nli w.r.t
the previous definition, and apply M(Nli , X) to extract its
representation, denoted by Rli . Define s(·, ·) as our CKA
criterion which takes R and Rli , where R ← M(N , X)
(i.e., the original representation), and outputs the score (im-
portance) of li. Following Kornblith et al. (2019), we com-
pute CKA in terms of

CKA(R,Rli) =
HSIC(R,Rli)√

HSIC(R,R)HSIC(Rli , Rli)
, (1)

where HSIC is the Hilbert-Schmidt Independence Crite-
rion (Gretton et al., 2005). Due to space constraints, we re-
fer interested readers to the works by Kornblith et al. (2019)
and Nguyen et al. (2021; 2022) for additional information.

It follows from Equation 1 that CKA(R,Rli) ∈ [0, 1],
where a value of 1 indicates identical feature maps (i.e.,
the highest similarity preservation). However, an intuitive
practice is to remove the lowest-scoring candidate layer.
Therefore, we adjust the score in terms of s(R,Rli) =
1− CKA(R,Rli), ensuring that lower scores are assigned
to layers yielding more similar representations.

Algorithm 1 summarizes the process above. From it, we
highlight the following points. First, after estimating the
importance of all candidate layers, we indeed remove the
lowest scoring one. Second, representation extractions em-
ploy the same set X . Finally, the construction of Nli does
not involve any fine-tuning.

Algorithm 1 Layer Pruning using our CKA criterion
Input: Trained Neural NetworkN , Candidate Layers li ∈ L
Training samples X
Output: Pruned Version ofN

1: R←M(N , X)
2: for i← 1 to |L| do
3: Nli ← N \ li ▷ Removes layer li fromN
4: Ri ←M(Nli , X) ▷ Representation extraction ofNli

5: S ← S ∪ s(R,Rli)
6: end for
7: j ← argmin(S) ▷ Index of lowest score in S
8: N ← Nlj ▷N becomes its pruned version
9: UpdateN via standard fine-tuning on X

4

Effective Layer Pruning Through Similarity Metric Perspective

A commonly explored approach in prior studies involves
iteratively repeating the pruning and fine-tuning process.
We follow such practice by iterating Algorithm 1, where
the input to the next iteration is the fine-tuned N (see line 1
in Algorithm 1). We report the iteration number (hence,
the number of removed layers) as a subscript; for example,
CKAi means we perform i iterations to obtain the corre-
sponding pruned model. Note that, for a single iteration, our
method scales linearly w.r.t the number of layers, implying
an O(|L|) complexity.

4. Experiments
Experimental Setup. We conduct experiments on CIFAR-
10, CIFAR-100 and ImageNet using different versions of
the ResNet architecture (He et al., 2016). Such settings are a
common choice for general compression/acceleration stud-
ies (Chen & Zhao, 2019; Jordao et al., 2020; Zhang et al.,
2022; Zhou et al., 2022; He & Xiao, 2023). Throughout
both training and fine-tuning phases, we apply random crop
and horizontal random flip as data augmentation (He et al.,
2016). We choose this simple setup to highlight the genuine
advantages of our method. In Appendices 6.3 and 6.4, we
also conduct experiments on MobileNetV2 and Transformer
architectures.

To compare the predictive ability of the unpruned models
with their pruned counterparts, we follow common practices
and report the difference between accuracies (He & Xiao,
2023). In this metric, negative and positive values indicate
a decrease and an improvement in accuracy (in percentage
points – pp), respectively.

The Effect of Layer Pruning on Efficiency. Our point of
start is illustrating the advantages of layer over filter pruning,
as the latter is the most popular family of methods that yield
gains without requiring specific hardware (Shen et al., 2022;
He & Xiao, 2023).

According to recent studies (Dehghani et al., 2022; Vasu
et al., 2023), standard metrics such as FLOPs and parame-
ters, when singly employed, may overlook model efficiency.
Therefore, we begin our discussion by considering latency
– the time for forwarding a sample (or a set) through the
network. To do so, we follow the same process as Jordao et
al. (2023), which creates two pruned networks: one obtained
through layer removal and the other from filters, aiming for
both models to have a similar number of neurons (filters).
This procedure makes possible a fair comparison in terms
of latency performance.

Iteratively repeating this process yields models with varying
numbers of filters removed, from which we measure their
average latency across 30 runs by forwarding 10K samples
and report the speed-up obtained from the pruning process
with respect to the original (unpruned) model.

0 100 200 300 400 500 600 700 800
Number of Filters Removed

0

5

10

15

20

25

30

35

La
te

nc
y

sp
ee

d-
up

 (%
)

Layer Pruning
Filter Pruning

0 200 400 600 800 1000 1200 1400 1600
Number of Filters Removed

0

5

10

15

20

25

30

35

La
te

nc
y

sp
ee

d-
up

 (%
)

Layer Pruning
Filter Pruning

Figure 2. Relationship between the number of filters removed (x-
axis) and latency speed-up (y-axis) for models obtained from filter
and layer pruning. Importantly, such a comparison is possible
because when pruning removes layers, it eliminates all filters from
that layer. Left and right plots stand for ResNet56 and ResNet110,
respectively. Overall, layer pruning notably promotes higher speed-
up than filter pruning.

Figure 2 shows the results. It follows that layer pruning
yields a higher speed-up than filter removal. For example,
in ResNet110, with both methods eliminating around a thou-
sand filters, layer pruning achieves an 11 pp speedup over
filter pruning. This advantage persists even when removing
approximately 1, 600 filters, underscoring the effectiveness
of removing layers for network acceleration. Such gains
have motivated previous efforts on layer removal (Jordao
et al., 2020; Zhang & Liu, 2022; Zhou et al., 2022).

Effectiveness of the Proposed CKA Criterion. Informed
by the previous findings, we now turn our attention to eval-
uating the effectiveness of the proposed CKA criterion in
assigning layer importance. For this purpose, we take into
account representative layer pruning techniques (Jordao
et al., 2020; Zhang et al., 2022; Zhou et al., 2022; Chen
& Zhao, 2019). It is worth mentioning that we exclude
works on dynamic inference since they belong to a different
category of compression and acceleration techniques (Han
et al., 2022).

