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Abstract

Data-Free Model Extraction (DFME) aims to clone a black-box model without
knowing its original training data distribution, making it much easier for attackers
to steal commercial models. Defense against DFME faces several challenges: (i)
effectiveness; (ii) efficiency; (iii) no prior on the attacker’s query data distribution
and strategy. However, existing defense methods: (1) are highly computation and
memory inefficient; or (2) need strong assumptions about attack data distribution;
or (3) can only delay the attack or prove a model theft after the model stealing has
happened. In this work, we propose a Memory and Computation efficient defense
approach, named MeCo, to prevent DFME from happening while maintaining the
model utility simultaneously by distributionally robust defensive training on the
target victim model. Specifically, we randomize the input so that it: (1) causes a
mismatch of the knowledge distillation loss for attackers; (2) disturbs the zeroth-
order gradient estimation; (3) changes the label prediction for the attack query data.
Therefore, the attacker can only extract misleading information from the black-box
model. Extensive experiments on defending against both decision-based and score-
based DFME demonstrate that MeCo can significantly reduce the effectiveness of
existing DFME methods and substantially improve running efficiency.

1 Introduction

Model extraction attack aims to replicate the functionality of a public API with only query access.
Most model extraction methods focus on data-based model extraction, i.e., an attacker can access a
small subset of the in-distribution training data [41], or a relevant surrogate dataset [36] of the target
model. Beyond data-based model extraction (DBME), recent promising results with data-free model
extraction (DFME) 2 show that the attacker can clone a model with performance close to that of the
target black-box model even without prior knowledge of the distribution of the proprietary training
data. Those DFME techniques make it much easier for attackers to steal the model without collecting
and annotating relevant training data. DFME can be further categorized into score-based DFME
[21, 51], where the target model provides softmax probability outputs to the users; and decision-based
DFME [54, 47], where the target model only provides the top-1 label. Thus, the model owners

1Corresponding author: Zhenyi Wang, Li Shen and Mingchen Gao
2The problem setting name, DFME, coincides with the method name in [51]. We use DFME to denote the

problem setting of model extraction without accessing the in-distribution training data, not a specific method.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



face a more critical problem - how to prevent those black-box pre-trained models from stealing
in the data-free setting while simultaneously guaranteeing a high-quality inference service? The
main challenges of defending against DFME are: (1) effectiveness requirement: the defender should
substantially reduce the clone model accuracy; (2) efficiency requirement: the defense procedure
should be memory and computation efficient; (3) lack of knowledge on the attackers: the attack query
data distribution and attack strategy are unknown to the defender.

Existing work on Model Extraction (ME) defense primarily focuses on data-based ME attacks. We
categorize the existing ME defense methods into pre-attack, delay-attack, and post-attack defenses.
Pre-attack defenses aim to prevent ME attack from happening. They either perturb the output
probabilities [38, 33] or integrate multiple models [22] or detect attack queries from benign queries
[23]. Delay-attack defenses aim to delay the ME attack instead of preventing it [10]. Post-attack
defenses neither prevent nor delay the ME; instead, they aim to prove a model theft [17, 18, 32]. Our
work falls under the pre-attack defense category since our goal is to prevent ME from happening.
However, existing pre-attack defense methods have limitations when applied to DFME: (1) output
perturbation-based methods perform optimization during deployment is computationally and memory
expensive; (2) ensemble-based methods are memory inefficient since they need to store multiple
models; (3) detection-based methods require strong assumptions about the query data distribution; the
attacker can easily make the attack queries indistinguishable from benign ones [59] and circumvent
the detection [28], rendering the defense ineffective; (4) some defense methods [33, 23, 22] require
the knowledge of the attack query data. However, this prior knowledge is unknown to the defender.

To address existing defense methods’ limitations, we propose a new and orthogonal class of defense
method, named Memory and Computation efficient defense (MeCo), through a randomized defense
strategy. Specifically, MeCo adds data-dependent random perturbation to the query input. MeCo
can effectively defend against DFME for several reasons. For score-based DFME: (i) it leads to a
mismatch of the knowledge distillation loss for attackers; (ii) existing DFME methods heavily rely
on zeroth-order gradient estimation. MeCo can disturb the zeroth-order gradient estimation so that
the attacker can only obtain its inaccurate estimation. For decision-based DFME, MeCo can change
the label prediction of attack query data. The attacker can only learn from incorrectly labeled data.

MeCo would reduce the target model utility on benign queries without additional mechanisms.
Maintaining the target model utility needs to : (i) minimally sacrifice the classification accuracy
on the test set, and (ii) minimize the perturbation magnitude of the output class probability. To
maintain the target model utility on benign queries, we propose a principled distributionally robust
optimization (DRO) framework to train the target model and perturbation generator. Our DRO
framework simulates the worst-case in-distribution (ID) test data from the training data (accessible for
the defender). Then, we apply the random perturbation to the simulated test data and train the target
model and perturbation generator on the simulated test data to ensure the worst-case generalization
on the ID test data. Compared to existing works, MeCo has numerous advantages, including (1)
MeCo is substantially more computation and memory efficient without complex optimization and
storing multiple models during deployment; (2) it avoids detecting attack queries from benign ones;
(3) does not need the knowledge of the attack query data distribution. More importantly, even if
attackers know our defense strategy and adopt an adaptive attack strategy, MeCo is still effective
since stealing a random function further increases the difficulty of ME thanks to the randomness
introduced in MeCo. Extensive experiments compared to various defense methods show that MeCo
significantly reduces the accuracy of the clone model across different query budgets.

