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Abstract
Counterfactual explanations enhance interpretabil-
ity by identifying alternative inputs that produce
different outputs, offering localized insights into
model decisions. However, traditional methods
often neglect causal relationships, leading to un-
realistic examples. While newer approaches inte-
grate causality, they are computationally expen-
sive. To address these challenges, we propose
an efficient method called BRACE based on back-
tracking counterfactuals that incorporates causal
reasoning to generate actionable explanations. We
first examine the limitations of existing methods
and then introduce our novel approach and its fea-
tures. We also explore the relationship between
our method and previous techniques, demonstrat-
ing that it generalizes them in specific scenarios.
Finally, experiments show that our method pro-
vides deeper insights into model outputs.

1. Introduction
Machine learning (ML) has become a core technology in
areas such as healthcare, finance, and autonomous sys-
tems (Bhoi et al., 2024; Xie et al., 2024; Sancaktar et al.,
2022). Although ML models are generally very effective,
their limited interpretability is still a significant obstacle
(Jethani et al., 2021). Understanding why a model gener-
ates a specific prediction is crucial for trust, fairness, and
accountability (Miller, 2019; Zhang & Bareinboim, 2018;
Von Kügelgen et al., 2022; Karimi et al., 2023). This need
is especially clear in high-stakes domains like medical diag-
nosis or loan approval, where decisions can lead to serious
consequences (Doshi-Velez & Kim, 2017).
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Counterfactual explanations are a widely used tool for inter-
pretability. They address two main questions:

1.”Why did the model produce this outcome?”
2.”What changes can lead to a different outcome?”

(Karimi et al., 2022).

These explanations offer localized insights by highlighting
minimal modifications to input features that would alter the
model’s output (Wachter et al., 2017; Karimi et al., 2020a).
For instance, in the context of loan applications, a coun-
terfactual explanation could recommend increasing one’s
income or reducing debt to secure approval.

Despite their benefits, traditional counterfactual methods
often overlook causal relationships between features, which
can lead to impractical or unrealistic suggestions (Slack
et al., 2021). For example, advising someone to lower their
income while increasing savings ignores the causal depen-
dency between these factors. This limitation reduces the
practical value of such explanations. Causal algorithmic
recourse (Karimi et al., 2021) incorporates Interventional
Counterfactuals (ICF) to produce more realistic outputs, but
this approach is typically computationally expensive and
difficult to scale.

Backtracking Counterfactuals (BCF) (Von Kügelgen et al.,
2023) present a new way to define counterfactuals in causal
inference. We propose a new framework for generating
counterfactual explanations using backtracking counterfac-
tuals. Our method combines causal reasoning with compu-
tational efficiency, enabling it to produce actionable expla-
nations at scale. The key contributions of our work are as
follows:

• We analyze the limitations of existing counterfactual
methods, including their inability to handle causal de-
pendencies and their high computational costs.

• We introduce our novel method, BRACE: Backtracking
Recourse and Actionable Counterfactual Explanations,
that leverages backtracking counterfactuals to provide
actionable and meaningful explanations.

• We show that our new approach unifies existing meth-
ods in certain scenarios.

• We demonstrate through experiments that our method
provides better insights into model behavior.
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This paper is organized as follows. Section 2 introduces
fundamental concepts in causal inference, counterfactual
reasoning, and the problem definition. Section 3 reviews
prior work on counterfactual explanations and interpretabil-
ity. Section 4 details our proposed framework. Section 5
explores the relationship between backtracking and interven-
tional counterfactuals, while Section 6 examines how our
method connects to existing approaches. Section 7 discusses
metric selection and our optimization method. We present
experimental results in Section 8, followed by conclusions
and future directions in Sections 9 and 10, respectively.

2. Preliminaries and Problem Statement
In this section, we review the notion of Structural Causal
Models (SCMs) (Pearl, 2009), discuss interventional ver-
sus backtracking counterfactuals, and formally define the
problem setting.

2.1. Structural Causal Models (SCMs)

A SCM C := (S, PU) describes a set S of causal relation-
ships among variables through structural equations:

Xi := fi(Xpa(i), Ui), i = 1, . . . , n, (1)

where Xpa(i) are the parents variables (direct causes) of
Xi, and Ui are independent noise terms sampled from a
distribution PU. These relationships are represented by
a Directed Acyclic Graph (DAG) G, which governs the
observational distribution P C

X (Peters et al., 2017).

The acyclic structure of G ensures that each Xi can be
expressed as a deterministic function of U. This results in a
unique mapping from U to X, denoted by:

X = F(U), (2)

commonly referred to as the reduced-form expression. The
function F(.) translates the distribution of latent variables
U into the distribution of observed variables X. We as-
sume causal sufficiency, implying no hidden confounders
are present.