Table 1 summarizes the results. According to this table, our
method outperforms existing techniques by a large margin.
On ResNet56, compared to the best strategy in terms of
delta in accuracy, LPSR (Zhang & Liu, 2022), our method
outperforms it by more than 0.76 pp while exhibiting better
FLOP gains. Regarding FLOP reduction, the best method
underperforms ours by 3.4 pp. This behavior is prevalent
in ResNet110 and ResNet50 (on ImageNet). Notably, we
reduce around 2× more FLOPs than other criteria while
obtaining an improvement in accuracy.

The reason for these remarkable results is that our method
carefully selects which layers to eliminate. For example,
Jordao et al. (2020) and Zang et al. (2022) compute scores
for layers by aggregating the sum of scores from the indi-
vidual filters that compose a layer. Table 1 suggests that this
aggregating scheme may be inappropriate. This finding con-
curs with the observations made by Masarczyk et al. (2023),

5

Effective Layer Pruning Through Similarity Metric Perspective

Table 1. Comparison with state-of-the-art layer-pruning methods.
The symbols (+) and (-) denote increase and decrease in accu-
racy regarding the original (unpruned) network, respectively. We
highlight the best results in bold.

Method ∆ Acc. FLOPs (%)

ResNet56
on

CIFAR10

PLS (Jordao et al., 2020) (–) 0.98 30.00
FRPP (Chen & Zhao, 2019) (+) 0.26 34.80
ESNB (Zhou et al., 2022) (–) 0.62 52.60
LPSR (Zhang & Liu, 2022) (+) 0.19 52.75
CKA15 (ours) (+) 0.95 56.29
PLS (Jordao et al., 2020) (–) 0.91 62.69
LPSR (Zhang & Liu, 2022) (–) 0.87 71.65
CKA19 (ours) (+) 0.16 71.30
CKA20 (ours) (+) 0.08 75.05

ResNet110
on

CIFAR10

ESNB (Zhou et al., 2022) (+) 1.15 29.89
PLS (Jordao et al., 2020) (+) 0.06 37.73
CKA27 (Ours) (+) 1.16 50.33
CKA36 (Ours) (+) 0.80 67.10

ResNet50
on

ImageNet

LPSR (Zhang & Liu, 2022) (-) 1.38 37.38
CKA6 (Ours) (-) 0.18 39.62
PLS (Jordao et al., 2020) (-) 0.67 45.28
CKA7 (Ours) (-) 0.90 45.28

where the authors argued that aggregating all features of
a layer to compose its final representation is suboptimal,
particularly for transfer learning.

In terms of computational cost, compared to Zhou et
al. (2022), our method is more cost-friendly. It turns out that
this approach solves the score assignment problem through
an evolutionary algorithm. Therefore, their method scales
expensively as the depth (i.e., |L|) increases. On the other
hand, to prune a model with |L| layers our approach requires
|L| forwards and CKA comparisons, scaling linearly (see
Algorithm 1). The method by Jordao et al. (2020) is also
linear w.r.t the number of layers, however, it is unable to
prune a layer from any region of the network. Specifically,
to eliminate a layer i, their method requires the removal of
all subsequent layers j where i < j < |L|.

The previous evidence corroborates the suitability of our
criterion for selecting unimportant layers compared to ex-
isting state-of-the-art layer pruning methods. Importantly,
the discussion above confirms our hypothesis that similar
representations between a dense (unpruned) network and
its optimal pruning candidate indicate lower relative impor-
tance.

Comparison with the State of the Art. The previous ex-
periments shed light on the benefits of layer pruning and
the effectiveness of our criterion for selecting layers to re-
move. We now compare our method with general state-of-
the-art pruning techniques. For this purpose, we evaluate
our method against the most recent and top-performing tech-
niques mainly based on the survey by He et al. (2023). More
specifically, we consider methods capable of achieving no-
table FLOP reduction with negligible accuracy drop. For

Table 2. Comparison with state-of-the-art pruning methods on
CIFAR-10. For each level of FLOP reduction (%), we highlight
the best results in bold.

Method ∆ Acc. FLOPs (%)

ResNet56

DECORE (Alwani et al., 2022) (CVPR, 2022) +0.08 26.30
HALP (Shen et al., 2022) (NeurIPS, 2022) +0.03 33.72
SOKS (Liu et al., 2023) (TNNLS, 2023) +0.16 35.91
CKA10 (ours) +1.25 37.52
GKP-TMI (Zhong et al., 2022) (ICLR, 2022) +0.22 43.23
GCNP (Jiang et al., 2022) (IJCAI, 2022) +0.13 48.31
CKA13 (ours) +0.86 48.78
GNN-RL (Yu et al., 2022) (ICML, 2022) +0.10 54.00
RL-MCTS (Wang & Li, 2022) (WACV, 2022) +0.36 55.00
WhiteBox (Zhang et al., 2023) (TNNLS, 2023) +0.28 55.60
CLR-RNF (Lin et al., 2023) (TNNLS, 2023) + 0.01 57.30
CKA16 (ours) +0.78 60.04
DAIS (Guan et al., 2023) (TNNLS, 2023) -1.00 70.90
HRank (Lin et al., 2020) (CVPR, 2020) -2.54 74.09
GCNP (Jiang et al., 2022) (IJCAI, 2022) -0.97 77.22
CKA20 (ours) +0.08 75.05
CKA21 (ours) -0.66 78.80
DECORE (Alwani et al., 2022) (CVPR, 2022) -2.41 81.50
CKA21 (ours) + ℓ1 -0.94 84.70

