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Abstract

Recent methods in language model interpretability employ techniques such
as sparse autoencoders to decompose residual stream contributions into linear,
semantically-meaningful features. Our work demonstrates that an underlying as-
sumption of these methods—that residual stream contributions build additively
upon each other—is insufficient to fully explain model behavior. Specifically, we
identify the Transformer Layer Correction Mechanism (TLCM), wherein adja-
cent transformer layers systematically counteract each other’s contributions to the
residual stream. TLCM appears in 5 out of 7 major open-source model families
and activates across nearly all tokens in diverse texts. To understand TLCM, we
show that it emerges during pretraining, operates most strongly on punctuation and
numbers, and adaptively calibrates its correction strength based on the preceding
layer’s output. We further show that TLCM actively corrects a small subspace and
promotes other subspaces, different from standard model behavior. We advance the
“propose-and-reject” hypothesis: layers may propose multiple candidate features,
while subsequent layers selectively filter out inappropriate ones. Finally, we discuss
how our findings help explain three persistent challenges in feature-based inter-
pretability: why extracted features descriptions often suffer from low specificity;
why feature-based interventions for model steering fail at low magnitude; why
recent work finds cross-layer transcoders outperform SAEs. [1_-]

1 Introduction

Mechanistic interpretability aims to understand large language models (LLMs) by dissecting the
functions of their components. This research direction has critical implications for monitoring and
controlling language models [29] 142, 1277, [13]139], as well as designing architectural improvements
(51, 150].

A foundational assumption in many interpretability methods is that transformer layers progressively
build upon each other’s contributions to enrich representations in the residual stream. This perspective
has motivated numerous techniques that extract features from transformer layer outputs, including
linear probes [3l], the logit lens [37], sparse autoencoders (SAEs) [6], and cross-layer transcoders
(CLTs) [4) 12, 40]]. Similarly, analyses of factual recall often characterize successive layers as
gradually augmenting entity representations with additional recalled information [16} 33136, [21].

In this work, we introduce the Transformer Layer Correction Mechanism (TLCM), in which adjacent
transformer layers systematically reverse portions of each other’s contributions. Specifically, we find
that in 5 out of 7 open-weight LLM families (Llama 3, OLMo, Mistral, Gemma, and Qwen?2), layer
1 + 1 consistently produces contributions that partially oppose those of layer :. TLCM challenges
the conventional view that layer contributions primarily add information to the residual stream;
instead, layers actively edit the residual stream by selectively promoting and rejecting components
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from previous layers. This suggests that analyzing output features of each layer independently may
provide an incomplete or misleading understanding of a layer’s function, as these features may be
subsequently corrected.

To begin, we characterize TLCM through a series of observational experiments in Section[d] First, we
show that TLCM is not present at initialization but emerges gradually during pretraining, suggesting
that it is a persistent characteristic of LLM training dynamics. Second, we find that TLCM fires most
frequently on tokens with high contextual dependency, including numbers, dates, and punctuation. We
hypothesize that TLCM is important for handling tokens with high contextual dependency. Finally,
we show that TLCM is the combined effort of both attention and MLP.

In Section[5} we focus our experiments on TLCM’s underlying mechanisms. First, we use causal
interventions to show that TLCM is adaptive and directly dependent on the prior layer, calibrating
its correction strength based on the scale of the preceding layer’s output. Then, we demonstrate
that TLCM systematically corrects and reinforcing specific components of the previous layer by
showing an empirical relationship between the eigenvectors of the transformer layer’s Jacobian and
the corrected subspace. Finally, we synthesize our findings into the “propose-and-reject hypothesis”,
which states that models can perform enrichment though a process of proposing multiple potential
features and correcting the inappropriate ones.

Our findings are helpful for understanding three persistent challenges in feature-based interpretability:
(1) why extracted features descriptions often suffer from low specificity; (2) why model steering in-
terventions require high amplification to be effective; and (3) why cross-layer transcoders outperform
sparse autoencoders in recovering interpretable features.

We hope our work establishes a corpus of well-characterized phenomena that provides empirical
constraints for theories of language model interpretability, and that our findings inform stronger
alignment and model steering techniques.

2 Related Work

Feature-based interpretability. A common interpretability paradigm interprets the role of a layer in
a neural network as the features present in its output. The linear representation hypothesis posits that
neural networks represent concepts as linear features in their activation space [35, 38]]. Feature-based
interpretability extracts features using supervised linear probes [3]] as well as other more sophisticated
techniques that can be unsupervised and/or causal (e.g. nostalgebraist [37], Burns et al. [8], Geiger
et al. [[15]], Bricken et al. [|6]).

Correction mechanisms. Some recent works have found self-repair and correction exists in models,
in which if components in large language models are ablated, later components will change their
behavior to compensate [43]]. Self-repair mechanisms have been discovered in varied places: ablations
of attention layers with later compensation [25} 32], resilience to swapping transformer layers [25]],
among others. Other research has found mechanisms that are conjectured to help with self-repair,
like copy suppression in which an attention head will decrease the probability of predicting a token
that has already appeared in the context [31]. TLCM is more pervasive (occurring multiple times on
nearly all tokens) and occurs during normal model operation, not specifically during ablations.

Residual stream characterization. The Iterative Inference Hypothesis proposes that transformers
progressively refine their latent representations through successive layers [7]. Other work builds
methods that uncovers semantically-meaningful latents found in the residual stream [5]]. Another line
of work highlights the process of enrichment: transformer layers construct enriched representations
in the residual stream to perform next-token prediction. For example, function vectors encode
input-output functions and are placed in the residual stream to induce execution [48]]. Additionally,
models proactively consolidate entity-related information into the residual stream before it becomes
relevant for prediction [211 261 20} 16, (19, 144].

3 Background

Transformer notation. Large language models (LLMs) convert a token sequence into a probability
distribution over subsequent tokens. Input tokens are first embedded in the dp,-dimensional residual
space with positional embeddings, then passed through n transformer layers before being unembedded
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Figure 1: We plot clamp(M, —0.2, 0.2) for four models, zeroing diagonal entries. TLCM is visible on
the left two plots, characterized by off-diagonal blue stripes of negative cosine similarity, concentrated
in the first two-thirds of the model. In contrast, TLCM is not present on the right two plots.

into token logits.
xp = Embed(toks) x;4+1 = Layer;(x;) logits = Unembed(x;,)

Each transformer layer contains attention and MLP sublayers that produce “contributions” to the
residual stream:

x; = x; + Attn;(x;) X;11 = X, + MLP;(x})
where x/ is an intermediate state. The marginal contribution of layer i is defined as ¢; = Attn;(x;) +

MLP;(x; + Attn;i(x;)), making x;41 = X; + ¢;. We define c; ; to be the contribution of the ith
layer on token .

Feature-based interpretability. Recent interpretability methods decompose residual stream con-
tributions using sparse autoencoders (SAEs) to extract meaningful features for a residual stream

contribution c [11} 14} 47):
k
c=e+) Bivi
i=1

where e is the error, £ is a small integer (usually less than 500), and v; are the orthogonal feature
vectors with activations (3;. These features can be labeled with semantic meanings and manipulated
at inference time to steer model behavior. [30} 47, 9]

4 Transformer Layer Correction Mechanism

In this section, we introduce the Transformer Layer Correction Mechanism and conduct a series of
observational studies to characterize its functioning. We first define it (Section [d.1]), show that it
develops during training (Section[4.2)), demonstrate how it varies across token types (Section ,
and finally demonstrate it occurs via collaboration of both attention and MLP sublayers (Section

4.1 Uncovering the Traces

We motivate the discovery of TLCM through a hypothesis about how transformer layers collaborate
to enrich the residual stream. Specifically, we hypothesize that layers operate in two distinct modes:
(1) contributing novel information to the residual stream, or (2) reinforcing existing information.

