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Abstract

While standard recurrent neural networks explicitly impose a chain structure on
different forms of data, they do not have an explicit bias towards recursive self-
instantiation where the extent of recursion is dynamic. Given diverse and even
growing data modalities (e.g., logic, algorithmic input and output, music, code,
images, and language) that can be expressed in sequences and may benefit from
more architectural flexibility, we propose the self-instantiated recurrent unit (Self-
IRU) with a novel inductive bias towards dynamic soft recursion. On one hand, the
Self-IRU is characterized by recursive self-instantiation via its gating functions,
i.e., gating mechanisms of the Self-IRU are controlled by instances of the Self-IRU
itself, which are repeatedly invoked in a recursive fashion. On the other hand, the
extent of the Self-IRU recursion is controlled by gates whose values are between
0 and 1 and may vary across the temporal dimension of sequences, enabling
dynamic soft recursion depth at each time step. The architectural flexibility and
effectiveness of our proposed approach are demonstrated across multiple data
modalities. For example, the Self-IRU achieves state-of-the-art performance on
the logical inference dataset [Bowman et al., 2014] even when comparing with
competitive models that have access to ground-truth syntactic information.

1 Introduction

Models based on the notion of recurrence have enjoyed pervasive impact across various applica-
tions. In particular, most effective recurrent neural networks (RNNs) operate with gating functions.
Such gating functions not only ameliorate vanishing gradient issues when modeling and capturing
long-range dependencies, but also benefit from fine-grained control over temporal composition for
sequences [Hochreiter and Schmidhuber, 1997, Cho et al., 2014].

With diverse and even growing data modalities (e.g., logic, algorithmic input and output, music, code,
images, and language) that can be expressed in sequences and may benefit from more architectural
flexibility, recurrent neural networks that only explicitly impose a chain structure on such data but
lack an explicit bias towards recursive self-instantiation may be limiting. For example, their gating
functions are typically static across the temporal dimension of sequences. In view of such, this paper
aims at studying an inductive bias towards recursive self-instantiation where the extent of recursion is
dynamic at different time steps.

We propose a novel recurrent unit whose gating functions are repeatedly controlled by instances of
the recurrent unit itself. Our proposed model is called the self-instantiated recurrent unit (Self-IRU),
where self-instantiation indicates modeling via the own instances of the model itself in a recursive
fashion. Specifically, two gates of the Self-IRU are controlled by Self-IRU instances. Biologically,
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this design is motivated by the prefrontal cortex/basal ganglia working memory indirection [Kriete
et al., 2013]. For example, a child Self-IRU instance drives the gating for outputting from its parent
Self-IRU instance.

Our proposed Self-IRU is also characterized by the dynamically controlled recursion depths. Specif-
ically, we design a dynamic soft recursion mechanism, which softly learns the depth of recursive
self-instantiation on a per-time-step basis. More concretely, certain gates are reserved to control the
extent of the Self-IRU recursion. Since values of these gates are between 0 and 1 and may vary across
the temporal dimension, they make dynamic soft recursion depth at each time step possible, which
could lead to more architectural flexibility across diverse data modalities.

This design of the Self-IRU is mainly inspired by the adaptive computation time (ACT) [Graves,
2016] that learns the number of computational steps between an input and an output and recursive
neural networks that operate on directed acyclic graphs. On one hand, the Self-IRU is reminiscent
of the ACT, albeit operated at the parameter level. While seemingly similar, the Self-IRU and ACT
are very different in the context of what the objective is. Specifically, the goal of the Self-IRU is to
dynamically expand the parameters of the model, not dynamically decide how long to deliberate on
input tokens in a sequence. On the other hand, the Self-IRU marries the benefit of recursive reasoning
with recurrent models. However, in contrast to recursive neural networks, the Self-IRU is neither
concerned with syntax-guided composition [Tai et al., 2015, Socher et al., 2013, Dyer et al., 2016,
Wang and Pan, 2020] nor unsupervised grammar induction [Shen et al., 2017, Choi et al., 2018,
Yogatama et al., 2016, Havrylov et al., 2019].

Our Contributions All in all, sequences are fundamentally native to the world, so the design of
effective inductive biases for data in this form has far-reaching benefits across a diverse range of
real-world applications. Our main contributions are outlined below:

• We propose the self-instantiated recurrent unit (Self-IRU). It is distinctly characterized by a
novel inductive bias towards modeling via the own instances of the unit itself in a recursive
fashion, where the extent of recursion is dynamically learned across the temporal dimension
of sequences.