ResNet110

DECORE (Alwani et al., 2022) (CVPR, 2022) +0.38 35.43
HRank (Lin et al., 2020) (CVPR, 2020) +0.73 41.20
GKP-TMI (Zhong et al., 2022) (ICLR, 2022) +0.64 43.31
CKA24 (ours) +1.37 44.73
DAIS (Guan et al., 2023) (TNNLS, 2023) -0.60 60.00
DECORE (Alwani et al., 2022) (CVPR, 2022) 0.00 61.78
CKA35 (ours) +0.89 65.23
EPruner (Lin et al., 2022) (TNNLS, 2022) +0.12 65.91
CRL-RNF (Lin et al., 2023) (TNNLS, 2023) +0.14 66.00
WhiteBox (Zhang et al., 2023) (TNNLS, 2023) +0.62 66.00
CCEP (Shang et al., 2022) (IJCAI, 2022) -0.22 67.09
CKA36 (ours) +0.80 67.10
HRank (Lin et al., 2020) (CVPR, 2020) -0.85 68.64
CKA38 (ours) +0.59 70.83
DECORE (Alwani et al., 2022) (CVPR, 2022) -0.79 76.92
CKA41 (ours) +0.23 76.42
CKA47 (ours) -0.41 87.61

a fair comparison, we report the results of each method
according to the original paper.

Table 2 shows the results on CIFAR-10 for ResNet56/110.
On these architectures, our method outperforms state-of-the-
art techniques by removing more FLOPs and achieving the
best delta in accuracy. For example, in Table 2 (left), within
comparable FLOP reduction regimes, we outperform state-
of-the-art methods by a margin starting at approximately
0.4 pp (compared to RL-MCTS (Wang & Li, 2022)) and
reaching up to more than 2.5 pp (compared to HRank (Lin
et al., 2020)).

Table 2 poses an interesting behavior: at high FLOP reduc-
tion levels (i.e., above 70%), all methods fail to preserve
accuracy. In contrast, our method removes more than 75%
of FLOPs with no accuracy drop. Most cases, our method
promotes predictive ability improvements. This benefit is
expected, as layer pruning (and its variations) acts as a form
of regularization (Huang et al., 2016; Han et al., 2022). Ta-
ble 2 highlights this behavior in other pruning techniques,
but unlike ours, exhibited only in low compression regimes.

6

Effective Layer Pruning Through Similarity Metric Perspective

Table 3. Comparison with state-of-the-art pruning methods on Im-
ageNet using ResNet50 and CIFAR-100 using ResNet56. For each
level of FLOP reduction (%), we highlight the best results in bold.
∆ Acc. on ImageNet considers Top1 accuracy.

Method ∆ Acc. FLOPs (%)

ResNet50
on

ImageNet

DECORE (Alwani et al., 2022) (CVPR, 2022) (+) 0.16 13.45
SOSP (Nonnenmacher et al., 2022) (ICLR, 2022) (+) 0.41 21.00
GKP-TMI (Zhong et al., 2022) (ICLR, 2022) (-) 0.19 22.50
CKA3 (Ours) (+) 1.11 22.64
SOSP (Nonnenmacher et al., 2022) (ICLR, 2022) (+) 0.45 28.00
CKA4 (Ours) (+) 0.74 28.30
GKP-TMI (Zhong et al., 2022) (ICLR, 2022) (-) 0.62 33.74
LPSR (Zhang & Liu, 2022) (SPL, 2022) (-) 0.57 37.38
CKA6 (Ours) (-) 0.18 39.62
CLR-RNF (Lin et al., 2023) (TNNLS, 2023) (-) 1.16 40.39
DECORE (Alwani et al., 2022) (CVPR, 2022) (-) 1.57 42.30
HRank (Lin et al., 2020) (CVPR, 2020) (-) 1.17 43.77
SOSP (Nonnenmacher et al., 2022) (ICLR, 2022) (-) 0.94 45.00
WhiteBox (Zhang et al., 2023) (TNNLS, 2023) (-) 0.83 45.60
CKA7 (Ours) (-) 0.90 45.28
DECORE (Alwani et al., 2022) (CVPR, 2022) (-) 4.09 60.88
CKA9 (Ours) + ℓ1-norm (-) 5.15 62.00

ResNet56
on

CIFAR-100

DLRFC (He et al., 2022) (ECCV, 2022) (+) 0.27 25.50
FRPP (Chen & Zhao, 2019) (TPAMI, 2019) (-) 0.23 38.30
GCNP (Jiang et al., 2022) (IJCAI, 2022) 0.00 48.77
EKG (Lee & Song, 2022) (ECCV, 2022) (+) 0.31 50.00
GCNP (Jiang et al., 2022) (IJCAI, 2022) (-) 0.64 52.22
LPSR (Zhang & Liu, 2022) (SPL, 2022) (-) 1.22 52.68
DAIS (Guan et al., 2023) (TNNLS, 2023) (+) 0.81 53.60
CKA17 (ours) (+) 0.71 63.79
CKA19 (ours) (-) 0.59 71.29
CKA20 (ours) (-) 1.96 75.05

As we mentioned before, our method is orthogonal to other
pruning categories (i.e., the ones in Table 2); therefore, we
can combine it with these techniques. Built upon previous
ideas (Jordao et al., 2020), we take one of our pruned models
and further prune it using the popular ℓ1-norm filter pruning.
In this scenario, we achieve even better results, surpassing
our best performance gains (using layer pruning only) in
terms of FLOP reduction by 5.9 pp. Specifically, our method
achieves a FLOP reduction above 80% while maintaining
the accuracy drop below one pp. The single method paired
with this level of reduction, DECORE (Alwani et al., 2022),
exhibits an accuracy degradation of 2.41 pp compared to
the original model.

We also evaluate our method on ImageNet and CIFAR-
100 in Table 3. On these datasets, we observe a similar
trend with the CIFAR-10 discussion when comparing our
method against state-of-the-art pruning techniques. Partic-
ularly, on ImageNet, the layer-pruning approach by Zhang
et al. (2022), LPSR, notably hurts the accuracy, whereas
our method is capable of improving it while removing more
FLOPs. It is important to mention that, due to technical
details (see Appendix 6.1), layer-pruning methods are re-
stricted to a set of candidate layers. In our experiments, we
reach the limit of layer removal, reported in Table 3 (left).
Therefore, we combine our method with the ℓ1-norm crite-
rion to further prune our model in terms of filters, achieving
a higher computational reduction of 62.00%. It is important

to note that more elaborate combinations could minimize
the accuracy drop, but we leave this exploration for future
work.

