Under review as a conference paper at ICLR 2025

FORMATTING INSTRUCTIONS FOR ICLR 2025
CONFERENCE SUBMISSIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformer-based LLMs achieve great success on a variety of NLP tasks, in-
cluding machine translation, text summarization, and text generation. However, it
requires huge amount of computation and data to train such a powerful LLM. Re-
searchers have proposed transformer-based conditional computation algorithms
that significantly reduce redundant computations on certain tokens. By skipping
dense attention and feed forward computations, these approaches yield sparse
LLMs. However, these sparse LLMs are trained from scratch, requiring sub-
stantial computation and data. Therefore in this paper, we proposed a training
paradigm that can effectively transform a dense transformer-based LLM to its
sparse variant with very limited computation resources and merely millions of
tokens. We conducted thorough investigations into the key factors that may influ-
ence the dense-to-sparse transformation through numerous empirical experiments.
In addition, we conducted a case study on the how the tokens skip layers and ana-
lyzed their Part-of-Speech tags, gaining valuable insights.

1 INTRODUCTION

Transformer-based large language models (LLMs) have been widely used in various application do-
mains due to their great performances. In the near future, LLMs are expected to be deployed on
mobile devices, enhancing the lives of more people. However, a vanilla transformer-based LLM
requires huge amount of data during the training process and its inference is also computation-
intensive and expensive. To this end, researchers investigated a number of transformer variants Ki-
taev et al.|(2020); Zhu et al.|(2021); [Tay et al.|(2022); [Pope et al.| (2023)); |Cui et al.[(2024)) to reduce
the training computation and accelerate the inference.

One of the widely used method is conditional computation, which is presented by Bengio (Bengio,
2013). The primary goal of this method is to reduce unnecessary computation. In fact, the hypothesis
behind this method is that not all tokens contribute equally to the generation process. This aligns
with how humans use language. In many languages, people first consider core words and then add
auxiliary words while speaking. The main challenge lies in identifying which token computations
are necessary and which are not. To this end, many algorithms are developed to determine when
and how much computation should be used in the training and inference (Bengio et al.,[2015; |Jernite
et al., 2016)). Instead of processing a token from the input layer all the way to the output layer, an
advanced algorithm is used to determine if a token can exit the computation early in the middle
layers (Elbayad et al., 2020} [Elhoushi et al.,2024)). Recently, another algorithm MoD (Raposo et al.,
2024) is provided to dynamically allocate the computation across different tokens. In particular, at
a certain layer, a router is employed to decide whether a token can bypass the dense attention and
feed forward computation.

The MoD-driven model skipped 87.5% of tokens in its optimal configuration while maintaining
nearly the same loss as its dense counterpart. However, The MoD models are trained from scratch,
which still requires huge amount of computation. Is there a method to obtain a sparse variant of a
dense transformer-based LLM without requiring such heavy computation? In this paper, we answer
this question by studying a different training paradigm, i.e., transforming a dense LLM into a sparse
LLM using very limited data and computational resources, rather than training a sparse LLM from
scratch. This paradigm relies on the existing LLM weights, significantly reducing the need for
training data and computational resources.

Under review as a conference paper at ICLR 2025

Specifically, we leverage LoRA (Hu et al., |2021) to perform continual pre-training on a small pro-
portion of parameters, transforming an existing dense transformer-based LLM to a relatively sparse
LLM with only a few hours of training on merely millions of tokens. Unlike MoD that pre-defines a
ratio of how much tokens to skip the layers per sentence, our paradigm skip the layers adaptively so
that a pre-defined KL divergence (Hershey & Olsen, 2007) to the base model can be maintained. We
also apply binary gates on the hidden states instead of weights, as the latter may cause distortion.
The binary gates are specially designed to allow gradients to pass through.

The empirical results show that we can skip the layers of an LLM at a relative low performance cost.
In addition, we performed a thorough analysis for the proposed training paradigm, examining the
factors that may affect the layer skip rate and model performance. Furthermore, we explored how
tokens skip the layers in an example and gained insights from their Part-of-Speech (POS) tags.

To sum up, the main contributions of this paper are as follows:

* We presented a layer skip algorithm that dynamically allocate computation on different
tokens.

* We proposed a training paradigm transforming a dense transformer-based LLM to its sparse
variant with limited computation on merely millions of tokens.

* We performed a thorough analysis on the proposed paradigm and investigate the factors
that influence the dense-to-sparse transformation.