In summary, our main contributions are three-fold:

• We propose a novel principled defensive training framework that substantially improves the memory
and computation efficiency during deployment to defend against DFME attacks.

• We propose a distributionally robust optimization (DRO) method to randomly perturb the inputs to
defend against DFME effectively while maintaining the model utility simultaneously.

• Extensive experiments on defending against both score-based and decision-based DFME show
the effectiveness of MeCo, reducing the clone model accuracy by up to 35%, while maintaining the
target model utility. Further, MeCo can also effectively defend against data-based ME and boost
its performance. More importantly, MeCo achieves substantially more computation and memory
efficiency than existing methods, e.g., 17× ∼ 172× speed up.
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2 Related Work

Data-Free Model Extraction (DFME). Model extraction (ME) attack aims to extract and clone the
functionality of the public API with only query access; representative works include [31, 9, 50, 53,
35, 36, 7, 63, 16, 40, 4, 60, 27]. Recently, ME has been extended to the data-free setting, named
DFME, which cannot access original training data. ZSDB3KD [54] and DFMS-HL [47] focus on the
decision-based setting, i.e., only the hard label (top-1 label) is predicted for the attacker. MAZE and
DFME [21, 51] are score-based methods, i.e., soft label (softmax output) is delivered to the attacker.

Model Extraction Defense. We categorize the model extraction defense methods into three cat-
egories: pre-attack defenses, delay-attack defenses, and post-attack defenses, according to when
the defense happens during an attack. (i) Pre-attack defenses aim to prevent the ME attack from
happening. There are three classes of methods: (1) output probabilities perturbation-based methods
[26, 38, 33]: Prediction poisoning (P-poison) [38] and GRAD [33] perform a complex optimization
during deployment; (2) ensemble-based methods: EDM [22] integrates multiple models for diverse
predictions. (3) detection-based methods: Adaptive misinformation [23], PRADA [19] and VarDetect
[39] detect the attack queries from the benign queries. However, those methods have limitations
when applied to DFME: (1) they [38, 33] significantly increase the computation and memory cost;
(2) they [23, 19, 39] have a high risk of incorrectly classifying attack or benign queries. The attacker
can easily evade the detection [28, 11], making the defense ineffective. (3) GRAD [33], Adaptive
misinformation [23], and EDM [22] need to know the prior knowledge and distribution of attack
query distribution, which is unknown to defenders in the data-free setting. Our method falls under this
pre-attack defense category and addresses their limitations from a novel and orthogonal perspective.
(ii) Delay-attack defenses aim to delay the ME attack instead of preventing the attack. Proof of
work (PoW) [10] delays model stealing by significantly increasing the computation cost of query
access for model extraction, e.g., solving a puzzle. Ours is fundamentally different from PoW in two
aspects: (1) PoW could not prevent model stealing if the users spend more time, computation cost,
money, etc. By contrast, our method is to prevent model stealing instead of delaying model stealing;
(2) PoW needs multiple teachers to evaluate the privacy leakage of queries [42]. Our method only
requires a single teacher; thus, ours is substantially more memory and computation efficient than
PoW. (iii) Post-attack defenses aim to prove a model theft after a pre-trained model has been stolen,
e.g., through watermark-based [1, 12] methods [17, 49], proof-of-learning [18] and dataset inference
[32]. However, the post-attack defenses only perform verification of model theft but cannot prevent
the model from being stolen. This requires a model owner to obtain access to the stolen model. If the
stolen model is not used as API, the defender cannot verify whether the model has been stolen.

Distributionally Robust Optimization (DRO) DRO is a flexible and powerful optimization frame-
work to make decisions under uncertainty [43, 55], where robustness is an important factor [62, 56].
DRO constructs a set of probability distributions, known as an ambiguity set, and then minimizes the
worst-case performance within the ambiguity set, thus guaranteeing the model performance. There
have been various machine learning applications of DRO, such as dealing with group-shift [45],
subpopulation shift [61], and long-tailed learning [57]. To the best of our knowledge, our work is the
first principled method with DRO for DFME defense.