Effectiveness in Shallow Architectures. Among the keys
to the success of pruning is the overparameterized regime
of neural networks, particularly evident in deep models.
Although our method is suitable in such cases, this ex-
periment verifies its applicability to shallow models (i.e.,
ResNet32/44). Due to space constraints, we refer interested
readers to Appendix 6.3 for detailed results.

On these architectures, our results align with previous exper-
iments on deeper models (e.g., ResNet56/110), obtaining a
satisfactory performance. Specifically, we remove 54.60%
and 62.95% of FLOPs on ResNet32/44, respectively, with-
out compromising accuracy. Beyond these levels of FLOP
reduction, we observe a slight drop in accuracy, although
it remains negligible (below 0.3 pp). Importantly, this be-
havior only occurs with deep networks when the FLOP
reduction is above 70%. We also compare the performance
of our layer-pruning method against state-of-the-art meth-
ods in these shallow architectures. Our method achieves
competitive results, outperforming existing methods in most
cases. We also evaluate our method on the MobileNetV2
and Transformer (see Appendices 6.3 and 6.4) architectures.
On these architectures, we observe the same trend: our
method removes notable FLOPs without hurting predictive
ability.

Overall, the previous discussion confirms that our method
is effective for both deep and shallow networks, as well as
for other modern architectures.

Robustness to Adversarial Samples. Previous research
have demonstrated the potential of pruning as a success-
ful defense mechanism against adversarial attacks and out-
of-distribution examples (Bair et al., 2024). In particular,
evaluating pruned models in adversarial scenarios plays a
critical role, as we need to guarantee the trustworthiness
of these models before deploying them in real-world appli-
cations such as autonomous driving. To assess the adver-
sarial robustness of the pruned models, we employ CIFAR-
C (Hendrycks & Dietterich, 2019), ImageNet-C (Hendrycks
& Dietterich, 2019) and CIFAR-10.2 (Lu et al., 2020).

On these datasets, our pruned models obtained superior
robustness compared to the unpruned model. We notice a
similar trend when evaluating the pruned models against the
FGSM attack (see Figure 4 in supplementary material).

The previous discussion indicates that our method operated
as a defense mechanism against adversarial attacks. Such
a finding is unsurprising, as previous works have demon-
strated the potential of pruning as a defense mechanism
against adversarial attacks (Jordao et al., 2023). Conversely,
Bair et al. (Bair et al., 2024) argued that pruning networks

7

Effective Layer Pruning Through Similarity Metric Perspective

hurt generalization on OOD. We observe that the pruned
networks yielded by our method preserve OOD generaliza-
tion. In this direction, Masarczyk et al. (2023) observed that
some layers hinder OOD generalization. According to this
experiment, our method mitigates this problem, even though
it was not specifically designed for this purpose. Further
analysis is required in this context, such as considering more
attacks, but we leave it for future research.

GreenAI and Transfer Learning. The current consensus
is that deeper models yield better predictive ability. A con-
sequence of this paradigm is the computational overhead
seen in modern architectures, contributing to an increase
in energy demands, both in the training and deployment
phases. According to previous works (Lacoste et al., 2019;
Strubell et al., 2019; Faiz et al., 2024), these demands result
in high carbon emissions (CO2). Fortunately, the benefits
in FLOP reduction and latency promoted by our method
directly translate into a reduction of CO2. For example,
our best-pruned version of ResNet56 implies a reduction of
CO2 by 67.88% during the fine-tuning. On ResNet110, our
pruned model at the highest FLOP reduction regime leads
to 80.85% of CO2 reduction. We can further evidence this
practical reduction in transfer learning scenarios, where fine-
tuning the models is necessary for downstream tasks. To do
so, we employ the pruned versions of ResNet56 on CIFAR-
100 and transfer their knowledge to CIFAR-10. Interestingly,
we observe that our pruned model with the highest FLOP
reduction achieved a CO2 reduction of 68.23% while main-
taining accuracy within 1 pp compared to the unpruned
model. In addition, pruned models with lower FLOP reduc-
tions achieve better transfer learning results, corroborating
the findings by Xu et al. (2023). Such behavior suggests a
challenge for the current evaluation of pruning techniques:
the quality of pruning should consider its performance in
transfer learning tasks.

We believe the results above pose an important step towards
Green AI. Particularly on the learning paradigm involving
foundation models, as the success of this emerging field
relies on transfer-learning (and self-supervised), hence, re-
quiring fine-tuning (Bommasani et al., 2021; Evci et al.,
2022; Amatriain et al., 2023).

5. Conclusions
Layer pruning emerges as an exciting compression and ac-
celeration technique due to more pronounced benefits in
FLOP reduction and latency speed-up than other forms of
pruning. Despite achieving promising results, existing cri-
teria for selecting layers fail to fully characterize the un-
derlying properties of these structures. To mitigate this,
we proposed a novel criterion for identifying unimportant
layers. Our method leverages the Centered Kernel Align-
ment (CKA) similarity metric to select such layers from a

set of candidates. Powered by CKA, we showed that sim-
ilar representations between a dense (unpruned) network
and its optimal pruning candidate indicate lower relative
importance, thus capturing underlying properties exhibited
by layers and preventing model collapse. Extensive exper-
iments on standard benchmarks and architectures confirm
the effectiveness of our method. Specifically, our method
outperforms existing layer-pruning techniques in terms of
both accuracy and FLOP reduction by a large margin. Com-
pared to other state-of-the-art pruning methods, we obtain
the best compromise between accuracy and FLOP reduction.
Particularly, at high FLOP reduction levels all methods fail
to preserve accuracy, whereas our method exhibits either
an improvement or negligible drop. In addition, our pruned
models exhibit robustness to adversarial samples and posi-
tive out-of-distribution generation. Finally, our work also
poses an important step towards Green AI by reducing up
to 80.85% of carbon emissions required for training and
fine-tuning modern architectures.