2 RELATED WORK

Transformer-based architecture (Vaswani et al.l [2017) has been the cornerstone of LLMs. Accord-
ing to|Guo| (2024), LLM performance scales linearly with the log scale of compute. Hence, training
a sophisticated LLM requires a huge amount of FLOPs. This has inspired researchers to explore
more efficient transformer architectures (Tay et al., 2022; [So et al., 2021). In 2013, Bengio| (2013))
introduced a concept conditional computation which refers to a learned and optimized mechanism
that drops out unnecessary compute on some parameters. The concept is explored in depth after-
wards (Bengio et al.| 2015} (Graves, [2016} Jernite et al.,[2016)).

In recent years, a number of conditional computation methods have been developed for the trans-
former architecture, that unevenly allocate computation across tokens, thereby saving computation
on certain tokens. These methods can be roughly categorized into three groups: 1) “early exit” (EI-
bayad et al.,|2020; Liu et al.,|2021}; |Schuster et al.| 2022; [Elhoushi et al., [2024), which dynamically
ends the computation for tokens and skips the remaining transformer layers, 2) “layer skip” (Raposo
et al.| [2024), which allows a token to skip continuous or discontinuous middle layers, thereby accel-
erating forward pass, and 3) “layer branching” (Ainslie et al.,2023)), which enables tokens to switch
between a light and a heavy branch. [Lei et al.| (2023) proposed a conditional layer that includes two
primary components: a parallel adaptor, as detailed by |[He et al.| (2021), which processes all input
tokens, and a pre-trained transformer layer that is specifically designed to process a selected subset
of k tokens. The conditional layer enables the conversion of a dense pre-trained model into a sparse
model by training on a few parameters.

However, it might require training, either in “pre-training from scratch” mode or “continual pre-
training” mode, on billions of tokens to enable the “early exit” mechanism while maintaining the
utility of LLMs. The “layer skip” mechanism (Raposo et al., [2024) is investigated solely in the
“pre-training from scratch”mode, which is both time-consuming and expensive. “layer branch-
ing” requires a well-designed light-weight branch. These inspire us to investigate a mechanism for
achieving “layer skip” LLMSs with continual pre-training on merely million of tokens via sequential
adaptor LoRA (Hu et al., [2021]).

3 METHODOLOGY

In this section, we describe the model architecture of our approach for skipping layers with routers.
We will then demonstrate how to convert a pre-trained transformer to a relatively sparse one with
our approach.

Under review as a conference paper at ICLR 2025

wf = Sigmoid(hf_,WF)

4’% L0 — gf=1w=os T
x

0.8 q

Feed Forward Feed Forward
1 1

LayerNorm 067 LayerNorm

i A
0.4 f\<
x

0.2 1 '@

Attention | Attention
| 1
LayerNorm Router 0.0y ——— 9 Router LayerNorm
4 4+ 8 6 -4 -2 0 2 4 6 8 4+ 4
| i W |

Figure 1: The architecture of one layer from a pre-norm transformer with the router. The nor-
malization occurs before the residual addition. Gates generated by the router are applied to both
the attention sub-block and the feed forward sub-block. The left shows the case when the router
generate a value of 0. The layer is skipped and the output is the same as the input. The right shows
the case when the router generate a value of 1, which functions as a normal transformer layer. The
middle shows that the trend of change of g; is similar to that of w;. As a result, g; can borrow the
gradients from w;.

3.1 MODEL ARCHITECTURE

In transformer, a sequence of tokens are first converted to the corresponding word embeddings
ho € RE*4 by the embedding layer, where C' is the number of tokens in the context and d is the
hidden dimension. These embeddings are then passed through a stack of N layers {L;, Lo, ..., Lx' },
where each layer L; produces its output h; with the output /;_; from the previous layer as input:

hi = Li(hi-1) (1
Finally, the last layer hidden states hy are passed to a task-specific head for down-stream tasks.

Inside each layer L;, there is an attention layer followed by a feed forward layer, each accompanied
with a normalization layer and a residual connection. Since our work focus on pre-norm transform-
ers, where the normalization occurs before the residual addition, we can use A; to represent the
sub-block of the attention layer with its preceding normalization and F; to represent the sub-block
of the feed forward layer with its preceding normalization:

Li(hi—1) = hi—=1 + Ai(hi—1) + Fi(hi—1 + Ai(hi—1)) 2

To make the transformer relatively sparse, a layer specific router R; is introduced to decide whether
tokens can skip the computation of layer L;. Binary gates g; € {0, 1}“ are generated for each token
in the sequence based on their hidden states h;_; from the previous layer:

gi = Ri(hi—1) (3)
With binary gates, the hidden states will not be distorted by the weights.