To test this hypothesis, we quantify layer interactions using cosine similarity between their contri-
butions. High positive cosine similarity indicates that two layers reinforce similar representations,
near-zero similarity suggests their contributions are largely disjoint, and negative cosine similarity
implies one layer reverses or corrects the other’s contribution. Consistent with our hypothesis, recent
work has found positive cosine similarity between layer contributions in ViTs [24].

Setup. We test this across several open-weight language models. For a given token ¢, we define the
similarity matrix M, where c; ; represents the contribution of the i-th transformer layer (as defined
in equation [3):

M, [i, j] := cossim(c; ¢, ;) for i # j
We then average these matrices element-wise across approximately 100,000 tokens, across ran-

dom documents in WikiText [34] using HuggingFace Transformers [49]: M = % > M. These
documents include a variety of languages and code.



Results. Plotted in Figure [l M reveals a reversing effect, captured by the following observations:

* Across this large corpus, adjacent layers (layer ¢ and ¢ 4+ 1) on average have opposing
contributions, evidenced by their negative cosine similarity which averages ~ —0.2.

* Curiously, non-adjacent layers (layer ¢ and 7 + j, 7 > 1) do not on average have opposing
contributions; their contributions are predominately orthogonal or positively correlated,
consonant with our hypothesis above.

We term this phenomenon—the systematic partial reversal of layer 7 by layer 7 + 1—the Transformer
Layer Correction Mechanism (TLCM). We see TLCM across a diverse set of model families including
Llama 3 [17], OLMo [18]], Mistral [22} 23], Gemma [45} 46], and Qwen2 [52], plotted in Figure
[T]and Appendix [D] TLCM persists across different text types, model scales, and model categories
(instruction-tuned and conversational). The correction mechanism is most pronounced in the first
two-thirds of each model’s layers. Notably, TLCM is absent in two prominent model families: GPT-2
[41] and the Microsoft Phi models [, 2], as shown in Figurem This absence may stem from their
architectures—Phi-3, while based on Llama 2, incorporates dropout blocks after MLP and attention
sublayers, similar to GPT-2’s design. For the purposes of this paper, we study the TLCM in Llama
3.1 8B (d,,, = 4096).

We plot the distribution of adjacent layer cosine similarity in Figure [2b] which reveals a strongly
bimodal distribution. This suggests that TLCM is a separate mode of operation, rather than an
idiosyncrasy of normal operation. Based on this plot, we define TLCM as adjacent layer contributions
with cosine similarity below —0.1.

Discussion. The presence of highly anti-correlated vectors in such high-dimensional space is striking.
To provide a sense of how unlikely that the two outputs of adjacent layers exhibit TLCM (i.e. have
cosine similarity less than —0.1), we estimate the probability of this happening under two different
null hypotheses in which the outputs are sampled randomly instead.

First, suppose the two outputs are drawn independently from a standard d-dimensional normal
distribution. Then, two random vectors in d-dimensional space have expected cosine similarity 0 and
variance 1/d (Appendix . Therefore, as d scales to 4096 (Llama 8B 3.1), the probability that
TLCM occurs for two adjacent layers is as rare as a 6-sigma event.

Second, now suppose that the two outputs are drawn independently from empirical distributions
of their respective layers. Compared to the earlier normally distributed setting, this accounts for
the possibility that the output space of the layers could be low rank or simply be pointing in
opposing directions (see Appendix [B.2). We this distribution by calculating the empirical mean and
standard deviation of cosine similarities between contributions from layers ¢ and ¢ 4 1 across four
large documents. Specifically, we sample from the same layer ranges where TLCM is most active
(4 <7 < 20) but on adjacent contributions from different tokens. We find that a typical instance of
TLCM is approximately as rare as a 3-sigma event. Therefore, TLCM—occurring multiple times on
hundreds of thousands of tokens—is exceedingly unlikely to arise from chance alone. There must
be a meaningful relationship between the two layers, either through a common confounder or direct
dependence. In Section[5.1} we show that this relationship is indeed a direct dependence between
adjacent layers.

Intuitively, transformer layers may erase information from the residual stream for various reasons:
information may be only transiently useful, or deletion may free capacity for new information.
Under either explanation, information written in layer 4 could be deleted in any layer j where j > <.
However, TLCM is more constrained: reversal occurs predominantly in the directly subsequent layer.
This pattern is puzzling from an efficiency standpoint, as it implies written information can only be
exploited by a single downstream layer before erasure.

4.2 TLCM Develops During Training
We next investigate how TLCM emerges over training. In particular, TLCM could be:

* An inherent characteristic of transformer architectures, emerging from their fundamental
design rather than through learning.

* A transient phenomenon that arises due to, for example, unstable training dynamics.

* A mechanism developed during post-training, either by RL or SFT.
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Setup. To address these possibilities, we study how TLCM develops throughout the training process.
We examine seven checkpoints from each of three fully open-source models: OLMo 1B, OLMo 2
1B, and OLMo 2 7B. For each checkpoint, we compute M = % >~ M, using a standardized block
of text.

Results. We find that TLCM emerges over the course of pretraining; in OLMo 7B, for example, it first
manifests at training step 135,500 (approximately 21% through the total 651,581 steps), corresponding
to roughly 0.5 trillion processed tokens. Appendix Figures[A9] and [ATT|demonstrate that the
mechanism’s strength increases markedly during the latter two-thirds of training for all three models.
This suggests that TLCM is

* Learning-induced: TLCM does not appear in untrained models.

* Persistent: Despite weight-decay, TLCM strengthens over training and is unlikely to be
some training pathology.

* Pretraining-derived: TLCM emerges during pretraining, not SFT or RL.

4.3 TLCM Varies by Token

We next study how TLCM activations vary across different token classes.

Setup. We curate 100 realistic queries requesting long-form content about science, technology,
philosophy, government, history, and other topics. We then generate responses to these queries
using Llama 3.1 8B. For each token ¢ in the response, we count the number of corrections for ¢ as:
[{i | cossim(c; ¢, ciq1,+) < —0.1}|. This corpus contains 79k tokens. To ensure we identify only
systematic patterns, we filter out tokens appearing fewer than 20 times and compute the mean number
of TLCM activations for each unique token.