Acknowledgments
The authors would like to thank grant #2023/11163-0,
São Paulo Research Foundation (FAPESP), and grant
#402734/2023-8, National Council for Scientific and Tech-
nological Development (CNPq). Anna H. Reali Costa would
like to thank grant #312360/2023-1 CNPq. This study was
financed in part by the Coordenação de Aperfeiçoamento
de Pessoal de Nı́vel Superior – Brasil (CAPES) – Finance
Code 001.

References
Alwani, M., Wang, Y., and Madhavan, V. DECORE: deep

compression with reinforcement learning. In Conference
on Computer Vision and Pattern Recognition (CVPR),
2022.

Amatriain, X., Sankar, A., Sankar, A., Bodigutla, P. K.,
Hazen, T. J., and Kazi, M. Transformer models: an
introduction and catalog. arXiv, 2023. URL https:
//doi.org/10.48550/arXiv.2302.07730.

Bair, A., Yin, H., Shen, M., Molchanov, P., and Alvarez,
J. M. Adaptive sharpness-aware pruning for robust sparse
networks. In International Conference on Learning Rep-
resentations (ICLR), 2024.

Bommasani, R., Hudson, D. A., Adeli, E., and et al.
On the opportunities and risks of foundation models.
ArXiv, 2021. URL https://arxiv.org/abs/
2108.07258.

Chen, S. and Zhao, Q. Shallowing deep networks: Layer-
wise pruning based on feature representations. Trans-

8

https://doi.org/10.48550/arXiv.2302.07730
https://doi.org/10.48550/arXiv.2302.07730
https://arxiv.org/abs/2108.07258
https://arxiv.org/abs/2108.07258

Effective Layer Pruning Through Similarity Metric Perspective

actions on Pattern Analysis and Machine Intelligence,
2019.

Chen, Y., Yuille, A. L., and Zhou, Z. Which layer is learning
faster? A systematic exploration of layer-wise conver-
gence rate for deep neural networks. In International
Conference on Learning Representations (ICLR), 2023.

Chen, Z., Xu, T.-B., Du, C., Liu, C.-L., and He, H. Dy-
namical channel pruning by conditional accuracy change
for deep neural networks. IEEE Transactions on Neural
Networks and Learning Systems, 2021.

Dehghani, M., Tay, Y., Arnab, A., Beyer, L., and Vaswani,
A. The efficiency misnomer. In International Conference
on Learning Representations (ICLR), 2022.

Dong, Y., Cordonnier, J., and Loukas, A. Attention is not all
you need: pure attention loses rank doubly exponentially
with depth. In International Conference on Machine
Learning (ICML), 2021.

Duong, L. R., Zhou, J., Nassar, J., Berman, J., Olieslagers, J.,
and Williams, A. H. Representational dissimilarity metric
spaces for stochastic neural networks. In International
Conference on Learning Representations (ICLR), 2023.

Evci, U., Dumoulin, V., Larochelle, H., and Mozer, M. C.
Head2toe: Utilizing intermediate representations for bet-
ter transfer learning. In International Conference on
Machine Learning (ICML), 2022.

Faiz, A., Kaneda, S., Wang, R., Osi, R. C., Sharma, P.,
Chen, F., and Jiang, L. LLMCarbon: Modeling the end-
to-end carbon footprint of large language models. In
International Conference on Learning Representations
(ICLR), 2024.

Gretton, A., Bousquet, O., Smola, A. J., and Schölkopf,
B. Measuring statistical dependence with hilbert-schmidt
norms. In Algorithmic Learning Theory (ALT), 2005.

Guan, Y., Liu, N., Zhao, P., Che, Z., Bian, K., Wang, Y.,
and Tang, J. DAIS: automatic channel pruning via dif-
ferentiable annealing indicator search. Transactions on
Pattern Analysis and Machine Intelligence, 2023.

Han, K., Wang, Y., Chen, H., Chen, X., Guo, J., Liu, Z.,
Tang, Y., Xiao, A., Xu, C., Xu, Y., Yang, Z., Zhang, Y.,
and Tao, D. A survey on vision transformer. Transactions
on Pattern Analysis and Machine Intelligence, 2023.

Han, Y., Huang, G., Song, S., Yang, L., Wang, H., and Wang,
Y. Dynamic neural networks: A survey. Transactions on
Pattern Analysis and Machine Intelligence, 2022.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In Computer Vision and
Pattern Recognition (CVPR), 2016.

He, Y. and Xiao, L. Structured pruning for deep convolu-
tional neural networks: A survey. Transactions on Pattern
Analysis and Machine Intelligence, 2023.

He, Y., Liu, P., Wang, Z., Hu, Z., and Yang, Y. Filter
pruning via geometric median for deep convolutional
neural networks acceleration. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2019.

He, Z., Qian, Y., Wang, Y., Wang, B., Guan, X., Gu, Z.,
Ling, X., Zeng, S., Wang, H., and Zhou, W. Filter pruning
via feature discrimination in deep neural networks. In
European Conference on Computer Vision (ECCV), 2022.

Hendrycks, D. and Dietterich, T. G. Benchmarking neural
network robustness to common corruptions and perturba-
tions. In International Conference on Learning Represen-
tations (ICLR), 2019.

Huang, G., Sun, Y., Liu, Z., Sedra, D., and Weinberger,
K. Q. Deep networks with stochastic depth. In European
Conference on Computer Vision (ECCV), 2016.

Huang, Z., Shao, W., Wang, X., Lin, L., and Luo, P. Rethink-
ing the pruning criteria for convolutional neural network.
In Neural Information Processing Systems (NeurIPS),
2021.

Jiang, D., Cao, Y., and Yang, Q. On the channel pruning
using graph convolution network for convolutional neural
network acceleration. In International Joint Conference
on Artificial Intelligence (IJCAI), 2022.

Jordao, A., Lie, M., and Schwartz, W. R. Discriminative
layer pruning for convolutional neural networks. Journal
of Selected Topics in Signal Processing, 2020.