3 Problem Setup and Preliminaries

3.1 Problem Setup

Data-Free Model Extraction (Attacker). In DFME, the attacker sends a query input x to the
target victim model T parameterized with θT and receives a prediction P (y|x) = T (x;θT ). For
the score-based setting [21, 51], the target model delivers the soft label (output class probabilities)
to the attacker. In the decision-based setting [54], the target model only delivers the hard label (the
top-1 class) prediction to the attacker. Following [54, 21, 51], we assume the following attacker
knowledge: (1) data-free: the attacker cannot access the original training data distribution of the
target victim model. The attacker typically employs synthetic out-of-distribution (OOD) data to query
the target model in an attempt to steal it. (2) black-box: the attacker does not know the architecture
and model parameters of the target model. Given a test dataset Dtest associated with the black-box
model, the attacker aims to train a compact clone model C with parameters θC that maximize the
testing accuracy.
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Defense against DFME (Defender). Following [38, 22], we assume the defender does not know: (1)
whether a query is malicious or benign; (2) the attack strategies adopted by an attacker; (3) the model
architecture used by an attacker. The goals of the defender are three-fold: (1) effective: minimize the
test accuracy that the attacker can achieve; (2) utility preserving: maintain the accuracy on benign
inputs and minimize the perturbation magnitude of the output probability; (3) efficient: the defense
procedure should be memory and computation efficient.

3.2 Preliminaries

Knowledge Distillation (KD). Existing DFME methods build on top of KD [5, 14, 44, 58, 24].
Assume we have a pre-trained teacher (target) model T with parameters θT , and a student (clone)
model C with parameters θC . Suppose the output probabilities of teacher and student for the input x
are T (x;θT ) and C(x;θC), respectively. The training objective of KD is as the following:

L(x, y) = Lc(x, y) + αKL(T (x;θT ), C(x;θC)), (1)

where Lc(x, y) is the cross-entropy loss, KL is the KL divergence between two probability distribu-
tions, and α is the weighting factor. In this work, we focus on defending against score-based and
decision-based DFME methods. Due to space limitations, we give a brief description of score-based
DFME while placing the details of decision-based DFME in Appendix 8.

Score-based DFME. The representative score-based DFME works are [51, 21]. We briefly describe
how they work. The attacker has a pseudo data generator G parameterized by θG with random vector
z as input. It generates pseudo data by x = G(z;θG), where z ∼ N(0, I). Then, the attacker sends
the query x to the target and clone model; they output class probabilities according to the generated
pseudo data, i.e., yT = T (x;θT ) and yC = C(x;θC). The attacker jointly optimizes the clone
model C and generator G as below:

LC = KL(yT ||yC), LG = −KL(yT ||yC) (2)

Since the target network is black-box, to backpropagate into the generator network weights, they
apply zeroth-order gradient [30] on the outputs of the generator, i.e.,

∇θGLG =
∂LG

∂θG
=

∂LG

∂x

∂x

∂θG
, where

∂LG

∂x
=

1

m

m∑
i=1

LG(x+ δµi)− LG(x)

δ
µi (3)

where µi is a random direction; m is the number of queries; δ is a small step size. The generator G
and the clone model C alternatively update their parameters by minimizing the loss LC and LG . The
attacker can obtain a clone model C(x;θC) after a certain number of training iterations.

4 Methodology

To defend against DFME, we propose a DRO defensive training strategy. We present the defense
method in Section 4.1. We then discuss the defensive training details and deployment algorithm in
Section 4.2. We illustrate how the proposed defense can defend against DFME in Section 4.3.

4.1 Distributionally Robust Defensive Training

The core techniques of the score-based DFME are two-fold: (1) using KD loss to match the target and
clone model outputs; (2) zeroth-order gradient estimation. On the other hand, decision-based DFME
mainly relies on the label prediction of the target model. We propose a random perturbation technique
to make the attacker estimate misleading information. However, adding random noise to the query
input strongly restricts the flexibility of random perturbation since it is difficult to maintain the model
utility while effectively defending against DFME simultaneously. Furthermore, the added randomness
to the input should be input-dependent since different inputs have different sensitivities to the neural
network decision boundary. We thus propose a flexible random perturbation generator to learn a
data-dependent random perturbation that can adaptively generate different perturbations for different
inputs while maintaining the performance on benign input. First, we denote the data-dependent
random perturbation generator as hω(x, ϵ) parameterized by parameters ω with query x and random
noise ϵ as input. The perturbation generator is a two-block ResNet with filter 64. It only accounts
for a tiny proportion of the target model. We explain our intuition in Figure 1. Our method builds
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Perturbation  
generator

Query

z ∼ N(0, I)
Perturbed query

(a) Data-dependent perturbation

Positive query

Attack query

Perturbation

Decision boundary

Negative query

Perturbed data

(b) Shift of data points

Benign query:

Attack query:

w/o perturbation w/ perturbation

(c) Change of class probability with
our defense method

Figure 1: Illustration of our defense method. (a) The perturbation generator takes the input image and random
Gaussian noise as input to generate data-dependent perturbation, which is added to the original data to disturb
model extraction. (b) According to [54], the attack queries are closer to the decision boundary than the benign
(positive and negative) queries. All queries with added perturbation become even closer to the decision boundary,
causing some attack queries to invert labels while leaving the labels of benign queries unaffected. (c) The
perturbation generator generates large perturbation on attack queries so that the output class probabilities are
perturbed more significantly (top-1 label may change). In contrast, the outputs on benign queries are only
perturbed slightly due to the DRO defensive training.