Results. We observe significant variation in correction frequencies across tokens on Llama 3.1 8B;
some tokens had few corrections on average, while others had many more. Some qualitative examples
of low-correction tokens (< 8 corrections per token on average) include:

By, workshops, indigenous, vinyl, implications, cognitive, -being, innovative, innovation,
regulatory, greenhouse, mindfulness, platforms, trends, therapy, example, learning, iving,
planning, inclusive, cloud, classical, proposal, -friendly, sustainability, biodiversity, ting, blog,
memo, system, <|begin_of_text|>

And some examples of high-correction tokens (> 11 corrections per token on average):

202, Jul, 26, 1\n, ,\n\n, Today, \n\n, $, Name, State, [, 201, assistant, Address, \t, 4, \n, user,
at, ]\n\n, Date, , Title, ], -, Your, over, Date, %, high, ],, )\n, reach, up, share, )**, well, one,
D, time, ):, take, forward, from, 1, :, access, you, 12, not, [, I, City, need, low, Thank, (, make,
10, look, your, 0, such, *

We list token-level TLCM activation statistics (mean and standard deviations) in Table[AT]and[A2]
We also compute results for Gemma 2 2B Instruct across the same 79K tokens, listing full results in

Table [A3]and [A4]



We find statistically significant differences in the frequency of TLCM activations. For example, the
token \n averages 12.41 (£0.1 99% CI) TLCM activations while sustainability averages 7.63
(£0.46 99% CI) on Llama 3.1 8B. Numbers, punctuation, dates, and brackets rank highly for frequent
TLCM activations, while standard English terms like community, training, and understanding
have less frequent activations. Notably, Llama’s <|begin_of_text|> token and Gemma’s <bos>
token exhibit the fewest average TLCM activations across the entire corpus.

Discussion. We observe that tokens exhibiting low TLCM correction rates typically possess un-
ambiguous, context-independent semantic meaning. These tokens generally maintain consistent
interpretation regardless of their surrounding context.

In contrast, high-correction tokens seem to demonstrate greater average contextual dependency. This
category includes: 1) Numbers that form larger parts of numbers, where grasping the complete value
of the number requires consolidating information across tokens 2) Date-related tokens which require
surrounding context for complete temporal reference 3) Punctuation marks (e.g., :’) whose semantic
role varies with usage context.

Recent work shows [28]] that newline tokens can be used for planning upcoming tokens, a task that
requires contextual processing—newline tokens and similar (\n \n, :\n, etc.) have high rates of
TLCM activation. Intuitively, models may aggregate information into concluding punctuation marks
because the causal attention mask prevents them from aggregating information in earlier tokens.

Llama’s <|begin_of_text|> token and Gemma’s <bos> are particularly revealing, with 0 and 1
TLCM activations respectively. These tokens are always first in the context window during training.
In this position, correction is unnecessary; the optimal next-token prediction with no context is simply
the empirical unigram distribution from the start of training documents, which we suspect obviates
complex contextual processing.

To test this conjecture—that TLCM activations relate to contextual processing—we perform a simple
check: we plot the average number of TLCM activations per token at different points in the LLM
context window; Intuitively, the 1000th token can attend to 999 preceding tokens while the 5th token
can only attend to 4, suggesting we should observe higher TLCM activation rates at later positions.
Indeed, across 2000 long WikiText documents, we find that every 1000 tokens of additional context
corresponds to approximately 1 additional TLCM activation, as demonstrated in Figure [2b]

4.4 Attention and MLPs Alone Do Not Explain TLCM

We next investigate the role of MLP and attention sublayers in TLCM. For instance, TLCM could arise
purely from MLP-to-MLP interactions, or MLPs could selectively reverse only attention sublayer
contributions. To address these questions, we conduct an analysis similar to Sectiond.1] but at the
sublayer level.

Setup. We compute a similarity matrix, instead using the attention contribution My ¢[¢, j] =
cossim(Attn;(x; ), Attn;(x,)) and plot the average matrix My, = %Zt M. We
also plot the average matrix for the MLPs: Myyp = %Zt Mprp s, with Myip[i,j] =
cossim(MLP; (x] ;), MLP;(x} ;).

Results. We identify three key findings. First, attention sublayers produce positively correlated
contributions with other attention sublayers (Figure [2a). Second, MLP sublayers produce anti-
correlated contributions with the subsequent layer’s MLP, exhibiting a similar pattern to TLCM.
Third, MLP contributions are also anti-correlated with the preceding attention sublayer (Appendix
D). In summary, MLPs produce contributions that are anti-correlated with both the preceding MLP
and attention sublayers, suggesting that MLPs are primarily responsible for executing corrections.

Since MLPs partially reverse contributions from both the preceding attention and MLP sublayers,
the correction mechanism appears to be a transformer layer-level phenomenon. Additionally, our
prior experiments suggest contextual dependency plays a role in TLCM’s functioning, something
only possible if TLCM operates partially through the attention sublayer. For these reasons, we focus
our study of TLCM at the transformer layer level.
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Figure 3: TLCM exhibits a linear relationship between its correction strength and the prior layer’s
contribution, suggesting that systematic attenuation of the prior layer, shown on 5 randomly sampled
tokens. For negative « values, layers demonstrate compensatory behavior, evidenced by positive
cosine similarity.

5 TLCM Adaptivity

In this section, we investigate TLCM’s underlying mechanistic functioning. In Section[5.1] we show
that TLCM is adaptive and directly dependent on the preceding layer’s outputs. Then, in Section[5.2}
we illustrate a connection between the transformer layer’s Jacobian and the subspaces targeted for
correction. Using this connection, we show that TLCM selectively targets subspaces for correction,
while ignoring or promoting the others.

Finally, we argue for the propose-and-reject hypothesis, which explains the process of enrichment as
proposing, checking, and rejecting features in a 2-layer sequence; in this picture, TLCM corrects an
“undesirable” component of the previous layer.

Notation. For a particular token ¢, consider the marginal contribution of layer ¢ and layer ¢ + 1 to be
a; and by, respectively. Recall that the correction mechanism is currently described by a negative
cosine similarity between a; and b; across a variety of layers and tokens. Additionally, observe that
the d,,,-dimensional input to layer 7 + 1 would be x; ; = x;_1 ¢ + a;. We define a function bj that
captures contribution of layer ¢ + 1 when the previous layer’s output is perturbed by A. Specifically:

b} (A) := Layer; | (x;: + A)

Note that b}(0) = by, i.e., the original layer contribution.

5.1 TLCM is Adaptive

In Section4.T]| we argue that the anticorrelation between the contributions of adjacent transformer
layers cannot be explained by randomness—Ilayer ¢ and 7 4 1 anti-alignment must be explained by
either a common underlying cause or a direct dependence between the layers.

Here, we perform a causal intervention to show that the anti-alignment is caused by a direct depen-
dence between the layers. In particular, we find that TLCM’s correction is adaptive; as we scale layer
1’s contribution, layer ¢ + 1 scales its correction, demonstrating causality.

Setup. To understand whether layer ¢ + 1 is adaptively correcting the contribution of layer ¢, we add
some perturbation A = «ay, for a € [—1, 1] to the input of layer ¢ 4+ 1. Formally, the input to layer
1 + 1 is intervened to become

Xi—1¢+tart+oaar =X;_1++ (1 + a)at

If layer 7 + 1 is attuned to correcting a;, we should expect to see the correction increase as « is scaled
up from 0 and decrease as « is decreased from 0. To this end, we measure the cosine similarity
between a; and b} (wa;) at o« € {—1,-0.9,...,0.9,1}.
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Results. As expected, increasing « leads to stronger correction. Decreasing « leads to less correction.
Figure 3] depicts this near-linear relationship.