Unlike in MoD, where the weight generated by the router is applied to the whole layer block output,
gates here are applied to each of the individual attention sub-block and the feed forward sub-block
as shown in Figure [l| Suppose a value of 0 for g¥ means the k-th token will be skipped for the
computation in layer L;. The gated output of the attention sub-block is:

gi - (hici+ Ai(hi1)) + (1 —gi) - hi—a 4)
which can be simplified to:
hi—1i+gi- Ai(hi—1) &)
Similarly, the gated output of the feed forward sub-block, which is also the output of the layer:
Li(hi—1) = hi—1 + gi - Ai(hi—1) + gi - Fi(hi—1 + gi - Ai(hi—1)) (6)

Under review as a conference paper at ICLR 2025

3.2 ROUTER DESIGN

As mentioned in the previous subsection, the gates generated by the router are binary. We want all

gate values to be 1 after initialization, so that no tokens are skipped in any layers, and the model

behave exactly the same as the pre-trained transformer. This allows for a functioning initialization

for later optimization.

To meet the above requirements, we start with a single linear layer followed by Sigmoid activation:
w; = Sigmoid(h;_1 W) (7

By initializing W € R¥*! to all 0s, the output weight w; is a constant vector regardless of h;_1.

To obtain the binary gate values, each element of w; is compared against 0.5:
~ 1 ifwF>05

k— i= 8
Ji {0 if wk < 0.5 ®

and all gate values are initialized to 1.
However, the above implementation cannot propagate gradients back due to the comparison opera-
tion. Since the change of g; follows the same trend as w;, the gradient of w; can be borrowed:

gi = gi +w; — sg(w;) 9
where sg refers to stop gradient. The value of g; remains binary as the value of w; and sg(w;) cancel
out. As g; and sg(w;) have no gradients, g; has the same gradients as w;.

3.3 Loss FUNCTIONS

In order for more tokens to skip a certain layer L;, g; should have more 0 values. We can use the L1
Norm of g; as the loss function for this objective:

1 N
Lakip = 3 D llgills (10)
i=1

However, optimization with £y, alone will cause the model outputs to deviate from the pre-trained
transformer outputs. Thus we also introduce the KL divergence loss L, to control this deviation.

We found that L, tries to reduce the chance for tokens to skip layers, which is opposed to Lip.

To balance between the two opposing losses, a KL divergence threshold ¢ is introduced as a hyper-

parameter. When L 1, reaches or above ¢, L,y is disabled to prevent from further deviation. It is
only enabled when L, falls below the threshold:

o Lrr+ Lokip if Lxp <t

Lrr+59(Lskip) if Lxp >1

The sg(Lskip) term helps to keep the loss values consistent when alternating between the two cases.

Y

Unlike in MoD, where the skip ratio is predefined, here the skip ratio is a combined effect of the
threshold and the input content. The model is trained to skip as many layers as possible as long as
it does not deviate above the threshold for the input content. For a certain threshold, the model may
have different skip ratio depending on the content. We will see this in Section

4 EXPERIMENT

In this section, we conduct empirical studies to examine whether the proposed “layer skip” mecha-
nism can transform a dense transformer-based LLM to a more efficient sparse variant with minimal
expense. Besides, we also investigate different configurations for such transformation.

4.1 DATASET

SlimPajama (Soboleva et al.,|2023) is a cleaned and deduplicated version of RedPajama (Computer,
2023)). It contains 627B tokens across 59,166 files. For the train split, we create a subset of SlimPa-
jama by selecting 320 files out of these files. We then sample rows from this subset depending on
the experiment setup. For the validation split, we sample a fix of 512 rows from a subset of 40 files
for all experiment setups.

Under review as a conference paper at ICLR 2025

4.2 SETUP

We selected the instruction-tuned version of Gemma 2B (Team et al., |2024) from Google as the
subject for continual pre-training in the experiment. In particular, we train for 1 epoch and set the
batch size to 4, learning rate to le-5 and threshold to le-4. The maximum sequence length is set to
288, 576 and 1,152 in different setups.