(a) (b) (c)
Figure 2: Illustration of our proposed defense mechanisms. (a) Using query inputs without any input perturbation
results in favorable model utility but could not defend against model extraction attack. (b) The red region
represents the distribution of benign query data. Applying input perturbation to every input yields excellent
defense performance but compromises model utility. (c) The red region illustrates the distribution of benign query
data. Distributionally robust optimization (DRO) ensures model utility by minimizing loss on the worst-case
perturbed training data (simulation of test data), leading to significantly smaller perturbation magnitudes on
benign inputs compared to training without DRO. Beyond the distribution of benign query data distribution
(attack queries), DRO isn’t employed, leading to arbitrary perturbation magnitudes on those inputs and strong
defense against DFME.

on the intuition [54] that the attack query is closer to the decision boundary, while the benign query
is farther away from the decision boundary in the DFME setting. We add random perturbation to
the query input so that the attack query is closer to or crosses the decision boundary. Their output
probabilities from the target model will be perturbed more significantly in the score-based setting.
Their labels are more likely to be flipped in the decision-based setting. In contrast, benign queries are
far from the decision boundary, thus not influencing benign queries much.

Training data Simulated testing data

DRO

Figure 3: The proposed DRO framework perturbs
original training data distribution to simulate worst-
case test data distributions considering the high
uncertainty of test data distribution represented by
the blue and orange color on the right figure.

Simply adding the proposed data-dependent random
perturbation to the query inputs would reduce the
model utility. We propose a Distributionally Robust
Optimization (DRO) framework to train the target
model and perturbation generator to maintain the
target model utility, i.e., (i) minimally sacrifice the
classification accuracy on the test set, and (ii) mini-
mize the perturbation magnitude of the output class
probabilities. In addition, as depicted in Figure 2, we
conducted a comparative analysis of three scenarios:
one without random input perturbation, another with
random input perturbation, and the third involving
DRO defensive training. Our DRO defensive train-
ing exhibits a dual capability in effectively defending
against DFME while maintaining the model utility.

Since the test data distribution is unknown during deployment, we propose a flexible framework
with DRO to optimize under uncertainty [43]. DRO constructs an ambiguity set of probability
distributions and optimizes the worst-case performance within the ambiguity set, thus guaranteeing

5



the performance. Our framework takes that the underlying probability distribution of test data µ is
unknown and lies in an ambiguity set of probability distributions around the training data distribution
µ0. The proposed DRO framework perturbs the training data distribution to simulate the test data
distribution, illustrated in Figure 3. It optimizes the worst-case performance in the ambiguity set
to guarantee the model utility after adding random perturbation. We formulate the proposed DRO
framework in the probability measure (distributions or densities) space :

min
θT , ω

sup
µ∈P

Ex∼µL(θT ,x+ hω(x, ϵ), y) (4)

s.t. P = {µ : KL(µ||µ0) ≤ β} (5)
Ex∼µ||T (x+ hω(x, ϵ))− T (x)||1 ≤ τ, (6)

where the inner sup optimization in Eq. (4) is to compute and simulate the worst-case test data
distribution (denoted as π) around the training data distribution (denoted as µ0). π is defined as the
probability distribution that achieves supµ∈P Ex∼µL(θT ,x + hω(x, ϵ), y). P in Eq. (5) denotes
the ambiguity set of probability measures for the test data distribution to characterize its uncertainty.
One common choice to define P is through KL divergence. KL(µ||µ0) denotes the KL divergence
between probability measure µ0 and µ. β is a constant to characterize the closeness between µ0

and µ to ensure the worst-case test data distribution π does not deviate from the raw training data
distribution µ0 much. Eq. (6) ensures that model utility (output class probabilities, i.e., T (x))
does not change much after adding random perturbation, i.e., T (x + hω(x, ϵ)). The probability
perturbation magnitude is measured by l1 norm, i.e., || · ||1. It is crucial to guarantee target model
output class probabilities after query perturbation close to that of without query perturbation since
benign users need these informative probabilities to derive helpful knowledge [33]. τ is a constant.

To solve the above optimization problem, we convert Eq. (4-6) into the following unconstrained
optimization problem by Lagrange duality [6] (detailed derivations are put in Appendix 11.1):

min
θT , ω

sup
µ

[Ex∼µ L(θT ,x+ hω(x, ϵ), y)−KL(µ||µ0)] + γEx∼µ||T (x+ hω(x, ϵ))− T (x)||1 (7)

The constant γ controls the regularization magnitude for model utility. The KL-divergence KL(µ||µ0)
is handled by Wasserstein gradient flow (WGF) (presented in the following sections), therefore for
simplicity, the regularization weight for it is set to 1.0 throughout the paper. We name Eq. (7) as
Defense DRO. The optimization in Eq. (7) is still challenging to solve as the inner sup optimization
is over probability measure space, which is an infinite-dimensional function space.