When a = 1—effectively doubling a; in the residual stream—Iayer ¢ + 1 responds by adjusting its
contribution to further oppose a;. The smooth adaptation we observe indicates layer ¢ 4+ 1’s dynamic
regulation of the previous layer’s contribution. This pattern appears consistently across all layers
where TLCM is active, with complete results presented in Appendix [E]

Our experiments also reveal a compensatory effect. Specifically, in Figure[E]at o = —1, the cosine
similarity between the adjacent layers becomes positive; layer @ + 1 effectively boosts the contribution
of layer ¢. This effect occurs most strongly in earlier layers. This finding aligns with recent research
on self-repair mechanisms that enable models to recover from interventions [32]. However, we
maintain cautious interpretation: extreme values of « place the model in counterfactual states that do
not appear during standard inference or training. Moreover, this compensation effect may stem from
self-repair mechanisms unrelated to TLCM.

Discussion. We have demonstrated that, when TLCM is active, there is a causal relationship between
layer 7 and layer 7 + 1’s correction. Adjusting layer ¢’s contribution elicits an immediate response
from layer ¢ + 1.

This finding is striking for a subtle reason. For layer 7 4 1 to respond sensatively to layer 4, it must
identify which component of the residual stream was added by layer ¢ versus components contributed
by earlier layers. This is a challenging task; layer ¢ + 1 would need sophisticated mechanisms to
isolate layer ¢’s specific contribution. We therefore consider an alternative hypothesis: Layer ¢’s
contribution might comprise both a “desirable” and “undesirable” component; layer ¢ + 1 simply
targets the latter for correction. For instance, layer « might propose n features to the residual stream,
after which layer 7 4 1 verifies and removes only incorrect features while leaving the rest intact. This
naturally motivates two questions:

1. Does TLCM correct the entire previous layer contribution, or does it target specific compo-
nents?

2. If TLCM correction is selective, can we identify which subspaces are targeted most aggres-
sively?

5.2 Isolating the Correction Subspace

In this section, we execute an experiment to answer the prior two questions. A key unknown is how
the previous layer’s contribution is attenuated: is it scaled back uniformly, or are specific subspaces
selectively targeted for correction?

The layer Jacobian—the local linearization of the both the attention and MLP sublayers—contains
information about how the entire layer will respond to input perturbations. By developing tools
to characterize and visualize the Jacobian, we can understand which vector directions will be
aggressively corrected by the layer versus which directions will remain untouched.



Notation. As previously defined, consider b} to be the function representing transformer layer
i+ 1. We can linearize this function by computing the Jacobian Vb;(0) = J € R%modet Xdmodel of the
transformer layer, such that b}(A) ~ b, + JA. Finally, let J := £(J +J ") be the symmetrized
Jacobian.

Claim. The eigenvectors of J with negative eigenvalues correspond to the corrected subspace, with
the eigenvalue dictating the correction strength. In a similar vein, we argue that the positive eigenvalue
eigenvectors are reinforced proportional to their eigenvalue. Finally, eigenvectors with near zero
eigenvalue are mostly untouched by this layer.

Proof. An input perturbation to layer ¢ 4 1 is “corrected” if cossim(b}(A) — by, A) < 0. Observe
that this condition is true if and only if (b;(A) — by, A) < 0. For a small enough perturbation, the
condition is equivalent to (JA, A) < 0. Because (JA, A) = (A, JA), the condition becomes:

(JAA) = — (JAA) +(AJA)) = (=T +I A A) = TA,A) <0 (1)

1
2

DN | =

Moreover, by the spectral theorem, J has an eigendecomposition J = QVQ ' with unitary eigenvec-
tor matrix Q € R%>dn and eigenvalues are diag(V). Plugging this into inequality

(JA,A)=(QVQ A, A)=ATQVQTA=(Q"A)TV(QTA) <0 )

In summary, we have reduced our original condition for a corrected perturbation, cossim(b}(A) —
b, A) < 0, into something more tractable to analyze: (QTA)TV(QTA) < 0. Observe that
QT A € R jg a vector of the perturbation projected into the Jacobian’s eigenvector space. In,
[2] each projected component is squared and multiplied by the corresponding eigenvalue. Thus, if
a perturbation decomposes heavily onto an eigenvector with a negative eigenvalue, our original
condition for "correction" will be satisfied. O

More concretely, consider the perturbation from earlier, a;. We can project a; into eigenvector space
to obtain q = Q " a;. Observe that entry q; is the projection onto the i-th eigenvector with eigenvalue
;. From the derivation in[2] we have

(Jas,a;) = (Q'a)'V(QTa) =q' Vg = Z Ailasl® &)

Thus, if Y, \i|q;|? < 0, a; is being corrected. Additionally, any individual );|q|? < 0 corresponds
to an individual direction that is being corrected, specifically the i-th eigenvector, with correction
strength \;. Suppose we consider the top eigenvectors, namely those with the top fifty |q;|? values;
these fifty directions account for 154+% of the variance of a;. Then, we can plot the distribution of
the corresponding \; to understand how TLCM interacts with the top components of a;.

Results. We compute the described plot—the histogram of \; for top directions of a;—across 50
Jacobian-a, pairs where TLCM is present and 50 pairs where TLCM is not present. Figure #b|shows
the aggregated results. We observe a bimodal eigenvalue distribution for TLCM pairs. The strongest
mode hovers near A = —1, which means that a unit increase in this direction from the prior layer
results in a unit-sized correction.

Importantly, a mode around A = —1 implies correction rather than partial attenuation of undesired
features; the features are entirely reversed. The other mode hovers around A = 0.5, which implies
that there are directions being promoted by TLCM, contrary to our initial expectation. This bimodal
distribution is firm evidence that TLCM does not seek to attenuate the previous layer uniformly.
In fact, it selects key subspaces to correct, disregarding or promoting the rest. For adjacent layers
without TLCM, we observe one strong peak at A = 0; this suggests that adjacent layers without
TLCM do not interact significantly with the prior layer.

Finally, we observe that about 3000 of the total 4096 eigenvalues of J are negative; see Figure



5.3 Propose and Reject Hypothesis

We have shown that TLCM does not uniformly reverse the prior layer’s contribution but rather
selectively corrects a subspace of it. To synthesize our findings, we propose the propose-and-reject
hypothesis as a conceptual framework:

Propose-and-reject hypothesis (P&R). TLCM contributes to feature enrichment through a two-stage
process: (1) a layer proposes a set of candidate features, and (2) the subsequent layer, equipped with
attention mechanisms to gather context, removes irrelevant features.

P&R is consistent with our experiments thus far: Attention and MLP layers both play a role in TLCM,;
TLCM activates more frequently later in the context window; TLCM activates predominately in the
first two-thirds of models, which is connected with enrichment; TLCM corrects only the prior layer;
TLCM appears to perform selective correction rather than uniform attenuation, as shown in Sec[5.2}
among others. We caveat that we do not explicitly test P&R in this work.

P&R could prove particularly valuable for contextual processing. For example, consider the token
“202” within “1,808,202”. During the forward pass, layer ¢ at this token might propose a handful
of feature vectors: “hundred”, “thousand”, “million”. Layer ¢ + 1—equipped with an attention
sublayer—can evaluate and eliminate the incorrect features. The incorrect features would form the
“undesirable” subspace which would be corrected by layer ¢ + 1. The correct feature, “million”, would
reside in the “desirable” subspace and hence remain untouched.