We apply LoRA on all linear layers of the transformer, including the router. The rank is set to 64,
and the trainable parameters take around 3% of the total parameters. The frozen base transformer
is quantized to 4-bit as in QLoRA (Dettmers et al., 2023). The pre-training takes about 6 hours for
every 1M tokens on one A100 GPU.

4.3 EVALUATION METRIC

For evaluation, MT-Bench (Zheng et al., 2023) is used. It consists of 80 high quality questions
spanning 8 common categories: writing, roleplay, extraction, reasoning, math, coding, STEM and
humanities. We use gpt-4-0125-preview as the judge and take the average score of all § categories
as the performance.

Since we only use KL divergence to guide the pre-training with limited computational data re-
sources, the performance loss is unavoidable. As a result, we propose an evaluation metric termed
marginal cost (MC), that measures the cost for per unit gain:

_ APerf
~ ASkip

MC 12)

where A Per f is the percentage of performance loss relative to the pre-trained transformer with no
skip, and ASkip is the percentage of skipped layers out of the total layers.

4.4 MAIN RESULTS

We first trained the gemma-1.1-2b-it using sampled datasets with varying number of rows and max-
imum context length to explore whether it is possible to transform a dense transformer-based LLM
to a more sparse and efficient variant. The results are shown in figure 2] where the x-axis represents
the training data size and the y-axis indicates the MC score.

We observed that it is feasible to perform such transformation with limited data and computation as
MC scores can be narrowed down to a low interval given optimal hyper-parameter configurations.
For example, the MC scores of the second green point and third yellow point are around 0.2, which
means we only lose 20% of a performance unit to gain a full unit of skip. Conversely, poor hyper-
parameter configurations can result in low MC scores, making it cost-ineffective to perform such
transformation.

We also noted that the 90K training data yielded the lowest MC scores in different context settings.
However, merely increasing the size of the training data does not always result in good transfor-
mations. The optimal training data size varies across different lines. This does not align well with
the empirical scaling law (Kaplan et al., 2020). One possible reason for this is that our continual
pre-training aims to approximate the distribution of the base model gemma-1.1-2b-it, whereas the
pre-training focuses on learning the distribution in the pre-training data. The distribution of the
SlimPajama subset may differ from that of learned distribution of the base model. In this case, it is
difficult to fit more data given the Ly, restriction.

The results revealed that context length might slightly influence the MC scores. In particular, the
average MC scores of the three lines context-288, context-576, and context-1152 are 0.768, 0.804,
and 0.794, respectively. The short context-288 achieved the best average MC scores while the middle
context-576 achieve the best optimal MC score. The long context-1152 did not further decrease the
MC score. The likely reason is that the attention calculation for long samples is more affected by
token skipping than for short samples.

Under review as a conference paper at ICLR 2025

1.6
Context 288

®— Context 576
1.44 —¥— Context 1152

024 ¢

T T T T

& & & & 3
ST O S
PP P @

No. Rows from Dataset

Figure 2: Marginal cost of sampled dataset with 90K, 180K, 360K, 720K and 1.8M rows, and max
context length of 288, 576 and 1152.

4.5 KL DIVERGENCE AND PERFORMANCE

We use KL divergence to guide the model during continual pre-training. Since a small Ly, in-
dicates that the model is close to the base model, we wonder whether it also performs well on
MT-Bench. Figure 3|shows the correlation between Ly, and APer f. Although there are outliers,
we can see a positive correlation. We also notice that A Per f becomes more sensitive to Lk, as
the latter increases. This allows us to estimate the performance of the model without carrying out
the benchmark.

181 A Context 288 VA
® Context 576 ®
161 v Context 1152

©
L
o
|
[J

24 Ao

0.14 0.15 0.16 0.17 0.18 0.19 0.20
Lre

Figure 3: APerf of experiments with different final Lr . The experiments vary by max context
size and dataset size, but they share the same metric of KL divergence to compare with the base
model.

4.6 EFFECT OF THRESHOLD

The threshold balance between L, and Lgy;p, and we can control ASkip indirectly with it. Fig-
ure] shows that the change of ASkip with respect to the threshold is close to linear, allowing us to
control ASkip effectively with the threshold. MC has the optimal value when the threshold is 1e-4.
When the threshold is too small, ASkip is too small to reduce MC. When the threshold is too large,
the increase in L, cause the model performance to downgrade significantly.