Solution to the Defense DRO. To make the solution of the Defense DRO (Eq. (7)) tractable, we
reformulate it from a new continuous dynamics perspective. To achieve this goal, we first define the
energy functional F (µ) as follows:

F (µ) = V (µ) +KL(µ||π) (8)
where V (µ) = −Ex∼µ L(θT ,x+ hω(x, ϵ), y). By defining such energy functional F (µ), the Eq.
(7) can be equivalently formulated by the following gradient flow system Eq. (9, 10):

∂tµt = ∇W2F (µt) := div
(
µt∇ δF

δµ (µt)
)

; (9)

dθT
dt

= −∇θT
[Ex∼µt

L(θT ,x+ hω(x, ϵ), y) +γEx∼µt
||T (x+ hω(x, ϵ))− T (x)||1], (10)

where Eq. (9) solves the inner sup problem in Eq. (7) with WGF in Wasserstein space (Details
provided in Appendix 11.2) and Eq. (10) solves the outer minimization problem in Eq. (7) for
parameter update with gradient flow in Euclidean space. Below, we propose a method for efficiently
solving the Eq. (9). We view each training data as one particle and arrive at the following test data
distribution simulation solution (solution to Eq. (9)) (Details are provided in Appendix 11.2):

xi
t+1 − xi

t = − α

N

j=N∑
j=1

[k(xi
t,x

j
t)∇x

j
t
U(xj

t ,θT ) +∇
x
j
t
k(xi

t,x
j
t)] (11)

where xi
t denotes the ith training data xi perturbed at time t; α is the data transformation rate.

U(x,θT ) = −L(θT ,x,y). k(xi,xj) is the Gaussian kernel, i.e., k(xi,xj) = exp(− (xi−xj)
2

2σ2 ). The
first term in the RHS of Eq. (11) moves the training data towards the worst-case simulated test
data distribution by raising the energy functional. The data distribution change is controlled by
the sum of gradients from the mini-batch of the training data, which are weighted by the kernel
function k(xi

t,x
j
t ), smoothing the gradients of training data. The second term (kernel gradient) acts

as a repelling force that keeps the transformed data from concentrating on a single data point, thus
diversifying the simulated test data.
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4.2 End-to-end Defensive Training for DFME

We summarize the defensive training algorithm in Algorithm 1. Line 3-4 simulates the worst-case
test data distribution. Line 5-8 adds data-dependent random perturbation to the simulated test data
and trains the target model and perturbation generator on the simulated test data.

MeCo Deployment. During testing, we perform similar perturbation for each query. Given any query
input x, yp = TθT

(x+ hω(x, ϵ)); ϵ ∼ N(0, I). Then, return the results yp to the user.

Algorithm 1 MeCo Training.
1: REQUIRE: Target model T with parameters θT ; data-dependent perturbation generator hω with parameters

ω; target model learning rate η; Q is the number of test data simulation steps; Dtr is the training dataset.
2: for k = 1 to M do {M is the number of training iterations}
3: randomly sample a new mini-batch data (x, y) from Dtr

4: perturb mini-batch data to be (xQ, y) Q steps by Eq. (11).
5: add random perturbation to (xQ, y) to be (xQ + hω(xQ, ϵ), y)
6: calculate the loss g(θT ,ω) = L(θk

T ,xQ + hω(xQ, ϵ), y) + γ||T (x+ hω(x, ϵ))− T (x)||1
7: train the target model by θk+1

T = θk
T − η∇θT [g(θT ,ω)]

8: train the perturbation generator by ωk+1 = ωk − η∇ω[g(θT ,ω)]
9: end for

4.3 Why Can MeCo Defend against DFME

Below, we give explanations on why Algorithm 1 could intrinsically defend against both score-based
and decision-based DFME from the perspective: (1) mismatch the KD loss for the attacker; (2)
disturb the zeroth-order gradient estimation; (3) change the label prediction on attack query.

Mismatch the KD learning objective. The KL-divergence loss Eq. (1) is critical to match the proba-
bility output between the target and clone model. By adding data-dependent random perturbation, we
can encourage the mismatch of the KD loss between the target model and clone model, i.e.,

KL(T (x+ hω(x, ϵ);θT ), C(x;θC)) (12)

The mismatch would mislead the attacker to learn in the wrong direction since they think that
T (x+ hω(x, ϵ);θT ) is the desired output for x but should be T (x,θT ), as illustrated in Figure 1.

Disturb the zeroth-order gradient estimation. By adding data-dependent random perturbation, the
zeroth-order gradient estimation of score-based DFME (∂LG

∂x in Eq. (3)) becomes:

∂LG

∂x
=

1

m

m∑
i=1

LG(x+ δµi + v1
i )− LG(x+ v2

i )

δ
µi, (13)

where v1
i and v2

i are two data-dependent perturbations correspond to the two model inputs x+ δµi

and x, respectively. Compared with Eq. (3), Eq. (13) would make inaccurate gradient estimation
by changing the gradient estimation direction due to the inconsistent random perturbation added
to different inputs. Consequently, this would lead the gradient of the pseudo data generator in the
wrong direction, i.e., ∇θG

LG in Eq. (3) would be inaccurate. Then, the generator would not generate
informative samples. The uninformative pseudo samples would cause the clone model Eq. (2) to
learn incorrect information.