Jordao, A., de Araújo, G. C., de Almeida Maia, H., and
Pedrini, H. When layers play the lottery, all tickets win at
initialization. In International Conference on Computer
Vision Workshops (ICCVW), 2023.

Kornblith, S., Norouzi, M., Lee, H., and Hinton, G. E. Sim-
ilarity of neural network representations revisited. In
International Conference on Machine Learning (ICML),
2019.

Lacoste, A., Luccioni, A., Schmidt, V., and Dandres, T.
Quantifying the carbon emissions of machine learning.
In Neural Information Processing Systems (NeurIPS).
2019.

Lee, S. and Song, B. C. Ensemble knowledge guided sub-
network search and fine-tuning for filter pruning. In
European Conference on Computer Vision (ECCV), 2022.

Lin, M., Ji, R., Wang, Y., Zhang, Y., Zhang, B., Tian, Y., and
Shao, L. Hrank: Filter pruning using high-rank feature

9

Effective Layer Pruning Through Similarity Metric Perspective

map. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2020.

Lin, M., Ji, R., Li, S., Wang, Y., Wu, Y., Huang, F., and
Ye, Q. Network pruning using adaptive exemplar filters.
Transactions on Neural Networks and Learning Systems,
2022.

Lin, M., Cao, L., Zhang, Y., Shao, L., Lin, C., and Ji, R.
Pruning networks with cross-layer ranking & k-reciprocal
nearest filters. Transactions on Neural Networks and
Learning Systems, 2023.

Liu, G., Zhang, K., and Lv, M. SOKS: automatic search-
ing of the optimal kernel shapes for stripe-wise network
pruning. Transactions on Pattern Analysis and Machine
Intelligence, 2023.

Lu, S., Nott, B., Olson, A., Todeschini, A., Vahabi, H.,
Carmon, Y., and Schmidt, L. Harder or different? a
closer look at distribution shift in dataset reproduction. In
International Conference on Machine Learning (ICML),
2020.

Masarczyk, W., Ostaszewski, M., Imani, E., Pascanu, R.,
Miłoś, P., and Trzcinski, T. The tunnel effect: Building
data representations in deep neural networks. In Neural
Information Processing Systems (NeurIPS), 2023.

Nguyen, T., Raghu, M., and Kornblith, S. Do wide and deep
networks learn the same things? uncovering how neural
network representations vary with width and depth. In
International Conference on Learning Representations
(ICLR), 2021.

Nguyen, T., Raghu, M., and Kornblith, S. On the origins of
the block structure phenomenon in neural network repre-
sentations. Transactions on Machine Learning Research,
2022.

Nonnenmacher, M., Pfeil, T., Steinwart, I., and Reeb, D.
SOSP: efficiently capturing global correlations by second-
order structured pruning. In International Conference on
Learning Representations (ICRL), 2022.

Shang, H., Wu, J., Hong, W., and Qian, C. Neural network
pruning by cooperative coevolution. In International
Joint Conference on Artificial Intelligence (IJCAI), 2022.

Shen, M., Yin, H., Molchanov, P., Mao, L., Liu, J., and
Álvarez, J. M. Structural pruning via latency-saliency
knapsack. In Neural Information Processing Systems
(NeurIPS), 2022.

Silver, D., Huang, A., Maddison, C. J., and et al. Mastering
the game of go with deep neural networks and tree search.
Nature, 2016.

Strubell, E., Ganesh, A., and McCallum, A. Energy and
policy considerations for deep learning in NLP. In Con-
ference of the Association for Computational Linguistics
(ACL), 2019.

Vasu, P. K. A., Gabriel, J., Zhu, J., Tuzel, O., and Ranjan,
A. Mobileone: An improved one millisecond mobile
backbone. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2023.

Veit, A., Wilber, M. J., and Belongie, S. J. Residual
networks behave like ensembles of relatively shallow
networks. In Neural Information Processing Systems
(NeurIPS), 2016.

Wang, H., Qin, C., Bai, Y., Zhang, Y., and Fu, Y. Recent
advances on neural network pruning at initialization. In
International Joint Conference on Artificial Intelligence
(IJCAI), 2022.

Wang, Z. and Li, C. Channel pruning via lookahead search
guided reinforcement learning. In Winter Conference on
Applications of Computer Vision (WACV), 2022.

Williams, A. H., Kunz, E., Kornblith, S., and derman, S. W.
Generalized shape metrics on neural representations. In
Neural Information Processing Systems (NeurIPS), 2021.

Xu, C. and McAuley, J. J. A survey on model compres-
sion and acceleration for pretrained language models. In
Conference on Artificial Intelligence (AAAI), 2023.

Yu, S., Mazaheri, A., and Jannesari, A. Auto graph encoder-
decoder for neural network pruning. In International
Conference on Computer Vision, (ICCV), 2021.

Yu, S., Mazaheri, A., and Jannesari, A. Topology-aware
network pruning using multi-stage graph embedding and
reinforcement learning. In International Conference on
Machine Learning (ICML), 2022.

Zhang, C., Bengio, S., and Singer, Y. Are all layers created
equal? Journal of Machine Learning Research, 2022.

Zhang, K. and Liu, G. Layer pruning for obtaining shallower
resnets. Signal Processing Letters, 2022.

Zhang, Y., Lin, M., Lin, C., Chen, J., Wu, Y., Tian, Y.,
and Ji, R. Carrying out CNN channel pruning in a white
box. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2023.

Zhao, Q. and Wressnegger, C. Holistic adversarially ro-
bust pruning. In International Conference on Learning
Representations (ICLR), 2023.

Zhong, S., Zhang, G., Huang, N., and Xu, S. Revisit kernel
pruning with lottery regulated grouped convolutions. In
International Conference on Learning Representations
(ICLR), 2022.

10

Effective Layer Pruning Through Similarity Metric Perspective

Zhou, Y., Yen, G. G., and Yi, Z. Evolutionary shallowing
deep neural networks at block levels. IEEE Transactions
on Neural Networks and Learning Systems, 2022.