6 Discussion

Our TLCM experiments have consequences for broader work in mechanistic interpretability. For
example, since SAEs interpret residual stream contributions, TLCM’s existence predicts mis-
fires—features contributed to the residual stream that are immediately reversed by the subsequent
layer. In addition, our research also offers a framework for explaining several challenges in SAE-based
interpretability:

Feature descriptions lack high specificity. Recent work [47]] observed that over 50% of activated
features from an SAE are labeled by a large LLM as "Irrelevant” or "Only vaguely related" to the text
on which they fire. Highly-activating features, though more rare, tend to show greater specificity to
the text. This pattern of low specificity in most features aligns with our expectation for “misfiring”
features that are subsequently corrected by the next layer.

Effective model steering requires overcoming TLCM’s correction. While we can amplify selected
features to steer model behavior, our work predicts that some amplifications will be neutralized by
TLCM’s corrections. As shown in Appendix [E| TLCM’s correction capacity begins to diminishes
when the prior layer is amplified beyond 2 x; therefore, feature amplification likely needs to exceed
a critical threshold to be effective. Consistent with this hypothesis, recent work demonstrated that
effective steering requires extreme amplification levels—up to 10x a feature’s maximum observed
value [47]. We propose that solving an alternative optimization problem—intervening on feature
directions that TLCM is not targeting, identified using the Jacobian—could be a promising direction
for future work.

Cross-layer transcoders outperform SAEs. Recent work finds that the semantic meaning of the
feature v; and —v; is unrelated [[10]. For example, assume the former means “firetruck” and the
latter means “Ancient Greece.” If layer ¢ contributes —v;, an SAE is unable to determine whether
layer ¢ aims to correct a faulty “firetruck” activation from the previous layer or contribute a novel
“Ancient Greece” feature. Cross-layer transcoders, which are conditioned on the input residual
stream, fundamentally can distinguish between these two cases, thus enabling them to learn better
features—CLTs can learn both a “firetruck misfire” and an “Ancient Greece” feature that map to the
same output vector. Indeed, recent work finds CLTs beat SAEs on certain metrics [40].

More broadly, we think further understanding the architectural causes for TLCM (Appendix [A]
explores some ideas) is exciting subsequent work, as is trying to understand TLCM’s corrections in
feature extracted via standard interpretability techniques. We hope TLCM helps improve methods to
steer LLM’s forward passes and is a step towards making models more interpretable and controllable.
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Figure Al: TLCM is consistently found on models with different approaches to LayerNorm. Sur-
prisingly, Gemma 2 with post-LayerNorm has more pronounced TLCM. OLMo 2, which replaces
pre-LayerNorm entirely exhibits TLCM. For visual clarity, we plot clamp(M, —0.2,0.2) and zero
the diagonals.

A LayerNorm Blindness to explain TLCM

One natural cause of TLCM is RMSNorm. RMSNorm normalizes the input to the attention and MLP
sublayers in nearly all of the open-source models analyzed. Formally, for an input x € R% to an
attention or MLP sublayers and a learnable parameter vector g, RMSNorm is defined as:

X=-—— _Og RMS(x)

1
RMS (x) = &l

where d,,, is the dimension of the residual stream.

Crucially, the use of RMSNorm implies that both the attention and MLP sublayers have layernorm
blindness; they are blind to the norm of the residual stream. This blindness is significant because
these sublayers predict contributions to the residual stream (i.e. x; + Sublayer(x;)), whose relative
impacts depend on the the residual streams current magnitude. Without visibility into the residual
stream norm, attention and MLP sublayers risk under-contributing when the norm is high, which
potentially leads to their contributions being overshadowed. This could encourage over-contribution
behaviors followed by correction, which is consistent with TLCM.

However, we find that LayerNorm blindness alone does not fully explain the TLCM. This is because
as discussed Sec. [5.2] the correction mechanism does not entirely reverse a;, contrary to what would
be expected if RMSNorm were the primary cause. But perhaps more critically, models trained with
alternative RMSNorm implementations continue to exhibit the mechanism:

Gemma. The sublayers in Gemma 1 were trained using pre-LayerNorm as described above. In
contrast, Gemma 2 utilized a hybrid approach, employing both pre-LayerNorm and post-LayerNorm:

Xi+1 = X; + LayerNorm(Sublayer(LayerNorm(x;))).

The addition of post-LayerNorm should, in principle, make the residual stream norm more predictable.
However, empirical results show that the correction mechanism remains robust in Gemma 2. Refer to
Figure[AT]for a comparison.

OLMo. The original OLMo models employed pre-LayerNorm exclusively. In the OLMo 2 series,
pre-LayerNorm was replaced with post-LayerNorm and QK norm. Despite this architectural change,
the correction mechanism persists strongly in OLMo 2, as shown in Figure [AT]

B Likelihood of Negative Cosine Similarity

B.1 Random Normal IID Vectors

Consider two random vectors: u, v ~ N(0, 0%1).
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B.2 Experimental Mean and Standard Deviation
We find that the contributions of a particular layer are anisotropic; they cluster around approximately

500-800 of the 4096 dimensions of Llama’s residual stream.
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Specifically, we isolate the contribution vector for layer ¢ across 4096 tokens from wikitext:
{City5Citys - Cityoes t- After computing the SVD of each set, we plot percent variance explained
by top n principal components vs. n in Figure [A2]

Due to this anisotropy, we calculate the statistical significance of the TLCM cutoff (—0.1 cosine
similarity) empirically. We compute the mean and variance of cosine similarity across contributions
of adjacent layers on different tokens. More formally, we compute the mean and variance of
cossim(C; ¢, , Cit1,4,) for t1 # t2 and 4 < ¢ < 20. We find it has has mean —0.00375 and standard
deviation is 0.03267, meaning that our cutoff of —0.1 is conservatively a 30 event; most TLCM
events occur at lower cosine similarities (—0.15 to —0.25).

We plot these distributions by layer in Figure [A3]
C Details on Jacobian Experiments

C.0.1 Jacobian Sanity Check

We have approximated our response function b} using the Taylor expansion.

b;(A) = b}(0) + JA + O(A?)

Here we aim to confirm that the Jacobian is appropriately representative of the transformer layer
within a reasonable regime. Observe that the error of this approximation is b} (A) — b;(0) — JA,
and we thus denote the percent error of the approximation as follows:

_ Ibi(A) = bi(0) — JA]
[bi(A) = b (0)]

err(A)

We plot the percent error error of this approximation across 46 randomly selected TLCM Jacobians for
different values of A = aa;, @ € {-0.5,-0.4,-0.3,...,0.3,0.4,0.5}. Shown in Figure we
find that the Jacobian is a good approximation within this regime. For || < 0.1, there is consistently
around 5% error, which we believe is sufficient for our Jacobian-based analysis in Sec. [5.2}
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Figure A3: The empirical distribution of cossim(c; ¢,, Ci+1.1,), t1 7 t2 across 2000 tokens for layers
4 <4 < 20, corresponding to approximately 2 million samples per histogram. The red dotted line
corresponds to the mean.

46 Random TLCM Jacobians Mean and SE of Jacobian errors
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Figure A4: The transformer layer Jacobian is a very good approximation for reasonably large
perturbations (Ja| < 0.1) to the following layer, making it useful for decomposing directions as
described in Sec. [5.2]
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Figure A5: We plot clamp(M, —0.2, 0.2) for four models, zeroing diagonal entries. We computed
M across a variety of models, pulled from Huggingface Transformers.