Therefore, by jointly (i) mismatching the KD loss for the attacker; (ii) disturbing the zeroth-order
gradient estimation, MeCo can effectively defend against DFME. In summary, MeCo has many
advantages compared to existing methods since it does not need to: (1) solve a complex optimization
during testing; (2) store multiple models for ensemble; (3) detect the attack query from the benign
query; (4) know the attack query data distribution. Due to the space limitations, we additionally show
why MeCo can defend against decision-based DFME methods by changing the label prediction on
attack query in Appendix 8.

Theoretical Analysis In this section, we delve into the theoretical analysis of our proposed method.
We assess the effectiveness of our approach by analyzing it from the perspective of gradient-bias
injection [2]. As depicted in Figure 4, our method progressively introduces perturbations into the
gradients calculated by the attacker. This process increases the optimization error that accumulates
during the model-stealing process, rendering it more challenging for the attacker to successfully
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(a) (b)

Figure 4: Theoretical explanations illustration: (a) We showcase the optimization trajectory employing the
ground truth loss function that the attacker should ideally adopt (it remains inaccessible to the attacker owing
to the unknown input perturbation generator). The cloned model converges toward the globally optimal stolen
model, effectively emulating the target victim model. (b) Contrastingly, we depict the optimization trajectory
utilizing a noisy and imprecise loss function, which is the actual choice of the attacker. The introduction of
gradient bias due to the stochastic input perturbation generator causes the cloned model to deviate from the
optimal stolen model, leading to ineffective model theft.

extract the target model. For a more comprehensive understanding, we have provided detailed
theoretical analysis in the Appendix due to space constraints.

5 Experiments

5.1 Experimental Setup

Table 1: Clone model accuracy after applying defense meth-
ods on CIFAR-10 and CIFAR-100 with ResNet34-8x as the
target model, which provides soft label
Attack Defense CIFAR10 Clone Model Architecture

ResNet18-8X MobileNetV2 DenseNet121

undefended ↓ 87.36± 0.78% 75.23± 1.53% 73.89± 1.29%

DFME
RandP ↓ 84.28± 1.37% 70.56± 2.23% 70.03± 2.38%
P-poison ↓ 78.06± 1.73% 66.32± 1.36% 68.75± 1.40%
GRAD ↓ 79.33± 1.68% 65.82± 1.67% 69.06± 1.57%
MeCo ↓ 51.68 ± 1.96% 46.53 ± 2.09% 61.38 ± 2.41%
undefended ↓ 45.17± 0.73% 23.28± 1.67% 20.03± 1.79%

MAZE
RandP ↓ 28.76± 2.38% 22.03± 1.50% 18.79± 1.38%
P-poison ↓ 26.81± 2.19% 20.89± 1.58% 17.08 ± 2.28%
GRAD ↓ 26.06± 1.81% 21.18± 1.58% 18.09± 1.72%
MeCo ↓ 21.89 ± 2.07% 18.75 ± 2.11% 17.95± 1.46%

Attack Defense CIFAR100 Clone Model Architecture

ResNet18-8X MobileNetV2 DenseNet121

undefended ↓ 58.72± 2.82% 28.36± 1.97% 27.28± 2.08%

DFME
RandP ↓ 41.69± 2.91% 22.75± 2.19% 23.61± 2.70%
P-poison ↓ 38.72± 3.06% 20.87± 2.61% 21.89± 2.93%
GRAD ↓ 39.07± 2.72% 20.71± 2.80% 22.08± 2.78%
MeCo ↓ 29.57 ± 1.97% 12.18 ± 1.05% 10.79 ± 1.36%

MAZE – – –

Datasets. We perform experiments on four
standard datasets used in DFME literature,
including MNIST, CIFAR10, CIFAR100
[25] and MiniImageNet [52] (100 classes).

Baselines. We compare SOTA DFME and
defense baselines. Attack Baselines: (1)
decision-based DFME methods: DFMS-HL
[47]. We do not compare to ZSDB3KD [51]
since it requires a much larger number of
queries and is very slow. (2) score-based
DFME methods: MAZE [21] and DFME
[51]. Defense Baselines: we compare to: (1)
Undefended: the target model without using
any defense strategy; (2) Random Perturb
(RandP) [38]: randomly perturb the output
probabilities. (3) P-poison [38]; (4) GRAD
[33]: gradient redirection defense. We set a
large l1 perturbation budget equal to 1.0 for
those defense baselines in the experiments
to generate strong defense. That is, ||y − ŷ||1 ≤ 1.0; where y and ŷ are the unmodified/modified
output probabilities, respectively. We put more baseline details in Appendix 10.