• We evaluate the Self-IRU on a wide spectrum of sequence modeling tasks across multiple
modalities: logical inference, sorting, tree traversal, music modeling, semantic parsing, code
generation, and pixel-wise sequential image classification. Overall, the empirical results
demonstrate architectural flexibility and effectiveness of the Self-IRU. For example, the
Self-IRU achieves state-of-the-art performance on the logical inference dataset [Bowman
et al., 2014] even when comparing with competitive models that have access to ground-truth
syntactic information.

Notation For readability, all vectors and matrices are denoted by lowercase and uppercase bold
letters such as x and X, respectively. When a scalar is added to a vector, the addition is applied
element-wise [Zhang et al., 2021].

2 Method

This section introduces the proposed Self-IRU. The Self-IRU is fundamentally a recurrent model, but
distinguishes itself in that the gating functions that control compositions over time are recursively
modeled by instances of the Self-IRU itself, where the extent of recursion is dynamic. In the following,
we begin with the model architecture that can recursively self-instantiate. Then we detail its key
components such as how dynamic soft recursion is enabled.

2.1 Self-Instantiation

Given an input sequence of tokens x1, . . . ,xT , the Self-IRU transforms them into hidden states
throughout all the time steps: h1, . . . ,hT . Denoting by L the user-specified maximum recursion
depth, the hidden state at time step t is

ht = Self-IRU(L)(xt,h
(L)
t−1),
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Figure 1: The self-instantiated recurrent unit (Self-IRU) model architecture. Circles represent gates
that control information flow from dotted lines, and squares represent transformations or operators.

where Self-IRU(L) is an instance of the Self-IRU model at recursion depth L and h
(L)
t−1 is a hidden

state at time step t− 1 and recursion depth L. In general, a Self-IRU instance at any recursion depth
0 ≤ l ≤ L returns a hidden state for that depth:

Self-IRU(l)(xt,h
(l)
t−1) = h

(l)
t ,

which involves the following computation:

f
(l)
t = σ

(
α
(n)
t Self-IRU(l−1)(xt,h

(l−1)
t−1 ) + (1− α(n)

t )F
(l)
f (xt,h

(l)
t−1)

)
(2.1)

o
(l)
t = σ

(
β
(n)
t Self-IRU(l−1)(xt,h

(l−1)
t−1 ) + (1− β(n)

t )F (l)
o (xt,h

(l)
t−1)

)
(2.2)

z
(l)
t = tanh

(
F (l)
z (xt,h

(l)
t−1)

)
(2.3)

c
(l)
t = f

(l)
t � c

(l)
t−1 + (1− f

(l)
t )� z

(l)
t (2.4)

h
(l)
t = o

(l)
t � c

(l)
t + xt, (2.5)

where � denotes the element-wise multiplication, σ denotes the sigmoid function, scalars α(n)
t and

β
(n)
t are soft depth gates at time step t and recursion node n in the unrolled recursion paths, and F (l)

f ,

F
(l)
o , and F (l)

z are base transformations at recursion depth l. Without losing sight of the big picture,
we will provide more details of such soft depth gates and base transformations later.

On a high level, Figure 1 depicts the Self-IRU model architecture. We highlight that two gating
functions of a Self-IRU, the forget gate f

(l)
t in (2.1) and the output gate o

(l)
t in (2.2), are recursively

controlled by instances of the Self-IRU itself. Therefore, we call both the forget and output gates the
self-instantiation gates. The base case (l = 0) for self-instantiation gates is

f
(0)
t = σ

(
F

(0)
f (xt,h

(0)
t−1)

)
and o

(0)
t = σ

(
F (0)
o (xt,h

(0)
t−1)

)
.

At each recursion depth l, the candidate memory cell z(l)t at time step t is computed in (2.3). Then
in (2.4), the forget gate f

(l)
t controls the information flow from z

(l)
t and the memory cell c(l)t−1 at the

previous time step to produce the memory cell c(l)t at the current time step t. As illustrated by the
bottom arrow starting from xt in Figure 1, the output gating in (2.5) also adds a skip connection
from residual networks to facilitate gradient flow throughout the recursive self-instantiation of the
Self-IRU [He et al., 2016].