Additionally, we adopt a Bijective Generation Mechanism
(Nasr-Esfahany et al., 2023), which assumes that fi(xpa(i), ·)
is invertible for fixed xpa(i). This ensures the existence of
the inverse mapping F−1(.), allowing us to recover:

U = F−1(X). (3)

2.2. Interventional and Backtracking Counterfactuals

Let x be the observed value, and let xCF
A = (xCF

i :
i ∈ A) be an alternative set of values for a subset
A ⊆ {1, 2, . . . , n}. A full counterfactual vector xCF =

(xCF
1 , xCF

2 , . . . , xCF
n ) must agree with xCF

A on all indices in
A. Intuitively, xCF addresses the question: “What would
the variables X have been if XA took the values xCF

A in-
stead of the observed values xA?”

We focus on two main ways to form such counterfactuals,
both described by random variables XCF: the interventional
approach and the backtracking approach. Below is a concise
explanation of these two methods.

Interventional Counterfactuals. In the interventional
method, we force the antecedent xCF

A by modifying the
system’s structural functions S to create a new set SCF =
(fCF

1 , fCF
2 , . . . , fCF

n ). Specifically, we fix each fCF
i to be

xCF
i for i ∈ A, while keeping fCF

i = fi for all i /∈ A.
This process is similar to making a direct change in the
causal mechanism of the variables in A, referred to as a
hard intervention.

Backtracking Counterfactuals. By contrast, backtrack-
ing counterfactuals preserve the original structural assign-
ments S and instead adjust the latent variables U. To enforce
xCF
A ̸= xA, we introduce a modified set of latent variables

UCF. These are drawn from a backtracking conditional
distribution PB(U

CF | U) (Von Kügelgen et al., 2023),
which controls how closely UCF resembles the original U.
Once we obtain UCF, we derive the resulting distribution of
XCF (given x and xCF

A ) by marginalizing over all possible
values of UCF.

Both interventional and backtracking perspectives provide
valuable insights into counterfactual reasoning but rely on
distinct causal reasoning paradigms. Here, we only gave
a brief overview of these two approaches. Their precise
definitions appear in Appendix A.

2.3. Problem Definition

We examine a complex model (e.g., a deep neural network)
designed for classification tasks. This model is represented
as h : Rd → {0, 1, . . . ,m}, where for a given input x, the
model predicts h(x) = y.

The input x is assumed to follow a SCM C = (S, PU),
where the structural equations S are fully known. Formally,
if U denotes the latent (noise) variables of the SCM, the
input X is generated as X = F(U), with the function
F(.) explicitly defined. The components of U are mutually
independent and F(.) is invertible. The goal is to find a
counterfactual input xCF that satisfies:

1. xCF is similar to x,
2. h(xCF) = yCF ̸= y = h(x), and
3. the causal structure of the input variables is maintained.

In essence, yCF represents the desired outcome of the model,
and the task is to determine the nearest plausible input that
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would produce this outcome. This problem definition sheds
light on why the model predicted y instead of yCF and
provides a localized understanding of the model’s behavior
around x.

3. Related Work
Methods for interpretability are generally classified into
feature-based and example-based approaches (Molnar,
2020). Feature-based techniques attribute model predictions
to input features, offering global or local interpretability. For
instance, SHapley Additive exPlanations (SHAP) (Lundberg
& Lee, 2017) decompose predictions into additive contri-
butions of features. Extensions like Causal Shapley Values
(Heskes et al., 2020) and Asymmetric Shapley Values (Frye
et al., 2020) incorporate causal dependencies or relax sym-
metry assumptions, respectively, to enhance the interpre-
tive granularity and address redundancies. Local surrogate
models, such as Local Interpretable Model-Agnostic Ex-
planations (LIME) (Ribeiro et al., 2016), provide localized,
model-agnostic explanations by approximating the behavior
of black-box models for individual predictions.

Example-based methods focus on understanding models
through data points. Prototypes and criticisms (Kim et al.,
2016) identify representative and atypical samples, while
Contrastive Explanations (Dhurandhar et al., 2018) highlight
minimal features that sustain or alter predictions. Counter-
factual explanations (Wachter et al., 2017), a prominent
example-based approach, aim to find minimal modifications
to input features that result in different model outputs. These
methods are inherently model-agnostic, localized, and intu-
itive for decision support systems.

In recent years, causality has played a growing role in in-
terpretability. Causal Algorithmic Recourse (Karimi et al.,
2021) generates actionable and realistic counterfactuals by
respecting causal structures. This approach ensures the
plausibility of counterfactuals by adhering to causal de-
pendencies in the data. Subsequent research has extended
this framework to address various challenges. For instance,
(Karimi et al., 2020b) weakens the assumption of fully
known causal graphs and proposes methods for algorithmic
recourse when causal knowledge is incomplete. Similarly,
(Dominguez-Olmedo et al., 2022) focuses on generating
robust and stable algorithmic recourse by introducing cost
functions tailored to ensure resilience against adversarial
perturbations. Additionally, advancements like (Janzing
et al., 2020) refine feature attributions using causal insights,
and (Jung et al., 2022; Wang et al., 2021) explore novel
Shapley value formulations incorporating causality to create
more meaningful interpretations.

A novel direction involves backtracking counterfactual ex-
planations (Von Kügelgen et al., 2023), which modify latent

variables while preserving causal dependencies, thereby en-
suring consistency with the structural causal model. This
approach has been extended through practical algorithms,
such as Deep Backtracking Explanations (Kladny et al.,
2024), enabling computation of backtracking counterfactu-
als in high-dimensional settings.