D Extended Details on TLCM Existence

In Figure[A3] we plot TLCM'’s existence across many HuggingFace models using the same technique
as described in Sec. [4.1]of the main body.

We previously demonstrated that MLPs exhibit anti-correlations with each other, while attentions do
not. We additionally find that MLPs correct attentions (both within and between transformer layers)
and that attentions correct MLPs from prior layers. This could be due to a common low-dimensional
subspace used by both units for communication. Thus, MLPs correct both prior attention and MLPs;
attentions correct just prior MLPs. Altogether, this suggests that MLPs are more responsible for
TLCM’s correction, but both units are involved.

Specifically, we plot Manxmip = = >, Maunxmrp,: Where
Mt xMmip ¢4, j] 1= cossim(Attn; (x;,¢), MLP;(x;+))
See Figure[A6
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Figure A6: MLPs correct prior attentions, and attentions correct prior MLPs.

E Extended Details on TLCM Adaptivity

E.1 TLCM is Adaptive Across Layers

In Figure[A7] we plot TLCM’s adaptive correction across different layers using the same technique
as described in Sec. {11

E.2 TLCM Correction Capacity Diminishes at High «

In Sec[5.1} we find that TLCM increases its correction as the prior layer is scaled. However, we
find that as we scale the prior layer to extremely large values (o > 2), the correction capacity of
TLCM starts to diminish. Intuitively, as « is scaled, what TLCM previously considered a “mistake”
now might be assumed “correct.” This could explain why model steering interventions—in which a
chosen feature vector is manually contributed to the residual stream—requires features contributions
at 10x the maximum ever observed value. In other words, steering interventions must overcome
TLCM. See Figure[A§]|for plots of the correction beginning to diminish.
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Figure A7: TLCM adaptively regulates the previous layer in a near linear fashion. We plot 5 random
corrections across a variety of layers in Llama 3.1 8B.

25



Layer 3

Layer 4

Layer 5

Layer 6

0.14

0.0+

—0.1

—0.21

—0.34

—0.4

N

Layer 7

Layer 8

Layer 9

Layer 10

0.1+

0.0+

—0.14

—0.2

—0.3

—0.4+

—0.51

%

Layer 11

Layer 12

Layer 13

Layer 14

0.14

cossim(ay, bj(aay))

0.0

—0.1

—0.2+

—0.31

\

Layer 15

Layer 16

Layer 17

Layer 18

0.1+

0.0

—0.11

—0.2

—0.3

—0.4+

—0.51

1

N

00 25 50 75

100 00 25 50 75

«

100 00 25 50 75

100 00 25 50 75 10.0

Figure A8: As we increase the previous layer more dramatically, we see TLCM’s correction begin to
diminish, aside from some outliers. For each layer, we sample 5 random TLCM curves and compute

at « increments of 0.2.
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F OLMo Training Checkpoint Experiment Details

On a corpus of about 500 tokens of PyTorch instructional content, we compute M on a handful of
training checkpoints, shown in Figure [A9]

The corpus is below; beyond a high enough number of tokens, we find this to have little effect on the
cosine similarity matrices and thus also the figures.

*xUsing Convolutional Layers in PyTorchx*

Convolutional layers are a fundamental component of convolutional neural
networks (CNNs) used for image classification, object detection, and
other computer vision tasks. In PyTorch, convolutional layers are
implemented using the ‘nn.Conv2d‘ module.

**Creating a Convolutional Layer**

To create a convolutional layer in PyTorch, you can use the following code:

¢ ¢‘python
import torch
import torch.nn as nn

# Define the convolutional layer
conv_layer = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding

)

(33

*  ‘in_channels‘: The number of input channels (e.g., 3 for RGB images).
‘out_channels‘: The number of output channels (e.g., 64 for a feature map).

* ‘kernel_size‘: The size of the convolutional kernel (e.g., 3x3).
‘stride‘: The stride of the convolutional kernel (e.g., 1).
*  ‘padding‘: The amount of padding to apply (e.g., 1).

*xExample Usage**

Here’s an example of using a convolutional layer in a PyTorch model:

¢ ¢‘python
import torch
import torch.nn as nn

class ConvNet (nn.Module) :
def __init__(self):
super (ConvNet, self).__init__()
self.conv_layer = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)

def forward(self, x):
return torch.relu(self.conv_layer(x))

# Initialize the model and input tensor
model = ConvNet ()
input_tensor = torch.randn(l, 3, 224, 224)

# Forward pass
output = model (input_tensor)
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Figure A9: In OLMo 7B, TLCM emerges progressively during pretraining, with initial manifesta-
tion around step 135,500 (0.5T tokens). These four plots show M computed at different training
checkpoints of OLMo 1B, with the rightmost plot representing the fully pretrained model. For visual
clarity, we plot clamp(M, —0.2,0.2) and zero the diagonals.
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Figure A10: In OLMo 2 1B, TLCM also emerges progressively during pretraining. We plot figures at
different step numbers and number of tokens (1, 2, 3, or 4 trillion tokens).
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G Token-Level Correction Statistics

G.1 Experiment Prompts

We use the following prompts to generate data for our experiment in Sec 4.3}
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Figure A11: In OLMo 2 7B, TLCM also emerges progressively during pretraining. We plot figures at
different step numbers and number of tokens.
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Write a blog post about the impact of remote work on urban real estate trends.

Write an essay on the psychological effects of social media on teenagers.

Write a report detailing the advancements in renewable energy technologies over the last decade.
Write an article about the rise of plant-based diets and their environmental benefits.

Write a memo to employees explaining the new company policy on cybersecurity measures.

Write a letter to a local council advocating for improved recycling facilities in the community.

Write a proposal for implementing a mindfulness program in elementary schools to enhance student
well-being.

Write a blog post about the evolution of smart home technology and its implications for privacy.

Write an essay discussing the ethical considerations of genetic editing technologies.

Write a report on the economic impacts of the COVID-19 pandemic on small businesses.

Write an article about the significance of the James Webb Space Telescope’s latest findings.

Write a memo outlining the steps for a successful digital transformation in a manufacturing company.
Write a letter to a senator expressing concerns about the proposed changes to healthcare laws.

Write a proposal for a community garden project to promote local food production and community
engagement.

Write a blog post about the latest trends in artificial intelligence and machine learning.

Write an essay on the role of art therapy in mental health recovery.

Write a report assessing the potential of hydrogen fuel as an alternative energy source.

Write an article highlighting the importance of biodiversity conservation in combating climate change.
Write a memo to staff regarding the integration of a new project management software.

Write a letter to an editor expressing opinions on the local government’s transportation plan.

Write a proposal for a telemedicine service to increase healthcare access in rural areas.

Write a blog post discussing the future of space tourism and its possible timeline.

Write an essay exploring the cultural significance of indigenous music.

Write a report on the trends in global unemployment rates and their implications for economic policy.
Write an article about the benefits and challenges of homeschooling.

Write a memo describing the company’s strategy to address the upcoming industry regulations.

Write a letter to a non-profit organization offering to partner on an environmental initiative.

Write a proposal for an employee wellness program that includes both physical and mental health
activities.

Write a blog post analyzing the impact of blockchain technology on financial services.

Write an essay on the historical impact of major pandemics on societal structures.