Implementation Details. The random perturbation generator is a two-block ResNet structure
with a filter size of 64, which is a small network compared to the backbone (only accounts for a
tiny proportion of the backbone). For decision-based DFME methods, following [47], we use a
query budget of 10M for CIFAR100 and 8M for CIFAR-10. For score-based DFME methods,
following [51], we set the number of queries to be 2M for MNIST, 20M for CIFAR10, and 200M for
CIFAR100, respectively. We perform each experiment for 5 runs with a mean and standard deviation
of results. We provide more implementation details in Appendix 7.

5.2 Results of Defense against DFME

Clone model accuracy. For score-based DFME setting (soft label), we show the results on CIFAR10
and CIFAR100 in Table 1. For decision-based DFME setting (hard label), we show the results in
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Table 2: Clone model accuracy after applying different defense methods on CIFAR-10 and CIFAR-100 with
ResNet34-8x as the target model, which only provides hard label

Attack Defense CIFAR10 Clone Model Architecture CIFAR100 Clone Model Architecture

ResNet18-8X MobileNetV2 DenseNet121 ResNet18-8X MobileNetV2 DenseNet121

undefended ↓ 84.67± 1.90% 79.28± 1.87% 68.87± 2.08% 72.57± 1.28% 62.71± 1.68% 63.58± 1.79%

DFMS-HL RandP ↓ 84.02± 2.31% 78.71± 1.93% 68.16± 2.23% 72.43± 1.43% 62.06± 1.82% 63.16± 1.73%
P-poison ↓ 84.06± 1.87% 79.02± 1.96% 68.05± 2.17% 71.83± 1.32% 61.83± 1.79% 62.73± 1.91%
GRAD ↓ 84.28± 1.95% 78.83± 1.91% 68.11± 1.93% 71.89± 1.37% 62.60± 1.71% 62.57± 1.80%
MeCo ↓ 76.86 ± 2.09% 71.22 ± 1.87% 62.33 ± 2.01% 59.30 ± 1.70% 55.32 ± 1.65% 56.80 ± 1.86%

Table 3: Target model utility (test accuracy and l1 norm of the output probabilities perturbation magnitude)

Method MNIST CIFAR10 CIFAR100

ACC ↑ l1 norm ↓ ACC↑ l1 norm ↓ ACC↑ l1 norm ↓
undefended 98.91± 0.16% 0.0 94.91± 0.37% 0.0 76.71± 1.25% 0.0
RandP 98.52± 0.19% 1.0 93.98± 0.28% 1.0 75.23± 1.39% 1.0
P-poison 98.87 ± 0.35% 1.0 94.58± 0.61% 1.0 75.42± 1.21% 1.0
GRAD 98.73± 0.31% 1.0 94.65 ± 0.67% 1.0 75.60 ± 1.45% 1.0
MeCo 98.63± 0.28% 0.0126 94.17± 0.56% 0.099 75.36± 0.68% 0.312

Table 2. Due to the space limitations, we present the results on MiniImageNet and MNIST in Table 8
and 7 in Appendix. ↓ indicates the accuracy the lower, the better; ↑ indicates the accuracy the higher,
the better. For CIFAR10/CIFAR100 in Table 1, we use ResNet34 [13] as the target model. The clone
model architecture includes, ResNet-18, MobileNetV2 [46], DenseNet121 [15]. We further change
the target model architecture as GoogLeNet [48] for CIFAR10 in Table 9 in Appendix.

The results show MeCo significantly reduces the effectiveness of existing DFME methods by up
to 35% and is substantially more effective than the compared methods since (1) RandP lacks data-
dependent information; it maintains the utility for almost all the query data, which is unnecessary
for attack queries since the attacker can still learn useful information. (2) P-poison needs a random
initialized surrogate attacker model, which acts as an adversary model. (3) GRAD needs to know
the attack query set to train the surrogate model. Those surrogates have large gaps compared to the
DFME attacker model. Those methods thus perform poorly since the attack query data distribution
and model are unknown to the defender. While MeCo does not need a surrogate model.

Target model utility. We evaluate the target model utility by (1) target model test accuracy after
adopting the defense strategy; (2) l1 norm between the target model output probabilities with and
without input perturbation averaged on the test dataset, i.e., Ex∼Dtest

||T (x+ hω(x, ϵ))− T (x)||1.
The results (see Table 3 (MNIST with LeNet, CIFAR10 and CIFAR100 with ResNet34-8x)) indicate
that MeCo maintains the target model utility with a slight trade-off of benign accuracy but with
much better preservation of output probabilities in terms of l1 norm. The baselines have large
perturbations because the baseline defense methods perturb all the query data with the same magnitude
(l1 perturbation budget of 1.0); this is unnecessary since the in-distribution benign query does not
need such significant perturbation. In contrast, MeCo explicitly optimizes the l1 norm of perturbation
with DRO on the simulated test data distribution so that the perturbation magnitude is much smaller.