Our approach belongs to the category of example-based
methods, focusing on counterfactual explanations. It is di-
rectly comparable to methods such as Counterfactual Expla-
nations (Wachter et al., 2017), Causal Algorithmic Recourse
(Karimi et al., 2021), Backtracking Counterfactual Explana-
tions (Von Kügelgen et al., 2023), and Deep Backtracking
Explanations (Kladny et al., 2024). Below, we briefly review
and critique these methods.

Counterfactual Explanations: The method in (Wachter
et al., 2017) generates counterfactuals through the following
optimization:

argmin
xCF

dX(xCF,x)

s.t. h(xCF) = yCF
(4)

A key drawback of this approach is its failure to account for
causal dependencies among input variables, often leading to
counterfactuals that are unrealistic or infeasible. For exam-
ple, in a loan approval scenario, it may suggest decreasing
age while increasing education level, violating causal re-
lationships. Although these counterfactuals minimize the
distance to the original input, they offer little practical guid-
ance for future improvements and fail to provide actionable
insights.

Causal Algorithmic Recourse: The method in (Karimi
et al., 2021) addresses feasibility by optimizing the follow-
ing:

argmin
A

cost(A;x)

s.t. h(xCF) = yCF

xCF = FA
(
F−1(x)

) (5)

Here, cost(.;x) measures the intervention cost, and FA(.)
represents causal functions after intervening on A. While
this method ensures actionable counterfactuals, it has two
challenges. First, the optimization is combinatorial, requir-
ing a search over all subsets A, which grows exponentially
with n input variables (2n subsets). Second, the method
relies on interventional counterfactuals, which are often
criticized for lacking causal intuition (Dorr, 2016). Back-
tracking counterfactuals are considered a better alternative.

Backtracking Counterfactual Explanations: The method
in (Von Kügelgen et al., 2023) formulates the problem as:

argmax
xCF

PB(x
CF | yCF,x, y), (6)
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focusing on the backtracking conditional distribution
PB(U

CF | U), which adjusts latent variables to produce
counterfactuals. However, its main drawback is the depen-
dence on PB . Different choices of this distribution lead to
varying counterfactuals, and selecting PB is left to the user.
Additionally, solving (6) becomes computationally chal-
lenging for complex PB distributions, as we must integrate
over all values of this distribution to compute backtracking
counterfactuals (see Appendix A).

Deep Backtracking Explanations: The method in (Kladny
et al., 2024) refines backtracking counterfactuals using this
optimization:

argmin
xCF

dU
(
F−1

(
xCF

)
,F−1 (x)

)
s.t. h(xCF) = yCF

(7)

This method eliminates dependence on PB(U
CF | U) by

focusing on the latent space distance dU . However, it ig-
nores proximity between xCF and x in the observed space.
As a result, the generated counterfactuals may lack intuitive
interpretability and fail to meet the original goal of being
close to x.

While these methods offer valuable insights, they have no-
table limitations. In the next section, we propose a new
approach that addresses these issues and provides a more
effective solution.

4. Our method
In this section, we propose our method called BRACE: Back-
tracking Recourse and Actionable Counterfactual Explana-
tions. As discussed earlier, one of the main limitations of
backtracking counterfactuals is their reliance on the condi-
tional distribution PB(U

CF | U). This dependency arises
because the choice of PB(U

CF | U) significantly influ-
ences the resulting counterfactuals, and its specification is
left entirely to the algorithm. Such a distribution is essential
when a probabilistic representation of backtracking coun-
terfactuals is required. However, in our scenario where
X = F(U) and F(.) is invertible, a simpler perspective can
be adopted. Here, U can be treated as a deterministic vector,
which simplifies the formulation considerably.

When U is deterministic, we may treat UCF as another
deterministic vector close to U, preserving the essence of
backtracking without resorting to PB(U

CF | U). In inter-
pretability tasks, one typically seeks an input xCF near x
that remains faithful to causal constraints. Thus, viewing
xCF as deterministic naturally aligns with this goal.

Based on this reasoning, we propose our method, BRACE,

with the following optimization problem:

arg min
xCF,uCF

dX
(
x,xCF

)
+ λ dU

(
u,uCF

)
s.t. h(xCF) = yCF,

xCF = F(uCF),

x = F(u),

(8)

which can also be expressed as:

argmin
xCF

dX
(
x,xCF

)
+ λ dU

(
F−1(x),F−1(xCF)

)
s.t. h(xCF) = yCF,

(9)

or equivalently:

argmin
uCF

dX
(
x,F(uCF)

)
+ λ dU

(
F−1(x),uCF

)
s.t. h

(
F(uCF)

)
= yCF.

(10)

Intuitively, this optimization seeks the closest input xCF to
x that achieves the desired output yCF while preserving the
causal relationships encoded in the input variables.

In (8), the objective function includes two terms:
dX

(
x,xCF

)
, which ensures the counterfactual input re-

mains close to the observed input, and dU
(
u,uCF

)
, which

ensures that the latent variables of the factual and coun-
terfactual worlds are similar. The constraints enforce the
desired counterfactual output (h(xCF) = yCF), causal con-
sistency (xCF = F(uCF)), and the relationship between the
observed input and the latent variables (x = F(u)).