2.2 Dynamic Soft Recursion

Now let us detail the soft depth gates α(n)
t and β(n)

t in (2.1) and (2.2) for time step t and recursion
node n in the unrolled recursion paths. The index n is used to distinguish nodes at different positions
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Figure 2: Soft depth gates α(n)
t and β(n)

t for time step t and recursion node n (denoting F and R as
the left child and the right child, respectively) control the extent of the Self-IRU recursion. The extent
is indicated by greyscale of any node at the beginning of an arrow along an unrolled recursion path.
These gates are between 0 and 1 and may vary across the temporal dimension, enabling dynamic soft
recursion depth at each time step (here maximum depth L = 2).

in the recursion tree (e.g., in Figure 2) that is determined by the maximum recursion depth L. We
propose learning them in a data-driven fashion. Specifically, we parameterize α(n)

t and β(n)
t with

α
(n)
t = σ(F (n)

α (xt)) and β
(n)
t = σ(F

(n)
β (xt)),

where F (n)
∗ (xt) = W

(n)
∗ xt + b

(n)
∗ ∈ R (∗ ∈ {α, β}) with weight parameters W

(n)
∗ and bias

parameters b(n)∗ both learned from data.

Together with the sigmoid function σ, these simple linear transformations of the input token xt are
applied dynamically at each time step t across the input sequence. Moreover, as shown in (2.1) and
(2.2), mathematically 0 < α

(n)
t , β

(n)
t < 1 control the extent of recursion at each recursion node n,

enabling soft depth along any unrolled recursive self-instantiation path. Thus, α(n)
t and β(n)

t are
called the soft depth gates.

Putting these together, Figure 2 unrolls the recursive self-instantiation paths at two consecutive time
steps to illustrate dynamic soft recursion depth. Specifically, the “softness” is indicated by greyscale
of any node at the beginning of an arrow along an unrolled recursion path. In sharp contrast to
multi-layer RNNs, Self-IRUs enable tree structures of self-instantiation, where the extent of recursion
is dynamic (to be visualized in Section 3.7).

2.3 Base Transformations

At any recursion depth l, F (l)
f in (2.1), F (l)

o in (2.2), and F (l)
z in (2.3) are base transformations of the

input xt and the hidden state h
(l)
t−1. For example, we can model base transformations using RNN

units (e.g., LSTM): at recursion depth l, for ∗ ∈ {f, o, z} we have

F
(l)
∗ (xt,h

(l)
t−1) = RNN(l)

∗ (xt,h
(l)
t−1).

Alternatively, we may also model base transformations with linear layers that only transform the
input xt using learnable weight parameters W(l)

∗ and bias parameters b(l)∗ for ∗ ∈ {f, o, z}:
F

(l)
∗ (xt) = W

(l)
∗ xt + b

(l)
∗ .

The Self-IRU is agnostic to the choice of base transformations and we will evaluate different choices
in the experiments. We will discuss how the Self-IRU can be useful as a (parallel) non-autoregressive
model and connects to other recurrent models in the supplementary material.

3 Experiments

To demonstrate the architectural flexibility and effectiveness, we evaluate Self-IRUs on a wide range
of publicly available benchmarks, perform ablation studies on the maximum recursion depth and base
transformations, and analyze dynamics of soft depth gates.
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3.1 Pixel-wise Sequential Image Classification

The sequential pixel-wise image classification problem treats pixels in images as sequences. We use
the well-established pixel-wise MNIST and CIFAR-10 datasets.

Table 1: Experimental results (accuracy) on the pixel-wise sequential image classification task.
Model #Params MNIST CIFAR-10
Independently R-RNN [Li et al., 2018a] - 99.00 -
r-LSTM with Aux Loss [Trinh et al., 2018] - 98.52 72.20
Transformer (self-attention) [Trinh et al., 2018] - 98.90 62.20
TrellisNet [Bai et al., 2018b] (reported) 8.0M 99.20 73.42
TrellisNet [Bai et al., 2018b] (our run) 8.0M 97.59 55.83
Self-IRU 0.9M 99.04 73.01

Table 1 reports the results of Self-IRUs against independently recurrent RNNs [Li et al., 2018a],
r-LSTMs with aux loss [Trinh et al., 2018], Transformers (self-attention) [Trinh et al., 2018], and
TrellisNets [Bai et al., 2018b]. On both the MNIST and CIFAR-10 datasets, the Self-IRU outperforms
most of the other investigated baseline models. For the only exception, parameters of the Self-IRU
are only about 1/8 of those of the TrellisNet [Bai et al., 2018b] while still achieving comparable
performance. This supports that the Self-IRU is a reasonably competitive sequence encoder.