5.3 Application on Data-Based ME (DBME) Attack

We apply MeCo to defend against traditional DBME methods with Knockoff Nets [37] and Jacobian-
Based Dataset Augmentation (JBDA) [41]. We present the results in Appendix 9.1. MeCo can
significantly outperform existing methods and further reduce the clone model accuracy. When
the distribution of attack query data is closer to the training data distribution of the target model,
the effectiveness of MeCo defense weakens. This is due to the fact that MeCo applies smaller
perturbations to the data distribution similar to the training data of the target model as a result of
defensive training.

5.4 Adaptive Attacks

We further analyze the robustness of MeCo against the attacker’s countermeasures. Namely, we
consider the situations where attackers know about our defense and have tailored the attacks to
our defense method by adding data-dependent random perturbation to the query inputs to learn
an additional random perturbation generator. In Table 4, MeCo is still effective since the random
perturbation added by the defender and attacker are different due to randomness. There is still a
mismatch in the KD loss and zeroth-order gradient estimation for the attacker. Interestingly, the
performance of the clone model becomes even worse after the attacker performs an adaptive attack.
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We believe this is because after the attacker adds the random perturbation, they will need to learn a
random function, increasing the difficulty of model extraction. In addition, for score-based DFME,
following [38, 33], we also compare to the adaptive attack method where attackers use only hard
label, not probability outputs. We show the results in Table 5. MeCo is still very effective since the
pseudo samples are nearer to the decision boundary, and perturbing the input would easily change the
model outputs on those samples. Consequently, the attacker still cannot learn useful information.

5.5 Ablation Study

Table 4: Clone model accuracy after applying adaptive attack
on CIFAR10 with ResNet34-8x as the target model

Attack Defense Clone Model Architecture

ResNet18-8X MobileNetV2 DenseNet121

undefended ↓ 87.36± 0.78% 75.23± 1.53% 73.89± 1.29%

DFME MeCo ↓ 51.68± 1.96% 46.53± 2.09% 61.38± 2.41%
MeCo, adaptive ↓ 25.79 ± 0.81% 20.18 ± 1.17% 22.32 ± 1.82%
undefended ↓ 45.17± 0.73% 23.28± 1.67% 20.03± 1.79%

MAZE MeCo ↓ 21.89± 2.07% 18.75± 2.11% 16.31 ± 1.76%
MeCo adaptive ↓ 19.82 ± 2.03% 18.27 ± 2.23% 17.08± 2.28%

Table 5: Clone model accuracy that attacker only uses hard
label instead of output probabilities on CIFAR10
Attack Defense Clone Model Architecture

ResNet18-8X MobileNetV2 DenseNet121

undefended ↓ 87.36± 0.78% 75.23± 1.53% 73.89± 1.29%

DFME MeCo, soft label ↓ 51.68± 1.96% 46.53± 2.09% 61.38± 2.41%
MeCo, hard label ↓ 41.23 ± 0.58% 38.67 ± 0.97% 42.31 ± 1.78%

Effect of DRO. We evaluate how much
improvement DRO can bring to the model
utility preservation in Table 12 in Ap-
pendix. We can observe that with DRO,
our method significantly improves the
model utility by 5.3%− 5.6% compared
to the one without DRO training.

Effect of different query budgets for
attacker. To evaluate the effect of dif-
ferent query budgets on defense perfor-
mance, we evaluate the clone model ac-
curacy with varying defense methods on
CIFAR10 in Figure 5 in Appendix. MeCo
substantially outperforms various base-
lines with varying query budgets.

Hyperparameter Sensitivity. We evaluate the hyperparameter sensitivity for γ and Q in Table 10
and Table 11 in Appendix. We observe that model utility increases as γ increases with a trade-off of
a decrease in defense performance. Results show that Q = 2 performs the best. With the increase of
Q, the simulated test data may be harder to learn; thus, the benign accuracy slightly decreases.

Test time speed and memory comparisons. We compare the running time of best-performing
methods in Table 13 in Appendix. MeCo achieves 17 ∼ 172× speed up on CIFAR10 and CIFAR100.
This is because P-poison and GRAD solve computationally expensive optimization during testing. In
contrast, MeCo does not need this optimization. We provide the results in Table 14 in Appendix for
memory consumption evaluation. MeCo is very memory efficient compared to baselines.

Training efficiency. We compare our training efficiency to baselines in Table 15 in Appendix. MeCo
increases the training cost by 1.3×. However, MeCo substantially improves the test time running
efficiency. We believe this slightly additional computation cost is worth it.

6 Conclusion

In this paper, we explore the defense against DFME. We propose a memory and computation efficient
(MeCo) defense method through distributionally robust defensive training by adding a data-dependent
random perturbation generator to perturb the input data so that the attacker cannot steal useful
information from the black-box model. At the same time, MeCo maintains the target model utility.
Extensive experiments demonstrate MeCo’s effectiveness, computation, and memory efficiency.

Limitations and Broader Impacts. Our proposed defensive training helps build safe and trustworthy
AI systems. This would be beneficial for protecting current large-scale pre-trained models used in the
public APIs since they spend lots of money and time to tune and deploy those valuable large-scale
models. However, sharing models and insights is a key driver of progress in the AI research field, and
if the community becomes more protective of their models, it could slow down advancements.
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