Under review as a conference paper at ICLR 2025

| &= askip L 15
F1.4
F1.3
F1.2
112
1.0
0.9

0.8

91 17 ¥ MC |

T T T T
le-5 le-4 2e-4 5e-4
Threshold

Figure 4: ASkip and MC given the threshold. For all thresholds, a sampled dataset with 360K
rows and a max context length of 576 is used.

4.7 INFERENCE TIME

We do inference on MT-Bench with different ASkip. Figure[5|shows that less time is used compared
to the base model as A Skip increases. The amount of reduced inference time is less than A Skip due
to overhead. One of the main overhead is the calculation of KV-cache even if the layer is skipped.

Relative Time %

o (] o O
o ~ N @
o =) o o

©
o
<)

/

r
&
3

ASkip

V.’\{o<e

A
v
K3

2

Figure 5: Relative inference time (%) of different ASkip compared to the base model on MT-
Bench. Less time is used as ASkip increases.

4.8 ABLATION

We conducted several ablation experiments to investigate the effectiveness of the components in our
method.

No Gating on Attention Sub-block In our method, g; is applied on both the attention sub-block
and the feed forward sub-block in layer L;. In MoD, the weight generated by the router is only
applied on the output of the layer. To see whether the gating on the attention sub-block is necessary,
we modified the method as follow:

Li(hi—1) = hi—1 4+ gi - Ai(hi—1) + gi - Fi(hi—1 + Ai(hi—1)) (13)

The gates are still binary with borrowed gradients as in our main method. Table[I|shows a 0.71 in-
crease of MC for this ablation, which implies that the gating on the attention sub-block is necessary.
A possible reason could be the lack of gradients through the layer for weight optimization.

Under review as a conference paper at ICLR 2025

Method MC
Baseline 0.17
Attention not Gated 0.88
K-to-k Attention 1.65
Attention Frozen 0.85
Feed Forward Frozen | 0.90

Table 1: MC of different ablations. A sampled dataset with 180K rows and a max context length of
576 is used for all ablations.

Weights v.s. Binary Gates Although weights are widely used in methods like MoD, binary gates
are used in our method as weights might scale the hidden states and cause distortion. To verify this
claim, we further modify the ablation above as follow:

Li(hi—1) = him1 +w; - Ai(hizq) +w; - Fy(hi—1 + Ai(hi—1)) (14)
and

w (2

0 ifwF<05 (15)

~ {wk ifwzl-€ >0.5
7

Experiments showed that the loss even failed to converge during continual pre-training. MoD and
most layer skip methods are pre-trained from scratch, and they can learn to adapt to the distorted
hidden states during the process. However, our method operates on pre-trained LL.Ms, and it is hard
to tune the pre-trained weights to adapt to the distorted hidden states which they have never seen
before.

K-to-all v.s. K-to-k Attention In our method, if a token skips the computation for some certain
layers, its hidden state is still used by other tokens to compute attention of that layer. This is termed
k-to-all attention in CODA (Lei1 et al., 2023)). On the other hand, MoD does not include the hidden
state of a skipped token for attention computation, which is termed k-fo-k attention. CODA con-
cludes that k-fo-all attention has better performance over k-fo-k attention though it is slower. We
experimented with k-fo-k attention and an MC increase of 1.48 leads to the same conclusion, as the
hidden state of the token skipping a layer provides necessary information for the attention of other
tokens. The high MC increase suggests that k-fo-all attention worth the additional computation cost.

Partial Tune-able Parameters The pre-trained weights from the LLM are tuned to adapt to the
router during optimization. To see which parts of the parameters play a more essential role in this
adaption, we froze the attention sub-block and the feed forward sub-block respectively. The results
in Table[T]show a similar increase for both cases. However, we think the attention sub-block is more
essential as it has much fewer trainable parameters than the feed forward sub-block. And it plays an
active role by adapting to hidden states from non-adjacent layers.

4.9 MECHANISM OF THE ROUTER

In pre-norm transformer, the final layer hidden state h% of a token is the sum of the input word
embedding e* and a sequence of vectors v} added by each layer:

N
Wi =eb 4+ of (16)
i=1

where v represents the following from Equation
vf = Ai(hiy) + Fi(hi—y + Ai(hi_y)) (17)

In our method with gates applied, suppose S represent the set of skipped layer indices, the final layer
hidden states will be:

i =hE =) ok (18)
JjES

Under review as a conference paper at ICLR 2025

Layer

=== Inv
mmm Avg Skipped
Avg All

el el]
OHNWRARUONOOORNWRUON
R L

1

0 2 4 6 8 10 12
Entropy

Figure 6: Average per layer entropy of all the tokens generated from a MT-Bench question. Average
in green only includes the skipped ones, while average in yellow includes both the skipped and non-
skipped ones.