3.2 Logical Inference

We experiment for the logical inference task on the standard dataset2 proposed by Bowman et al.
[2014]. This classification task is to determine the semantic equivalence of two statements expressed
with logic operators such as not, and, and or. As per prior work [Shen et al., 2018], the model is
trained on sequences with 6 or fewer operations and evaluated on sequences of 6 to 12 operations.

Table 2: Experimental results (accuracy) on the logical inference task (symbol † denotes models
with access to ground-truth syntax). The baseline results are reported from [Shen et al., 2018]. The
Self-IRU achieves state-of-the-art performance.

#Operations
Model = 7 = 8 = 9 = 10 = 11 = 12
Tree-LSTM† [Tai et al., 2015] 93.0 90.0 87.0 89.0 86.0 87.0
LSTM [Bowman et al., 2014] 88.0 85.0 80.0 78.0 71.0 69.0
RRNet [Jacob et al., 2018] 84.0 81.0 78.0 74.0 72.0 71.0
ON-LSTM [Shen et al., 2018] 91.0 87.0 86.0 81.0 78.0 76.0
Self-IRU 97.0 95.0 93.0 92.0 90.0 88.0

We compare Self-IRUs with Tree-LSTMs [Tai et al., 2015], LSTMs [Bowman et al., 2014], RR-
Nets [Jacob et al., 2018], and ordered-neuron (ON-) LSTMs [Shen et al., 2018] based on the common
experimental setting in these works. Table 2 reports our results on the logical inference task. The
Self-IRU is a strong and competitive model on this task, outperforming ON-LSTM by a wide margin
(+12% on the longest number of operations). Notably, the Self-IRU achieves state-of-the-art per-
formance on this dataset even when comparing with Tree-LSTMs that have access to ground-truth
syntactic information.

3.3 Sorting and Tree Traversal

We also evaluate Self-IRUs on two algorithmic tasks that are solvable by recursion: sorting and
tree traversal. In sorting, the input to the model is a sequence of integers. The correct output is
the sorted sequence of integers. Since mapping sorted inputs to outputs can be implemented in a
recursive fashion, we evaluate the Self-IRU’s ability to model recursively structured sequence data.
An example input-output pair would be 9, 1, 10, 5, 3→ 1, 3, 5, 9, 10. We evaluate on sequence length
m = {5, 10}.

2https://github.com/sleepinyourhat/vector-entailment.
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In the tree traversal problem, we construct a binary tree of maximum depth n. The goal is to generate
the postorder tree traversal given the inorder and preorder traversal of the tree. This is known to arrive
at only one unique solution. The constructed trees have random sparsity where trees can grow up to
maximum depth n. Hence, these trees can have varying depths (models can solve the task entirely
when trees are fixed and full). We concatenate the postorder and inorder sequences, delimited by a
special token. We evaluate on maximum depth n ∈ {3, 4, 5, 8, 10}. For n ∈ {5, 8}, we ensure that
each tree traversal has at least 10 tokens. For n = 10, we ensure that each path has at least 15 tokens.
An example input-output pair would be 13, 15, 4, 7, 5, X, 13, 4, 15, 5, 7→ 7, 15, 13, 4, 5.

We frame sorting and tree traversal as sequence-to-sequence [Sutskever et al., 2014] tasks and
evaluate models with measures of exact match (EM) accuracy and perplexity (PPL). We use a
standard encoder-decoder architecture with attention [Bahdanau et al., 2014], and vary the encoder
module with BiLSTMs, stacked BiLSTMs, and ordered-neuron (ON-) LSTMs [Shen et al., 2018].