As dU
(
u,uCF

)
increases, the counterfactual latent vari-

ables uCF deviate further from the factual latent variables u,
making the counterfactual less connected to the factual ob-
servation. The parameter λ regulates the trade-off between
maintaining proximity in the latent space and ensuring the
counterfactual remains close to the original input.

When λ = 0, the proximity of latent variables is ignored,
resulting in solutions that lack causal consistency and focus
solely on minimizing the distance between x and xCF. Con-
versely, as λ → ∞, the optimization prioritizes minimizing
dU

(
u,uCF

)
, which ensures minimal deviation in the latent

space but disregards proximity in the input space. The ideal
solution balances these objectives, ensuring that the counter-
factual is both causally consistent and close to the original
input.

5. Relation Between Backtracking and
Interventional Counterfactuals

Our causal model is represented as X = F(U), where
F(.) is an invertible function. Consequently, the distribu-
tion of the noise variables conditioned on X = x becomes
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deterministic. Specifically, all the probability mass of the
posterior distribution PC(U | X = x) is concentrated at
u = F−1(x).

As outlined in Section 2.2, backtracking counterfactuals
aim to produce a desired counterfactual outcome by keeping
the causal graph unchanged while minimally modifying the
noise variables U after observing x. Although backtracking
counterfactuals are typically defined using the backtracking
conditional distribution PB(U

CF | U), when F(.) is invert-
ible, the deterministic nature of U eliminates the necessity
for statistical modeling. Instead, we directly analyze the
connection between backtracking and interventional coun-
terfactuals via their respective causal equations.
Theorem 5.1. In structural causal models that adhere
to the Bijective Generation Mechanism (i.e., F(.) is in-
vertible), backtracking counterfactuals generalize interven-
tional counterfactuals. Specifically, one of the solutions
derived from the backtracking counterfactual formulation
always coincides with the interventional counterfactual.

Proof. Consider a counterfactual query involving a subset
of variables XCF

A = x∗
A. Under the Bijective Generation

Mechanism, the posterior distribution PC(U | X = x)
assigns probability one to u = F−1(x), making u deter-
ministic. The interventional counterfactuals for this query
are defined by the following system of equations:{

xICF
i = fi(x

ICF
pa(i), ui), ∀i /∈ A,

xICF
i = x∗

i , ∀i ∈ A.
(11)

In contrast, the backtracking counterfactuals are determined
by: {

xBCF
i = fi(x

BCF
pa(i) , u

BCF
i ), ∀i /∈ A,

xBCF
i = fi(x

BCF
pa(i) , u

BCF
i ) = x∗

i , ∀i ∈ A.
(12)

The key difference between (11) and (12) lies in the adjust-
ment mechanism. Interventional counterfactuals modify the
causal graph to enforce XCF

A = x∗
A, whereas backtracking

counterfactuals achieve the same result by adjusting the
noise variables.

Due to the DAG assumption in the causal graph, it is clear
that equation (11) has a unique solution. After performing
interventions on the set A, we obtain multiple DAGs from
which we can derive the unique solution for xICF by starting
from the source nodes.

Given that F(.) is invertible, we define

uICF
A = F−1(xICF). (13)

We can also rewrite equation (12) as xBCF = F(uBCF).
By definition, if we substitute uBCF = uICF

A into the back-
tracking equations (12), we arrive at the same counterfactual

solution, xICF. Therefore, interventional counterfactuals
can be considered a specific case of backtracking counter-
factuals.

This reasoning can be generalized to any subset of variables
A. For any counterfactual query involving A, we can con-
struct uICF in such a way that backtracking counterfactuals
align with interventional counterfactuals.

To the best of our knowledge, Theorem 5.1 is the first result
that relates backtracking and interventional counterfactuals,
and it holds independent significance. Theorem 5.1 demon-
strates that when F(.) is invertible, backtracking counter-
factuals inherently include interventional counterfactuals
as a specific case. Furthermore, interventional counterfac-
tuals, typically expressed as xICF = FA(u), where FA(.)
represents the structural equations post-intervention, can
equivalently be reformulated as xICF = F(uICF

A ), bridging
the gap between the two paradigms. By the construction (13)
in Theorem 5.1, we can see uICF

A = F−1
(
FA

(
F−1(x)

))
.

6. Connection Between Our Method and
Previous Approaches

Our method BRACE unifies other existing methods in certain
scenarios. In our optimization problem (8), setting λ = 0
simplifies the problem to Counterfactual Explanations (4),
where causal relationships are disregarded, and the objective
becomes finding xCF that is closest to x while modifying
the model output.

When λ → ∞, (8) reduces to Deep Backtracking Explana-
tions (7), which exclusively focuses on finding uCF closest
to u without considering the proximity between xCF and x,
while ensuring the model’s output changes.