6. Appendix
6.1. Technical Details Involving Layer Pruning

Let N be a network composed of L layers. We can express
the output of N as a set of |L| transformations fi(.), i ∈
{1, ..., |L|}. For the sake of simplicity, each fi consists of
a series of convolution, batch normalization, and activation
operations. In this definition, we obtain the network output
(y) by forwarding the input data, denoted by X , through the
sequential layers f , where the input of layer i is the output of
the previous layer i− 1; therefore, y = f|L|(...f2(f1(X))).
This composes the idea behind plain networks (i.e., VGG
and AlexNet).

In residual-like networks, we can express the output yi of
layer i in terms of the transformation fi and the output yi−1

from the previous layer (see Figure 3 top). Formally, we
write:

yi = fi(yi−1) + yi−1. (2)

Equation 2 composes a residual module, where the right-
most part is named identity-mapping shortcut (or identity
for short). From a theoretical perspective, pruning the i-th
layer corresponds to letting yi = yi−1. From a technical
perspective, pruning the i-th layer involves connecting the
output of layer i− 1 to the input of layer i+ 1. Due to the
residual nature (skip connection), we could accomplish this
by just zeroing out the weights of fi(yi−1); thus, eliminat-
ing its contribution in Equation 2. However, this process
does not ensure practical speed-up without specialized hard-
ware for sparse computing. Instead, after selecting a victim
layer (let’s say layer i), we obtain a pruned model according
to the following process. First, we create a novel architec-
ture without layer i, resulting in a model comprising only
the surviving layers (the pruned model). Then, from the
old architecture (unpruned model), we transfer the weights
of the survival layers (we can apply this idea to a set of
layers at once) to this novel architecture. Figure 3 (bottom)
illustrates this process.

From the process above, we highlight that the layer-pruning
process removes building blocks (i.e., a set of transforma-
tions, fi(.)) a.k.a modules. Therefore, the pruning also
eliminates the corresponding activations and normalization
layers from the block. This is a common process in layer-
pruning techniques (Zhang & Liu, 2022; Jordao et al., 2020;
Zhou et al., 2022).

As a final note, the pruning process cannot remove all lay-
ers composing a model due to incompatible dimensions
between the input and output tensor between stages (layers
operating on representations in the same resolution). In
particular, the pruning is unable to remove layers between
stages. Thus, given an architecture of k layers within a
stage, the pruning can remove at most k − 2 layers within

11

Effective Layer Pruning Through Similarity Metric Perspective

this stage. Importantly, this is the reason why we are unable
to remove all layers of a model. This analysis corresponds
to ResNet architecture and can vary depending on the archi-
tecture design of the model.

Co
nv

. L
ay

er

Co
nv

. L
ay

er

. . .

Co
nv

. L
ay

er

Co
nv

. L
ay

er

Co
nv

. L
ay

er

Co
nv

. L
ay

er

Layer i - 1 Layer i Layer i + 1

.

yk

yi + 1

fi - 1 fi fi + 1

yk

yi
yi - 1

yi - 1

yi

Co
nv

. L
ay

er

Co
nv

. L
ay

er

. . .

Co
nv

. L
ay

er

Co
nv

. L
ay

er

. . .

yi + 1

fi + 1

yi

Transfer
Weights

Transfer
Weights

Figure 3. Architecture of a residual-like network. Top. The ratio-
nale behind this architecture is that the output of a layer takes into
account the transformation performed by it (f) plus (⊕) the input
(y) it receives. Due to this essence, when we disable layer i (its
transformation – dashed lines), the output (representation) of layer
i − 1 is propagated to layer i + 1, which means that the output
yi belongs yi−1. For the sake of simplicity, we omit the batch
normalization and activation layers, which are also transferred in
the process of layer removal. Bottom. Process to eliminate a layer
from a technical perspective and, thus, obtain practical speed-up
gains. After selecting the victim layer (i.e., Layer i), we create a
novel architecture without it and, then, transfer the weights (red
dashed arrows) of the corresponding survival layers.

6.2. Adversarial Attacks

Efforts toward a deeper understanding of the roles played
by layers in network generalization and the effect of prun-
ing in adversarial attack scenarios reinforce the idea that
improving OOD and adversarial robustness while reducing
computational demand is accomplishable for pruning meth-
ods (Masarczyk et al., 2023; Bair et al., 2024). Such com-
promises are crucial for deploying these models in safety-
critical applications e.g., autonomous driving and robotics.
In this experiment, we demonstrate that our pruned mod-
els improve OOD generalization and adversarial robustness.
For this purpose, we compare the performance on different
adversarial tasks of ResNet56 and its pruned models using
our method. Figure 4 shows the results. According to this
figure, our pruned models obtain positive robustness, high-
lighting their effectiveness even on severe compression rates.
Specifically, on CIFAR-10.2 (Lu et al., 2020) and CIFAR-
C (Hendrycks & Dietterich, 2019), we reduce more than
70% of computational cost while exhibiting improvements.
Notably, only three pruned models obtained lower perfor-
mance compared to the unpruned model, yet less than one
pp. In the FGSM attack, regardless of the FLOP reduction
levels, our pruned models dominate its unpruned version in

10 20 30 40 50 60 70 80
FLOP reduction (%)

1.0

0.5

0.0

0.5

1.0

1.5

 in
 a

cc
ur

ac
y

(p
p)

CIFAR-10.2 CIFAR-C

10 20 30 40 50 60 70 80
FLOP reduction (%)

0

1

2

3

4

5

 in
 a

cc
ur

ac
y

(p
p)

FGSM

10 20 30 40 50 60
FLOP reduction (%)

6

5

4

3

2

1

0

 in
 a

cc
ur

ac
y

(p
p)

ImageNet-C

Figure 4. Results of pruned models for different adversarial attacks.
Green and blue points correspond to an accuracy improvement
and degradation, respectively. Dotted lines separate the plots into
improvement and degradation groups. Top-Right: Results on
out-of-distribution using CIFAR-10.2 (Lu et al., 2020). Top-Left:
Results on adversarial robustness using CIFAR-C (Hendrycks &
Dietterich, 2019). Bottom-Left: Results on FGSM adversarial at-
tack. Bottom-Right: Results on ImageNet-C using pruned models
from ResNet50

terms of adversarial robustness.