Table 3: Experimental results on the sorting and tree traversal tasks.
SORTING TREE TRAVERSAL

m = 5 m = 10 n = 3 n = 4 n = 5 n = 8 n = 10
Model EM PPL EM PPL EM PPL EM PPL EM PPL EM PPL EM PPL
BiLSTM 79.9 1.2 78.9 1.2 100 1.0 96.9 2.4 60.3 2.4 5.6 30.6 2.2 132.0
Stacked BiLSTM 83.4 1.2 88.0 1.1 100 1.0 98.0 1.0 63.4 2.5 5.9 99.9 2.8 225.1
ON-LSTM 90.8 1.1 87.4 1.1 100 1.0 81.0 1.4 55.7 2.8 5.5 52.3 2.7 173.2
Self-IRU 92.2 1.1 90.6 1.1 100 1.0 98.4 1.0 63.4 1.8 5.6 20.4 2.8 119.0

Table 3 reports our results on the sorting and tree traversal tasks. In fact, all the models solve the
tree traversal task with n = 3. However, the task gets increasingly harder with a greater maximum
possible depth and largely still remains a challenge for neural models today. On one hand, stacked
BiLSTMs always perform better than BiLSTMs and ON-LSTMs occasionally perform worse than
standard BiLSTMs on tree traversal, while for the sorting task ON-LSTMs perform much better than
standard BiLSTMs. On the other hand, the relative performance of the Self-IRU is generally better
than any of these baselines, especially pertaining to perplexity.

3.4 Music Modeling

Moreover, we evaluate the Self-IRU on the polyphonic music modeling task, i.e., generative modeling
of musical sequences. We use three well-established datasets: Nottingham, JSB Chorales, and Piano
Midi [Boulanger-Lewandowski et al., 2012]. The inputs are 88-bit (88 piano keys) sequences.

Table 4: Experimental results (negative log-likelihood) on the music modeling task.
Model Nottingham JSB Piano Midi
GRU [Chung et al., 2014] 3.13 8.54 8.82
LSTM [Song et al., 2019] 3.25 8.61 7.99
G2-LSTM [Li et al., 2018b] 3.21 8.67 8.18
B-LSTM [Song et al., 2019] 3.16 8.30 7.55
TCN [Bai et al., 2018a] (reported) 3.07 8.10 -
TCN [Bai et al., 2018a] (our run) 2.95 8.13 7.53
Self-IRU 2.88 8.12 7.49

Table 4 compares the Self-IRU with a wide range of published works: GRU [Chung et al., 2014],
LSTM [Song et al., 2019], G2-LSTM [Li et al., 2018b], B-LSTM [Song et al., 2019], and TCN [Bai
et al., 2018a]. The Self-IRU achieves the best performance on the Nottingham and Piano midi datasets.
It also achieves competitive performance on the JSB Chorales dataset, only underperforming the
state-of-the-art by 0.02 negative log-likelihood.

3.5 Semantic Parsing and Code Generation

We further evaluate Self-IRUs on the semantic parsing (the Geo, Atis, and Jobs datasets) and code
generation (the Django dataset) tasks. They are mainly concerned with learning to parse and generate
structured data. We run our experiments on the publicly released source code3 of [Yin and Neubig,

3https://github.com/pcyin/tranX
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2018], replacing the recurrent decoder with our Self-IRU decoder (TranX + Self-IRU). We only
replace the recurrent decoder since our early experiments showed that varying the encoder did not
yield any benefits in performance. Overall, our hyperparameter details strictly follow the codebase
of [Yin and Neubig, 2018], i.e., we run every model from their codebase as it is.

Table 5: Experimental results (accuracy) on the semantic parsing (the Geo, Atis, and Jobs datasets)
and code generation tasks (the Django dataset).

Model Geo Atis Jobs Django
Seq2Tree [Dong and Lapata, 2016] 87.1 84.6 - 31.5
LPN [Ling et al., 2016] - - - 62.3
NMT [Neubig, 2015] - - - 45.1
YN17 [Yin and Neubig, 2017] - - - 71.6
ASN [Rabinovich et al., 2017] 85.7 85.3 - -
ASN + Supv. Attn. [Rabinovich et al., 2017] 87.1 85.9 - -
TranX [Yin and Neubig, 2018] (reported in code) 88.6 87.7 90.0 77.2
TranX [Yin and Neubig, 2018] (our run) 87.5 87.5 90.0 76.7
TranX + Self-IRU 88.6 88.4 90.7 78.3

Table 5 reports the experimental results in comparison with the other competitive baselines such
as Seq2Tree [Dong and Lapata, 2016], LPN [Ling et al., 2016], NMT [Neubig, 2015], YN17 [Yin
and Neubig, 2017], ASN (with and without supervised attention) [Rabinovich et al., 2017], and
TranX [Yin and Neubig, 2018]. We observe that TranX + Self-IRU outperforms all the other
approaches, achieving state-of-the-art performance. On the code generation task, TranX + Self-IRU
outperforms TranX by +1.6% and ≈ +1% on all the semantic parsing tasks. More importantly,
the performance gain over the base TranX method allows us to observe the ablative benefit of the
Self-IRU that is achieved by only varying the recurrent decoder.