Our solution (8) can also be interpreted as a special case of
Backtracking Counterfactual Explanations (6). Specifically,
it can be shown that employing the backtracking conditional
distribution:

PB(u
CF | u) ∝ exp

(
− dX

(
F(u),F(uCF)

)
− λ · dU

(
u,uCF

) ) (14)

renders (8) equivalent to Backtracking Counterfactual Ex-
planations (6). Detailed derivations are provided in the
Appendix B, leveraging the theoretical framework from
(Von Kügelgen et al., 2023).

While the connections to Counterfactual Explanations,
Deep Backtracking Explanations, and Backtracking Coun-
terfactual Explanations are established, a significant ques-
tion remains: how does our solution (8) relate to Causal
Algorithmic Recourse (5)? The following theorem provides
an answer.
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Theorem 6.1. Assume that the distance functions dX(·,x)
and dU (·,u) are convex, F(·) and h(·) are linear functions,
and the cost function is given as cost(A;x) = dX(xCF,x).
Then, our method BRACE outperforms Causal Algorith-
mic Recourse. Specifically, for a fixed distance α in the
latent space dU (u

CF,u) = α, there exists a λ such that
the solution of (8) yields a counterfactual xCF closer to the
observed input x than the solution of (5).

Proof. We start by reformulating Causal Algorithmic Re-
course (5) into a form analogous to our proposed solution
(8). Using Theorem 5.1, Causal Algorithmic Recourse (5)
can be rewritten as:

arg min
xCF, A

dX
(
xCF,x

)
s.t. h(xCF) = yCF,

xCF = F
(
uICF
A

)
,

uICF
A = F−1 (FA (u)) ,

x = F(u).

(15)

The main question is whether there exists a λ such that the
optimal xCF in our method (8) coincides with the optimal
xCF in (15). Suppose the optimal solution to (15) is attained
for uICF

A∗ . Let α represent the distance between uICF
A∗ and u:

dU
(
uICF
A∗ ,u

)
= α. (16)

We now define the following optimization problem:

arg min
xCF,uCF

dX
(
xCF,x

)
s.t. h(xCF) = yCF,

xCF = F
(
uCF

)
,

dU
(
uCF,u

)
= α,

x = F(u).

(17)

Let the optimal solution to (15) be x∗ICF, and the optimal
solution to (17) be x∗BCF. Then, it follows:

dX
(
x∗BCF,x

)
≤ dX

(
x∗ICF,x

)
. (18)

This inequality holds because uICF
A∗ satisfies the con-

straint dU
(
uCF,u

)
= α, while other feasible values of

uCF within the same constraint may reduce the objective
dX

(
xCF,x

)
further. Hence, the Causal Algorithmic Re-

course formulation (15) may not always yield the closest
xCF to x among all uCF satisfying the distance constraint
α from u.

Next, we examine whether there exists a λ such that the
optimal solution of our method (8) aligns with the opti-
mal solution of (17). In essence, we seek a λ such that

the optimal uCF from (8) satisfies the distance constraint
dU

(
uCF,u

)
= α.

To approach this, consider the following vector optimization
problem:

arg min
xCF,uCF

(
dX

(
x,xCF

)
, dU

(
u,uCF

))
s.t. h(xCF) = yCF,

xCF = F(uCF),

x = F(u).

(19)

The optimization (19) simultaneously minimizes
dX

(
x,xCF

)
and dU

(
u,uCF

)
. However, in certain

cases, reducing one term may result in an increase in the
other.

To resolve this, we utilize the concept of Pareto optimality
(Boyd & Vandenberghe, 2004). A well-known result for
convex problems is that scalarizing the objective:

dX
(
x,xCF

)
+ λ dU

(
u,uCF

)
(20)

yields all Pareto-optimal solutions by varying λ > 0. Specif-
ically, every optimal solution of the scalarized optimization
corresponds to a Pareto-optimal point of the vector opti-
mization. Moreover, since the vector optimization problem
(19) is convex (from the assumptions of the theorem), all
Pareto-optimal points can be achieved.

Returning to our optimization, note that the solution to (17)
is a Pareto-optimal point of (19) because with constraint
dU

(
uCF,u

)
= α we minimizes dX

(
xCF,x

)
. Thus, the

solution cannot be further improved along the dX
(
xCF,x

)
axis.

Thus, by varying λ, it is possible to identify a λ such that the
solution of our method BRACE (8) matches the solution of
(17), ensuring dU

(
uCF,u

)
= α. Consequently, as demon-

strated in (18), our proposed method yields a xCF that is
closer to x compared to Causal Algorithmic Recourse, while
preserving the fixed distance α between the latent variables
u and uCF.

The convexity of the distance functions, along with the
linearity of F(·) and h(·), are assumed primarily to ensure
the existence of λ by utilizing the convexity of the vector
optimization problem (19). However, similar conclusions
can still be derived without these assumptions if there exists
a suitable λ such that dU

(
uCF,u

)
= α. This indicates that,

even in cases where the convexity of dX(·,x), dU (·,u), or
the linearity of F(·) and h(·) are not assumed, our proposed
method often provides a xCF that is closer to x than Causal
Algorithmic Recourse, while preserving the fixed distance
α between the latent variables u and uCF.
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Importantly, convexity and linearity assumptions are not
necessary for the core insight to remain valid. Even without
assuming convexity of the distance functions or linearity
of F(·) and h(·), we can always find a solution that out-
performs Causal Algorithmic Recourse among the Pareto
optimal points of the vector optimization problem (19). The
assumptions of linearity and convexity are only required to
guarantee that this Pareto optimal point can be captured by
some value of λ.