Write a report on the viability of vertical farming in urban environments.

Write an article about the challenges of maintaining data privacy in the age of IoT.

Write a memo to update company leadership on the progress of the quarterly goals.

Write a letter to a school board proposing the introduction of coding classes in middle schools.

Write a proposal for a local government initiative to support small businesses during economic downturns.
Write a blog post about the techniques and benefits of sustainable agriculture.

Write an essay on the influence of classical music on modern genres.

Write a report on consumer behavior changes in the automotive industry towards electric vehicles.
Write an article about the role of youth activism in shaping public policy.

Continued on the next page.
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Write a memo detailing guidelines for handling customer data under new privacy laws.

Write a letter to the editor about the importance of public parks and open spaces.

Write a proposal for a new arts festival aiming to showcase local and international talent.
Write a blog post on the role of robotics in healthcare and potential ethical dilemmas.

Write an essay about the impact of climate change on marine ecosystems.

Write a report on strategies for managing workplace diversity in a global company.

Write an article on the resurgence of interest in vinyl records and analog music.

Write a memo to department heads about managing remote teams effectively.

Write a letter to a city planner regarding the need for improved pedestrian pathways.

Write a proposal for implementing a bike-sharing program in a mid-sized city.

Write a blog post about the future trends in education technology and their implications for learning.
Write a blog post about the growing popularity of mindfulness apps and their effectiveness.
Write an essay on the resurgence of traditional farming techniques in modern agriculture.
Write a report on the adoption of electric vehicles in major cities around the world.

Write an article about the psychological benefits of outdoor activities.

Write a memo to management detailing the steps to achieve carbon neutrality in the workplace by 2030.
Write a letter to a philanthropic organization requesting funding for a community tech hub.
Write a proposal for a series of workshops aimed at teaching digital literacy to seniors.

Write a blog post analyzing the impact of virtual reality on entertainment and media.

Write an essay discussing the philosophical implications of artificial intelligence surpassing human
intelligence.

Write a report on the state of child nutrition programs in public schools.

Write an article about the role of drones in modern agriculture and their environmental impact.
Write a memo regarding the implementation of a flexible work schedule to enhance employee productiv-
ity.

Write a letter to a government official advocating for stricter air pollution regulations.

Write a proposal for a new public library with advanced digital resources.

Write a blog post about the importance of cybersecurity in the age of cloud computing.

Write an essay exploring the historical role of spices in global trade.

Write a report on the effectiveness of recent public health campaigns on smoking cessation.
Write an article on the growing trend of micro-living and tiny homes.

Write a memo introducing a new internal team dedicated to innovation and strategic initiatives.
Write a letter to parents outlining the new curriculum changes in a local school district.

Write a proposal for a mobile health clinic to serve underserved areas.

Write a blog post about the use of big data in personalized medicine.

Write an essay on the evolution of language in the digital age.

Write a report detailing the economic impact of cultural festivals on local communities.

Write an article on the significance of urban green spaces for mental health.

Write a memo to staff about upcoming training opportunities in advanced analytics.

Write a letter to the editor discussing the need for more inclusive sports programs in schools.
Write a proposal for an annual technology conference focusing on sustainability innovations.
Write a blog post about the effects of music therapy on Alzheimer’s patients.

Write an essay examining the influence of video games on cognitive development.

Write a report on the future of nuclear energy and its role in combating climate change.

Write an article about the revival of handcrafts and their market in the modern economy.

Write a memo outlining the benefits of adopting a four-day workweek.

Write a letter to a university proposing a partnership for a community-based research project.
Write a proposal for developing a pedestrian-friendly zone in the downtown area.

Write a blog post on innovative approaches to waste management in urban settings.

Write an essay about the socio-economic impacts of migration on urban development.

Write a report on the adoption and regulation of cryptocurrencies in different countries.

Write an article on how to prepare pets for the arrival of a new baby.

Write a memo discussing the integration of virtual assistants into customer service.

Write a letter to a historical society proposing a project to digitize and preserve ancient manuscripts.
Write a proposal for a fitness program aimed at improving the health of office workers.

Write a blog post about the role of augmented reality in modern education.

Write an essay on the impact of global trade policies on developing economies.

Write a report analyzing the trends in youth sports and their benefits to communities.

Write an article about the ethical considerations in wildlife photography.

Write a memo to update the company on the progress of the diversity and inclusion initiative.
Write a letter to an NGO outlining a proposal for a joint clean water project in rural areas.
Write a proposal for a digital art exhibition featuring interactive installations.

Write a blog post discussing the future of autonomous public transit systems and their societal impacts.
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G.2 Correction Counts

Each tuple follows the format: (token, average TLCM activation count). We remove a few hundred
tokens from the middle of this distribution due to space constraints.
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Table Al: Llama 3.1 8B Instruct: Top 50 tokens with the highest average number of TLCM activations.
For each token, we list the average number of times a TLCM activations occurs on the given token,
aggregated across 100 long documents. Finally, we list the standard deviation and the number of
occurrences of the token across the corpus to demonstrate the statistical significance.

Token Mean Activations Std err. of mean # occurrences
202 16.66 0.16 265
Jul 14.00 0.00 100
26 13.90 0.04 112
\n 13.15 0.12 131
Today 13.00 0.00 100
\n\n 12.88 0.11 485
,\n\n 12.85 0.16 26
$ 12.62 0.19 55
<space> 12.58 0.07 1276
Name 12.54 0.10 100
at 12.44 0.24 41
\n 12.41 0.10 228
[ 12.23 0.08 164
assistant 12.20 0.08 100
State 12.15 0.32 26
] 12.08 0.14 49
\t 12.07 0.20 68
Date 12.03 0.24 30
Address 12.03 0.26 35
user 12.00 0.00 100
I\n\n 12.00 0.19 39
Date 11.99 0.14 204
4 11.92 0.12 338
Your 11.81 0.12 103
over 11.74 0.26 35
<space><space><space> 11.68 0.19 57
- 11.68 0.13 112
% 11.65 0.14 52
: 11.58 0.08 606
D 11.46 0.23 28
high 11.46 0.23 39
from 11.44 0.14 109
make 11.44 0.20 50
you 11.43 0.15 96
access 11.40 0.15 89
take 11.37 0.21 30
between 11.30 0.26 27
[ 11.28 0.12 108
City 11.24 0.30 38
not 11.23 0.17 52
well 11.23 0.15 70
need 11.22 0.19 55
Thank 11.19 0.18 27
1 11.18 0.07 295
your 11.10 0.13 100
such 11.05 0.10 157
up 11.03 0.27 39
Knowledge 11.00 0.00 100
Write 11.00 0.00 100
long 11.00 0.27 26

32



Table A2: Llama 3.1 8B Instruct: Top 50 tokens with the lowest average number of TLCM activations.
For each token, we list the average number of times a TLCM activations occurs on the given token,
aggregated across 100 long documents. Finally, we list the standard deviation and the number of
occurrences of the token across the corpus to demonstrate the statistical significance.