In auto-regressive transformers, the output distribution is obtained from the final layer hidden state
with the help of the embedding matrix £ € RV *4:

Softmax(kBT — = ZUkET (19)
jES

where V is the vocabulary size, and Z is induced by normalization. From the definition of Soft-
max funcion, if each element in), vf ET is the same, i.e., Softmax (3 ;. vi ET) is a uniform
distribution, skipping layers will not affect the output distribution. We can use entropy to mea-

sure whether Softmaz(}_ . jes fET) is closed to uniform. Further more, we wonder whether

Softmaz (v ET) is close to uniform for each j € S as well.

Figure [6]shows the average per layer entropy of all the generated tokens from a MT-Bench question.
The average entropy (orange) corresponding to the skipped ones in each layer is surprisingly close to
the maximum [n(V"), which implies a uniform distribution from each layer. By contrast, the average
entropy (green) of all is close to maximum only in middle layers. This comparison shows that the
skipped layers will not affect the output distribution.

We assume after the pre-trained weights are tuned, the router R; is able to learn to predict whether
Softmaz(vEET) is a uniform distribution from its input 2% _,

4.10 CASE STUDY

We inspect which layers are skipped for the tokens generated from a MT-Bench question and have
some interesting findings. The left of Figure [7] shows a small sample from the generation. We
find that the skips are most likely to occur on tokens that do not contain much information, e.g.,
punctuation marks, space and articles. We also find that if a token start skipping a certain layer, it
is likely to skip for more than one layer, and in many cases it will skip adjacent layers. Based on
the analysis in Section 4.9} the hidden states might contain some information to indicate its non-
significance that is recognizable by several routers, causing the token to skip more than one layer.

The right of Figure[7] shows how tokens of each POS tag skip each layer. Numbers are more likely
to skip layers than any other POS tags, which indicates for Gemma 2B we are studying, they will
not have much influence on the generation. This explains why Gemma 2B is performing badly on
math as it is not sensitive to numbers. In contrast, conjunctions are most unlikely to skip layers. The
reason is that they affect the trend of the generation, a small error could lead to significant deviation.

Figure 8] shows the per layer percentage of tokens skipping a layer out of all the tokens. We can see
the middle layers have the highest percentage, while none of the tokens skip layer 0, 1, 2, 16 and
17. A possible reason could be that the first and last few layers are operating on hidden states that

Under review as a conference paper at ICLR 2025

are more close to the word embedding space, and skipping them can perturb the output distribution
significantly. As for middle layers, since they operate on high-level features, they need not to be
involved in the generation of every token.

Layer
-

©5

| |
| N |
H .

| |

|

]
H B

Layer

s

|

.

Figure 7: Left: an example of which layers are skipped for each token generated from a MT-Bench
question. The dark green squares mark the skipped layer. Right: per layer likelihood of the layer to
be skipped for different POS tags. A darker color indicates a larger likelihood.

Layer

OHRNWAUON®O

10 15 20 25 30 35
% of Token Skipping the Layer

o
[&]

Figure 8: Per layer percentage of tokens skipping a layer out of all the tokens.

5 CONCLUSION

In this paper, we propose a training paradigm that effectively transforms a dense transformer-based
large language model (LLM) into a relatively sparse LLM. This approach avoids the massive com-
putation and data requirements needed to train a sparse LLM from scratch. Additionally, we utilize
the parameter-efficient training method LoRA to significantly reduce trainable parameters and thus
accelerate the continual pre-training process. The empirical experiments demonstrate the feasibility
and effectiveness of the proposed transformation paradigm. We also investigate different configu-
rations for dense-to-sparse transformation, benefiting the transformation on other LLMs. The case
study offers a visual analysis of tokens that are often skipped by routers. Moreover, POS tag analysis
of skipped tokens provides deeper insights into the types of tokens that are likely to be skipped.

REFERENCES

Joshua Ainslie, Tao Lei, Michiel de Jong, Santiago Ontanon, Siddhartha Brahma, Yury Zemlyan-
skiy, David C Uthus, Mandy Guo, James Lee-Thorp, Yi Tay, et al. Colt5: Faster long-range
transformers with conditional computation. In Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pp. 5085-5100, 2023.