3.6 Ablation Studies of the Maximum Recursion Depth and Base Transformations

Table 6: Ablation studies of the maximum recursion depth and base
transformation on the semantic parsing (SP) and code generation
(CG) tasks.

Max Depth Base Transformations SP CG
1 Linear 88.40 77.56
2 Linear 88.21 77.62
3 Linear 87.80 76.84
1 LSTM 86.61 78.33
2 LSTM 85.93 77.39

Table 6 presents ablation studies
of the maximum recursion depth
(Section 2.1) and base transfor-
mations (Section 2.3) of Self-
IRUs. The results are based on
the semantic parsing (Atis) and
code generation (Django) tasks.
We can see that their optimal
choice is task dependent: (i) on
the semantic parsing task, using
the linear layer performs better
than the LSTM for base transfor-
mations; (ii) conversely, the linear transformation performs worse than the LSTM on the code
generation task.

Table 7: The optimal maximum recursion depth and base transfor-
mations for different tasks in the experiments.

Task Max Depth Base Transformations
Image classification 1 LSTM
Logical inference 2 LSTM
Tree traversal 1 LSTM
Sorting 1 LSTM
Music modeling 2 Linear
Semantic parsing 1 Linear
Code generation 1 LSTM

On the whole, we also observe
this across the other tasks in
the experiments. Table 7 re-
ports their optimal combinations
for diverse tasks in the experi-
ments, where the maximum re-
cursion depth is evaluated on
L = {0, 1, 2, 3}. As we can
tell from different optimal com-
binations in Table 7, choices of
the maximum recursion depth
and base transformations of Self-
IRUs depend on tasks.
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3.7 Analysis of Soft Depth Gates

Besides the task-specific maximum recursion depth and base transformations, empirical effectiveness
of Self-IRUs may also be explained by the modeling flexibility via the inductive bias towards dynamic
soft recursion (Section 2.2). We will analyze in two aspects below.

(a) Initial (CIFAR-10) (b) Epoch 10 (CIFAR-10) (c) Initial (MNIST) (d) Epoch 10 (MNIST)

Figure 3: Soft depth gate values at initialization and training epoch 10 on the CIFAR-10 and MNIST
datasets.

(a) Image classification (CIFAR-10)

(b) Image classification (MNIST)
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Figure 4: Soft depth gate values across the temporal dimen-
sion. “L” and “R” denote α(n)

t and β(n)
t , respectively (e.g.,

“LLR” denotes the node at the end of the unrolled recursive
path α(n)

t → α
(n)
t → β

(n)
t ).

First, during training, the Self-IRU
has the flexibility of building data-
dependent recursive patterns of self-
instantiation. Figure 3 displays values
of all the soft depth gates at all the
three recursion depths on the CIFAR-
10 and MNIST datasets, depicting how
the recursive pattern of the Self-IRU
is updated during training. For differ-
ent datasets, the Self-IRU also flexibly
learns to construct different soft recur-
sive (via soft depth gates of values be-
tween 0 and 1) patterns.

Second, we want to find out whether
the Self-IRU has the flexibility of softly
learning the recursion depth on a per-
time-step basis via the inductive bias to-
wards dynamic soft recursion. Figure 4
visualizes such patterns (i) for pixel-
wise sequential image classification on
the CIFAR-10 and MNIST datasets and
(ii) for music modeling on the Notting-
ham dataset. Notably, all the datasets
have very diverse temporal composi-
tions of recursive patterns. More con-
cretely, the soft depth gate values fluc-
tuate aggressively on the CIFAR-10
dataset (consisting of color images) in
Figure 4a while remaining more stable
for music modeling in Figure 4c. More-
over, these soft depth gate values remain
totally constant on the MNIST dataset
(consisting of much simpler grayscale
images) in Figure 4b. These provide
compelling empirical evidence for the
architectural flexibility of Self-IRUs:
they can adjust the dynamic construc-
tion adaptively and can even revert to
static recursion over time if necessary
(such as for simpler tasks).
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The dynamic soft recursion pattern is made more intriguing by observing how the “softness” alters
on the CIFAR-10 and Nottingham datasets. From Figure 4c we observe that the soft recursion pattern
of the model changes in a rhythmic fashion, in line with our intuition of musical data. When dealing
with pixel information, the recursive pattern in Figure 4a changes adaptively according to the more
complex color-image information. Though these empirical results are intuitive, a better understanding
of such behaviors may benefit from theoretical or biological perspectives in the future.