Token Mean Activations Std err. of mean # occurrences
program 8.52 0.13 97
coding 8.50 0.24 26
report 8.49 0.28 35
guidelines 8.44 0.26 27
AT 8.42 0.19 57
home 8.41 0.27 34
efficiency 8.41 0.24 37
art 8.38 0.30 32
This 8.37 0.07 155
organizations 8.33 0.22 36
community 8.33 0.09 160

ization 8.23 0.27 39

*ok 8.22 0.06 601
media 8.22 0.22 60
regulations 8.22 0.19 51

-being 8.20 0.20 59
engagement 8.17 0.16 63
environmental 8.17 0.20 42

-based 8.15 0.23 40
sustainable 8.15 0.11 89
urban 8.14 0.14 70
learning 8.12 0.18 80
infrastructure 8.12 0.20 49
IoT 8.10 0.25 31
should 8.08 0.14 59
interactive 8.08 0.25 26
diversity 8.07 0.24 28
classical 8.07 0.24 30
challenges 8.07 0.13 92
cities 8.03 0.18 40
mindfulness 8.00 0.29 33
indigenous 8.00 0.17 27
agriculture 7.96 0.21 50
VR 7.93 0.26 29
workshops 7.93 0.25 28
By 7.92 0.11 77
therapy 7.89 0.24 37
trends 7.89 0.27 27
innovative 7.89 0.25 27
innovation 7.89 0.18 35
proposal 7.86 0.42 37
cognitive 7.85 0.22 26
inclusive 7.66 0.17 41
sustainability 7.63 0.23 35
tourism 7.52 0.23 27
Cities 7.33 0.22 27

ting 7.03 0.05 102
blog 6.50 0.55 28

system 3.00 0.00 100

<|begin_of_text|> 0.00 0.00 100
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Table A3: Gemma 2 2B Instruct: Top 50 tokens with the highest average number of TLCM activations.
For each token, we list the average number of times a TLCM activations occurs on the given token,
aggregated across 100 long documents. Finally, we list the standard deviation and the number of
occurrences of the token across the corpus to demonstrate the statistical significance.

Token Mean Activations Std err. of mean # occurrences
<space> 17.89 0.06 623
4 17.31 0.11 366
6 17.09 0.13 160
\t 16.56 0.26 68
2 16.56 0.06 1066
’ 16.48 0.14 242
] 16.39 0.13 218
<space><space> 16.36 0.09 657
7 16.17 0.32 35
<space><space><space><space> 16.00 0.27 57
% 15.63 0.29 57
3 15.61 0.08 424
\n 15.58 0.05 1289
5 15.43 0.12 183
- 15.42 0.08 840
0 15.32 0.06 627
1, 15.27 0.41 33
Thank 15.22 0.13 27
\n\n 15.16 0.06 1915
$ 15.09 0.25 55
such 15.06 0.13 157
1 15.02 0.13 434
Today 15.00 0.00 100
9 14.96 0.44 50
. 14.87 0.04 3713
Address 14.74 0.17 34
recent 14.61 0.29 33
" 14.59 0.30 49
). 14.57 0.28 49
Date 14.49 0.04 204
: 14.49 0.10 476
long 14.46 0.37 26
) 14.37 0.22 84
them 14.27 0.35 60
Date 14.17 0.18 30
[ 14.14 0.14 166
members 14.10 0.43 30
sense 13.97 0.30 30
( 13.90 0.17 195
modern 13.81 0.32 32
" 13.79 0.23 43
City 13.76 0.30 38
over 13.71 0.27 34
years 13.70 0.35 40
at 13.68 0.35 41
Name 13.66 0.14 100
countries 13.59 0.36 37
assistant 13.55 0.14 100
world 13.52 0.28 54
led 13.50 0.28 44
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Table A4: Gemma 2 2B Instruct: Top 50 tokens with the lowest average number of TLCM activations.
For each token, we list the average number of times a TLCM activations occurs on the given token,
aggregated across 100 long documents. Finally, we list the standard deviation and the number of
occurrences of the token across the corpus to demonstrate the statistical significance.

Token Mean Activations Std err. of mean # occurrences
sustainable 10.25 0.18 89
spaces 10.24 0.29 46
plan 10.23 0.39 39
EV 10.23 0.26 26
several 10.22 0.31 27
understanding 10.22 0.33 32
growing 10.21 0.24 38
online 10.21 0.17 43
reduced 10.19 0.28 26
learning 10.19 0.20 80
environmental 10.14 0.18 42
training 10.14 0.27 59
create 10.10 0.22 69
implementing  10.10 0.35 30
mental 10.09 0.21 53
AT 10.09 0.21 57
indigenous 10.07 0.29 27
local 10.07 0.16 110
significant 10.06 0.16 143
comprehensive 10.05 0.22 39
together 10.04 0.41 26
blog 10.00 0.07 28
address 10.00 0.33 41
innovative 9.96 0.29 27
promoting 9.94 0.24 47
post 9.94 0.22 31
develop 9.89 0.25 35
benefits 9.87 0.19 105
VR 9.86 0.28 29
community 9.83 0.17 160
awareness 9.80 0.41 30
prioritize 9.79 0.29 28
promote 9.74 0.15 102
progress 9.72 0.38 29
following 9.70 0.31 27
clear 9.69 0.33 26
concerns 9.67 0.32 48
approach 9.65 0.34 34
complex 9.61 0.27 38
By 9.58 0.17 77
challenges 9.53 0.25 92
improved 9.52 0.28 33
interactive 9.42 0.38 26
enhance 8.97 0.34 35
improve 8.91 0.20 70
explore 8.74 0.29 39
feedback 8.70 0.28 27
mitigate 7.88 0.37 26

Write 7.00 0.00 100

<bos> 1.00 0.00 100
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: We clearly state in the abstract and intro exactly what we were able to show
using our experiments. There is a section dedicated to everything we have written in our
paper.
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We discuss how we do not see this on a handful of model families and perform
some speculation why. In our appendix, we discuss some architectural causes for TLCM
(LayerNorm), but also discuss why this might not be true. In our Jacobian experiment, we
discuss that directions do not directly correspond to standard features, which limits the
strength of results only minorly. In other parts of our work, we caveat that we only see
these results strongly from layer 4 to 20; or we give the exact dataset or dataset size that we
compute across to give a sense for how strong the results are.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We have one result, and for that reason it is not numbered. Our result and
proof is short and is thus presented within the paper.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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Answer: [Yes]

Justification: We generally provide the most important information about reproducibility
within the text/content of the paper. However, for some experiments this is intractable, so
we include any missing details within the appendix.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: Our paper mostly consists of short, quick experiments and corresponding
matplotlib code that are run on models using HuggingFace transformers. We don’t feel it’s
necessary to release this code as it is reasonably quick to implement once you understand
any given experiment, although we are happy to do so if requested.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).
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* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification: These details do not apply to our experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For our main results on TLCM, we provide ample information about statistical
significance and dedicate a section of our appendix to it. For other experiments, the statistical
significance is implied by the high sample size we use, but no error bars or confidence
intervals are included.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
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8.

10.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: We did not include this information because the vast majority of our experi-
ments are not computationally intensive. The most computationally intensive experiment
required computing Jacobians of transformer layers, for which we used a single GPU; we
detail this in the appendix.

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: Nothing was harmed in the process of writing this paper. Additionally, we use
popular datasets that are publically available.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: We do not believe that there are direct societal impacts of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We do not believe our work poses such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We primarily use wikitext, which we cite. Additionally, we cite all models
discussed or used in the paper.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
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Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowd-sourcing.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs were only used for help with writing and editing.
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Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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