It is worth mentioning that during the pruning process, we
avoid any defense mechanism. Therefore, the preceding
discussion confirms that the benefits of our pruned models
extend beyond computational gains.

6.3. Results on Shallow Architectures

In this experiment, we further explore the effectiveness
of our method in shallow architectures: ResNet32 and
ResNet44. We also consider the lightweight architecture
MobileNetV2. Table 4 summarizes the results.

According to Table 4, our method removes up to 54.61%
and 62.95% of FLOPs from residual architectures without
compromising model accuracy. On higher FLOP reduction
regimes, the performance drop is negligible (i.e., less than
one pp.). This behavior is consistent with our analysis
considering deeper models and supports the effectiveness
of our method on shallow architectures.

Finally, our pruned models outperform state-of-the-art prun-
ing methods; the only exception is the method by Nonnen-
macher et al. (Nonnenmacher et al., 2022) on ResNet32. It
turns out that our method reached the limit of layer removal
(i.e., there are no more available layers to remove, see Sec-
tion 6.1). Therefore, to achieve higher computational gains
we should combine it with filter-pruning strategies. As a
final note, the reason few methods appear in the table is that

12

Effective Layer Pruning Through Similarity Metric Perspective

Table 4. Comparison of state-of-the-art pruning methods on
CIFAR-10 using ResNet32, ResNet44 and MobileNetV2. The
symbols (+) and (-) denote increase and decrease in accuracy re-
garding the original (unpruned) network, respectively. For each
level of FLOP reduction, we highlight the best results in bold.

Method ∆ Acc. FLOPs (%)

ResNet32

GKP-TMI (Zhong et al., 2022) (ICLR, 2022) (+)0.22 43.10
SOKS (Liu et al., 2023) (TNNLS, 2023) (-) 0.38 46.85
CKA (ours) (+) 0.68 47.78
DAIS (Guan et al., 2023) (TNNLS, 2023) (+) 0.57 53.90
SOKS (Liu et al., 2023) (TNNLS, 2023) (-) 0.80 54.58
CKA (ours) (+) 0.05 54.61
SOSP (Nonnenmacher et al., 2022) (ICLR, 2022) (-) 0.24 67.36
CKA (ours) (-) 0.18 61.44

ResNet44

DCP-CAC (Chen et al., 2021) (TNNLS, 2022) (-) 0.03 50.04
AGMC (Yu et al., 2021) (ICCV, 2021) (-) 0.82 50.00
CKA (ours) (+) 0.47 53.27
CKA (ours) (+) 0.22 62.95
CKA (ours) (-) 0.29 72.64

MobileNetV2

CKA (ours) (+) 0.17 26.60
CKA (ours) (-) 0.37 31.28
CKA (ours) + ℓ1 (-) 2.82 82.89
CKA (ours) + ℓ1 (-) 3.44 85.06

there is a lack of pruning studies reporting results on these
architectures (He & Xiao, 2023).

6.4. Results on the Transformer Architecture

Recent advancements in foundation models and general-
purpose tasks often leverage Transformer architectures and
their variants.

In the context of layer-pruning, Dong et al. (Dong et al.,
2021) noted that Transformer-like architectures exhibit anal-
ogous behavior to ResNets – they experience either no degra-
dation or only negligible drops in accuracy when removing
certain layers. Such a claim provides a guarantee to perform
layer-pruning on these architectures.

In this experiment, we evaluate the effectiveness of our
layer-pruning method on the widely used Transformer ar-
chitecture. Unfortunately, our limited computational budget
prevents us from considering Visual Transformers, which
typically require thousands of samples (e.g., JFT-300M)
to achieve competitive results compared to convolutional
networks. Thereby, we assess our layer-pruning technique
in Transformers for human activity recognition based on
wearable sensors, a popular application involving tabular
data. Details about these datasets are available at this link:
https://doi.org/10.1016/j.neucom.2020.04.151.

Our Transformer architecture (unpruned) comprises 10 lay-
ers, each with 128 heads and projection dimensions of 64.
For each dataset, we train this Transformer architecture
for 200 epochs and subsequently prune it similarly to the
approach described in the main body of the paper. We em-
phasize that our objective here is not to advance the state-of-
the-art; rather, we aim to demonstrate that the effectiveness

10 20 30 40 50 60 70
FLOP reduction (%)

0

1

2

3

4

5

 in
 a

cc
ur

ac
y

(p
p)

WHARF

10 20 30 40 50 60 70
FLOP reduction (%)

0.0

0.5

1.0

1.5

2.0

2.5

 in
 a

cc
ur

ac
y

(p
p)

USCHAD

10 20 30 40 50 60
FLOP reduction (%)

5

4

3

2

1

0

 in
 a

cc
ur

ac
y

(p
p)

PAMAP2P

Figure 5. Performance of our layer-pruning method on Trans-
former architecture for human activity recognition based on wear-
able sensors (tabular data). Each point denotes a pruned model
and the black-dashed line indicates the point where the drop in
accuracy is zero; thus, points above this line (green) stand for
pruned models with an improved accuracy compared to the origi-
nal, unpruned, model.

of our layer-pruning extends beyond ResNet architectures.

Figure 5 shows the results. In this figure, the black dashed
line shows the point where the drop in accuracy is zero;
hence, pruned models (green points) above this line exhibit
an accuracy improvement. From Figure 5, we observe that
most pruned models exhibited no accuracy drop, even on
high compression regimes. Therefore, we conjecture that
on these datasets the layer-pruning technique operated as
a strong regularization mechanism. We observe that this
regularization mechanism performs well as a function of
the dataset size. For example, the datasets on the upper
side of Figure 5 are at least 3 times smaller (in terms of
training size) compared to the ones on the lower side. We
intend to further explore this behavior in future research,
particularly in low-data regimes, which is a well-known
deficit in Transformer-like architectures. In summary, the
results of this experiment confirm the effectiveness of our
layer-pruning method on the Transformer architecture for
tabular data.

13