4 Related Work

The study of effective inductive biases for sequential representation learning has been a prosperous
research direction. This has spurred on research across multiple fronts, starting from gated recurrent
models [Hochreiter and Schmidhuber, 1997, Cho et al., 2014], convolution [Kim, 2014], to self-
attention-based models [Vaswani et al., 2017].

The intrinsic hierarchical structure native to many forms of sequences has long fascinated and
inspired researchers [Socher et al., 2013, Bowman et al., 2014, 2016, Dyer et al., 2016]. Nested
LSTMs use hierarchical memories [Moniz and Krueger, 2017]. The study of recursive networks,
popularized by Socher et al. [2013], has provided a foundation for learning syntax-guided composition.
Along the same vein, Tai et al. [2015] proposed Tree-LSTMs that guide LSTM composition with
grammar. Recent attempts have been made to learn this process without guidance or syntax-based
supervision [Yogatama et al., 2016, Shen et al., 2017, Choi et al., 2018, Havrylov et al., 2019, Kim
et al., 2019]. Specifically, ordered-neuron LSTMs [Shen et al., 2018] propose structured gating
mechanisms, imbuing the recurrent unit with a tree-structured inductive bias. Besides, Tran et al.
[2018] showed that recurrence is important for modeling hierarchical structure. Notably, learning
hierarchical representations across multiple time-scales [El Hihi and Bengio, 1996, Schmidhuber,
1992, Koutnik et al., 2014, Chung et al., 2016, Hafner et al., 2017] has also demonstrated effectiveness.

Learning an abstraction and controller over a base recurrent unit is also another compelling direction.
First proposed in fast weights by Schmidhuber [1992], several recent works explored this notion.
HyperNetworks [Ha et al., 2016] learn to generate weights for another recurrent unit, i.e., a form
of relaxed weight sharing. On the other hand, RCRN [Tay et al., 2018] explicitly parameterizes the
gates of an RNN unit with other RNN units. Recent studies on the recurrent unit are also reminiscent
of this particular notion [Bradbury et al., 2016, Lei et al., 2018].

The fusion of recursive and recurrent architectures is also notable. This direction is probably the
closest relevance to our proposed method, although with vast differences. Liu et al. [2014] proposed
recursive recurrent networks for machine translation that are concerned with the more traditional
syntactic supervision concept of vanilla recursive networks. Jacob et al. [2018] proposed the RRNet,
which learns hierarchical structures on the fly. The RRNet proposes to learn to split or merge nodes at
each time step, which makes it reminiscent of other works [Choi et al., 2018, Shen et al., 2018]. Lee
and Osindero [2016] and Aydin and Güngör [2020] proposed to feed recursive neural network output
into recurrent models. Alvarez-Melis and Jaakkola [2016] proposed doubly recurrent decoders for
tree-structured decoding. The core of their method is a depth and breath-wise recurrence which is
similar to our model. However, our Self-IRU is concerned with learning recursive self-instantiation,
which is in sharp contrast to their objective of decoding trees.

Last, our work combines the idea of external meta-controllers [Schmidhuber, 1992, Ha et al., 2016,
Tay et al., 2018] with recursive architectures. Specifically, our recursive parameterization is also a
form of dynamic memory that offers improved expressiveness in similar spirit to memory-augmented
recurrent models [Santoro et al., 2018, Graves et al., 2014, Tran et al., 2016].

5 Summary and Discussions

We proposed the Self-IRU that is characterized by recursive instantiation of the model itself, where the
extent of the recursion may vary temporally. The experiments across multiple modalities demonstrated
the architectural flexibility and effectiveness of the Self-IRU. While there is a risk of abusing the
Self-IRU such as for generating fake contents, we believe that our model is overall beneficial through
effective understanding of our digitalized world across diverse modalities.

Acknowledgements. We thank the anonymous reviewers for the insightful comments on this paper.
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