10

Under review as a conference paper at ICLR 2025

Emmanuel Bengio, Pierre-Luc Bacon, Joelle Pineau, and Doina Precup. Conditional computation
in neural networks for faster models. arXiv e-prints, pp. arXiv—1511, 2015.

Yoshua Bengio. Deep learning of representations: Looking forward. In International conference on
statistical language and speech processing, pp. 1-37. Springer, 2013.

Together Computer. Redpajama: an open dataset for training large language models, 2023. URL
https://github.com/togethercomputer/RedPajama—Datal

Yutao Cui, Tianhui Song, Gangshan Wu, and Limin Wang. Mixformerv2: Efficient fully transformer
tracking. Advances in Neural Information Processing Systems, 36, 2024.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized 1lms, 2023.

Maha Elbayad, Jiatao Gu, Edouard Grave, and Michael Auli. Depth-adaptive transformer. In /CLR
2020-Eighth International Conference on Learning Representations, pp. 1-14, 2020.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen Lai,
Anas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, et al. Layer skip: Enabling early
exit inference and self-speculative decoding. arXiv e-prints, pp. arXiv—2404, 2024.

Alex Graves. Adaptive computation time for recurrent neural networks. arXiv e-prints, pp. arXiv—
1603, 2016.

Zhen Guo. More compute is what you need. arXiv preprint arXiv:2404.19484, 2024.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards a
unified view of parameter-efficient transfer learning. arXiv preprint arXiv:2110.04366, 2021.

John R Hershey and Peder A Olsen. Approximating the kullback leibler divergence between gaus-
sian mixture models. In 2007 IEEE International Conference on Acoustics, Speech and Signal
Processing-ICASSP’07, volume 4, pp. IV-317. IEEE, 2007.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Yacine Jernite, Edouard Grave, Armand Joulin, and Tomas Mikolov. Variable computation in recur-
rent neural networks. arXiv preprint arXiv:1611.06188, 2016.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models, 2020.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

Tao Lei, Junwen Bai, Siddhartha Brahma, Joshua Ainslie, Kenton Lee, Yanqi Zhou, Nan Du, Vin-
cent Y Zhao, Yuexin Wu, Bo Li, et al. Conditional adapters: Parameter-efficient transfer learning
with fast inference. In Thirty-seventh Conference on Neural Information Processing Systems,

2023.

Yijin Liu, Fandong Meng, Jie Zhou, Yufeng Chen, and Jinan Xu. Faster depth-adaptive transformers.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 1342413432,
2021.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Jonathan
Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling transformer inference.
Proceedings of Machine Learning and Systems, 5, 2023.

David Raposo, Sam Ritter, Blake Richards, Timothy Lillicrap, Peter Conway Humphreys, and
Adam Santoro. Mixture-of-depths: Dynamically allocating compute in transformer-based lan-
guage models. arXiv preprint arXiv:2404.02258, 2024.

11

https://github.com/togethercomputer/RedPajama-Data

Under review as a conference paper at ICLR 2025

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Tran, Yi Tay, and Donald
Metzler. Confident adaptive language modeling. Advances in Neural Information Processing
Systems, 35:17456-17472, 2022.

David So, Wojciech Marike, Hanxiao Liu, Zihang Dai, Noam Shazeer, and Quoc V Le. Searching
for efficient transformers for language modeling. Advances in neural information processing
systems, 34:6010-6022, 2021.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel Hestness, and Nolan Dey.
SlimPajama: A 627B token cleaned and deduplicated version of RedPajama, 2023.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey. ACM
Computing Surveys, 55(6):1-28, 2022.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
Pathak, Laurent Sifre, Morgane Riviere, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open
models based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena, 2023.

Chen Zhu, Wei Ping, Chaowei Xiao, Mohammad Shoeybi, Tom Goldstein, Anima Anandkumar,
and Bryan Catanzaro. Long-short transformer: Efficient transformers for language and vision.
Advances in neural information processing systems, 34:17723-17736, 2021.

12

	Introduction
	Related Work
	Methodology
	Model Architecture
	Router Design
	Loss Functions

	Experiment
	Dataset
	Setup
	Evaluation Metric
	Main Results
	KL Divergence and Performance
	Effect of Threshold
	Inference Time
	Ablation
	Mechanism of the Router
	Case Study

	Conclusion