It is worth noting that our method is substantially more ef-
ficient computationally than Causal Algorithmic Recourse,
since that approach relies on a combinatorial optimization
procedure. Moreover, our method also surpasses Back-
tracking Counterfactual Explanations in computational effi-
ciency, especially when dealing with a complex distribution
PB .

7. Metric Selection and Optimization
Approach

To solve the optimization problem in Eq. (8), it is essential to
define the distance metrics dX

(
x,xCF

)
and dU

(
u,uCF

)
.

For dX(., .), which measures proximity in the observed
space, the ℓ1 norm is a natural choice as it minimizes the
number of modified features, making the counterfactuals
more interpretable and actionable:

dX
(
x,xCF

)
=

∥∥x− xCF
∥∥
1
. (21)

For the latent space, dU (., .) evaluates how plausible a coun-
terfactual is relative to the original latent representation. The
ℓ2 norm ensures smoothness and proximity:

dU
(
u,uCF

)
=

∥∥u− uCF
∥∥
2
. (22)

By combining these metrics, the optimization problem can
be reformulated in a meaningful way.

Solving the optimization problem in Eq. (8), particularly for
complex models such as neural networks (Katz et al., 2017)
or additive tree models (Ates et al., 2021), is generally NP-
hard. Gradient-based methods are effective when both the
objective and the constraints are differentiable. For example,
the constraints can be integrated into the objective function
as penalty terms:

argmin
xCF

dX(x,xCF) + λ dU (F
−1(x),F−1(xCF))

+ β Loss
(
h(xCF), yCF

)
,

(23)

where Loss(.) is a common classification loss, such as cross-
entropy. To approximate solutions in practice, β is gradually
increased until the counterfactual xCF satisfies the desired
output class yCF (Szegedy et al., 2013).

X2 X1

X3

X4

Ŷ

Figure 1. Causal graph of the bank’s high-risk detection model.
X1 is gender, X2 is age, X3 is loan amount, and X4 is repayment
duration in months. The model’s output Ŷ indicates high or low
risk for loan approval.

Heuristic approaches also provide practical alternatives; for
instance, shortest path searches in empirical graphs (Poyi-
adzi et al., 2020) or expanding-sphere searches (Laugel et al.,
2017) offer approximate solutions in specific scenarios.

8. Experimental Evaluation
8.1. Simulation Setup

To evaluate the proposed method, we adopt the experiment
in the Causal Algorithmic Recourse paper (Karimi et al.,
2021), as it serves as a critical baseline for comparison.
Since the primary focus is on assessing the interpretability
of the proposed method, we use a simple model for h(·).
This ensures that the exact solutions to the optimization
problem can be computed and aligned with our intuitive
understanding of the task.

We consider a model h(·) designed to classify individuals
as high- or low-risk for loan approval. The input vector X
is assumed to follow the given causal structure:

X1 := U1,

X2 := U2,

X3 := f3(X1, X2) + U3,

X4 := f4(X3) + U4,

(24)

where the system’s output is given by Ŷ =
h(X1, X2, X3, X4). Figure 1 illustrates the causal
graph associated with the problem.

For this simulation, the causal graph is assumed to be known,
while the functions f3(·), f4(·), and h(·) are estimated using
real-world data from the German Credit Dataset (Hofmann,
1994). We assume f3(·) and f4(·) are linear functions and
h(·) is logistic regression. Following (Peters et al., 2017),
the coefficients of the causal model can be derived using
linear regression when the causal functions are linear.

The feature X1 (gender) is one-hot encoded during logistic
regression for h(·) and is kept fixed when generating coun-

7
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Table 1. Counterfactual solutions from different methods for an individual originally classified as high-risk
(
x = (female, 24, $4308, 48)

)
.

Each method modifies the features to flip the prediction to low-risk.

Method Gender Age Loan amount Duration

Original (High-risk) female 24 $4308 48

BRACE (Our Method, λ = 1) female 24 $4087 33.0
BRACE (Our Method, λ = 1.2) female 24 $3736 33.3
Counterfactual Explanations (Wachter et al., 2017) female 24 $4308 32.8
Causal Algorithmic Recourse (Karimi et al., 2021) female 24 $4308 32.8
Deep Backtracking Explanations (Kladny et al., 2024) female 27.2 $2727 35.7

terfactuals. Since X1 is categorical, modifying it is avoided,
as changing gender does not provide actionable insights.
Additionally, all features are normalized by their standard
deviations to improve performance.

8.2. Optimization Problem and Results

We consider an individual with features x =
(female, 24, $4308, 48) classified as high-risk by the
model h(·). Using the causal model and the learned func-
tions f3(·) and f4(·), we derive the latent representation u.
The following optimization problem is then formulated:

argmin
xCF,uCF

4∑
i=2

∣∣xi − xCF
i

∣∣
σi

+ λ

√√√√ 4∑
i=2

(
ui − uCF

i

)2
σ2
i

s.t. h(xCF) = low-risk,

xCF
2 = uCF

2 ,

xCF
3 = f3(x

CF
1 , xCF

2 ) + uCF
3 ,

xCF
4 = f4(x

CF
3 ) + uCF

4 .

(25)

We solve the optimization problem in (25) with λ = 1 and
λ = 1.2. Table 1 reports xCF from our method and other
prominent approaches for comparison.

As shown in Table 1, both Counterfactual Explanations and
Causal Algorithmic Recourse focus solely on reducing the
repayment duration, which is not actionable for the user and
fails to provide meaningful guidance for future improve-
ments. In contrast, the Deep Backtracking Explanations
alters all features, leading to a significant departure from
the original observation and reducing local interpretability.
Our approach finds a balance by adjusting both the loan
amount and repayment duration while maintaining sparsity
and interpretability, offering a more intuitive and actionable
explanation for the user.

When the user’s initial features are given by x =
(female, 24, $4308, 48), this suggests that a 48-month loan
repayment is appropriate for the user. Therefore, if we ad-
just this feature vector solely by reducing the repayment

duration, the repayment becomes significantly more chal-
lenging for the user, thereby making the explanation less
actionable.

To put it quantitatively, repaying $4308 over 48 months
corresponds to a monthly payment of $89.75. Any expla-
nation that deviates considerably from this monthly rate is
less actionable. Counterfactual Explanations and Causal
Algorithmic Recourse yield a monthly repayment of about
$131.3 (i.e., $4308 divided by 32.8 months). In contrast,
our solution results in a monthly repayment of $123.8 when
λ = 1 (i.e., $4087 divided by 33 months) and $112.2 when
λ = 1.2 (i.e., $3736 divided by 33.3 months). Thus, while
Counterfactual Explanations and Causal Algorithmic Re-
course increase the monthly repayment by 46.3%, our ap-
proach leads to increases of 37.8% and 25.0% for λ = 1
and λ = 1.2, respectively, making our explanations more
actionable for the user.

Table 2 provides the counterfactual outcomes for another
example with initial features x = (male, 27, $14027, 60),
where similar trends across methods are observed.

8.3. Sensitivity Analysis

Estimating causal functions in the input graph often involves
approximations, introducing potential noise. To evaluate
the robustness of our method, we add zero-mean Gaussian
noise with a standard deviation of 5 to the coefficients of
f3(·) and solve the optimization problem (25) with λ = 1.2
for an individual with features x = (female, 24, $4308, 48).
The resulting counterfactuals are:

xCF = (female, 24, $3839, 33.2),

xCF = (female, 24, $3572, 33.5),

xCF = (female, 24, $3618, 33.4).

(26)

Despite significant noise, the results remain stable, with age
unchanged and explanations staying sparse. This highlights
the robustness of our method, showing that even approx-
imate causal functions produce reliable and interpretable
counterfactuals.
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Table 2. Counterfactual solutions from different methods for an individual originally classified as high-risk.

Method Gender Age Loan amount Duration

Original (High-risk) male 27 $14027 60

BRACE (Our Method, λ = 1) male 27 $13686 36.9
BRACE (Our Method, λ = 1.2) male 27 $13149 37.4
Counterfactual Explanations (Wachter et al., 2017) male 27 $14027 36.6
Causal Algorithmic Recourse (Karimi et al., 2021) male 27 $14027 36.6
Deep Backtracking Explanations (Kladny et al., 2024) male 31.9 $11599 41.1

9. Conclusion
In this work, we presented a new framework BRACE for
counterfactual explanations based on backtracking coun-
terfactuals. Our approach overcomes the limitations of
interventional counterfactuals by introducing an optimiza-
tion problem that generates actionable and causally con-
sistent explanations. By solving a single unified objec-
tive parameterized by λ, BRACE recovers four established
paradigms—classical Counterfactual Explanations (λ = 0),
Deep Backtracking Explanations (λ → ∞), Backtracking
Counterfactual Explanations via a specific backtracking
conditional distribution, and Causal Algorithmic Recourse
under a convexity assumption. Additionally, we demon-
strated that our method is both easier to understand and
more computationally efficient compared to causal algorith-
mic recourse. Through simulation experiments, we verified
that the proposed method produces explanations that are
more intuitive for users and more practical for real-world
applications.

10. Future Work
This work opens several directions for further research:

Relaxing Assumptions for Connection with Causal Algo-
rithmic Recourse: Our approach depends on convexity as-
sumptions to establish a connection with causal algorithmic
recourse. Future work could investigate alternative condi-
tions that do not require these assumptions, allowing the
theory to be applied to non-linear and non-convex models
frequently found in real-world applications.

Testing on Complex Models: This study focused on sim-
pler models for h(.) to ensure intuitive understanding of the
task. A valuable next step is to test our method on more
complex models, such as deep neural networks, and com-
pare its performance with existing state-of-the-art methods.
This would help demonstrate the method’s effectiveness in
handling challenging real-world scenarios.

Improving Backtracking Counterfactual Definitions: The
current definition of backtracking counterfactuals does not

ensure that the noise variables UCF in the counterfactual
world remain mutually independent. In SCMs, this indepen-
dence is important for maintaining the causal interpretation
of the noise variables. Extending the definition to enforce
this independence would enhance both the theoretical con-
sistency and practical usefulness of backtracking counter-
factuals, making them more aligned with core principles of
causal reasoning.
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A. Formal Definition of Interventional and Backtracking Counterfactuals
To formally understand the differences and computation processes underlying interventional and backtracking counterfactuals,
we outline their respective definitions and procedural steps below.

A.1. Interventional Counterfactuals

1. Abduction: Update the distribution of the noise variables U in the causal model from PU to the posterior distribution
PU|X=x, using the observed factual data x.

2. Action: Perform a hard intervention do(Xi := xCF
i ) for i ∈ A, modifying the structural equations of the causal model.

Denote the modified structural equations as SCF, while retaining the original equations fCF
i = fi for i /∈ A.

3. Prediction: Using the updated causal model CCF = (SCF, PU|X=x), compute the distribution over the desired
counterfactual outcomes YCF.

A.2. Backtracking Counterfactuals

1. Cross-World Abduction: Update the joint distribution PB(U
CF,U) = P(U)PB(U

CF | U) using the variables
(xCF

A ,x) to obtain the posterior distribution PB(U
CF,U | xCF

A ,x):

PB(u
CF,u | xCF

A ,x) =
PB(u

CF,u) 1{FA(u
CF) = xCF

A } 1{F(u) = x}
PB(xCF

A ,x)
. (27)

Where

PB(x
CF
A ,x) =

∫
PB(u

CF,u) 1{FA(u
CF) = xCF

A } 1{F(u) = x} du duCF. (28)

Calculating PB(x
CF
A ,x) becomes computationally challenging for complex PB(U

CF,U) distributions, as we must
integrate over all values of this distribution.

2. Marginalization: Marginalize over U to compute the posterior distribution PB(U
CF | xCF

A ,x):

PB(u
CF | xCF

A ,x) =

∫
PB(u

CF,u | xCF
A ,x) du. (29)

3. Prediction: Using the updated causal graph with noise distribution PB(U
CF | xCF

A ,x), compute the probability of the
desired counterfactual event:

PB(y
CF | xCF

A ,x) =

∫
PB(u

CF | xCF
A ,x) 1{F(uCF) = yCF} duCF. (30)

B. Relation of Our Solution to Backtracking Counterfactual Explanations
We aim to demonstrate that our solution (8) can be connected to the backtracking counterfactual explanations framework
presented in (Von Kügelgen et al., 2023), which is formulated as the optimization problem (6), by considering a specific
choice of PB(U

CF | U). This connection is established by following the three steps of backtracking counterfactual
computation:

1. Cross-World Abduction: Compute the posterior distribution of the latent variables in the causal graph. Given that the
function F(.) is invertible, we have:

PB

(
uCF,u | yCF,x

)
= PB

(
uCF | u, yCF,x

)
PB

(
u | yCF,x

)
(31)

= PB

(
uCF | u, yCF

)
PB(u | x) (32)

= PB

(
uCF | u, yCF

)
1
{
F−1 (x) = u

}
. (33)
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2. Marginalization: Compute the marginal posterior distribution over uCF. Since the entire probability mass is
concentrated at the point u = F−1 (x), we have:

PB

(
uCF | yCF,x

)
= PB

(
uCF,u = F−1 (x) | yCF,x

)
(34)

= PB

(
uCF | F−1 (x) , yCF

)
. (35)

3. Prediction: Compute the distribution XCF | yCF,x. Since F(.) is deterministic, we have:

uCF ∼ UCF | F−1 (x) , yCF, xCF = F(uCF). (36)

Now, consider a specific choice for the backtracking conditional distribution:

PB(u
CF | u) ∝ exp

{
−dX

(
F(u),F(uCF)

)
− λ dU

(
u,uCF

)}
. (37)

Substituting this into the posterior distribution of UCF | F−1(x), yCF, we obtain:

UCF | F−1(x), yCF ∝

{
exp

{
−dX

(
x,F(uCF)

)
− λ dU

(
F−1(x),uCF

)}
, if h(xCF) = yCF,

0, otherwise.
(38)

Taking the logarithm on both sides, we have:

log PB

(
uCF | F−1(x), yCF

)
∝

{
−dX

(
x,F(uCF)

)
− λ dU

(
F−1(x),uCF

)
, if h(xCF) = yCF,

−∞, otherwise.
(39)

Thus, we have:

argmax
uCF

log PB

(
uCF | F−1(x), yCF

)
≡ argmin

uCF
dX

(
x,F(uCF)

)
+ λ dU

(
F−1(x),uCF

)
,

s.t. h(xCF) = yCF. (40)

As shown in (40), the optimization problem (10) aligns with backtracking counterfactual explanations (6). Therefore, our
solution provides a valid interpretation based on backtracking counterfactuals.

13


